1 //===-- TargetInstrInfo.cpp - Target Instruction Information --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the TargetInstrInfo class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Target/TargetInstrInfo.h" 15 #include "llvm/CodeGen/MachineFrameInfo.h" 16 #include "llvm/CodeGen/MachineInstrBuilder.h" 17 #include "llvm/CodeGen/MachineMemOperand.h" 18 #include "llvm/CodeGen/MachineRegisterInfo.h" 19 #include "llvm/CodeGen/PseudoSourceValue.h" 20 #include "llvm/CodeGen/ScoreboardHazardRecognizer.h" 21 #include "llvm/CodeGen/StackMaps.h" 22 #include "llvm/CodeGen/TargetSchedule.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/MC/MCAsmInfo.h" 25 #include "llvm/MC/MCInstrItineraries.h" 26 #include "llvm/Support/CommandLine.h" 27 #include "llvm/Support/ErrorHandling.h" 28 #include "llvm/Support/raw_ostream.h" 29 #include "llvm/Target/TargetFrameLowering.h" 30 #include "llvm/Target/TargetLowering.h" 31 #include "llvm/Target/TargetMachine.h" 32 #include "llvm/Target/TargetRegisterInfo.h" 33 #include <cctype> 34 35 using namespace llvm; 36 37 static cl::opt<bool> DisableHazardRecognizer( 38 "disable-sched-hazard", cl::Hidden, cl::init(false), 39 cl::desc("Disable hazard detection during preRA scheduling")); 40 41 TargetInstrInfo::~TargetInstrInfo() { 42 } 43 44 const TargetRegisterClass* 45 TargetInstrInfo::getRegClass(const MCInstrDesc &MCID, unsigned OpNum, 46 const TargetRegisterInfo *TRI, 47 const MachineFunction &MF) const { 48 if (OpNum >= MCID.getNumOperands()) 49 return nullptr; 50 51 short RegClass = MCID.OpInfo[OpNum].RegClass; 52 if (MCID.OpInfo[OpNum].isLookupPtrRegClass()) 53 return TRI->getPointerRegClass(MF, RegClass); 54 55 // Instructions like INSERT_SUBREG do not have fixed register classes. 56 if (RegClass < 0) 57 return nullptr; 58 59 // Otherwise just look it up normally. 60 return TRI->getRegClass(RegClass); 61 } 62 63 /// insertNoop - Insert a noop into the instruction stream at the specified 64 /// point. 65 void TargetInstrInfo::insertNoop(MachineBasicBlock &MBB, 66 MachineBasicBlock::iterator MI) const { 67 llvm_unreachable("Target didn't implement insertNoop!"); 68 } 69 70 /// Measure the specified inline asm to determine an approximation of its 71 /// length. 72 /// Comments (which run till the next SeparatorString or newline) do not 73 /// count as an instruction. 74 /// Any other non-whitespace text is considered an instruction, with 75 /// multiple instructions separated by SeparatorString or newlines. 76 /// Variable-length instructions are not handled here; this function 77 /// may be overloaded in the target code to do that. 78 unsigned TargetInstrInfo::getInlineAsmLength(const char *Str, 79 const MCAsmInfo &MAI) const { 80 // Count the number of instructions in the asm. 81 bool atInsnStart = true; 82 unsigned Length = 0; 83 for (; *Str; ++Str) { 84 if (*Str == '\n' || strncmp(Str, MAI.getSeparatorString(), 85 strlen(MAI.getSeparatorString())) == 0) 86 atInsnStart = true; 87 if (atInsnStart && !std::isspace(static_cast<unsigned char>(*Str))) { 88 Length += MAI.getMaxInstLength(); 89 atInsnStart = false; 90 } 91 if (atInsnStart && strncmp(Str, MAI.getCommentString(), 92 strlen(MAI.getCommentString())) == 0) 93 atInsnStart = false; 94 } 95 96 return Length; 97 } 98 99 /// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything 100 /// after it, replacing it with an unconditional branch to NewDest. 101 void 102 TargetInstrInfo::ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail, 103 MachineBasicBlock *NewDest) const { 104 MachineBasicBlock *MBB = Tail->getParent(); 105 106 // Remove all the old successors of MBB from the CFG. 107 while (!MBB->succ_empty()) 108 MBB->removeSuccessor(MBB->succ_begin()); 109 110 // Save off the debug loc before erasing the instruction. 111 DebugLoc DL = Tail->getDebugLoc(); 112 113 // Remove all the dead instructions from the end of MBB. 114 MBB->erase(Tail, MBB->end()); 115 116 // If MBB isn't immediately before MBB, insert a branch to it. 117 if (++MachineFunction::iterator(MBB) != MachineFunction::iterator(NewDest)) 118 InsertBranch(*MBB, NewDest, nullptr, SmallVector<MachineOperand, 0>(), DL); 119 MBB->addSuccessor(NewDest); 120 } 121 122 MachineInstr *TargetInstrInfo::commuteInstructionImpl(MachineInstr *MI, 123 bool NewMI, 124 unsigned Idx1, 125 unsigned Idx2) const { 126 const MCInstrDesc &MCID = MI->getDesc(); 127 bool HasDef = MCID.getNumDefs(); 128 if (HasDef && !MI->getOperand(0).isReg()) 129 // No idea how to commute this instruction. Target should implement its own. 130 return nullptr; 131 132 unsigned CommutableOpIdx1 = Idx1; (void)CommutableOpIdx1; 133 unsigned CommutableOpIdx2 = Idx2; (void)CommutableOpIdx2; 134 assert(findCommutedOpIndices(MI, CommutableOpIdx1, CommutableOpIdx2) && 135 CommutableOpIdx1 == Idx1 && CommutableOpIdx2 == Idx2 && 136 "TargetInstrInfo::CommuteInstructionImpl(): not commutable operands."); 137 assert(MI->getOperand(Idx1).isReg() && MI->getOperand(Idx2).isReg() && 138 "This only knows how to commute register operands so far"); 139 140 unsigned Reg0 = HasDef ? MI->getOperand(0).getReg() : 0; 141 unsigned Reg1 = MI->getOperand(Idx1).getReg(); 142 unsigned Reg2 = MI->getOperand(Idx2).getReg(); 143 unsigned SubReg0 = HasDef ? MI->getOperand(0).getSubReg() : 0; 144 unsigned SubReg1 = MI->getOperand(Idx1).getSubReg(); 145 unsigned SubReg2 = MI->getOperand(Idx2).getSubReg(); 146 bool Reg1IsKill = MI->getOperand(Idx1).isKill(); 147 bool Reg2IsKill = MI->getOperand(Idx2).isKill(); 148 bool Reg1IsUndef = MI->getOperand(Idx1).isUndef(); 149 bool Reg2IsUndef = MI->getOperand(Idx2).isUndef(); 150 bool Reg1IsInternal = MI->getOperand(Idx1).isInternalRead(); 151 bool Reg2IsInternal = MI->getOperand(Idx2).isInternalRead(); 152 // If destination is tied to either of the commuted source register, then 153 // it must be updated. 