1 //===- TailDuplicator.cpp - Duplicate blocks into predecessors' tails -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This utility class duplicates basic blocks ending in unconditional branches 10 // into the tails of their predecessors. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/TailDuplicator.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SetVector.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/ProfileSummaryInfo.h" 23 #include "llvm/CodeGen/MachineBasicBlock.h" 24 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 25 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 26 #include "llvm/CodeGen/MachineFunction.h" 27 #include "llvm/CodeGen/MachineInstr.h" 28 #include "llvm/CodeGen/MachineInstrBuilder.h" 29 #include "llvm/CodeGen/MachineOperand.h" 30 #include "llvm/CodeGen/MachineRegisterInfo.h" 31 #include "llvm/CodeGen/MachineSizeOpts.h" 32 #include "llvm/CodeGen/MachineSSAUpdater.h" 33 #include "llvm/CodeGen/TargetInstrInfo.h" 34 #include "llvm/CodeGen/TargetRegisterInfo.h" 35 #include "llvm/CodeGen/TargetSubtargetInfo.h" 36 #include "llvm/IR/DebugLoc.h" 37 #include "llvm/IR/Function.h" 38 #include "llvm/Support/CommandLine.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Support/ErrorHandling.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include "llvm/Target/TargetMachine.h" 43 #include <algorithm> 44 #include <cassert> 45 #include <iterator> 46 #include <utility> 47 48 using namespace llvm; 49 50 #define DEBUG_TYPE "tailduplication" 51 52 STATISTIC(NumTails, "Number of tails duplicated"); 53 STATISTIC(NumTailDups, "Number of tail duplicated blocks"); 54 STATISTIC(NumTailDupAdded, 55 "Number of instructions added due to tail duplication"); 56 STATISTIC(NumTailDupRemoved, 57 "Number of instructions removed due to tail duplication"); 58 STATISTIC(NumDeadBlocks, "Number of dead blocks removed"); 59 STATISTIC(NumAddedPHIs, "Number of phis added"); 60 61 // Heuristic for tail duplication. 62 static cl::opt<unsigned> TailDuplicateSize( 63 "tail-dup-size", 64 cl::desc("Maximum instructions to consider tail duplicating"), cl::init(2), 65 cl::Hidden); 66 67 static cl::opt<unsigned> TailDupIndirectBranchSize( 68 "tail-dup-indirect-size", 69 cl::desc("Maximum instructions to consider tail duplicating blocks that " 70 "end with indirect branches."), cl::init(20), 71 cl::Hidden); 72 73 static cl::opt<bool> 74 TailDupVerify("tail-dup-verify", 75 cl::desc("Verify sanity of PHI instructions during taildup"), 76 cl::init(false), cl::Hidden); 77 78 static cl::opt<unsigned> TailDupLimit("tail-dup-limit", cl::init(~0U), 79 cl::Hidden); 80 81 void TailDuplicator::initMF(MachineFunction &MFin, bool PreRegAlloc, 82 const MachineBranchProbabilityInfo *MBPIin, 83 MBFIWrapper *MBFIin, 84 ProfileSummaryInfo *PSIin, 85 bool LayoutModeIn, unsigned TailDupSizeIn) { 86 MF = &MFin; 87 TII = MF->getSubtarget().getInstrInfo(); 88 TRI = MF->getSubtarget().getRegisterInfo(); 89 MRI = &MF->getRegInfo(); 90 MMI = &MF->getMMI(); 91 MBPI = MBPIin; 92 MBFI = MBFIin; 93 PSI = PSIin; 94 TailDupSize = TailDupSizeIn; 95 96 assert(MBPI != nullptr && "Machine Branch Probability Info required"); 97 98 LayoutMode = LayoutModeIn; 99 this->PreRegAlloc = PreRegAlloc; 100 } 101 102 static void VerifyPHIs(MachineFunction &MF, bool CheckExtra) { 103 for (MachineBasicBlock &MBB : llvm::drop_begin(MF)) { 104 SmallSetVector<MachineBasicBlock *, 8> Preds(MBB.pred_begin(), 105 MBB.pred_end()); 106 MachineBasicBlock::iterator MI = MBB.begin(); 107 while (MI != MBB.end()) { 108 if (!MI->isPHI()) 109 break; 110 for (MachineBasicBlock *PredBB : Preds) { 111 bool Found = false; 112 for (unsigned i = 1, e = MI->getNumOperands(); i != e; i += 2) { 113 MachineBasicBlock *PHIBB = MI->getOperand(i + 1).getMBB(); 114 if (PHIBB == PredBB) { 115 Found = true; 116 break; 117 } 118 } 119 if (!Found) { 120 dbgs() << "Malformed PHI in " << printMBBReference(MBB) << ": " 121 << *MI; 122 dbgs() << " missing input from predecessor " 123 << printMBBReference(*PredBB) << '\n'; 124 llvm_unreachable(nullptr); 125 } 126 } 127 128 for (unsigned i = 1, e = MI->getNumOperands(); i != e; i += 2) { 129 MachineBasicBlock *PHIBB = MI->getOperand(i + 1).getMBB(); 130 if (CheckExtra && !Preds.count(PHIBB)) { 131 dbgs() << "Warning: malformed PHI in " << printMBBReference(MBB) 132 << ": " << *MI; 133 dbgs() << " extra input from predecessor " 134 << printMBBReference(*PHIBB) << '\n'; 135 llvm_unreachable(nullptr); 136 } 137 if (PHIBB->getNumber() < 0) { 138 dbgs() << "Malformed PHI in " << printMBBReference(MBB) << ": " 139 << *MI; 140 dbgs() << " non-existing " << printMBBReference(*PHIBB) << '\n'; 141 llvm_unreachable(nullptr); 142 } 143 } 144 ++MI; 145 } 146 } 147 } 148 149 /// Tail duplicate the block and cleanup. 