1 //===-- TailDuplicator.cpp - Duplicate blocks into predecessors' tails ---===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This utility class duplicates basic blocks ending in unconditional branches 11 // into the tails of their predecessors. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/TailDuplicator.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/SetVector.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 21 #include "llvm/CodeGen/MachineFunctionPass.h" 22 #include "llvm/CodeGen/MachineInstrBuilder.h" 23 #include "llvm/CodeGen/MachineModuleInfo.h" 24 #include "llvm/CodeGen/Passes.h" 25 #include "llvm/IR/Function.h" 26 #include "llvm/Support/CommandLine.h" 27 #include "llvm/Support/Debug.h" 28 #include "llvm/Support/ErrorHandling.h" 29 #include "llvm/Support/raw_ostream.h" 30 using namespace llvm; 31 32 #define DEBUG_TYPE "tailduplication" 33 34 STATISTIC(NumTails, "Number of tails duplicated"); 35 STATISTIC(NumTailDups, "Number of tail duplicated blocks"); 36 STATISTIC(NumTailDupAdded, 37 "Number of instructions added due to tail duplication"); 38 STATISTIC(NumTailDupRemoved, 39 "Number of instructions removed due to tail duplication"); 40 STATISTIC(NumDeadBlocks, "Number of dead blocks removed"); 41 STATISTIC(NumAddedPHIs, "Number of phis added"); 42 43 // Heuristic for tail duplication. 44 static cl::opt<unsigned> TailDuplicateSize( 45 "tail-dup-size", 46 cl::desc("Maximum instructions to consider tail duplicating"), cl::init(2), 47 cl::Hidden); 48 49 static cl::opt<bool> 50 TailDupVerify("tail-dup-verify", 51 cl::desc("Verify sanity of PHI instructions during taildup"), 52 cl::init(false), cl::Hidden); 53 54 static cl::opt<unsigned> TailDupLimit("tail-dup-limit", cl::init(~0U), 55 cl::Hidden); 56 57 namespace llvm { 58 59 void TailDuplicator::initMF(MachineFunction &MF, const MachineModuleInfo *MMIin, 60 const MachineBranchProbabilityInfo *MBPIin) { 61 TII = MF.getSubtarget().getInstrInfo(); 62 TRI = MF.getSubtarget().getRegisterInfo(); 63 MRI = &MF.getRegInfo(); 64 MMI = MMIin; 65 MBPI = MBPIin; 66 67 assert(MBPI != nullptr && "Machine Branch Probability Info required"); 68 69 PreRegAlloc = MRI->isSSA(); 70 } 71 72 static void VerifyPHIs(MachineFunction &MF, bool CheckExtra) { 73 for (MachineFunction::iterator I = ++MF.begin(), E = MF.end(); I != E; ++I) { 74 MachineBasicBlock *MBB = &*I; 75 SmallSetVector<MachineBasicBlock *, 8> Preds(MBB->pred_begin(), 76 MBB->pred_end()); 77 MachineBasicBlock::iterator MI = MBB->begin(); 78 while (MI != MBB->end()) { 79 if (!MI->isPHI()) 80 break; 81 for (MachineBasicBlock *PredBB : Preds) { 82 bool Found = false; 83 for (unsigned i = 1, e = MI->getNumOperands(); i != e; i += 2) { 84 MachineBasicBlock *PHIBB = MI->getOperand(i + 1).getMBB(); 85 if (PHIBB == PredBB) { 86 Found = true; 87 break; 88 } 89 } 90 if (!Found) { 91 dbgs() << "Malformed PHI in BB#" << MBB->getNumber() << ": " << *MI; 92 dbgs() << " missing input from predecessor BB#" 93 << PredBB->getNumber() << '\n'; 94 llvm_unreachable(nullptr); 95 } 96 } 97 98 for (unsigned i = 1, e = MI->getNumOperands(); i != e; i += 2) { 99 MachineBasicBlock *PHIBB = MI->getOperand(i + 1).getMBB(); 100 if (CheckExtra && !Preds.count(PHIBB)) { 101 dbgs() << "Warning: malformed PHI in BB#" << MBB->getNumber() << ": " 102 << *MI; 103 dbgs() << " extra input from predecessor BB#" << PHIBB->getNumber() 104 << '\n'; 105 llvm_unreachable(nullptr); 106 } 107 if (PHIBB->getNumber() < 0) { 108 dbgs() << "Malformed PHI in BB#" << MBB->getNumber() << ": " << *MI; 109 dbgs() << " non-existing BB#" << PHIBB->getNumber() << '\n'; 110 llvm_unreachable(nullptr); 111 } 112 } 113 ++MI; 114 } 115 } 116 } 117 118 /// Tail duplicate the block and cleanup. 119 bool TailDuplicator::tailDuplicateAndUpdate(MachineFunction &MF, bool IsSimple, 120 MachineBasicBlock *MBB) { 121 // Save the successors list. 122 SmallSetVector<MachineBasicBlock *, 8> Succs(MBB->succ_begin(), 123 MBB->succ_end()); 124 125 SmallVector<MachineBasicBlock *, 8> TDBBs; 126 SmallVector<MachineInstr *, 16> Copies; 127 if (!tailDuplicate(MF, IsSimple, MBB, TDBBs, Copies)) 128 return false; 129 130 ++NumTails; 131 132 SmallVector<MachineInstr *, 8> NewPHIs; 133 MachineSSAUpdater SSAUpdate(MF, &NewPHIs); 134 135 // TailBB's immediate successors are now successors of those predecessors 136 // which duplicated TailBB. Add the predecessors as sources to the PHI 137 // instructions. 