154 if (HasDef && Reg0 == Reg1 && 155 MI->getDesc().getOperandConstraint(Idx1, MCOI::TIED_TO) == 0) { 156 Reg2IsKill = false; 157 Reg0 = Reg2; 158 SubReg0 = SubReg2; 159 } else if (HasDef && Reg0 == Reg2 && 160 MI->getDesc().getOperandConstraint(Idx2, MCOI::TIED_TO) == 0) { 161 Reg1IsKill = false; 162 Reg0 = Reg1; 163 SubReg0 = SubReg1; 164 } 165 166 if (NewMI) { 167 // Create a new instruction. 168 MachineFunction &MF = *MI->getParent()->getParent(); 169 MI = MF.CloneMachineInstr(MI); 170 } 171 172 if (HasDef) { 173 MI->getOperand(0).setReg(Reg0); 174 MI->getOperand(0).setSubReg(SubReg0); 175 } 176 MI->getOperand(Idx2).setReg(Reg1); 177 MI->getOperand(Idx1).setReg(Reg2); 178 MI->getOperand(Idx2).setSubReg(SubReg1); 179 MI->getOperand(Idx1).setSubReg(SubReg2); 180 MI->getOperand(Idx2).setIsKill(Reg1IsKill); 181 MI->getOperand(Idx1).setIsKill(Reg2IsKill); 182 MI->getOperand(Idx2).setIsUndef(Reg1IsUndef); 183 MI->getOperand(Idx1).setIsUndef(Reg2IsUndef); 184 MI->getOperand(Idx2).setIsInternalRead(Reg1IsInternal); 185 MI->getOperand(Idx1).setIsInternalRead(Reg2IsInternal); 186 return MI; 187 } 188 189 MachineInstr *TargetInstrInfo::commuteInstruction(MachineInstr *MI, 190 bool NewMI, 191 unsigned OpIdx1, 192 unsigned OpIdx2) const { 193 // If OpIdx1 or OpIdx2 is not specified, then this method is free to choose 194 // any commutable operand, which is done in findCommutedOpIndices() method 195 // called below. 196 if ((OpIdx1 == CommuteAnyOperandIndex || OpIdx2 == CommuteAnyOperandIndex) && 197 !findCommutedOpIndices(MI, OpIdx1, OpIdx2)) { 198 assert(MI->isCommutable() && 199 "Precondition violation: MI must be commutable."); 200 return nullptr; 201 } 202 return commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); 203 } 204 205 bool TargetInstrInfo::fixCommutedOpIndices(unsigned &ResultIdx1, 206 unsigned &ResultIdx2, 207 unsigned CommutableOpIdx1, 208 unsigned CommutableOpIdx2) { 209 if (ResultIdx1 == CommuteAnyOperandIndex && 210 ResultIdx2 == CommuteAnyOperandIndex) { 211 ResultIdx1 = CommutableOpIdx1; 212 ResultIdx2 = CommutableOpIdx2; 213 } else if (ResultIdx1 == CommuteAnyOperandIndex) { 214 if (ResultIdx2 == CommutableOpIdx1) 215 ResultIdx1 = CommutableOpIdx2; 216 else if (ResultIdx2 == CommutableOpIdx2) 217 ResultIdx1 = CommutableOpIdx1; 218 else 219 return false; 220 } else if (ResultIdx2 == CommuteAnyOperandIndex) { 221 if (ResultIdx1 == CommutableOpIdx1) 222 ResultIdx2 = CommutableOpIdx2; 223 else if (ResultIdx1 == CommutableOpIdx2) 224 ResultIdx2 = CommutableOpIdx1; 225 else 226 return false; 227 } else 228 // Check that the result operand indices match the given commutable 229 // operand indices. 230 return (ResultIdx1 == CommutableOpIdx1 && ResultIdx2 == CommutableOpIdx2) || 231 (ResultIdx1 == CommutableOpIdx2 && ResultIdx2 == CommutableOpIdx1); 232 233 return true; 234 } 235 236 bool TargetInstrInfo::findCommutedOpIndices(MachineInstr *MI, 237 unsigned &SrcOpIdx1, 238 unsigned &SrcOpIdx2) const { 239 assert(!MI->isBundle() && 240 "TargetInstrInfo::findCommutedOpIndices() can't handle bundles"); 241 242 const MCInstrDesc &MCID = MI->getDesc(); 243 if (!MCID.isCommutable()) 244 return false; 245 246 // This assumes v0 = op v1, v2 and commuting would swap v1 and v2. If this 247 // is not true, then the target must implement this. 248 unsigned CommutableOpIdx1 = MCID.getNumDefs(); 249 unsigned CommutableOpIdx2 = CommutableOpIdx1 + 1; 250 if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 251 CommutableOpIdx1, CommutableOpIdx2)) 252 return false; 253 254 if (!MI->getOperand(SrcOpIdx1).isReg() || 255 !MI->getOperand(SrcOpIdx2).isReg()) 256 // No idea. 257 return false; 258 return true; 259 } 260 261 bool TargetInstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const { 262 if (!MI.isTerminator()) return false; 263 264 // Conditional branch is a special case. 265 if (MI.isBranch() && !MI.isBarrier()) 266 return true; 267 if (!MI.isPredicable()) 268 return true; 269 return !isPredicated(MI); 270 } 271 272 bool TargetInstrInfo::PredicateInstruction( 273 MachineInstr &MI, ArrayRef<MachineOperand> Pred) const { 274 bool MadeChange = false; 275 276 assert(!MI.isBundle() && 277 "TargetInstrInfo::PredicateInstruction() can't handle bundles"); 278 279 const MCInstrDesc &MCID = MI.getDesc(); 280 if (!MI.isPredicable()) 281 return false; 282 283 for (unsigned j = 0, i = 0, e = MI.getNumOperands(); i != e; ++i) { 284 if (MCID.OpInfo[i].isPredicate()) { 285 MachineOperand &MO = MI.getOperand(i); 286 if (MO.isReg()) { 287 MO.setReg(Pred[j].getReg()); 288 MadeChange = true; 289 } else if (MO.isImm()) { 290 MO.setImm(Pred[j].getImm()); 291 MadeChange = true; 292 } else if (MO.isMBB()) { 293 MO.setMBB(Pred[j].getMBB()); 294 MadeChange = true; 295 } 296 ++j; 297 } 298 } 299 return MadeChange; 300 } 301 302 bool TargetInstrInfo::hasLoadFromStackSlot(const MachineInstr *MI, 303 const MachineMemOperand *&MMO, 304 int &FrameIndex) const { 305 for (MachineInstr::mmo_iterator o = MI->memoperands_begin(), 306 oe = MI->memoperands_end(); 307 o != oe; 308 ++o) { 309 if ((*o)->isLoad()) { 310 if (const FixedStackPseudoSourceValue *Value = 311 dyn_cast_or_null<FixedStackPseudoSourceValue>( 312 (*o)->getPseudoValue())) { 313 FrameIndex = Value->getFrameIndex(); 314 MMO = *o; 315 return true; 316 } 317 } 318 } 319 return false; 320 } 321 322 bool TargetInstrInfo::hasStoreToStackSlot(const