150 /// \p IsSimple - return value of isSimpleBB 151 /// \p MBB - block to be duplicated 152 /// \p ForcedLayoutPred - If non-null, treat this block as the layout 153 /// predecessor, instead of using the ordering in MF 154 /// \p DuplicatedPreds - if non-null, \p DuplicatedPreds will contain a list of 155 /// all Preds that received a copy of \p MBB. 156 /// \p RemovalCallback - if non-null, called just before MBB is deleted. 157 bool TailDuplicator::tailDuplicateAndUpdate( 158 bool IsSimple, MachineBasicBlock *MBB, 159 MachineBasicBlock *ForcedLayoutPred, 160 SmallVectorImpl<MachineBasicBlock*> *DuplicatedPreds, 161 function_ref<void(MachineBasicBlock *)> *RemovalCallback, 162 SmallVectorImpl<MachineBasicBlock *> *CandidatePtr) { 163 // Save the successors list. 164 SmallSetVector<MachineBasicBlock *, 8> Succs(MBB->succ_begin(), 165 MBB->succ_end()); 166 167 SmallVector<MachineBasicBlock *, 8> TDBBs; 168 SmallVector<MachineInstr *, 16> Copies; 169 if (!tailDuplicate(IsSimple, MBB, ForcedLayoutPred, 170 TDBBs, Copies, CandidatePtr)) 171 return false; 172 173 ++NumTails; 174 175 SmallVector<MachineInstr *, 8> NewPHIs; 176 MachineSSAUpdater SSAUpdate(*MF, &NewPHIs); 177 178 // TailBB's immediate successors are now successors of those predecessors 179 // which duplicated TailBB. Add the predecessors as sources to the PHI 180 // instructions. 181 bool isDead = MBB->pred_empty() && !MBB->hasAddressTaken(); 182 if (PreRegAlloc) 183 updateSuccessorsPHIs(MBB, isDead, TDBBs, Succs); 184 185 // If it is dead, remove it. 186 if (isDead) { 187 NumTailDupRemoved += MBB->size(); 188 removeDeadBlock(MBB, RemovalCallback); 189 ++NumDeadBlocks; 190 } 191 192 // Update SSA form. 193 if (!SSAUpdateVRs.empty()) { 194 for (unsigned i = 0, e = SSAUpdateVRs.size(); i != e; ++i) { 195 unsigned VReg = SSAUpdateVRs[i]; 196 SSAUpdate.Initialize(VReg); 197 198 // If the original definition is still around, add it as an available 199 // value. 200 MachineInstr *DefMI = MRI->getVRegDef(VReg); 201 MachineBasicBlock *DefBB = nullptr; 202 if (DefMI) { 203 DefBB = DefMI->getParent(); 204 SSAUpdate.AddAvailableValue(DefBB, VReg); 205 } 206 207 // Add the new vregs as available values. 208 DenseMap<Register, AvailableValsTy>::iterator LI = 209 SSAUpdateVals.find(VReg); 210 for (unsigned j = 0, ee = LI->second.size(); j != ee; ++j) { 211 MachineBasicBlock *SrcBB = LI->second[j].first; 212 Register SrcReg = LI->second[j].second; 213 SSAUpdate.AddAvailableValue(SrcBB, SrcReg); 214 } 215 216 // Rewrite uses that are outside of the original def's block. 217 MachineRegisterInfo::use_iterator UI = MRI->use_begin(VReg); 218 // Only remove instructions after loop, as DBG_VALUE_LISTs with multiple 219 // uses of VReg may invalidate the use iterator when erased. 220 SmallPtrSet<MachineInstr *, 4> InstrsToRemove; 221 while (UI != MRI->use_end()) { 222 MachineOperand &UseMO = *UI; 223 MachineInstr *UseMI = UseMO.getParent(); 224 ++UI; 225 if (UseMI->isDebugValue()) { 226 // SSAUpdate can replace the use with an undef. That creates 227 // a debug instruction that is a kill. 228 // FIXME: Should it SSAUpdate job to delete debug instructions 229 // instead of replacing the use with undef? 230 InstrsToRemove.insert(UseMI); 231 continue; 232 } 233 if (UseMI->getParent() == DefBB && !UseMI->isPHI()) 234 continue; 235 SSAUpdate.RewriteUse(UseMO); 236 } 237 for (auto *MI : InstrsToRemove) 238 MI->eraseFromParent(); 239 } 240 241 SSAUpdateVRs.clear(); 242 SSAUpdateVals.clear(); 243 } 244 245 // Eliminate some of the copies inserted by tail duplication to maintain 246 // SSA form. 247 for (unsigned i = 0, e = Copies.size(); i != e; ++i) { 248 MachineInstr *Copy = Copies[i]; 249 if (!Copy->isCopy()) 250 continue; 251 Register Dst = Copy->getOperand(0).getReg(); 252 Register Src = Copy->getOperand(1).getReg(); 253 if (MRI->hasOneNonDBGUse(Src) && 254 MRI->constrainRegClass(Src, MRI->getRegClass(Dst))) { 255 // Copy is the only use. Do trivial copy propagation here. 256 MRI->replaceRegWith(Dst, Src); 257 Copy->eraseFromParent(); 258 } 259 } 260 261 if (NewPHIs.size()) 262 NumAddedPHIs += NewPHIs.size(); 263 264 if (DuplicatedPreds) 265 *DuplicatedPreds = std::move(TDBBs); 266 267 return true; 268 } 269 270 /// Look for small blocks that are unconditionally branched to and do not fall 271 /// through. Tail-duplicate their instructions into their predecessors to 272 /// eliminate (dynamic) branches. 