138 bool isDead = MBB->pred_empty() && !MBB->hasAddressTaken(); 139 if (PreRegAlloc) 140 updateSuccessorsPHIs(MBB, isDead, TDBBs, Succs); 141 142 // If it is dead, remove it. 143 if (isDead) { 144 NumTailDupRemoved += MBB->size(); 145 removeDeadBlock(MBB); 146 ++NumDeadBlocks; 147 } 148 149 // Update SSA form. 150 if (!SSAUpdateVRs.empty()) { 151 for (unsigned i = 0, e = SSAUpdateVRs.size(); i != e; ++i) { 152 unsigned VReg = SSAUpdateVRs[i]; 153 SSAUpdate.Initialize(VReg); 154 155 // If the original definition is still around, add it as an available 156 // value. 157 MachineInstr *DefMI = MRI->getVRegDef(VReg); 158 MachineBasicBlock *DefBB = nullptr; 159 if (DefMI) { 160 DefBB = DefMI->getParent(); 161 SSAUpdate.AddAvailableValue(DefBB, VReg); 162 } 163 164 // Add the new vregs as available values. 165 DenseMap<unsigned, AvailableValsTy>::iterator LI = 166 SSAUpdateVals.find(VReg); 167 for (unsigned j = 0, ee = LI->second.size(); j != ee; ++j) { 168 MachineBasicBlock *SrcBB = LI->second[j].first; 169 unsigned SrcReg = LI->second[j].second; 170 SSAUpdate.AddAvailableValue(SrcBB, SrcReg); 171 } 172 173 // Rewrite uses that are outside of the original def's block. 174 MachineRegisterInfo::use_iterator UI = MRI->use_begin(VReg); 175 while (UI != MRI->use_end()) { 176 MachineOperand &UseMO = *UI; 177 MachineInstr *UseMI = UseMO.getParent(); 178 ++UI; 179 if (UseMI->isDebugValue()) { 180 // SSAUpdate can replace the use with an undef. That creates 181 // a debug instruction that is a kill. 182 // FIXME: Should it SSAUpdate job to delete debug instructions 183 // instead of replacing the use with undef? 184 UseMI->eraseFromParent(); 185 continue; 186 } 187 if (UseMI->getParent() == DefBB && !UseMI->isPHI()) 188 continue; 189 SSAUpdate.RewriteUse(UseMO); 190 } 191 } 192 193 SSAUpdateVRs.clear(); 194 SSAUpdateVals.clear(); 195 } 196 197 // Eliminate some of the copies inserted by tail duplication to maintain 198 // SSA form. 199 for (unsigned i = 0, e = Copies.size(); i != e; ++i) { 200 MachineInstr *Copy = Copies[i]; 201 if (!Copy->isCopy()) 202 continue; 203 unsigned Dst = Copy->getOperand(0).getReg(); 204 unsigned Src = Copy->getOperand(1).getReg(); 205 if (MRI->hasOneNonDBGUse(Src) && 206 MRI->constrainRegClass(Src, MRI->getRegClass(Dst))) { 207 // Copy is the only use. Do trivial copy propagation here. 208 MRI->replaceRegWith(Dst, Src); 209 Copy->eraseFromParent(); 210 } 211 } 212 213 if (NewPHIs.size()) 214 NumAddedPHIs += NewPHIs.size(); 215 216 return true; 217 } 218 219 /// Look for small blocks that are unconditionally branched to and do not fall 220 /// through. Tail-duplicate their instructions into their predecessors to 221 /// eliminate (dynamic) branches. 222 bool TailDuplicator::tailDuplicateBlocks(MachineFunction &MF) { 223 bool MadeChange = false; 224 225 if (PreRegAlloc && TailDupVerify) { 226 DEBUG(dbgs() << "\n*** Before tail-duplicating\n"); 227 VerifyPHIs(MF, true); 228 } 229 230 for (MachineFunction::iterator I = ++MF.begin(), E = MF.end(); I != E;) { 231 MachineBasicBlock *MBB = &*I++; 232 233 if (NumTails == TailDupLimit) 234 break; 235 236 bool IsSimple = isSimpleBB(MBB); 237 238 if (!shouldTailDuplicate(MF, IsSimple, *MBB)) 239 continue; 240 241 MadeChange |= tailDuplicateAndUpdate(MF, IsSimple, MBB); 242 } 243 244 if (PreRegAlloc && TailDupVerify) 245 VerifyPHIs(MF, false); 246 247 return MadeChange; 248 } 249 250 static bool isDefLiveOut(unsigned Reg, MachineBasicBlock *BB, 251 const MachineRegisterInfo *MRI) { 252 for (MachineInstr &UseMI : MRI->use_instructions(Reg)) { 253 if (UseMI.isDebugValue()) 254 continue; 255 if (UseMI.getParent() != BB) 256 return true; 257 } 258 return false; 259 } 260 261 static unsigned getPHISrcRegOpIdx(MachineInstr *MI, MachineBasicBlock *SrcBB) { 262 for (unsigned i = 1, e = MI->getNumOperands(); i != e; i += 2) 263 if (MI->getOperand(i + 1).getMBB() == SrcBB) 264 return i; 265 return 0; 266 } 267 268 // Remember which registers are used by phis in this block. This is 269 // used to determine which registers are liveout while modifying the 270 // block (which is why we need to copy the information). 