MachineInstr *MI, 323 const MachineMemOperand *&MMO, 324 int &FrameIndex) const { 325 for (MachineInstr::mmo_iterator o = MI->memoperands_begin(), 326 oe = MI->memoperands_end(); 327 o != oe; 328 ++o) { 329 if ((*o)->isStore()) { 330 if (const FixedStackPseudoSourceValue *Value = 331 dyn_cast_or_null<FixedStackPseudoSourceValue>( 332 (*o)->getPseudoValue())) { 333 FrameIndex = Value->getFrameIndex(); 334 MMO = *o; 335 return true; 336 } 337 } 338 } 339 return false; 340 } 341 342 bool TargetInstrInfo::getStackSlotRange(const TargetRegisterClass *RC, 343 unsigned SubIdx, unsigned &Size, 344 unsigned &Offset, 345 const MachineFunction &MF) const { 346 if (!SubIdx) { 347 Size = RC->getSize(); 348 Offset = 0; 349 return true; 350 } 351 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 352 unsigned BitSize = TRI->getSubRegIdxSize(SubIdx); 353 // Convert bit size to byte size to be consistent with 354 // MCRegisterClass::getSize(). 355 if (BitSize % 8) 356 return false; 357 358 int BitOffset = TRI->getSubRegIdxOffset(SubIdx); 359 if (BitOffset < 0 || BitOffset % 8) 360 return false; 361 362 Size = BitSize /= 8; 363 Offset = (unsigned)BitOffset / 8; 364 365 assert(RC->getSize() >= (Offset + Size) && "bad subregister range"); 366 367 if (!MF.getDataLayout().isLittleEndian()) { 368 Offset = RC->getSize() - (Offset + Size); 369 } 370 return true; 371 } 372 373 void TargetInstrInfo::reMaterialize(MachineBasicBlock &MBB, 374 MachineBasicBlock::iterator I, 375 unsigned DestReg, 376 unsigned SubIdx, 377 const MachineInstr *Orig, 378 const TargetRegisterInfo &TRI) const { 379 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig); 380 MI->substituteRegister(MI->getOperand(0).getReg(), DestReg, SubIdx, TRI); 381 MBB.insert(I, MI); 382 } 383 384 bool 385 TargetInstrInfo::produceSameValue(const MachineInstr *MI0, 386 const MachineInstr *MI1, 387 const MachineRegisterInfo *MRI) const { 388 return MI0->isIdenticalTo(*MI1, MachineInstr::IgnoreVRegDefs); 389 } 390 391 MachineInstr *TargetInstrInfo::duplicate(MachineInstr *Orig, 392 MachineFunction &MF) const { 393 assert(!Orig->isNotDuplicable() && 394 "Instruction cannot be duplicated"); 395 return MF.CloneMachineInstr(Orig); 396 } 397 398 // If the COPY instruction in MI can be folded to a stack operation, return 399 // the register class to use. 400 static const TargetRegisterClass *canFoldCopy(const MachineInstr *MI, 401 unsigned FoldIdx) { 402 assert(MI->isCopy() && "MI must be a COPY instruction"); 403 if (MI->getNumOperands() != 2) 404 return nullptr; 405 assert(FoldIdx<2 && "FoldIdx refers no nonexistent operand"); 406 407 const MachineOperand &FoldOp = MI->getOperand(FoldIdx); 408 const MachineOperand &LiveOp = MI->getOperand(1-FoldIdx); 409 410 if (FoldOp.getSubReg() || LiveOp.getSubReg()) 411 return nullptr; 412 413 unsigned FoldReg = FoldOp.getReg(); 414 unsigned LiveReg = LiveOp.getReg(); 415 416 assert(TargetRegisterInfo::isVirtualRegister(FoldReg) && 417 "Cannot fold physregs"); 418 419 const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo(); 420 const TargetRegisterClass *RC = MRI.getRegClass(FoldReg); 421 422 if (TargetRegisterInfo::isPhysicalRegister(LiveOp.getReg())) 423 return RC->contains(LiveOp.getReg()) ? RC : nullptr; 424 425 if (RC->hasSubClassEq(MRI.getRegClass(LiveReg))) 426 return RC; 427 428 // FIXME: Allow folding when register classes are memory compatible. 429 return nullptr; 430 } 431 432 void TargetInstrInfo::getNoopForMachoTarget(MCInst &NopInst) const { 433 llvm_unreachable("Not a MachO target"); 434 } 435 436 static MachineInstr *foldPatchpoint(MachineFunction &MF, MachineInstr *MI, 437 ArrayRef<unsigned> Ops, int FrameIndex, 438 const TargetInstrInfo &TII) { 439 unsigned StartIdx = 0; 440 switch (MI->getOpcode()) { 441 case TargetOpcode::STACKMAP: 442 StartIdx = 2; // Skip ID, nShadowBytes. 443 break; 444 case TargetOpcode::PATCHPOINT: { 445 // For PatchPoint, the call args are not foldable. 446 PatchPointOpers opers(MI); 447 StartIdx = opers.getVarIdx(); 448 break; 449 } 450 default: 451 llvm_unreachable("unexpected stackmap opcode"); 452 } 453 454 // Return false if any operands requested for folding are not foldable (not 455 // part of the stackmap's live values). 456 for (unsigned Op : Ops) { 457 if (Op < StartIdx) 458 return nullptr; 459 } 460 461 MachineInstr *NewMI = 462 MF.CreateMachineInstr(TII.get(MI->getOpcode()), MI->getDebugLoc(), true); 463 MachineInstrBuilder MIB(MF, NewMI); 464 465 // No need to fold return, the meta data, and function arguments 466 for (unsigned i = 0; i < StartIdx; ++i) 467 MIB.addOperand(MI->getOperand(i)); 468 469 for (unsigned i = StartIdx; i < MI->getNumOperands(); ++i) { 470 MachineOperand &MO = MI->getOperand(i); 471 if (std::find(Ops.begin(), Ops.end(), i) != Ops.end()) { 472 unsigned SpillSize; 473 unsigned SpillOffset; 474 // Compute the spill slot size and offset. 475 const TargetRegisterClass *RC = 476 MF.getRegInfo().getRegClass(MO.getReg()); 477 bool Valid = 478 TII.getStackSlotRange(RC, MO.getSubReg(), SpillSize, SpillOffset, MF); 479 if (!Valid) 480 report_fatal_error("cannot spill patchpoint subregister operand"); 481 MIB.addImm(StackMaps::IndirectMemRefOp); 482 MIB.addImm(SpillSize); 483 MIB.addFrameIndex(FrameIndex); 484 MIB.addImm(SpillOffset); 485 } 486 else 487 MIB.addOperand(MO); 488 } 489 return NewMI; 490 } 491 492 /// foldMemoryOperand - Attempt to fold a load or store of the specified stack 493 /// slot into the specified machine instruction for the specified operand(s). 