273 bool TailDuplicator::tailDuplicateBlocks() { 274 bool MadeChange = false; 275 276 if (PreRegAlloc && TailDupVerify) { 277 LLVM_DEBUG(dbgs() << "\n*** Before tail-duplicating\n"); 278 VerifyPHIs(*MF, true); 279 } 280 281 for (MachineBasicBlock &MBB : 282 llvm::make_early_inc_range(llvm::drop_begin(*MF))) { 283 if (NumTails == TailDupLimit) 284 break; 285 286 bool IsSimple = isSimpleBB(&MBB); 287 288 if (!shouldTailDuplicate(IsSimple, MBB)) 289 continue; 290 291 MadeChange |= tailDuplicateAndUpdate(IsSimple, &MBB, nullptr); 292 } 293 294 if (PreRegAlloc && TailDupVerify) 295 VerifyPHIs(*MF, false); 296 297 return MadeChange; 298 } 299 300 static bool isDefLiveOut(Register Reg, MachineBasicBlock *BB, 301 const MachineRegisterInfo *MRI) { 302 for (MachineInstr &UseMI : MRI->use_instructions(Reg)) { 303 if (UseMI.isDebugValue()) 304 continue; 305 if (UseMI.getParent() != BB) 306 return true; 307 } 308 return false; 309 } 310 311 static unsigned getPHISrcRegOpIdx(MachineInstr *MI, MachineBasicBlock *SrcBB) { 312 for (unsigned i = 1, e = MI->getNumOperands(); i != e; i += 2) 313 if (MI->getOperand(i + 1).getMBB() == SrcBB) 314 return i; 315 return 0; 316 } 317 318 // Remember which registers are used by phis in this block. This is 319 // used to determine which registers are liveout while modifying the 320 // block (which is why we need to copy the information). 321 static void getRegsUsedByPHIs(const MachineBasicBlock &BB, 322 DenseSet<Register> *UsedByPhi) { 323 for (const auto &MI : BB) { 324 if (!MI.isPHI()) 325 break; 326 for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) { 327 Register SrcReg = MI.getOperand(i).getReg(); 328 UsedByPhi->insert(SrcReg); 329 } 330 } 331 } 332 333 /// Add a definition and source virtual registers pair for SSA update. 334 void TailDuplicator::addSSAUpdateEntry(Register OrigReg, Register NewReg, 335 MachineBasicBlock *BB) { 336 DenseMap<Register, AvailableValsTy>::iterator LI = 337 SSAUpdateVals.find(OrigReg); 338 if (LI != SSAUpdateVals.end()) 339 LI->second.push_back(std::make_pair(BB, NewReg)); 340 else { 341 AvailableValsTy Vals; 342 Vals.push_back(std::make_pair(BB, NewReg)); 343 SSAUpdateVals.insert(std::make_pair(OrigReg, Vals)); 344 SSAUpdateVRs.push_back(OrigReg); 345 } 346 } 347 348 /// Process PHI node in TailBB by turning it into a copy in PredBB. Remember the 349 /// source register that's contributed by PredBB and update SSA update map. 350 void TailDuplicator::processPHI( 351 MachineInstr *MI, MachineBasicBlock *TailBB, MachineBasicBlock *PredBB, 352 DenseMap<Register, RegSubRegPair> &LocalVRMap, 353 SmallVectorImpl<std::pair<Register, RegSubRegPair>> &Copies, 354 const DenseSet<Register> &RegsUsedByPhi, bool Remove) { 355 Register DefReg = MI->getOperand(0).getReg(); 356 unsigned SrcOpIdx = getPHISrcRegOpIdx(MI, PredBB); 357 assert(SrcOpIdx && "Unable to find matching PHI source?"); 358 Register SrcReg = MI->getOperand(SrcOpIdx).getReg(); 359 unsigned SrcSubReg = MI->getOperand(SrcOpIdx).getSubReg(); 360 const TargetRegisterClass *RC = MRI->getRegClass(DefReg); 361 LocalVRMap.insert(std::make_pair(DefReg, RegSubRegPair(SrcReg, SrcSubReg))); 362 363 // Insert a copy from source to the end of the block. The def register is the 364 // available value liveout of the block. 365 Register NewDef = MRI->createVirtualRegister(RC); 366 Copies.push_back(std::make_pair(NewDef, RegSubRegPair(SrcReg, SrcSubReg))); 367 if (isDefLiveOut(DefReg, TailBB, MRI) || RegsUsedByPhi.count(DefReg)) 368 addSSAUpdateEntry(DefReg, NewDef, PredBB); 369 370 if (!Remove) 371 return; 372 373 // Remove PredBB from the PHI node. 374 MI->RemoveOperand(SrcOpIdx + 1); 375 MI->RemoveOperand(SrcOpIdx); 376 if (MI->getNumOperands() == 1) 377 MI->eraseFromParent(); 378 } 379 380 /// Duplicate a TailBB instruction to PredBB and update 381 /// the source operands due to earlier PHI translation. 382 void TailDuplicator::duplicateInstruction( 383 MachineInstr *MI, MachineBasicBlock *TailBB, MachineBasicBlock *PredBB, 384 DenseMap<Register, RegSubRegPair> &LocalVRMap, 385 const DenseSet<Register> &UsedByPhi) { 386 // Allow duplication of CFI instructions. 387 if (MI->isCFIInstruction()) { 388 BuildMI(*PredBB, PredBB->end(), PredBB->findDebugLoc(PredBB->begin()), 389 TII->get(TargetOpcode::CFI_INSTRUCTION)).addCFIIndex( 390 MI->getOperand(0).getCFIIndex()); 391 return; 392 } 393 MachineInstr &NewMI = TII->duplicate(*PredBB, PredBB->end(), *MI); 394 if (PreRegAlloc) { 395 for (unsigned i = 0, e = NewMI.getNumOperands(); i != e; ++i) { 396 MachineOperand &MO = NewMI.getOperand(i); 397 if (!MO.isReg()) 398 continue; 399 Register Reg = MO.getReg(); 400 if (!Register::isVirtualRegister(Reg)) 401 continue; 402 if (MO.isDef()) { 403 const TargetRegisterClass *RC = MRI->getRegClass(Reg); 404 Register NewReg = MRI->createVirtualRegister(RC); 405 MO.setReg(NewReg); 406 LocalVRMap.insert(std::make_pair(Reg, RegSubRegPair(NewReg, 0))); 407 if (isDefLiveOut(Reg, TailBB, MRI) || UsedByPhi.count(Reg)) 408 addSSAUpdateEntry(Reg, NewReg, PredBB); 409 } else { 410 auto VI = LocalVRMap.find(Reg); 411 if (VI != LocalVRMap.end()) { 412 // Need to make sure that the register class of the mapped register 413 // will satisfy the constraints of the class of the register being 414 // replaced. 