271 static void getRegsUsedByPHIs(const MachineBasicBlock &BB, 272 DenseSet<unsigned> *UsedByPhi) { 273 for (const auto &MI : BB) { 274 if (!MI.isPHI()) 275 break; 276 for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) { 277 unsigned SrcReg = MI.getOperand(i).getReg(); 278 UsedByPhi->insert(SrcReg); 279 } 280 } 281 } 282 283 /// Add a definition and source virtual registers pair for SSA update. 284 void TailDuplicator::addSSAUpdateEntry(unsigned OrigReg, unsigned NewReg, 285 MachineBasicBlock *BB) { 286 DenseMap<unsigned, AvailableValsTy>::iterator LI = 287 SSAUpdateVals.find(OrigReg); 288 if (LI != SSAUpdateVals.end()) 289 LI->second.push_back(std::make_pair(BB, NewReg)); 290 else { 291 AvailableValsTy Vals; 292 Vals.push_back(std::make_pair(BB, NewReg)); 293 SSAUpdateVals.insert(std::make_pair(OrigReg, Vals)); 294 SSAUpdateVRs.push_back(OrigReg); 295 } 296 } 297 298 /// Process PHI node in TailBB by turning it into a copy in PredBB. Remember the 299 /// source register that's contributed by PredBB and update SSA update map. 300 void TailDuplicator::processPHI( 301 MachineInstr *MI, MachineBasicBlock *TailBB, MachineBasicBlock *PredBB, 302 DenseMap<unsigned, RegSubRegPair> &LocalVRMap, 303 SmallVectorImpl<std::pair<unsigned, RegSubRegPair>> &Copies, 304 const DenseSet<unsigned> &RegsUsedByPhi, bool Remove) { 305 unsigned DefReg = MI->getOperand(0).getReg(); 306 unsigned SrcOpIdx = getPHISrcRegOpIdx(MI, PredBB); 307 assert(SrcOpIdx && "Unable to find matching PHI source?"); 308 unsigned SrcReg = MI->getOperand(SrcOpIdx).getReg(); 309 unsigned SrcSubReg = MI->getOperand(SrcOpIdx).getSubReg(); 310 const TargetRegisterClass *RC = MRI->getRegClass(DefReg); 311 LocalVRMap.insert(std::make_pair(DefReg, RegSubRegPair(SrcReg, SrcSubReg))); 312 313 // Insert a copy from source to the end of the block. The def register is the 314 // available value liveout of the block. 315 unsigned NewDef = MRI->createVirtualRegister(RC); 316 Copies.push_back(std::make_pair(NewDef, RegSubRegPair(SrcReg, SrcSubReg))); 317 if (isDefLiveOut(DefReg, TailBB, MRI) || RegsUsedByPhi.count(DefReg)) 318 addSSAUpdateEntry(DefReg, NewDef, PredBB); 319 320 if (!Remove) 321 return; 322 323 // Remove PredBB from the PHI node. 324 MI->RemoveOperand(SrcOpIdx + 1); 325 MI->RemoveOperand(SrcOpIdx); 326 if (MI->getNumOperands() == 1) 327 MI->eraseFromParent(); 328 } 329 330 /// Duplicate a TailBB instruction to PredBB and update 331 /// the source operands due to earlier PHI translation. 332 void TailDuplicator::duplicateInstruction( 333 MachineInstr *MI, MachineBasicBlock *TailBB, MachineBasicBlock *PredBB, 334 MachineFunction &MF, 335 DenseMap<unsigned, RegSubRegPair> &LocalVRMap, 336 const DenseSet<unsigned> &UsedByPhi) { 337 MachineInstr *NewMI = TII->duplicate(*MI, MF); 338 if (PreRegAlloc) { 339 for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) { 340 MachineOperand &MO = NewMI->getOperand(i); 341 if (!MO.isReg()) 342 continue; 343 unsigned Reg = MO.getReg(); 344 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 345 continue; 346 if (MO.isDef()) { 347 const TargetRegisterClass *RC = MRI->getRegClass(Reg); 348 unsigned NewReg = MRI->createVirtualRegister(RC); 349 MO.setReg(NewReg); 350 LocalVRMap.insert(std::make_pair(Reg, RegSubRegPair(NewReg, 0))); 351 if (isDefLiveOut(Reg, TailBB, MRI) || UsedByPhi.count(Reg)) 352 addSSAUpdateEntry(Reg, NewReg, PredBB); 353 } else { 354 auto VI = LocalVRMap.find(Reg); 355 if (VI != LocalVRMap.end()) { 356 // Need to make sure that the register class of the mapped register 357 // will satisfy the constraints of the class of the register being 358 // replaced. 