494 /// If this is possible, a new instruction is returned with the specified 495 /// operand folded, otherwise NULL is returned. The client is responsible for 496 /// removing the old instruction and adding the new one in the instruction 497 /// stream. 498 MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineBasicBlock::iterator MI, 499 ArrayRef<unsigned> Ops, 500 int FI, 501 LiveIntervals *LIS) const { 502 unsigned Flags = 0; 503 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 504 if (MI->getOperand(Ops[i]).isDef()) 505 Flags |= MachineMemOperand::MOStore; 506 else 507 Flags |= MachineMemOperand::MOLoad; 508 509 MachineBasicBlock *MBB = MI->getParent(); 510 assert(MBB && "foldMemoryOperand needs an inserted instruction"); 511 MachineFunction &MF = *MBB->getParent(); 512 513 MachineInstr *NewMI = nullptr; 514 515 if (MI->getOpcode() == TargetOpcode::STACKMAP || 516 MI->getOpcode() == TargetOpcode::PATCHPOINT) { 517 // Fold stackmap/patchpoint. 518 NewMI = foldPatchpoint(MF, MI, Ops, FI, *this); 519 if (NewMI) 520 MBB->insert(MI, NewMI); 521 } else { 522 // Ask the target to do the actual folding. 523 NewMI = foldMemoryOperandImpl(MF, MI, Ops, MI, FI, LIS); 524 } 525 526 if (NewMI) { 527 NewMI->setMemRefs(MI->memoperands_begin(), MI->memoperands_end()); 528 // Add a memory operand, foldMemoryOperandImpl doesn't do that. 529 assert((!(Flags & MachineMemOperand::MOStore) || 530 NewMI->mayStore()) && 531 "Folded a def to a non-store!"); 532 assert((!(Flags & MachineMemOperand::MOLoad) || 533 NewMI->mayLoad()) && 534 "Folded a use to a non-load!"); 535 const MachineFrameInfo &MFI = *MF.getFrameInfo(); 536 assert(MFI.getObjectOffset(FI) != -1); 537 MachineMemOperand *MMO = MF.getMachineMemOperand( 538 MachinePointerInfo::getFixedStack(MF, FI), Flags, MFI.getObjectSize(FI), 539 MFI.getObjectAlignment(FI)); 540 NewMI->addMemOperand(MF, MMO); 541 542 return NewMI; 543 } 544 545 // Straight COPY may fold as load/store. 546 if (!MI->isCopy() || Ops.size() != 1) 547 return nullptr; 548 549 const TargetRegisterClass *RC = canFoldCopy(MI, Ops[0]); 550 if (!RC) 551 return nullptr; 552 553 const MachineOperand &MO = MI->getOperand(1-Ops[0]); 554 MachineBasicBlock::iterator Pos = MI; 555 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 556 557 if (Flags == MachineMemOperand::MOStore) 558 storeRegToStackSlot(*MBB, Pos, MO.getReg(), MO.isKill(), FI, RC, TRI); 559 else 560 loadRegFromStackSlot(*MBB, Pos, MO.getReg(), FI, RC, TRI); 561 return --Pos; 562 } 563 564 bool TargetInstrInfo::hasReassociableOperands( 565 const MachineInstr &Inst, const MachineBasicBlock *MBB) const { 566 const MachineOperand &Op1 = Inst.getOperand(1); 567 const MachineOperand &Op2 = Inst.getOperand(2); 568 const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); 569 570 // We need virtual register definitions for the operands that we will 571 // reassociate. 572 MachineInstr *MI1 = nullptr; 573 MachineInstr *MI2 = nullptr; 574 if (Op1.isReg() && TargetRegisterInfo::isVirtualRegister(Op1.getReg())) 575 MI1 = MRI.getUniqueVRegDef(Op1.getReg()); 576 if (Op2.isReg() && TargetRegisterInfo::isVirtualRegister(Op2.getReg())) 577 MI2 = MRI.getUniqueVRegDef(Op2.getReg()); 578 579 // And they need to be in the trace (otherwise, they won't have a depth). 580 return MI1 && MI2 && MI1->getParent() == MBB && MI2->getParent() == MBB; 581 } 582 583 bool TargetInstrInfo::hasReassociableSibling(const MachineInstr &Inst, 584 bool &Commuted) const { 585 const MachineBasicBlock *MBB = Inst.getParent(); 586 const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); 587 MachineInstr *MI1 = MRI.getUniqueVRegDef(Inst.getOperand(1).getReg()); 588 MachineInstr *MI2 = MRI.getUniqueVRegDef(Inst.getOperand(2).getReg()); 589 unsigned AssocOpcode = Inst.getOpcode(); 590 591 // If only one operand has the same opcode and it's the second source operand, 592 // the operands must be commuted. 593 Commuted = MI1->getOpcode() != AssocOpcode && MI2->getOpcode() == AssocOpcode; 594 if (Commuted) 595 std::swap(MI1, MI2); 596 597 // 1. The previous instruction must be the same type as Inst. 598 // 2. The previous instruction must have virtual register definitions for its 599 // operands in the same basic block as Inst. 600 // 3. The previous instruction's result must only be used by Inst. 601 return MI1->getOpcode() == AssocOpcode && 602 hasReassociableOperands(*MI1, MBB) && 603 MRI.hasOneNonDBGUse(MI1->getOperand(0).getReg()); 604 } 605 606 // 1. The operation must be associative and commutative. 607 // 2. The instruction must have virtual register definitions for its 608 // operands in the same basic block. 609 // 3. The instruction must have a reassociable sibling. 610 bool TargetInstrInfo::isReassociationCandidate(const MachineInstr &Inst, 611 bool &Commuted) const { 612 return isAssociativeAndCommutative(Inst) && 613 hasReassociableOperands(Inst, Inst.getParent()) && 614 hasReassociableSibling(Inst, Commuted); 615 } 616 617 // The concept of the reassociation pass is that these operations can benefit 618 // from this kind of transformation: 619 // 620 // A = ? op ? 621 // B = A op X (Prev) 622 // C = B op Y (Root) 623 // --> 624 // A = ? op ? 625 // B = X op Y 626 // C = A op B 627 // 628 // breaking the dependency between A and B, allowing them to be executed in 629 // parallel (or back-to-back in a pipeline) instead of depending on each other. 630 631 // FIXME: This has the potential to be expensive (compile time) while not 632 // improving the code at all. Some ways to limit the overhead: 633 // 1. Track successful transforms; bail out if hit rate gets too low. 634 // 2. Only enable at -O3 or some other non-default optimization level. 