415 auto *OrigRC = MRI->getRegClass(Reg); 416 auto *MappedRC = MRI->getRegClass(VI->second.Reg); 417 const TargetRegisterClass *ConstrRC; 418 if (VI->second.SubReg != 0) { 419 ConstrRC = TRI->getMatchingSuperRegClass(MappedRC, OrigRC, 420 VI->second.SubReg); 421 if (ConstrRC) { 422 // The actual constraining (as in "find appropriate new class") 423 // is done by getMatchingSuperRegClass, so now we only need to 424 // change the class of the mapped register. 425 MRI->setRegClass(VI->second.Reg, ConstrRC); 426 } 427 } else { 428 // For mapped registers that do not have sub-registers, simply 429 // restrict their class to match the original one. 430 ConstrRC = MRI->constrainRegClass(VI->second.Reg, OrigRC); 431 } 432 433 if (ConstrRC) { 434 // If the class constraining succeeded, we can simply replace 435 // the old register with the mapped one. 436 MO.setReg(VI->second.Reg); 437 // We have Reg -> VI.Reg:VI.SubReg, so if Reg is used with a 438 // sub-register, we need to compose the sub-register indices. 439 MO.setSubReg(TRI->composeSubRegIndices(MO.getSubReg(), 440 VI->second.SubReg)); 441 } else { 442 // The direct replacement is not possible, due to failing register 443 // class constraints. An explicit COPY is necessary. Create one 444 // that can be reused 445 auto *NewRC = MI->getRegClassConstraint(i, TII, TRI); 446 if (NewRC == nullptr) 447 NewRC = OrigRC; 448 Register NewReg = MRI->createVirtualRegister(NewRC); 449 BuildMI(*PredBB, NewMI, NewMI.getDebugLoc(), 450 TII->get(TargetOpcode::COPY), NewReg) 451 .addReg(VI->second.Reg, 0, VI->second.SubReg); 452 LocalVRMap.erase(VI); 453 LocalVRMap.insert(std::make_pair(Reg, RegSubRegPair(NewReg, 0))); 454 MO.setReg(NewReg); 455 // The composed VI.Reg:VI.SubReg is replaced with NewReg, which 456 // is equivalent to the whole register Reg. Hence, Reg:subreg 457 // is same as NewReg:subreg, so keep the sub-register index 458 // unchanged. 459 } 460 // Clear any kill flags from this operand. The new register could 461 // have uses after this one, so kills are not valid here. 462 MO.setIsKill(false); 463 } 464 } 465 } 466 } 467 } 468 469 /// After FromBB is tail duplicated into its predecessor blocks, the successors 470 /// have gained new predecessors. Update the PHI instructions in them 471 /// accordingly. 472 void TailDuplicator::updateSuccessorsPHIs( 473 MachineBasicBlock *FromBB, bool isDead, 474 SmallVectorImpl<MachineBasicBlock *> &TDBBs, 475 SmallSetVector<MachineBasicBlock *, 8> &Succs) { 476 for (MachineBasicBlock *SuccBB : Succs) { 477 for (MachineInstr &MI : *SuccBB) { 478 if (!MI.isPHI()) 479 break; 480 MachineInstrBuilder MIB(*FromBB->getParent(), MI); 481 unsigned Idx = 0; 482 for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) { 483 MachineOperand &MO = MI.getOperand(i + 1); 484 if (MO.getMBB() == FromBB) { 485 Idx = i; 486 break; 487 } 488 } 489 490 assert(Idx != 0); 491 MachineOperand &MO0 = MI.getOperand(Idx); 492 Register Reg = MO0.getReg(); 493 if (isDead) { 494 // Folded into the previous BB. 495 // There could be duplicate phi source entries. FIXME: Should sdisel 496 // or earlier pass fixed this? 497 for (unsigned i = MI.getNumOperands() - 2; i != Idx; i -= 2) { 498 MachineOperand &MO = MI.getOperand(i + 1); 499 if (MO.getMBB() == FromBB) { 500 MI.RemoveOperand(i + 1); 501 MI.RemoveOperand(i); 502 } 503 } 504 } else 505 Idx = 0; 506 507 // If Idx is set, the operands at Idx and Idx+1 must be removed. 508 // We reuse the location to avoid expensive RemoveOperand calls. 509 510 DenseMap<Register, AvailableValsTy>::iterator LI = 511 SSAUpdateVals.find(Reg); 512 if (LI != SSAUpdateVals.end()) { 513 // This register is defined in the tail block. 514 for (unsigned j = 0, ee = LI->second.size(); j != ee; ++j) { 515 MachineBasicBlock *SrcBB = LI->second[j].first; 516 // If we didn't duplicate a bb into a particular predecessor, we 517 // might still have added an entry to SSAUpdateVals to correcly 518 // recompute SSA. If that case, avoid adding a dummy extra argument 519 // this PHI. 520 if (!SrcBB->isSuccessor(SuccBB)) 521 continue; 522 523 Register SrcReg = LI->second[j].second; 524 if (Idx != 0) { 525 MI.getOperand(Idx).setReg(SrcReg); 526 MI.getOperand(Idx + 1).setMBB(SrcBB); 527 Idx = 0; 528 } else { 529 MIB.addReg(SrcReg).addMBB(SrcBB); 530 } 531 } 532 } else { 533 // Live in tail block, must also be live in predecessors. 