359 auto *OrigRC = MRI->getRegClass(Reg); 360 auto *MappedRC = MRI->getRegClass(VI->second.Reg); 361 const TargetRegisterClass *ConstrRC; 362 if (VI->second.SubReg != 0) { 363 ConstrRC = TRI->getMatchingSuperRegClass(MappedRC, OrigRC, 364 VI->second.SubReg); 365 if (ConstrRC) { 366 // The actual constraining (as in "find appropriate new class") 367 // is done by getMatchingSuperRegClass, so now we only need to 368 // change the class of the mapped register. 369 MRI->setRegClass(VI->second.Reg, ConstrRC); 370 } 371 } else { 372 // For mapped registers that do not have sub-registers, simply 373 // restrict their class to match the original one. 374 ConstrRC = MRI->constrainRegClass(VI->second.Reg, OrigRC); 375 } 376 377 if (ConstrRC) { 378 // If the class constraining succeeded, we can simply replace 379 // the old register with the mapped one. 380 MO.setReg(VI->second.Reg); 381 // We have Reg -> VI.Reg:VI.SubReg, so if Reg is used with a 382 // sub-register, we need to compose the sub-register indices. 383 MO.setSubReg(TRI->composeSubRegIndices(MO.getSubReg(), 384 VI->second.SubReg)); 385 } else { 386 // The direct replacement is not possible, due to failing register 387 // class constraints. An explicit COPY is necessary. Create one 388 // that can be reused 389 auto *NewRC = MI->getRegClassConstraint(i, TII, TRI); 390 if (NewRC == nullptr) 391 NewRC = OrigRC; 392 unsigned NewReg = MRI->createVirtualRegister(NewRC); 393 BuildMI(*PredBB, MI, MI->getDebugLoc(), 394 TII->get(TargetOpcode::COPY), NewReg) 395 .addReg(VI->second.Reg, 0, VI->second.SubReg); 396 LocalVRMap.erase(VI); 397 LocalVRMap.insert(std::make_pair(Reg, RegSubRegPair(NewReg, 0))); 398 MO.setReg(NewReg); 399 // The composed VI.Reg:VI.SubReg is replaced with NewReg, which 400 // is equivalent to the whole register Reg. Hence, Reg:subreg 401 // is same as NewReg:subreg, so keep the sub-register index 402 // unchanged. 403 } 404 // Clear any kill flags from this operand. The new register could 405 // have uses after this one, so kills are not valid here. 406 MO.setIsKill(false); 407 } 408 } 409 } 410 } 411 PredBB->insert(PredBB->instr_end(), NewMI); 412 } 413 414 /// After FromBB is tail duplicated into its predecessor blocks, the successors 415 /// have gained new predecessors. Update the PHI instructions in them 416 /// accordingly. 417 void TailDuplicator::updateSuccessorsPHIs( 418 MachineBasicBlock *FromBB, bool isDead, 419 SmallVectorImpl<MachineBasicBlock *> &TDBBs, 420 SmallSetVector<MachineBasicBlock *, 8> &Succs) { 421 for (MachineBasicBlock *SuccBB : Succs) { 422 for (MachineInstr &MI : *SuccBB) { 423 if (!MI.isPHI()) 424 break; 425 MachineInstrBuilder MIB(*FromBB->getParent(), MI); 426 unsigned Idx = 0; 427 for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) { 428 MachineOperand &MO = MI.getOperand(i + 1); 429 if (MO.getMBB() == FromBB) { 430 Idx = i; 431 break; 432 } 433 } 434 435 assert(Idx != 0); 436 MachineOperand &MO0 = MI.getOperand(Idx); 437 unsigned Reg = MO0.getReg(); 438 if (isDead) { 439 // Folded into the previous BB. 440 // There could be duplicate phi source entries. FIXME: Should sdisel 441 // or earlier pass fixed this? 442 for (unsigned i = MI.getNumOperands() - 2; i != Idx; i -= 2) { 443 MachineOperand &MO = MI.getOperand(i + 1); 444 if (MO.getMBB() == FromBB) { 445 MI.RemoveOperand(i + 1); 446 MI.RemoveOperand(i); 447 } 448 } 449 } else 450 Idx = 0; 451 452 // If Idx is set, the operands at Idx and Idx+1 must be removed. 453 // We reuse the location to avoid expensive RemoveOperand calls. 454 455 DenseMap<unsigned, AvailableValsTy>::iterator LI = 456 SSAUpdateVals.find(Reg); 457 if (LI != SSAUpdateVals.end()) { 458 // This register is defined in the tail block. 459 for (unsigned j = 0, ee = LI->second.size(); j != ee; ++j) { 460 MachineBasicBlock *SrcBB = LI->second[j].first; 461 // If we didn't duplicate a bb into a particular predecessor, we 462 // might still have added an entry to SSAUpdateVals to correcly 463 // recompute SSA. If that case, avoid adding a dummy extra argument 464 // this PHI. 465 if (!SrcBB->isSuccessor(SuccBB)) 466 continue; 467 468 unsigned SrcReg = LI->second[j].second; 469 if (Idx != 0) { 470 MI.getOperand(Idx).setReg(SrcReg); 471 MI.getOperand(Idx + 1).setMBB(SrcBB); 472 Idx = 0; 473 } else { 474 MIB.addReg(SrcReg).addMBB(SrcBB); 475 } 476 } 477 } else { 478 // Live in tail block, must also be live in predecessors. 