635 // 3. Pre-screen pattern candidates here: if an operand of the previous 636 // instruction is known to not increase the critical path, then don't match 637 // that pattern. 638 bool TargetInstrInfo::getMachineCombinerPatterns( 639 MachineInstr &Root, 640 SmallVectorImpl<MachineCombinerPattern> &Patterns) const { 641 bool Commute; 642 if (isReassociationCandidate(Root, Commute)) { 643 // We found a sequence of instructions that may be suitable for a 644 // reassociation of operands to increase ILP. Specify each commutation 645 // possibility for the Prev instruction in the sequence and let the 646 // machine combiner decide if changing the operands is worthwhile. 647 if (Commute) { 648 Patterns.push_back(MachineCombinerPattern::REASSOC_AX_YB); 649 Patterns.push_back(MachineCombinerPattern::REASSOC_XA_YB); 650 } else { 651 Patterns.push_back(MachineCombinerPattern::REASSOC_AX_BY); 652 Patterns.push_back(MachineCombinerPattern::REASSOC_XA_BY); 653 } 654 return true; 655 } 656 657 return false; 658 } 659 /// Return true when a code sequence can improve loop throughput. 660 bool 661 TargetInstrInfo::isThroughputPattern(MachineCombinerPattern Pattern) const { 662 return false; 663 } 664 /// Attempt the reassociation transformation to reduce critical path length. 665 /// See the above comments before getMachineCombinerPatterns(). 666 void TargetInstrInfo::reassociateOps( 667 MachineInstr &Root, MachineInstr &Prev, 668 MachineCombinerPattern Pattern, 669 SmallVectorImpl<MachineInstr *> &InsInstrs, 670 SmallVectorImpl<MachineInstr *> &DelInstrs, 671 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const { 672 MachineFunction *MF = Root.getParent()->getParent(); 673 MachineRegisterInfo &MRI = MF->getRegInfo(); 674 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 675 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 676 const TargetRegisterClass *RC = Root.getRegClassConstraint(0, TII, TRI); 677 678 // This array encodes the operand index for each parameter because the 679 // operands may be commuted. Each row corresponds to a pattern value, 680 // and each column specifies the index of A, B, X, Y. 681 unsigned OpIdx[4][4] = { 682 { 1, 1, 2, 2 }, 683 { 1, 2, 2, 1 }, 684 { 2, 1, 1, 2 }, 685 { 2, 2, 1, 1 } 686 }; 687 688 int Row; 689 switch (Pattern) { 690 case MachineCombinerPattern::REASSOC_AX_BY: Row = 0; break; 691 case MachineCombinerPattern::REASSOC_AX_YB: Row = 1; break; 692 case MachineCombinerPattern::REASSOC_XA_BY: Row = 2; break; 693 case MachineCombinerPattern::REASSOC_XA_YB: Row = 3; break; 694 default: llvm_unreachable("unexpected MachineCombinerPattern"); 695 } 696 697 MachineOperand &OpA = Prev.getOperand(OpIdx[Row][0]); 698 MachineOperand &OpB = Root.getOperand(OpIdx[Row][1]); 699 MachineOperand &OpX = Prev.getOperand(OpIdx[Row][2]); 700 MachineOperand &OpY = Root.getOperand(OpIdx[Row][3]); 701 MachineOperand &OpC = Root.getOperand(0); 702 703 unsigned RegA = OpA.getReg(); 704 unsigned RegB = OpB.getReg(); 705 unsigned RegX = OpX.getReg(); 706 unsigned RegY = OpY.getReg(); 707 unsigned RegC = OpC.getReg(); 708 709 if (TargetRegisterInfo::isVirtualRegister(RegA)) 710 MRI.constrainRegClass(RegA, RC); 711 if (TargetRegisterInfo::isVirtualRegister(RegB)) 712 MRI.constrainRegClass(RegB, RC); 713 if (TargetRegisterInfo::isVirtualRegister(RegX)) 714 MRI.constrainRegClass(RegX, RC); 715 if (TargetRegisterInfo::isVirtualRegister(RegY)) 716 MRI.constrainRegClass(RegY, RC); 717 if (TargetRegisterInfo::isVirtualRegister(RegC)) 718 MRI.constrainRegClass(RegC, RC); 719 720 // Create a new virtual register for the result of (X op Y) instead of 721 // recycling RegB because the MachineCombiner's computation of the critical 722 // path requires a new register definition rather than an existing one. 723 unsigned NewVR = MRI.createVirtualRegister(RC); 724 InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0)); 725 726 unsigned Opcode = Root.getOpcode(); 727 bool KillA = OpA.isKill(); 728 bool KillX = OpX.isKill(); 729 bool KillY = OpY.isKill(); 730 731 // Create new instructions for insertion. 732 MachineInstrBuilder MIB1 = 733 BuildMI(*MF, Prev.getDebugLoc(), TII->get(Opcode), NewVR) 734 .addReg(RegX, getKillRegState(KillX)) 735 .addReg(RegY, getKillRegState(KillY)); 736 MachineInstrBuilder MIB2 = 737 BuildMI(*MF, Root.getDebugLoc(), TII->get(Opcode), RegC) 738 .addReg(RegA, getKillRegState(KillA)) 739 .addReg(NewVR, getKillRegState(true)); 740 741 setSpecialOperandAttr(Root, Prev, *MIB1, *MIB2); 742 743 // Record new instructions for insertion and old instructions for deletion. 744 InsInstrs.push_back(MIB1); 745 InsInstrs.push_back(MIB2); 746 DelInstrs.push_back(&Prev); 747 DelInstrs.push_back(&Root); 748 } 749 750 void TargetInstrInfo::genAlternativeCodeSequence( 751 MachineInstr &Root, MachineCombinerPattern Pattern, 752 SmallVectorImpl<MachineInstr *> &InsInstrs, 753 SmallVectorImpl<MachineInstr *> &DelInstrs, 754 DenseMap<unsigned, unsigned> &InstIdxForVirtReg) const { 755 MachineRegisterInfo &MRI = Root.getParent()->getParent()->getRegInfo(); 756 757 // Select the previous instruction in the sequence based on the input pattern. 