534 for (unsigned j = 0, ee = TDBBs.size(); j != ee; ++j) { 535 MachineBasicBlock *SrcBB = TDBBs[j]; 536 if (Idx != 0) { 537 MI.getOperand(Idx).setReg(Reg); 538 MI.getOperand(Idx + 1).setMBB(SrcBB); 539 Idx = 0; 540 } else { 541 MIB.addReg(Reg).addMBB(SrcBB); 542 } 543 } 544 } 545 if (Idx != 0) { 546 MI.RemoveOperand(Idx + 1); 547 MI.RemoveOperand(Idx); 548 } 549 } 550 } 551 } 552 553 /// Determine if it is profitable to duplicate this block. 554 bool TailDuplicator::shouldTailDuplicate(bool IsSimple, 555 MachineBasicBlock &TailBB) { 556 // When doing tail-duplication during layout, the block ordering is in flux, 557 // so canFallThrough returns a result based on incorrect information and 558 // should just be ignored. 559 if (!LayoutMode && TailBB.canFallThrough()) 560 return false; 561 562 // Don't try to tail-duplicate single-block loops. 563 if (TailBB.isSuccessor(&TailBB)) 564 return false; 565 566 // Set the limit on the cost to duplicate. When optimizing for size, 567 // duplicate only one, because one branch instruction can be eliminated to 568 // compensate for the duplication. 569 unsigned MaxDuplicateCount; 570 bool OptForSize = MF->getFunction().hasOptSize() || 571 llvm::shouldOptimizeForSize(&TailBB, PSI, MBFI); 572 if (TailDupSize == 0) 573 MaxDuplicateCount = TailDuplicateSize; 574 else 575 MaxDuplicateCount = TailDupSize; 576 if (OptForSize) 577 MaxDuplicateCount = 1; 578 579 // If the block to be duplicated ends in an unanalyzable fallthrough, don't 580 // duplicate it. 581 // A similar check is necessary in MachineBlockPlacement to make sure pairs of 582 // blocks with unanalyzable fallthrough get layed out contiguously. 583 MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr; 584 SmallVector<MachineOperand, 4> PredCond; 585 if (TII->analyzeBranch(TailBB, PredTBB, PredFBB, PredCond) && 586 TailBB.canFallThrough()) 587 return false; 588 589 // If the target has hardware branch prediction that can handle indirect 590 // branches, duplicating them can often make them predictable when there 591 // are common paths through the code. The limit needs to be high enough 592 // to allow undoing the effects of tail merging and other optimizations 593 // that rearrange the predecessors of the indirect branch. 594 595 bool HasIndirectbr = false; 596 if (!TailBB.empty()) 597 HasIndirectbr = TailBB.back().isIndirectBranch(); 598 599 if (HasIndirectbr && PreRegAlloc) 600 MaxDuplicateCount = TailDupIndirectBranchSize; 601 602 // Check the instructions in the block to determine whether tail-duplication 603 // is invalid or unlikely to be profitable. 604 unsigned InstrCount = 0; 605 for (MachineInstr &MI : TailBB) { 606 // Non-duplicable things shouldn't be tail-duplicated. 607 // CFI instructions are marked as non-duplicable, because Darwin compact 608 // unwind info emission can't handle multiple prologue setups. In case of 609 // DWARF, allow them be duplicated, so that their existence doesn't prevent 610 // tail duplication of some basic blocks, that would be duplicated otherwise. 611 if (MI.isNotDuplicable() && 612 (TailBB.getParent()->getTarget().getTargetTriple().isOSDarwin() || 613 !MI.isCFIInstruction())) 614 return false; 615 616 // Convergent instructions can be duplicated only if doing so doesn't add 617 // new control dependencies, which is what we're going to do here. 618 if (MI.isConvergent()) 619 return false; 620 621 // Do not duplicate 'return' instructions if this is a pre-regalloc run. 622 // A return may expand into a lot more instructions (e.g. reload of callee 623 // saved registers) after PEI. 624 if (PreRegAlloc && MI.isReturn()) 625 return false; 626 627 // Avoid duplicating calls before register allocation. Calls presents a 628 // barrier to register allocation so duplicating them may end up increasing 629 // spills. 630 if (PreRegAlloc && MI.isCall()) 631 return false; 632 633 // TailDuplicator::appendCopies will erroneously place COPYs after 634 // INLINEASM_BR instructions after 4b0aa5724fea, which demonstrates the same 635 // bug that was fixed in f7a53d82c090. 636 // FIXME: Use findPHICopyInsertPoint() to find the correct insertion point 637 // for the COPY when replacing PHIs. 638 if (MI.getOpcode() == TargetOpcode::INLINEASM_BR) 639 return false; 640 641 if (MI.isBundle()) 642 InstrCount += MI.getBundleSize(); 643 else if (!MI.isPHI() && !MI.isMetaInstruction()) 644 InstrCount += 1; 645 646 if (InstrCount > MaxDuplicateCount) 647 return false; 648 } 649 650 // Check if any of the successors of TailBB has a PHI node in which the 651 // value corresponding to TailBB uses a subregister. 