479 for (unsigned j = 0, ee = TDBBs.size(); j != ee; ++j) { 480 MachineBasicBlock *SrcBB = TDBBs[j]; 481 if (Idx != 0) { 482 MI.getOperand(Idx).setReg(Reg); 483 MI.getOperand(Idx + 1).setMBB(SrcBB); 484 Idx = 0; 485 } else { 486 MIB.addReg(Reg).addMBB(SrcBB); 487 } 488 } 489 } 490 if (Idx != 0) { 491 MI.RemoveOperand(Idx + 1); 492 MI.RemoveOperand(Idx); 493 } 494 } 495 } 496 } 497 498 /// Determine if it is profitable to duplicate this block. 499 bool TailDuplicator::shouldTailDuplicate(const MachineFunction &MF, 500 bool IsSimple, 501 MachineBasicBlock &TailBB) { 502 // Only duplicate blocks that end with unconditional branches. 503 if (TailBB.canFallThrough()) 504 return false; 505 506 // Don't try to tail-duplicate single-block loops. 507 if (TailBB.isSuccessor(&TailBB)) 508 return false; 509 510 // Set the limit on the cost to duplicate. When optimizing for size, 511 // duplicate only one, because one branch instruction can be eliminated to 512 // compensate for the duplication. 513 unsigned MaxDuplicateCount; 514 if (TailDuplicateSize.getNumOccurrences() == 0 && 515 // FIXME: Use Function::optForSize(). 516 MF.getFunction()->hasFnAttribute(Attribute::OptimizeForSize)) 517 MaxDuplicateCount = 1; 518 else 519 MaxDuplicateCount = TailDuplicateSize; 520 521 // If the block to be duplicated ends in an unanalyzable fallthrough, don't 522 // duplicate it. 523 // A similar check is necessary in MachineBlockPlacement to make sure pairs of 524 // blocks with unanalyzable fallthrough get layed out contiguously. 525 MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr; 526 SmallVector<MachineOperand, 4> PredCond; 527 if (TII->analyzeBranch(TailBB, PredTBB, PredFBB, PredCond, true) 528 && TailBB.canFallThrough()) 529 return false; 530 531 // If the target has hardware branch prediction that can handle indirect 532 // branches, duplicating them can often make them predictable when there 533 // are common paths through the code. The limit needs to be high enough 534 // to allow undoing the effects of tail merging and other optimizations 535 // that rearrange the predecessors of the indirect branch. 536 537 bool HasIndirectbr = false; 538 if (!TailBB.empty()) 539 HasIndirectbr = TailBB.back().isIndirectBranch(); 540 541 if (HasIndirectbr && PreRegAlloc) 542 MaxDuplicateCount = 20; 543 544 // Check the instructions in the block to determine whether tail-duplication 545 // is invalid or unlikely to be profitable. 546 unsigned InstrCount = 0; 547 for (MachineInstr &MI : TailBB) { 548 // Non-duplicable things shouldn't be tail-duplicated. 549 if (MI.isNotDuplicable()) 550 return false; 551 552 // Convergent instructions can be duplicated only if doing so doesn't add 553 // new control dependencies, which is what we're going to do here. 554 if (MI.isConvergent()) 555 return false; 556 557 // Do not duplicate 'return' instructions if this is a pre-regalloc run. 558 // A return may expand into a lot more instructions (e.g. reload of callee 559 // saved registers) after PEI. 560 if (PreRegAlloc && MI.isReturn()) 561 return false; 562 563 // Avoid duplicating calls before register allocation. Calls presents a 564 // barrier to register allocation so duplicating them may end up increasing 565 // spills. 566 if (PreRegAlloc && MI.isCall()) 567 return false; 568 569 if (!MI.isPHI() && !MI.isDebugValue()) 570 InstrCount += 1; 571 572 if (InstrCount > MaxDuplicateCount) 573 return false; 574 } 575 576 // Check if any of the successors of TailBB has a PHI node in which the 577 // value corresponding to TailBB uses a subregister. 