1 //===-- TailDuplicator.cpp - Duplicate blocks into predecessors' tails ---===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This utility class duplicates basic blocks ending in unconditional branches
11 // into the tails of their predecessors.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/TailDuplicator.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/SetVector.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
21 #include "llvm/CodeGen/MachineFunctionPass.h"
22 #include "llvm/CodeGen/MachineInstrBuilder.h"
23 #include "llvm/CodeGen/MachineModuleInfo.h"
24 #include "llvm/CodeGen/Passes.h"
25 #include "llvm/IR/Function.h"
26 #include "llvm/Support/CommandLine.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include "llvm/Support/raw_ostream.h"
30 using namespace llvm;
31 
32 #define DEBUG_TYPE "tailduplication"
33 
34 STATISTIC(NumTails, "Number of tails duplicated");
35 STATISTIC(NumTailDups, "Number of tail duplicated blocks");
36 STATISTIC(NumTailDupAdded,
37           "Number of instructions added due to tail duplication");
38 STATISTIC(NumTailDupRemoved,
39           "Number of instructions removed due to tail duplication");
40 STATISTIC(NumDeadBlocks, "Number of dead blocks removed");
41 STATISTIC(NumAddedPHIs, "Number of phis added");
42 
43 // Heuristic for tail duplication.
44 static cl::opt<unsigned> TailDuplicateSize(
45     "tail-dup-size",
46     cl::desc("Maximum instructions to consider tail duplicating"), cl::init(2),
47     cl::Hidden);
48 
49 static cl::opt<bool>
50     TailDupVerify("tail-dup-verify",
51                   cl::desc("Verify sanity of PHI instructions during taildup"),
52                   cl::init(false), cl::Hidden);
53 
54 static cl::opt<unsigned> TailDupLimit("tail-dup-limit", cl::init(~0U),
55                                       cl::Hidden);
56 
57 namespace llvm {
58 
59 void TailDuplicator::initMF(MachineFunction &MFin,
60                             const MachineBranchProbabilityInfo *MBPIin,
61                             unsigned TailDupSizeIn) {
62   MF = &MFin;
63   TII = MF->getSubtarget().getInstrInfo();
64   TRI = MF->getSubtarget().getRegisterInfo();
65   MRI = &MF->getRegInfo();
66   MMI = &MF->getMMI();
67   MBPI = MBPIin;
68   TailDupSize = TailDupSizeIn;
69 
70   assert(MBPI != nullptr && "Machine Branch Probability Info required");
71 
72   PreRegAlloc = MRI->isSSA();
73 }
74 
75 static void VerifyPHIs(MachineFunction &MF, bool CheckExtra) {
76   for (MachineFunction::iterator I = ++MF.begin(), E = MF.end(); I != E; ++I) {
77     MachineBasicBlock *MBB = &*I;
78     SmallSetVector<MachineBasicBlock *, 8> Preds(MBB->pred_begin(),
79                                                  MBB->pred_end());
80     MachineBasicBlock::iterator MI = MBB->begin();
81     while (MI != MBB->end()) {
82       if (!MI->isPHI())
83         break;
84       for (MachineBasicBlock *PredBB : Preds) {
85         bool Found = false;
86         for (unsigned i = 1, e = MI->getNumOperands(); i != e; i += 2) {
87           MachineBasicBlock *PHIBB = MI->getOperand(i + 1).getMBB();
88           if (PHIBB == PredBB) {
89             Found = true;
90             break;
91           }
92         }
93         if (!Found) {
94           dbgs() << "Malformed PHI in BB#" << MBB->getNumber() << ": " << *MI;
95           dbgs() << "  missing input from predecessor BB#"
96                  << PredBB->getNumber() << '\n';
97           llvm_unreachable(nullptr);
98         }
99       }
100 
101       for (unsigned i = 1, e = MI->getNumOperands(); i != e; i += 2) {
102         MachineBasicBlock *PHIBB = MI->getOperand(i + 1).getMBB();
103         if (CheckExtra && !Preds.count(PHIBB)) {
104           dbgs() << "Warning: malformed PHI in BB#" << MBB->getNumber() << ": "
105                  << *MI;
106           dbgs() << "  extra input from predecessor BB#" << PHIBB->getNumber()
107                  << '\n';
108           llvm_unreachable(nullptr);
109         }
110         if (PHIBB->getNumber() < 0) {
111           dbgs() << "Malformed PHI in BB#" << MBB->getNumber() << ": " << *MI;
112           dbgs() << "  non-existing BB#" << PHIBB->getNumber() << '\n';
113           llvm_unreachable(nullptr);
114         }
115       }
116       ++MI;
117     }
118   }
119 }
120 
121 /// Tail duplicate the block and cleanup.