758 MachineInstr *Prev = nullptr; 759 switch (Pattern) { 760 case MachineCombinerPattern::REASSOC_AX_BY: 761 case MachineCombinerPattern::REASSOC_XA_BY: 762 Prev = MRI.getUniqueVRegDef(Root.getOperand(1).getReg()); 763 break; 764 case MachineCombinerPattern::REASSOC_AX_YB: 765 case MachineCombinerPattern::REASSOC_XA_YB: 766 Prev = MRI.getUniqueVRegDef(Root.getOperand(2).getReg()); 767 break; 768 default: 769 break; 770 } 771 772 assert(Prev && "Unknown pattern for machine combiner"); 773 774 reassociateOps(Root, *Prev, Pattern, InsInstrs, DelInstrs, InstIdxForVirtReg); 775 } 776 777 /// foldMemoryOperand - Same as the previous version except it allows folding 778 /// of any load and store from / to any address, not just from a specific 779 /// stack slot. 780 MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineBasicBlock::iterator MI, 781 ArrayRef<unsigned> Ops, 782 MachineInstr *LoadMI, 783 LiveIntervals *LIS) const { 784 assert(LoadMI->canFoldAsLoad() && "LoadMI isn't foldable!"); 785 #ifndef NDEBUG 786 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 787 assert(MI->getOperand(Ops[i]).isUse() && "Folding load into def!"); 788 #endif 789 MachineBasicBlock &MBB = *MI->getParent(); 790 MachineFunction &MF = *MBB.getParent(); 791 792 // Ask the target to do the actual folding. 793 MachineInstr *NewMI = nullptr; 794 int FrameIndex = 0; 795 796 if ((MI->getOpcode() == TargetOpcode::STACKMAP || 797 MI->getOpcode() == TargetOpcode::PATCHPOINT) && 798 isLoadFromStackSlot(LoadMI, FrameIndex)) { 799 // Fold stackmap/patchpoint. 800 NewMI = foldPatchpoint(MF, MI, Ops, FrameIndex, *this); 801 if (NewMI) 802 NewMI = MBB.insert(MI, NewMI); 803 } else { 804 // Ask the target to do the actual folding. 805 NewMI = foldMemoryOperandImpl(MF, MI, Ops, MI, LoadMI, LIS); 806 } 807 808 if (!NewMI) return nullptr; 809 810 // Copy the memoperands from the load to the folded instruction. 811 if (MI->memoperands_empty()) { 812 NewMI->setMemRefs(LoadMI->memoperands_begin(), 813 LoadMI->memoperands_end()); 814 } 815 else { 816 // Handle the rare case of folding multiple loads. 817 NewMI->setMemRefs(MI->memoperands_begin(), 818 MI->memoperands_end()); 819 for (MachineInstr::mmo_iterator I = LoadMI->memoperands_begin(), 820 E = LoadMI->memoperands_end(); I != E; ++I) { 821 NewMI->addMemOperand(MF, *I); 822 } 823 } 824 return NewMI; 825 } 826 827 bool TargetInstrInfo:: 828 isReallyTriviallyReMaterializableGeneric(const MachineInstr *MI, 829 AliasAnalysis *AA) const { 830 const MachineFunction &MF = *MI->getParent()->getParent(); 831 const MachineRegisterInfo &MRI = MF.getRegInfo(); 832 833 // Remat clients assume operand 0 is the defined register. 834 if (!MI->getNumOperands() || !MI->getOperand(0).isReg()) 835 return false; 836 unsigned DefReg = MI->getOperand(0).getReg(); 837 838 // A sub-register definition can only be rematerialized if the instruction 839 // doesn't read the other parts of the register. Otherwise it is really a 840 // read-modify-write operation on the full virtual register which cannot be 841 // moved safely. 842 if (TargetRegisterInfo::isVirtualRegister(DefReg) && 843 MI->getOperand(0).getSubReg() && MI->readsVirtualRegister(DefReg)) 844 return false; 845 846 // A load from a fixed stack slot can be rematerialized. This may be 847 // redundant with subsequent checks, but it's target-independent, 848 // simple, and a common case. 849 int FrameIdx = 0; 850 if (isLoadFromStackSlot(MI, FrameIdx) && 851 MF.getFrameInfo()->isImmutableObjectIndex(FrameIdx)) 852 return true; 853 854 // Avoid instructions obviously unsafe for remat. 855 if (MI->isNotDuplicable() || MI->mayStore() || 856 MI->hasUnmodeledSideEffects()) 857 return false; 858 859 // Don't remat inline asm. We have no idea how expensive it is 860 // even if it's side effect free. 861 if (MI->isInlineAsm()) 862 return false; 863 864 // Avoid instructions which load from potentially varying memory. 865 if (MI->mayLoad() && !MI->isInvariantLoad(AA)) 866 return false; 867 868 // If any of the registers accessed are non-constant, conservatively assume 869 // the instruction is not rematerializable. 870 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 871 const MachineOperand &MO = MI->getOperand(i); 872 if (!MO.isReg()) continue; 873 unsigned Reg = MO.getReg(); 874 if (Reg == 0) 875 continue; 876 877 // Check for a well-behaved physical register. 878 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 879 if (MO.isUse()) { 880 // If the physreg has no defs anywhere, it's just an ambient register 881 // and we can freely move its uses. Alternatively, if it's allocatable, 882 // it could get allocated to something with a def during allocation. 883 if (!MRI.isConstantPhysReg(Reg, MF)) 884 return false; 885 } else { 886 // A physreg def. We can't remat it. 887 return false; 888 } 889 continue; 890 } 891 892 // Only allow one virtual-register def. There may be multiple defs of the 893 // same virtual register, though. 894 if (MO.isDef() && Reg != DefReg) 895 return false; 896 897 // Don't allow any virtual-register uses. Rematting an instruction with 898 // virtual register uses would length the live ranges of the uses, which 899 // is not necessarily a good idea, certainly not "trivial". 900 if (MO.isUse()) 901 return false; 902 } 903 904 // Everything checked out. 905 return true; 906 } 907 908 int TargetInstrInfo::getSPAdjust(const MachineInstr *MI) const { 909 const MachineFunction *MF = MI->getParent()->getParent(); 910 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 911 bool StackGrowsDown = 912 TFI->getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown; 913 914 unsigned FrameSetupOpcode = getCallFrameSetupOpcode(); 915 unsigned FrameDestroyOpcode = getCallFrameDestroyOpcode(); 916 917 if (MI->getOpcode() != FrameSetupOpcode && 918 MI->getOpcode() != FrameDestroyOpcode) 919 return 0; 920 921 int SPAdj = MI->getOperand(0).getImm(); 922 SPAdj = TFI->alignSPAdjust(SPAdj); 923 924 if ((!StackGrowsDown && MI->getOpcode() == FrameSetupOpcode) || 925 (StackGrowsDown && MI->getOpcode() == FrameDestroyOpcode)) 926 SPAdj = -SPAdj; 927 928 return SPAdj; 929 } 930 931 /// isSchedulingBoundary - Test if the given instruction should be 932 /// considered a scheduling boundary. This primarily includes labels 933 /// and terminators. 