652 // If a phi node uses a register paired with a subregister, the actual 653 // "value type" of the phi may differ from the type of the register without 654 // any subregisters. Due to a bug, tail duplication may add a new operand 655 // without a necessary subregister, producing an invalid code. This is 656 // demonstrated by test/CodeGen/Hexagon/tail-dup-subreg-abort.ll. 657 // Disable tail duplication for this case for now, until the problem is 658 // fixed. 659 for (auto SB : TailBB.successors()) { 660 for (auto &I : *SB) { 661 if (!I.isPHI()) 662 break; 663 unsigned Idx = getPHISrcRegOpIdx(&I, &TailBB); 664 assert(Idx != 0); 665 MachineOperand &PU = I.getOperand(Idx); 666 if (PU.getSubReg() != 0) 667 return false; 668 } 669 } 670 671 if (HasIndirectbr && PreRegAlloc) 672 return true; 673 674 if (IsSimple) 675 return true; 676 677 if (!PreRegAlloc) 678 return true; 679 680 return canCompletelyDuplicateBB(TailBB); 681 } 682 683 /// True if this BB has only one unconditional jump. 684 bool TailDuplicator::isSimpleBB(MachineBasicBlock *TailBB) { 685 if (TailBB->succ_size() != 1) 686 return false; 687 if (TailBB->pred_empty()) 688 return false; 689 MachineBasicBlock::iterator I = TailBB->getFirstNonDebugInstr(true); 690 if (I == TailBB->end()) 691 return true; 692 return I->isUnconditionalBranch(); 693 } 694 695 static bool bothUsedInPHI(const MachineBasicBlock &A, 696 const SmallPtrSet<MachineBasicBlock *, 8> &SuccsB) { 697 for (MachineBasicBlock *BB : A.successors()) 698 if (SuccsB.count(BB) && !BB->empty() && BB->begin()->isPHI()) 699 return true; 700 701 return false; 702 } 703 704 bool TailDuplicator::canCompletelyDuplicateBB(MachineBasicBlock &BB) { 705 for (MachineBasicBlock *PredBB : BB.predecessors()) { 706 if (PredBB->succ_size() > 1) 707 return false; 708 709 MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr; 710 SmallVector<MachineOperand, 4> PredCond; 711 if (TII->analyzeBranch(*PredBB, PredTBB, PredFBB, PredCond)) 712 return false; 713 714 if (!PredCond.empty()) 715 return false; 716 } 717 return true; 718 } 719 720 bool TailDuplicator::duplicateSimpleBB( 721 MachineBasicBlock *TailBB, SmallVectorImpl<MachineBasicBlock *> &TDBBs, 722 const DenseSet<Register> &UsedByPhi, 723 SmallVectorImpl<MachineInstr *> &Copies) { 724 SmallPtrSet<MachineBasicBlock *, 8> Succs(TailBB->succ_begin(), 725 TailBB->succ_end()); 726 SmallVector<MachineBasicBlock *, 8> Preds(TailBB->predecessors()); 727 bool Changed = false; 728 for (MachineBasicBlock *PredBB : Preds) { 729 if (PredBB->hasEHPadSuccessor() || PredBB->mayHaveInlineAsmBr()) 730 continue; 731 732 if (bothUsedInPHI(*PredBB, Succs)) 733 continue; 734 735 MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr; 736 SmallVector<MachineOperand, 4> PredCond; 737 if (TII->analyzeBranch(*PredBB, PredTBB, PredFBB, PredCond)) 738 continue; 739 740 Changed = true; 741 LLVM_DEBUG(dbgs() << "\nTail-duplicating into PredBB: " << *PredBB 742 << "From simple Succ: " << *TailBB); 743 744 MachineBasicBlock *NewTarget = *TailBB->succ_begin(); 745 MachineBasicBlock *NextBB = PredBB->getNextNode(); 746 747 // Make PredFBB explicit. 748 if (PredCond.empty()) 749 PredFBB = PredTBB; 750 751 // Make fall through explicit. 752 if (!PredTBB) 753 PredTBB = NextBB; 754 if (!PredFBB) 755 PredFBB = NextBB; 756 757 // Redirect 758 if (PredFBB == TailBB) 759 PredFBB = NewTarget; 760 if (PredTBB == TailBB) 761 PredTBB = NewTarget; 762 763 // Make the branch unconditional if possible 764 if (PredTBB == PredFBB) { 765 PredCond.clear(); 766 PredFBB = nullptr; 767 } 768 769 // Avoid adding fall through branches. 770 if (PredFBB == NextBB) 771 PredFBB = nullptr; 772 if (PredTBB == NextBB && PredFBB == nullptr) 773 PredTBB = nullptr; 774 775 auto DL = PredBB->findBranchDebugLoc(); 776 TII->removeBranch(*PredBB); 777 778 if (!PredBB->isSuccessor(NewTarget)) 779 PredBB->replaceSuccessor(TailBB, NewTarget); 780 else { 781 PredBB->removeSuccessor(TailBB, true); 782 assert(PredBB->succ_size() <= 1); 783 } 784 785 if (PredTBB) 786 TII->insertBranch(*PredBB, PredTBB, PredFBB, PredCond, DL); 787 788 TDBBs.push_back(PredBB); 789 } 790 return Changed; 791 } 792 793 bool TailDuplicator::canTailDuplicate(MachineBasicBlock *TailBB, 794 MachineBasicBlock *PredBB) { 795 // EH edges are ignored by analyzeBranch. 796 if (PredBB->succ_size() > 1) 797 return false; 798 799 MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr; 800 SmallVector<MachineOperand, 4> PredCond; 801 if (TII->analyzeBranch(*PredBB, PredTBB, PredFBB, PredCond)) 802 return false; 803 if (!PredCond.empty()) 804 return false; 805 return true; 806 } 807 808 /// If it is profitable, duplicate TailBB's contents in each 809 /// of its predecessors. 810 /// \p IsSimple result of isSimpleBB 811 /// \p TailBB Block to be duplicated. 