122 bool TailDuplicator::tailDuplicateAndUpdate(bool IsSimple,
123                                             MachineBasicBlock *MBB) {
124   // Save the successors list.
125   SmallSetVector<MachineBasicBlock *, 8> Succs(MBB->succ_begin(),
126                                                MBB->succ_end());
127 
128   SmallVector<MachineBasicBlock *, 8> TDBBs;
129   SmallVector<MachineInstr *, 16> Copies;
130   if (!tailDuplicate(IsSimple, MBB, TDBBs, Copies))
131     return false;
132 
133   ++NumTails;
134 
135   SmallVector<MachineInstr *, 8> NewPHIs;
136   MachineSSAUpdater SSAUpdate(*MF, &NewPHIs);
137 
138   // TailBB's immediate successors are now successors of those predecessors
139   // which duplicated TailBB. Add the predecessors as sources to the PHI
140   // instructions.
141   bool isDead = MBB->pred_empty() && !MBB->hasAddressTaken();
142   if (PreRegAlloc)
143     updateSuccessorsPHIs(MBB, isDead, TDBBs, Succs);
144 
145   // If it is dead, remove it.
146   if (isDead) {
147     NumTailDupRemoved += MBB->size();
148     removeDeadBlock(MBB);
149     ++NumDeadBlocks;
150   }
151 
152   // Update SSA form.
153   if (!SSAUpdateVRs.empty()) {
154     for (unsigned i = 0, e = SSAUpdateVRs.size(); i != e; ++i) {
155       unsigned VReg = SSAUpdateVRs[i];
156       SSAUpdate.Initialize(VReg);
157 
158       // If the original definition is still around, add it as an available
159       // value.
160       MachineInstr *DefMI = MRI->getVRegDef(VReg);
161       MachineBasicBlock *DefBB = nullptr;
162       if (DefMI) {
163         DefBB = DefMI->getParent();
164         SSAUpdate.AddAvailableValue(DefBB, VReg);
165       }
166 
167       // Add the new vregs as available values.
168       DenseMap<unsigned, AvailableValsTy>::iterator LI =
169           SSAUpdateVals.find(VReg);
170       for (unsigned j = 0, ee = LI->second.size(); j != ee; ++j) {
171         MachineBasicBlock *SrcBB = LI->second[j].first;
172         unsigned SrcReg = LI->second[j].second;
173         SSAUpdate.AddAvailableValue(SrcBB, SrcReg);
174       }
175 
176       // Rewrite uses that are outside of the original def's block.
177       MachineRegisterInfo::use_iterator UI = MRI->use_begin(VReg);
178       while (UI != MRI->use_end()) {
179         MachineOperand &UseMO = *UI;
180         MachineInstr *UseMI = UseMO.getParent();
181         ++UI;
182         if (UseMI->isDebugValue()) {
183           // SSAUpdate can replace the use with an undef. That creates
184           // a debug instruction that is a kill.
185           // FIXME: Should it SSAUpdate job to delete debug instructions
186           // instead of replacing the use with undef?
187           UseMI->eraseFromParent();
188           continue;
189         }
190         if (UseMI->getParent() == DefBB && !UseMI->isPHI())
191           continue;
192         SSAUpdate.RewriteUse(UseMO);
193       }
194     }
195 
196     SSAUpdateVRs.clear();
197     SSAUpdateVals.clear();
198   }
199 
200   // Eliminate some of the copies inserted by tail duplication to maintain
201   // SSA form.