934 bool TargetInstrInfo::isSchedulingBoundary(const MachineInstr *MI, 935 const MachineBasicBlock *MBB, 936 const MachineFunction &MF) const { 937 // Terminators and labels can't be scheduled around. 938 if (MI->isTerminator() || MI->isPosition()) 939 return true; 940 941 // Don't attempt to schedule around any instruction that defines 942 // a stack-oriented pointer, as it's unlikely to be profitable. This 943 // saves compile time, because it doesn't require every single 944 // stack slot reference to depend on the instruction that does the 945 // modification. 946 const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering(); 947 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 948 return MI->modifiesRegister(TLI.getStackPointerRegisterToSaveRestore(), TRI); 949 } 950 951 // Provide a global flag for disabling the PreRA hazard recognizer that targets 952 // may choose to honor. 953 bool TargetInstrInfo::usePreRAHazardRecognizer() const { 954 return !DisableHazardRecognizer; 955 } 956 957 // Default implementation of CreateTargetRAHazardRecognizer. 958 ScheduleHazardRecognizer *TargetInstrInfo:: 959 CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, 960 const ScheduleDAG *DAG) const { 961 // Dummy hazard recognizer allows all instructions to issue. 962 return new ScheduleHazardRecognizer(); 963 } 964 965 // Default implementation of CreateTargetMIHazardRecognizer. 966 ScheduleHazardRecognizer *TargetInstrInfo:: 967 CreateTargetMIHazardRecognizer(const InstrItineraryData *II, 968 const ScheduleDAG *DAG) const { 969 return (ScheduleHazardRecognizer *) 970 new ScoreboardHazardRecognizer(II, DAG, "misched"); 971 } 972 973 // Default implementation of CreateTargetPostRAHazardRecognizer. 974 ScheduleHazardRecognizer *TargetInstrInfo:: 975 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, 976 const ScheduleDAG *DAG) const { 977 return (ScheduleHazardRecognizer *) 978 new ScoreboardHazardRecognizer(II, DAG, "post-RA-sched"); 979 } 980 981 //===----------------------------------------------------------------------===// 982 // SelectionDAG latency interface. 983 //===----------------------------------------------------------------------===// 984 985 int 986 TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 987 SDNode *DefNode, unsigned DefIdx, 988 SDNode *UseNode, unsigned UseIdx) const { 989 if (!ItinData || ItinData->isEmpty()) 990 return -1; 991 992 if (!DefNode->isMachineOpcode()) 993 return -1; 994 995 unsigned DefClass = get(DefNode->getMachineOpcode()).getSchedClass(); 996 if (!UseNode->isMachineOpcode()) 997 return ItinData->getOperandCycle(DefClass, DefIdx); 998 unsigned UseClass = get(UseNode->getMachineOpcode()).getSchedClass(); 999 return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx); 1000 } 1001 1002 int TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, 1003 SDNode *N) const { 1004 if (!ItinData || ItinData->isEmpty()) 1005 return 1; 1006 1007 if (!N->isMachineOpcode()) 1008 return 1; 1009 1010 return ItinData->getStageLatency(get(N->getMachineOpcode()).getSchedClass()); 1011 } 1012 1013 //===----------------------------------------------------------------------===// 1014 // MachineInstr latency interface. 1015 //===----------------------------------------------------------------------===// 1016 1017 unsigned 1018 TargetInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData, 1019 const MachineInstr *MI) const { 1020 if (!ItinData || ItinData->isEmpty()) 1021 return 1; 1022 1023 unsigned Class = MI->getDesc().getSchedClass(); 1024 int UOps = ItinData->Itineraries[Class].NumMicroOps; 1025 if (UOps >= 0) 1026 return UOps; 1027 1028 // The # of u-ops is dynamically determined. The specific target should 1029 // override this function to return the right number. 1030 return 1; 1031 } 1032 1033 /// Return the default expected latency for a def based on it's opcode. 1034 unsigned TargetInstrInfo::defaultDefLatency(const MCSchedModel &SchedModel, 1035 const MachineInstr *DefMI) const { 1036 if (DefMI->isTransient()) 1037 return 0; 1038 if (DefMI->mayLoad()) 1039 return SchedModel.LoadLatency; 1040 if (isHighLatencyDef(DefMI->getOpcode())) 1041 return SchedModel.HighLatency; 1042 return 1; 1043 } 1044 1045 unsigned TargetInstrInfo::getPredicationCost(const MachineInstr &) const { 1046 return 0; 1047 } 1048 1049 unsigned TargetInstrInfo:: 1050 getInstrLatency(const InstrItineraryData *ItinData, 1051 const MachineInstr *MI, 1052 unsigned *PredCost) const { 1053 // Default to one cycle for no itinerary. However, an "empty" itinerary may 1054 // still have a MinLatency property, which getStageLatency checks. 1055 if (!ItinData) 1056 return MI->mayLoad() ? 2 : 1; 1057 1058 return ItinData->getStageLatency(MI->getDesc().getSchedClass()); 1059 } 1060 1061 bool TargetInstrInfo::hasLowDefLatency(const TargetSchedModel &SchedModel, 1062 const MachineInstr *DefMI, 1063 unsigned DefIdx) const { 1064 const InstrItineraryData *ItinData = SchedModel.getInstrItineraries(); 1065 if (!ItinData || ItinData->isEmpty()) 1066 return false; 1067 1068 unsigned DefClass = DefMI->getDesc().getSchedClass(); 1069 int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx); 1070 return (DefCycle != -1 && DefCycle <= 1); 1071 } 1072 1073 /// Both DefMI and UseMI must be valid. By default, call directly to the 1074 /// itinerary. This may be overriden by the target. 