578 // If a phi node uses a register paired with a subregister, the actual 579 // "value type" of the phi may differ from the type of the register without 580 // any subregisters. Due to a bug, tail duplication may add a new operand 581 // without a necessary subregister, producing an invalid code. This is 582 // demonstrated by test/CodeGen/Hexagon/tail-dup-subreg-abort.ll. 583 // Disable tail duplication for this case for now, until the problem is 584 // fixed. 585 for (auto SB : TailBB.successors()) { 586 for (auto &I : *SB) { 587 if (!I.isPHI()) 588 break; 589 unsigned Idx = getPHISrcRegOpIdx(&I, &TailBB); 590 assert(Idx != 0); 591 MachineOperand &PU = I.getOperand(Idx); 592 if (PU.getSubReg() != 0) 593 return false; 594 } 595 } 596 597 if (HasIndirectbr && PreRegAlloc) 598 return true; 599 600 if (IsSimple) 601 return true; 602 603 if (!PreRegAlloc) 604 return true; 605 606 return canCompletelyDuplicateBB(TailBB); 607 } 608 609 /// True if this BB has only one unconditional jump. 610 bool TailDuplicator::isSimpleBB(MachineBasicBlock *TailBB) { 611 if (TailBB->succ_size() != 1) 612 return false; 613 if (TailBB->pred_empty()) 614 return false; 615 MachineBasicBlock::iterator I = TailBB->getFirstNonDebugInstr(); 616 if (I == TailBB->end()) 617 return true; 618 return I->isUnconditionalBranch(); 619 } 620 621 static bool bothUsedInPHI(const MachineBasicBlock &A, 622 const SmallPtrSet<MachineBasicBlock *, 8> &SuccsB) { 623 for (MachineBasicBlock *BB : A.successors()) 624 if (SuccsB.count(BB) && !BB->empty() && BB->begin()->isPHI()) 625 return true; 626 627 return false; 628 } 629 630 bool TailDuplicator::canCompletelyDuplicateBB(MachineBasicBlock &BB) { 631 for (MachineBasicBlock *PredBB : BB.predecessors()) { 632 if (PredBB->succ_size() > 1) 633 return false; 634 635 MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr; 636 SmallVector<MachineOperand, 4> PredCond; 637 if (TII->analyzeBranch(*PredBB, PredTBB, PredFBB, PredCond, true)) 638 return false; 639 640 if (!PredCond.empty()) 641 return false; 642 } 643 return true; 644 } 645 646 bool TailDuplicator::duplicateSimpleBB( 647 MachineBasicBlock *TailBB, SmallVectorImpl<MachineBasicBlock *> &TDBBs, 648 const DenseSet<unsigned> &UsedByPhi, 649 SmallVectorImpl<MachineInstr *> &Copies) { 650 SmallPtrSet<MachineBasicBlock *, 8> Succs(TailBB->succ_begin(), 651 TailBB->succ_end()); 652 SmallVector<MachineBasicBlock *, 8> Preds(TailBB->pred_begin(), 653 TailBB->pred_end()); 654 bool Changed = false; 655 for (MachineBasicBlock *PredBB : Preds) { 656 if (PredBB->hasEHPadSuccessor()) 657 continue; 658 659 if (bothUsedInPHI(*PredBB, Succs)) 660 continue; 661 662 MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr; 663 SmallVector<MachineOperand, 4> PredCond; 664 if (TII->analyzeBranch(*PredBB, PredTBB, PredFBB, PredCond, true)) 665 continue; 666 667 Changed = true; 668 DEBUG(dbgs() << "\nTail-duplicating into PredBB: " << *PredBB 669 << "From simple Succ: " << *TailBB); 670 671 MachineBasicBlock *NewTarget = *TailBB->succ_begin(); 672 MachineBasicBlock *NextBB = &*std::next(PredBB->getIterator()); 673 674 // Make PredFBB explicit. 675 if (PredCond.empty()) 676 PredFBB = PredTBB; 677 678 // Make fall through explicit. 679 if (!PredTBB) 680 PredTBB = NextBB; 681 if (!PredFBB) 682 PredFBB = NextBB; 683 684 // Redirect 685 if (PredFBB == TailBB) 686 PredFBB = NewTarget; 687 if (PredTBB == TailBB) 688 PredTBB = NewTarget; 689 690 // Make the branch unconditional if possible 691 if (PredTBB == PredFBB) { 692 PredCond.clear(); 693 PredFBB = nullptr; 694 } 695 696 // Avoid adding fall through branches. 697 if (PredFBB == NextBB) 698 PredFBB = nullptr; 699 if (PredTBB == NextBB && PredFBB == nullptr) 700 PredTBB = nullptr; 701 702 TII->RemoveBranch(*PredBB); 703 704 if (!PredBB->isSuccessor(NewTarget)) 705 PredBB->replaceSuccessor(TailBB, NewTarget); 706 else { 707 PredBB->removeSuccessor(TailBB, true); 708 assert(PredBB->succ_size() <= 1); 709 } 710 711 if (PredTBB) 712 TII->InsertBranch(*PredBB, PredTBB, PredFBB, PredCond, DebugLoc()); 713 714 TDBBs.push_back(PredBB); 715 } 716 return Changed; 717 } 718 719 bool TailDuplicator::canTailDuplicate(MachineBasicBlock *TailBB, 720 MachineBasicBlock *PredBB) { 721 // EH edges are ignored by AnalyzeBranch. 