202   for (unsigned i = 0, e = Copies.size(); i != e; ++i) {
203     MachineInstr *Copy = Copies[i];
204     if (!Copy->isCopy())
205       continue;
206     unsigned Dst = Copy->getOperand(0).getReg();
207     unsigned Src = Copy->getOperand(1).getReg();
208     if (MRI->hasOneNonDBGUse(Src) &&
209         MRI->constrainRegClass(Src, MRI->getRegClass(Dst))) {
210       // Copy is the only use. Do trivial copy propagation here.
211       MRI->replaceRegWith(Dst, Src);
212       Copy->eraseFromParent();
213     }
214   }
215 
216   if (NewPHIs.size())
217     NumAddedPHIs += NewPHIs.size();
218 
219   return true;
220 }
221 
222 /// Look for small blocks that are unconditionally branched to and do not fall
223 /// through. Tail-duplicate their instructions into their predecessors to
224 /// eliminate (dynamic) branches.
225 bool TailDuplicator::tailDuplicateBlocks() {
226   bool MadeChange = false;
227 
228   if (PreRegAlloc && TailDupVerify) {
229     DEBUG(dbgs() << "\n*** Before tail-duplicating\n");
230     VerifyPHIs(*MF, true);
231   }
232 
233   for (MachineFunction::iterator I = ++MF->begin(), E = MF->end(); I != E;) {
234     MachineBasicBlock *MBB = &*I++;
235 
236     if (NumTails == TailDupLimit)
237       break;
238 
239     bool IsSimple = isSimpleBB(MBB);
240 
241     if (!shouldTailDuplicate(IsSimple, *MBB))
242       continue;
243 
244     MadeChange |= tailDuplicateAndUpdate(IsSimple, MBB);
245   }
246 
247   if (PreRegAlloc && TailDupVerify)
248     VerifyPHIs(*MF, false);
249 
250   return MadeChange;
251 }
252 
253 static bool isDefLiveOut(unsigned Reg, MachineBasicBlock *BB,
254                          const MachineRegisterInfo *MRI) {
255   for (MachineInstr &UseMI : MRI->use_instructions(Reg)) {
256     if (UseMI.isDebugValue())
257       continue;
258     if (UseMI.getParent() != BB)
259       return true;
260   }
261   return false;
262 }
263 
264 static unsigned getPHISrcRegOpIdx(MachineInstr *MI, MachineBasicBlock *SrcBB) {
265   for (unsigned i = 1, e = MI->getNumOperands(); i != e; i += 2)
266     if (MI->getOperand(i + 1).getMBB() == SrcBB)
267       return i;
268   return 0;
269 }
270 
271 // Remember which registers are used by phis in this block. This is
272 // used to determine which registers are liveout while modifying the
273 // block (which is why we need to copy the information).
274 static void getRegsUsedByPHIs(const MachineBasicBlock &BB,
275                               DenseSet<unsigned> *UsedByPhi) {
276   for (const auto &MI : BB) {
277     if (!MI.isPHI())
278       break;
279     for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) {
280       unsigned SrcReg = MI.getOperand(i).getReg();
281       UsedByPhi->insert(SrcReg);
282     }
283   }
284 }
285 
286 /// Add a definition and source virtual registers pair for SSA update.
287 void TailDuplicator::addSSAUpdateEntry(unsigned OrigReg, unsigned NewReg,
288                                        MachineBasicBlock *BB) {
289   DenseMap<unsigned, AvailableValsTy>::iterator LI =
290       SSAUpdateVals.find(OrigReg);
291   if (LI != SSAUpdateVals.end())
292     LI->second.push_back(std::make_pair(BB, NewReg));
293   else {
294     AvailableValsTy Vals;
295     Vals.push_back(std::make_pair(BB, NewReg));
296     SSAUpdateVals.insert(std::make_pair(OrigReg, Vals));
297     SSAUpdateVRs.push_back(OrigReg);
298   }
299 }
300 
301 /// Process PHI node in TailBB by turning it into a copy in PredBB. Remember the
302 /// source register that's contributed by PredBB and update SSA update map.