812 /// \p ForcedLayoutPred When non-null, use this block as the layout predecessor 813 /// instead of the previous block in MF's order. 814 /// \p TDBBs A vector to keep track of all blocks tail-duplicated 815 /// into. 816 /// \p Copies A vector of copy instructions inserted. Used later to 817 /// walk all the inserted copies and remove redundant ones. 818 bool TailDuplicator::tailDuplicate(bool IsSimple, MachineBasicBlock *TailBB, 819 MachineBasicBlock *ForcedLayoutPred, 820 SmallVectorImpl<MachineBasicBlock *> &TDBBs, 821 SmallVectorImpl<MachineInstr *> &Copies, 822 SmallVectorImpl<MachineBasicBlock *> *CandidatePtr) { 823 LLVM_DEBUG(dbgs() << "\n*** Tail-duplicating " << printMBBReference(*TailBB) 824 << '\n'); 825 826 bool ShouldUpdateTerminators = TailBB->canFallThrough(); 827 828 DenseSet<Register> UsedByPhi; 829 getRegsUsedByPHIs(*TailBB, &UsedByPhi); 830 831 if (IsSimple) 832 return duplicateSimpleBB(TailBB, TDBBs, UsedByPhi, Copies); 833 834 // Iterate through all the unique predecessors and tail-duplicate this 835 // block into them, if possible. Copying the list ahead of time also 836 // avoids trouble with the predecessor list reallocating. 837 bool Changed = false; 838 SmallSetVector<MachineBasicBlock *, 8> Preds; 839 if (CandidatePtr) 840 Preds.insert(CandidatePtr->begin(), CandidatePtr->end()); 841 else 842 Preds.insert(TailBB->pred_begin(), TailBB->pred_end()); 843 844 for (MachineBasicBlock *PredBB : Preds) { 845 assert(TailBB != PredBB && 846 "Single-block loop should have been rejected earlier!"); 847 848 if (!canTailDuplicate(TailBB, PredBB)) 849 continue; 850 851 // Don't duplicate into a fall-through predecessor (at least for now). 852 // If profile is available, findDuplicateCandidates can choose better 853 // fall-through predecessor. 854 if (!(MF->getFunction().hasProfileData() && LayoutMode)) { 855 bool IsLayoutSuccessor = false; 856 if (ForcedLayoutPred) 857 IsLayoutSuccessor = (ForcedLayoutPred == PredBB); 858 else if (PredBB->isLayoutSuccessor(TailBB) && PredBB->canFallThrough()) 859 IsLayoutSuccessor = true; 860 if (IsLayoutSuccessor) 861 continue; 862 } 863 864 LLVM_DEBUG(dbgs() << "\nTail-duplicating into PredBB: " << *PredBB 865 << "From Succ: " << *TailBB); 866 867 TDBBs.push_back(PredBB); 868 869 // Remove PredBB's unconditional branch. 870 TII->removeBranch(*PredBB); 871 872 // Clone the contents of TailBB into PredBB. 873 DenseMap<Register, RegSubRegPair> LocalVRMap; 874 SmallVector<std::pair<Register, RegSubRegPair>, 4> CopyInfos; 875 for (MachineBasicBlock::iterator I = TailBB->begin(), E = TailBB->end(); 876 I != E; /* empty */) { 877 MachineInstr *MI = &*I; 878 ++I; 879 if (MI->isPHI()) { 880 // Replace the uses of the def of the PHI with the register coming 881 // from PredBB. 882 processPHI(MI, TailBB, PredBB, LocalVRMap, CopyInfos, UsedByPhi, true); 883 } else { 884 // Replace def of virtual registers with new registers, and update 885 // uses with PHI source register or the new registers. 886 duplicateInstruction(MI, TailBB, PredBB, LocalVRMap, UsedByPhi); 887 } 888 } 889 appendCopies(PredBB, CopyInfos, Copies); 890 891 NumTailDupAdded += TailBB->size() - 1; // subtract one for removed branch 892 893 // Update the CFG. 894 PredBB->removeSuccessor(PredBB->succ_begin()); 895 assert(PredBB->succ_empty() && 896 "TailDuplicate called on block with multiple successors!"); 897 for (MachineBasicBlock *Succ : TailBB->successors()) 898 PredBB->addSuccessor(Succ, MBPI->getEdgeProbability(TailBB, Succ)); 899 900 // Update branches in pred to jump to tail's layout successor if needed. 901 if (ShouldUpdateTerminators) 902 PredBB->updateTerminator(TailBB->getNextNode()); 903 904 Changed = true; 905 ++NumTailDups; 906 } 907 908 // If TailBB was duplicated into all its predecessors except for the prior 909 // block, which falls through unconditionally, move the contents of this 910 // block into the prior block. 911 MachineBasicBlock *PrevBB = ForcedLayoutPred; 912 if (!PrevBB) 913 PrevBB = &*std::prev(TailBB->getIterator()); 914 MachineBasicBlock *PriorTBB = nullptr, *PriorFBB = nullptr; 915 SmallVector<MachineOperand, 4> PriorCond; 916 // This has to check PrevBB->succ_size() because EH edges are ignored by 917 // analyzeBranch. 918 if (PrevBB->succ_size() == 1 && 919 // Layout preds are not always CFG preds. Check. 920 *PrevBB->succ_begin() == TailBB && 921 !TII->analyzeBranch(*PrevBB, PriorTBB, PriorFBB, PriorCond) && 922 PriorCond.empty() && 923 (!PriorTBB || PriorTBB == TailBB) && 924 TailBB->pred_size() == 1 && 925 !TailBB->hasAddressTaken()) { 926 LLVM_DEBUG(dbgs() << "\nMerging into block: " << *PrevBB 927 << "From MBB: " << *TailBB); 928 // There may be a branch to the layout successor. This is unlikely but it 929 // happens. The correct thing to do is to remove the branch before 930 // duplicating the instructions in all cases. 