722 if (PredBB->succ_size() > 1) 723 return false; 724 725 MachineBasicBlock *PredTBB, *PredFBB; 726 SmallVector<MachineOperand, 4> PredCond; 727 if (TII->analyzeBranch(*PredBB, PredTBB, PredFBB, PredCond, true)) 728 return false; 729 if (!PredCond.empty()) 730 return false; 731 return true; 732 } 733 734 /// If it is profitable, duplicate TailBB's contents in each 735 /// of its predecessors. 736 bool TailDuplicator::tailDuplicate(MachineFunction &MF, bool IsSimple, 737 MachineBasicBlock *TailBB, 738 SmallVectorImpl<MachineBasicBlock *> &TDBBs, 739 SmallVectorImpl<MachineInstr *> &Copies) { 740 DEBUG(dbgs() << "\n*** Tail-duplicating BB#" << TailBB->getNumber() << '\n'); 741 742 DenseSet<unsigned> UsedByPhi; 743 getRegsUsedByPHIs(*TailBB, &UsedByPhi); 744 745 if (IsSimple) 746 return duplicateSimpleBB(TailBB, TDBBs, UsedByPhi, Copies); 747 748 // Iterate through all the unique predecessors and tail-duplicate this 749 // block into them, if possible. Copying the list ahead of time also 750 // avoids trouble with the predecessor list reallocating. 751 bool Changed = false; 752 SmallSetVector<MachineBasicBlock *, 8> Preds(TailBB->pred_begin(), 753 TailBB->pred_end()); 754 for (MachineBasicBlock *PredBB : Preds) { 755 assert(TailBB != PredBB && 756 "Single-block loop should have been rejected earlier!"); 757 758 if (!canTailDuplicate(TailBB, PredBB)) 759 continue; 760 761 // Don't duplicate into a fall-through predecessor (at least for now). 762 if (PredBB->isLayoutSuccessor(TailBB) && PredBB->canFallThrough()) 763 continue; 764 765 DEBUG(dbgs() << "\nTail-duplicating into PredBB: " << *PredBB 766 << "From Succ: " << *TailBB); 767 768 TDBBs.push_back(PredBB); 769 770 // Remove PredBB's unconditional branch. 771 TII->RemoveBranch(*PredBB); 772 773 // Clone the contents of TailBB into PredBB. 774 DenseMap<unsigned, RegSubRegPair> LocalVRMap; 775 SmallVector<std::pair<unsigned, RegSubRegPair>, 4> CopyInfos; 776 // Use instr_iterator here to properly handle bundles, e.g. 777 // ARM Thumb2 IT block. 778 MachineBasicBlock::instr_iterator I = TailBB->instr_begin(); 779 while (I != TailBB->instr_end()) { 780 MachineInstr *MI = &*I; 781 ++I; 782 if (MI->isPHI()) { 783 // Replace the uses of the def of the PHI with the register coming 784 // from PredBB. 785 processPHI(MI, TailBB, PredBB, LocalVRMap, CopyInfos, UsedByPhi, true); 786 } else { 787 // Replace def of virtual registers with new registers, and update 788 // uses with PHI source register or the new registers. 789 duplicateInstruction(MI, TailBB, PredBB, MF, LocalVRMap, UsedByPhi); 790 } 791 } 792 appendCopies(PredBB, CopyInfos, Copies); 793 794 // Simplify 795 MachineBasicBlock *PredTBB, *PredFBB; 796 SmallVector<MachineOperand, 4> PredCond; 797 TII->analyzeBranch(*PredBB, PredTBB, PredFBB, PredCond, true); 798 799 NumTailDupAdded += TailBB->size() - 1; // subtract one for removed branch 800 801 // Update the CFG. 802 PredBB->removeSuccessor(PredBB->succ_begin()); 803 assert(PredBB->succ_empty() && 804 "TailDuplicate called on block with multiple successors!"); 805 for (MachineBasicBlock *Succ : TailBB->successors()) 806 PredBB->addSuccessor(Succ, MBPI->getEdgeProbability(TailBB, Succ)); 807 808 Changed = true; 809 ++NumTailDups; 810 } 811 812 // If TailBB was duplicated into all its predecessors except for the prior 813 // block, which falls through unconditionally, move the contents of this 814 // block into the prior block. 815 MachineBasicBlock *PrevBB = &*std::prev(TailBB->getIterator()); 816 MachineBasicBlock *PriorTBB = nullptr, *PriorFBB = nullptr; 817 SmallVector<MachineOperand, 4> PriorCond; 818 // This has to check PrevBB->succ_size() because EH edges are ignored by 819 // AnalyzeBranch. 820 if (PrevBB->succ_size() == 1 && 821 // Layout preds are not always CFG preds. Check. 