303 void TailDuplicator::processPHI(
304     MachineInstr *MI, MachineBasicBlock *TailBB, MachineBasicBlock *PredBB,
305     DenseMap<unsigned, RegSubRegPair> &LocalVRMap,
306     SmallVectorImpl<std::pair<unsigned, RegSubRegPair>> &Copies,
307     const DenseSet<unsigned> &RegsUsedByPhi, bool Remove) {
308   unsigned DefReg = MI->getOperand(0).getReg();
309   unsigned SrcOpIdx = getPHISrcRegOpIdx(MI, PredBB);
310   assert(SrcOpIdx && "Unable to find matching PHI source?");
311   unsigned SrcReg = MI->getOperand(SrcOpIdx).getReg();
312   unsigned SrcSubReg = MI->getOperand(SrcOpIdx).getSubReg();
313   const TargetRegisterClass *RC = MRI->getRegClass(DefReg);
314   LocalVRMap.insert(std::make_pair(DefReg, RegSubRegPair(SrcReg, SrcSubReg)));
315 
316   // Insert a copy from source to the end of the block. The def register is the
317   // available value liveout of the block.
318   unsigned NewDef = MRI->createVirtualRegister(RC);
319   Copies.push_back(std::make_pair(NewDef, RegSubRegPair(SrcReg, SrcSubReg)));
320   if (isDefLiveOut(DefReg, TailBB, MRI) || RegsUsedByPhi.count(DefReg))
321     addSSAUpdateEntry(DefReg, NewDef, PredBB);
322 
323   if (!Remove)
324     return;
325 
326   // Remove PredBB from the PHI node.
327   MI->RemoveOperand(SrcOpIdx + 1);
328   MI->RemoveOperand(SrcOpIdx);
329   if (MI->getNumOperands() == 1)
330     MI->eraseFromParent();
331 }
332 
333 /// Duplicate a TailBB instruction to PredBB and update
334 /// the source operands due to earlier PHI translation.
335 void TailDuplicator::duplicateInstruction(
336     MachineInstr *MI, MachineBasicBlock *TailBB, MachineBasicBlock *PredBB,
337     DenseMap<unsigned, RegSubRegPair> &LocalVRMap,
338     const DenseSet<unsigned> &UsedByPhi) {
339   MachineInstr *NewMI = TII->duplicate(*MI, *MF);
340   if (PreRegAlloc) {
341     for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) {
342       MachineOperand &MO = NewMI->getOperand(i);
343       if (!MO.isReg())
344         continue;
345       unsigned Reg = MO.getReg();
346       if (!TargetRegisterInfo::isVirtualRegister(Reg))
347         continue;
348       if (MO.isDef()) {
349         const TargetRegisterClass *RC = MRI->getRegClass(Reg);
350         unsigned NewReg = MRI->createVirtualRegister(RC);
351         MO.setReg(NewReg);
352         LocalVRMap.insert(std::make_pair(Reg, RegSubRegPair(NewReg, 0)));
353         if (isDefLiveOut(Reg, TailBB, MRI) || UsedByPhi.count(Reg))
354           addSSAUpdateEntry(Reg, NewReg, PredBB);
355       } else {
356         auto VI = LocalVRMap.find(Reg);
357         if (VI != LocalVRMap.end()) {
358           // Need to make sure that the register class of the mapped register
359           // will satisfy the constraints of the class of the register being
360           // replaced.
361           auto *OrigRC = MRI->getRegClass(Reg);
362           auto *MappedRC = MRI->getRegClass(VI->second.Reg);
363           const TargetRegisterClass *ConstrRC;
364           if (VI->second.SubReg != 0) {
365             ConstrRC = TRI->getMatchingSuperRegClass(MappedRC, OrigRC,
366                                                      VI->second.SubReg);
367             if (ConstrRC) {
368               // The actual constraining (as in "find appropriate new class")
369               // is done by getMatchingSuperRegClass, so now we only need to
370               // change the class of the mapped register.