931 TII->removeBranch(*PrevBB); 932 if (PreRegAlloc) { 933 DenseMap<Register, RegSubRegPair> LocalVRMap; 934 SmallVector<std::pair<Register, RegSubRegPair>, 4> CopyInfos; 935 MachineBasicBlock::iterator I = TailBB->begin(); 936 // Process PHI instructions first. 937 while (I != TailBB->end() && I->isPHI()) { 938 // Replace the uses of the def of the PHI with the register coming 939 // from PredBB. 940 MachineInstr *MI = &*I++; 941 processPHI(MI, TailBB, PrevBB, LocalVRMap, CopyInfos, UsedByPhi, true); 942 } 943 944 // Now copy the non-PHI instructions. 945 while (I != TailBB->end()) { 946 // Replace def of virtual registers with new registers, and update 947 // uses with PHI source register or the new registers. 948 MachineInstr *MI = &*I++; 949 assert(!MI->isBundle() && "Not expecting bundles before regalloc!"); 950 duplicateInstruction(MI, TailBB, PrevBB, LocalVRMap, UsedByPhi); 951 MI->eraseFromParent(); 952 } 953 appendCopies(PrevBB, CopyInfos, Copies); 954 } else { 955 TII->removeBranch(*PrevBB); 956 // No PHIs to worry about, just splice the instructions over. 957 PrevBB->splice(PrevBB->end(), TailBB, TailBB->begin(), TailBB->end()); 958 } 959 PrevBB->removeSuccessor(PrevBB->succ_begin()); 960 assert(PrevBB->succ_empty()); 961 PrevBB->transferSuccessors(TailBB); 962 963 // Update branches in PrevBB based on Tail's layout successor. 964 if (ShouldUpdateTerminators) 965 PrevBB->updateTerminator(TailBB->getNextNode()); 966 967 TDBBs.push_back(PrevBB); 968 Changed = true; 969 } 970 971 // If this is after register allocation, there are no phis to fix. 972 if (!PreRegAlloc) 973 return Changed; 974 975 // If we made no changes so far, we are safe. 976 if (!Changed) 977 return Changed; 978 979 // Handle the nasty case in that we duplicated a block that is part of a loop 980 // into some but not all of its predecessors. For example: 981 // 1 -> 2 <-> 3 | 982 // \ | 983 // \---> rest | 984 // if we duplicate 2 into 1 but not into 3, we end up with 985 // 12 -> 3 <-> 2 -> rest | 986 // \ / | 987 // \----->-----/ | 988 // If there was a "var = phi(1, 3)" in 2, it has to be ultimately replaced 989 // with a phi in 3 (which now dominates 2). 990 // What we do here is introduce a copy in 3 of the register defined by the 991 // phi, just like when we are duplicating 2 into 3, but we don't copy any 992 // real instructions or remove the 3 -> 2 edge from the phi in 2. 993 for (MachineBasicBlock *PredBB : Preds) { 994 if (is_contained(TDBBs, PredBB)) 995 continue; 996 997 // EH edges 998 if (PredBB->succ_size() != 1) 999 continue; 1000 1001 DenseMap<Register, RegSubRegPair> LocalVRMap; 1002 SmallVector<std::pair<Register, RegSubRegPair>, 4> CopyInfos; 1003 MachineBasicBlock::iterator I = TailBB->begin(); 1004 // Process PHI instructions first. 1005 while (I != TailBB->end() && I->isPHI()) { 1006 // Replace the uses of the def of the PHI with the register coming 1007 // from PredBB. 1008 MachineInstr *MI = &*I++; 1009 processPHI(MI, TailBB, PredBB, LocalVRMap, CopyInfos, UsedByPhi, false); 1010 } 1011 appendCopies(PredBB, CopyInfos, Copies); 1012 } 1013 1014 return Changed; 1015 } 1016 1017 /// At the end of the block \p MBB generate COPY instructions between registers 1018 /// described by \p CopyInfos. Append resulting instructions to \p Copies. 1019 void TailDuplicator::appendCopies(MachineBasicBlock *MBB, 1020 SmallVectorImpl<std::pair<Register, RegSubRegPair>> &CopyInfos, 1021 SmallVectorImpl<MachineInstr*> &Copies) { 1022 MachineBasicBlock::iterator Loc = MBB->getFirstTerminator(); 1023 const MCInstrDesc &CopyD = TII->get(TargetOpcode::COPY); 1024 for (auto &CI : CopyInfos) { 1025 auto C = BuildMI(*MBB, Loc, DebugLoc(), CopyD, CI.first) 1026 .addReg(CI.second.Reg, 0, CI.second.SubReg); 1027 Copies.push_back(C); 1028 } 1029 } 1030 1031 /// Remove the specified dead machine basic block from the function, updating 1032 /// the CFG. 1033 void TailDuplicator::removeDeadBlock( 1034 MachineBasicBlock *MBB, 1035 function_ref<void(MachineBasicBlock *)> *RemovalCallback) { 1036 assert(MBB->pred_empty() && "MBB must be dead!"); 1037 LLVM_DEBUG(dbgs() << "\nRemoving MBB: " << *MBB); 1038 1039 MachineFunction *MF = MBB->getParent(); 1040 // Update the call site info. 1041 for (const MachineInstr &MI : *MBB) 1042 if (MI.shouldUpdateCallSiteInfo()) 1043 MF->eraseCallSiteInfo(&MI); 1044 1045 if (RemovalCallback) 1046 (*RemovalCallback)(MBB); 1047 1048 // Remove all successors. 1049 while (!MBB->succ_empty()) 1050 MBB->removeSuccessor(MBB->succ_end() - 1); 1051 1052 // Remove the block. 1053 MBB->eraseFromParent(); 1054 } 1055