822 *PrevBB->succ_begin() == TailBB && 823 !TII->analyzeBranch(*PrevBB, PriorTBB, PriorFBB, PriorCond, true) && 824 PriorCond.empty() && !PriorTBB && TailBB->pred_size() == 1 && 825 !TailBB->hasAddressTaken()) { 826 DEBUG(dbgs() << "\nMerging into block: " << *PrevBB 827 << "From MBB: " << *TailBB); 828 if (PreRegAlloc) { 829 DenseMap<unsigned, RegSubRegPair> LocalVRMap; 830 SmallVector<std::pair<unsigned, RegSubRegPair>, 4> CopyInfos; 831 MachineBasicBlock::iterator I = TailBB->begin(); 832 // Process PHI instructions first. 833 while (I != TailBB->end() && I->isPHI()) { 834 // Replace the uses of the def of the PHI with the register coming 835 // from PredBB. 836 MachineInstr *MI = &*I++; 837 processPHI(MI, TailBB, PrevBB, LocalVRMap, CopyInfos, UsedByPhi, true); 838 } 839 840 // Now copy the non-PHI instructions. 841 while (I != TailBB->end()) { 842 // Replace def of virtual registers with new registers, and update 843 // uses with PHI source register or the new registers. 844 MachineInstr *MI = &*I++; 845 assert(!MI->isBundle() && "Not expecting bundles before regalloc!"); 846 duplicateInstruction(MI, TailBB, PrevBB, MF, LocalVRMap, UsedByPhi); 847 MI->eraseFromParent(); 848 } 849 appendCopies(PrevBB, CopyInfos, Copies); 850 } else { 851 // No PHIs to worry about, just splice the instructions over. 852 PrevBB->splice(PrevBB->end(), TailBB, TailBB->begin(), TailBB->end()); 853 } 854 PrevBB->removeSuccessor(PrevBB->succ_begin()); 855 assert(PrevBB->succ_empty()); 856 PrevBB->transferSuccessors(TailBB); 857 TDBBs.push_back(PrevBB); 858 Changed = true; 859 } 860 861 // If this is after register allocation, there are no phis to fix. 862 if (!PreRegAlloc) 863 return Changed; 864 865 // If we made no changes so far, we are safe. 866 if (!Changed) 867 return Changed; 868 869 // Handle the nasty case in that we duplicated a block that is part of a loop 870 // into some but not all of its predecessors. For example: 871 // 1 -> 2 <-> 3 | 872 // \ | 873 // \---> rest | 874 // if we duplicate 2 into 1 but not into 3, we end up with 875 // 12 -> 3 <-> 2 -> rest | 876 // \ / | 877 // \----->-----/ | 878 // If there was a "var = phi(1, 3)" in 2, it has to be ultimately replaced 879 // with a phi in 3 (which now dominates 2). 880 // What we do here is introduce a copy in 3 of the register defined by the 881 // phi, just like when we are duplicating 2 into 3, but we don't copy any 882 // real instructions or remove the 3 -> 2 edge from the phi in 2. 883 for (MachineBasicBlock *PredBB : Preds) { 884 if (is_contained(TDBBs, PredBB)) 885 continue; 886 887 // EH edges 888 if (PredBB->succ_size() != 1) 889 continue; 890 891 DenseMap<unsigned, RegSubRegPair> LocalVRMap; 892 SmallVector<std::pair<unsigned, RegSubRegPair>, 4> CopyInfos; 893 MachineBasicBlock::iterator I = TailBB->begin(); 894 // Process PHI instructions first. 895 while (I != TailBB->end() && I->isPHI()) { 896 // Replace the uses of the def of the PHI with the register coming 897 // from PredBB. 898 MachineInstr *MI = &*I++; 899 processPHI(MI, TailBB, PredBB, LocalVRMap, CopyInfos, UsedByPhi, false); 900 } 901 appendCopies(PredBB, CopyInfos, Copies); 902 } 903 904 return Changed; 905 } 906 907 /// At the end of the block \p MBB generate COPY instructions between registers 908 /// described by \p CopyInfos. Append resulting instructions to \p Copies. 909 void TailDuplicator::appendCopies(MachineBasicBlock *MBB, 910 SmallVectorImpl<std::pair<unsigned,RegSubRegPair>> &CopyInfos, 911 SmallVectorImpl<MachineInstr*> &Copies) { 912 MachineBasicBlock::iterator Loc = MBB->getFirstTerminator(); 913 const MCInstrDesc &CopyD = TII->get(TargetOpcode::COPY); 914 for (auto &CI : CopyInfos) { 915 auto C = BuildMI(*MBB, Loc, DebugLoc(), CopyD, CI.first) 916 .addReg(CI.second.Reg, 0, CI.second.SubReg); 917 Copies.push_back(C); 918 } 919 } 920 921 /// Remove the specified dead machine basic block from the function, updating 922 /// the CFG. 923 void TailDuplicator::removeDeadBlock(MachineBasicBlock *MBB) { 924 assert(MBB->pred_empty() && "MBB must be dead!"); 925 DEBUG(dbgs() << "\nRemoving MBB: " << *MBB); 926 927 // Remove all successors. 928 while (!MBB->succ_empty()) 929 MBB->removeSuccessor(MBB->succ_end() - 1); 930 931 // Remove the block. 932 MBB->eraseFromParent(); 933 } 934 935 } // End llvm namespace 936