371               MRI->setRegClass(VI->second.Reg, ConstrRC);
372             }
373           } else {
374             // For mapped registers that do not have sub-registers, simply
375             // restrict their class to match the original one.
376             ConstrRC = MRI->constrainRegClass(VI->second.Reg, OrigRC);
377           }
378 
379           if (ConstrRC) {
380             // If the class constraining succeeded, we can simply replace
381             // the old register with the mapped one.
382             MO.setReg(VI->second.Reg);
383             // We have Reg -> VI.Reg:VI.SubReg, so if Reg is used with a
384             // sub-register, we need to compose the sub-register indices.
385             MO.setSubReg(TRI->composeSubRegIndices(MO.getSubReg(),
386                                                    VI->second.SubReg));
387           } else {
388             // The direct replacement is not possible, due to failing register
389             // class constraints. An explicit COPY is necessary. Create one
390             // that can be reused
391             auto *NewRC = MI->getRegClassConstraint(i, TII, TRI);
392             if (NewRC == nullptr)
393               NewRC = OrigRC;
394             unsigned NewReg = MRI->createVirtualRegister(NewRC);
395             BuildMI(*PredBB, MI, MI->getDebugLoc(),
396                     TII->get(TargetOpcode::COPY), NewReg)
397                 .addReg(VI->second.Reg, 0, VI->second.SubReg);
398             LocalVRMap.erase(VI);
399             LocalVRMap.insert(std::make_pair(Reg, RegSubRegPair(NewReg, 0)));
400             MO.setReg(NewReg);
401             // The composed VI.Reg:VI.SubReg is replaced with NewReg, which
402             // is equivalent to the whole register Reg. Hence, Reg:subreg
403             // is same as NewReg:subreg, so keep the sub-register index
404             // unchanged.
405           }
406           // Clear any kill flags from this operand.  The new register could
407           // have uses after this one, so kills are not valid here.
408           MO.setIsKill(false);
409         }
410       }
411     }
412   }
413   PredBB->insert(PredBB->instr_end(), NewMI);
414 }
415 
416 /// After FromBB is tail duplicated into its predecessor blocks, the successors
417 /// have gained new predecessors. Update the PHI instructions in them
418 /// accordingly.
419 void TailDuplicator::updateSuccessorsPHIs(
420     MachineBasicBlock *FromBB, bool isDead,
421     SmallVectorImpl<MachineBasicBlock *> &TDBBs,
422     SmallSetVector<MachineBasicBlock *, 8> &Succs) {
423   for (MachineBasicBlock *SuccBB : Succs) {
424     for (MachineInstr &MI : *SuccBB) {
425       if (!MI.isPHI())
426         break;
427       MachineInstrBuilder MIB(*FromBB->getParent(), MI);
428       unsigned Idx = 0;
429       for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) {
430         MachineOperand &MO = MI.getOperand(i + 1);
431         if (MO.getMBB() == FromBB) {
432           Idx = i;
433           break;
434         }
435       }
436 
437       assert(Idx != 0);
438       MachineOperand &MO0 = MI.getOperand(Idx);
439       unsigned Reg = MO0.getReg();
440       if (isDead) {
441         // Folded into the previous BB.
442         // There could be duplicate phi source entries. FIXME: Should sdisel
443         // or earlier pass fixed this?
444         for (unsigned i = MI.getNumOperands() - 2; i != Idx; i -= 2) {
445           MachineOperand &MO = MI.getOperand(i + 1);
446           if (MO.getMBB() == FromBB) {
447             MI.RemoveOperand(i + 1);
448             MI.RemoveOperand(i);
449           }
450         }
451       } else
452         Idx = 0;
453 
454       // If Idx is set, the operands at Idx and Idx+1 must be removed.