1075 int TargetInstrInfo:: 1076 getOperandLatency(const InstrItineraryData *ItinData, 1077 const MachineInstr *DefMI, unsigned DefIdx, 1078 const MachineInstr *UseMI, unsigned UseIdx) const { 1079 unsigned DefClass = DefMI->getDesc().getSchedClass(); 1080 unsigned UseClass = UseMI->getDesc().getSchedClass(); 1081 return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx); 1082 } 1083 1084 /// If we can determine the operand latency from the def only, without itinerary 1085 /// lookup, do so. Otherwise return -1. 1086 int TargetInstrInfo::computeDefOperandLatency( 1087 const InstrItineraryData *ItinData, 1088 const MachineInstr *DefMI) const { 1089 1090 // Let the target hook getInstrLatency handle missing itineraries. 1091 if (!ItinData) 1092 return getInstrLatency(ItinData, DefMI); 1093 1094 if(ItinData->isEmpty()) 1095 return defaultDefLatency(ItinData->SchedModel, DefMI); 1096 1097 // ...operand lookup required 1098 return -1; 1099 } 1100 1101 /// computeOperandLatency - Compute and return the latency of the given data 1102 /// dependent def and use when the operand indices are already known. UseMI may 1103 /// be NULL for an unknown use. 1104 /// 1105 /// FindMin may be set to get the minimum vs. expected latency. Minimum 1106 /// latency is used for scheduling groups, while expected latency is for 1107 /// instruction cost and critical path. 1108 /// 1109 /// Depending on the subtarget's itinerary properties, this may or may not need 1110 /// to call getOperandLatency(). For most subtargets, we don't need DefIdx or 1111 /// UseIdx to compute min latency. 1112 unsigned TargetInstrInfo:: 1113 computeOperandLatency(const InstrItineraryData *ItinData, 1114 const MachineInstr *DefMI, unsigned DefIdx, 1115 const MachineInstr *UseMI, unsigned UseIdx) const { 1116 1117 int DefLatency = computeDefOperandLatency(ItinData, DefMI); 1118 if (DefLatency >= 0) 1119 return DefLatency; 1120 1121 assert(ItinData && !ItinData->isEmpty() && "computeDefOperandLatency fail"); 1122 1123 int OperLatency = 0; 1124 if (UseMI) 1125 OperLatency = getOperandLatency(ItinData, DefMI, DefIdx, UseMI, UseIdx); 1126 else { 1127 unsigned DefClass = DefMI->getDesc().getSchedClass(); 1128 OperLatency = ItinData->getOperandCycle(DefClass, DefIdx); 1129 } 1130 if (OperLatency >= 0) 1131 return OperLatency; 1132 1133 // No operand latency was found. 1134 unsigned InstrLatency = getInstrLatency(ItinData, DefMI); 1135 1136 // Expected latency is the max of the stage latency and itinerary props. 1137 InstrLatency = std::max(InstrLatency, 1138 defaultDefLatency(ItinData->SchedModel, DefMI)); 1139 return InstrLatency; 1140 } 1141 1142 bool TargetInstrInfo::getRegSequenceInputs( 1143 const MachineInstr &MI, unsigned DefIdx, 1144 SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const { 1145 assert((MI.isRegSequence() || 1146 MI.isRegSequenceLike()) && "Instruction do not have the proper type"); 1147 1148 if (!MI.isRegSequence()) 1149 return getRegSequenceLikeInputs(MI, DefIdx, InputRegs); 1150 1151 // We are looking at: 1152 // Def = REG_SEQUENCE v0, sub0, v1, sub1, ... 1153 assert(DefIdx == 0 && "REG_SEQUENCE only has one def"); 1154 for (unsigned OpIdx = 1, EndOpIdx = MI.getNumOperands(); OpIdx != EndOpIdx; 1155 OpIdx += 2) { 1156 const MachineOperand &MOReg = MI.getOperand(OpIdx); 1157 const MachineOperand &MOSubIdx = MI.getOperand(OpIdx + 1); 1158 assert(MOSubIdx.isImm() && 1159 "One of the subindex of the reg_sequence is not an immediate"); 1160 // Record Reg:SubReg, SubIdx. 1161 InputRegs.push_back(RegSubRegPairAndIdx(MOReg.getReg(), MOReg.getSubReg(), 1162 (unsigned)MOSubIdx.getImm())); 1163 } 1164 return true; 1165 } 1166 1167 bool TargetInstrInfo::getExtractSubregInputs( 1168 const MachineInstr &MI, unsigned DefIdx, 1169 RegSubRegPairAndIdx &InputReg) const { 1170 assert((MI.isExtractSubreg() || 1171 MI.isExtractSubregLike()) && "Instruction do not have the proper type"); 1172 1173 if (!MI.isExtractSubreg()) 1174 return getExtractSubregLikeInputs(MI, DefIdx, InputReg); 1175 1176 // We are looking at: 1177 // Def = EXTRACT_SUBREG v0.sub1, sub0. 1178 assert(DefIdx == 0 && "EXTRACT_SUBREG only has one def"); 1179 const MachineOperand &MOReg = MI.getOperand(1); 1180 const MachineOperand &MOSubIdx = MI.getOperand(2); 1181 assert(MOSubIdx.isImm() && 1182 "The subindex of the extract_subreg is not an immediate"); 1183 1184 InputReg.Reg = MOReg.getReg(); 1185 InputReg.SubReg = MOReg.getSubReg(); 1186 InputReg.SubIdx = (unsigned)MOSubIdx.getImm(); 1187 return true; 1188 } 1189 1190 bool TargetInstrInfo::getInsertSubregInputs( 1191 const MachineInstr &MI, unsigned DefIdx, 1192 RegSubRegPair &BaseReg, RegSubRegPairAndIdx &InsertedReg) const { 1193 assert((MI.isInsertSubreg() || 1194 MI.isInsertSubregLike()) && "Instruction do not have the proper type"); 1195 1196 if (!MI.isInsertSubreg()) 1197 return getInsertSubregLikeInputs(MI, DefIdx, BaseReg, InsertedReg); 1198 1199 // We are looking at: 1200 // Def = INSERT_SEQUENCE v0, v1, sub0. 1201 assert(DefIdx == 0 && "INSERT_SUBREG only has one def"); 1202 const MachineOperand &MOBaseReg = MI.getOperand(1); 1203 const MachineOperand &MOInsertedReg = MI.getOperand(2); 1204 const MachineOperand &MOSubIdx = MI.getOperand(3); 1205 assert(MOSubIdx.isImm() && 1206 "One of the subindex of the reg_sequence is not an immediate"); 1207 BaseReg.Reg = MOBaseReg.getReg(); 1208 BaseReg.SubReg = MOBaseReg.getSubReg(); 1209 1210 InsertedReg.Reg = MOInsertedReg.getReg(); 1211 InsertedReg.SubReg = MOInsertedReg.getSubReg(); 1212 InsertedReg.SubIdx = (unsigned)MOSubIdx.getImm(); 1213 return true; 1214 } 1215