455       // We reuse the location to avoid expensive RemoveOperand calls.
456 
457       DenseMap<unsigned, AvailableValsTy>::iterator LI =
458           SSAUpdateVals.find(Reg);
459       if (LI != SSAUpdateVals.end()) {
460         // This register is defined in the tail block.
461         for (unsigned j = 0, ee = LI->second.size(); j != ee; ++j) {
462           MachineBasicBlock *SrcBB = LI->second[j].first;
463           // If we didn't duplicate a bb into a particular predecessor, we
464           // might still have added an entry to SSAUpdateVals to correcly
465           // recompute SSA. If that case, avoid adding a dummy extra argument
466           // this PHI.
467           if (!SrcBB->isSuccessor(SuccBB))
468             continue;
469 
470           unsigned SrcReg = LI->second[j].second;
471           if (Idx != 0) {
472             MI.getOperand(Idx).setReg(SrcReg);
473             MI.getOperand(Idx + 1).setMBB(SrcBB);
474             Idx = 0;
475           } else {
476             MIB.addReg(SrcReg).addMBB(SrcBB);
477           }
478         }
479       } else {
480         // Live in tail block, must also be live in predecessors.
481         for (unsigned j = 0, ee = TDBBs.size(); j != ee; ++j) {
482           MachineBasicBlock *SrcBB = TDBBs[j];
483           if (Idx != 0) {
484             MI.getOperand(Idx).setReg(Reg);
485             MI.getOperand(Idx + 1).setMBB(SrcBB);
486             Idx = 0;
487           } else {
488             MIB.addReg(Reg).addMBB(SrcBB);
489           }
490         }
491       }
492       if (Idx != 0) {
493         MI.RemoveOperand(Idx + 1);
494         MI.RemoveOperand(Idx);
495       }
496     }
497   }
498 }
499 
500 /// Determine if it is profitable to duplicate this block.
501 bool TailDuplicator::shouldTailDuplicate(bool IsSimple,
502                                          MachineBasicBlock &TailBB) {
503   // Only duplicate blocks that end with unconditional branches.
504   if (TailBB.canFallThrough())
505     return false;
506 
507   // Don't try to tail-duplicate single-block loops.
508   if (TailBB.isSuccessor(&TailBB))
509     return false;
510 
511   // Set the limit on the cost to duplicate. When optimizing for size,
512   // duplicate only one, because one branch instruction can be eliminated to
513   // compensate for the duplication.
514   unsigned MaxDuplicateCount;
515   if (TailDupSize == 0 &&
516       TailDuplicateSize.getNumOccurrences() == 0 &&
517       MF->getFunction()->optForSize())
518     MaxDuplicateCount = 1;
519   else if (TailDupSize == 0)
520     MaxDuplicateCount = TailDuplicateSize;
521   else
522     MaxDuplicateCount = TailDupSize;
523 
524   // If the block to be duplicated ends in an unanalyzable fallthrough, don't
525   // duplicate it.
526   // A similar check is necessary in MachineBlockPlacement to make sure pairs of
527   // blocks with unanalyzable fallthrough get layed out contiguously.
528   MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr;
529   SmallVector<MachineOperand, 4> PredCond;
530   if (TII->analyzeBranch(TailBB, PredTBB, PredFBB, PredCond, true)
531       && TailBB.canFallThrough())
532     return false;
533 
534   // If the target has hardware branch prediction that can handle indirect
535   // branches, duplicating them can often make them predictable when there
536   // are common paths through the code.  The limit needs to be high enough
537   // to allow undoing the effects of tail merging and other optimizations
538   // that rearrange the predecessors of the indirect branch.
539 
540   bool HasIndirectbr = false;
541   if (!TailBB.empty())
542     HasIndirectbr = TailBB.back().isIndirectBranch();
543 
544   if (HasIndirectbr && PreRegAlloc)
545     MaxDuplicateCount = 20;
546 
547   // Check the instructions in the block to determine whether tail-duplication
548   // is invalid or unlikely to be profitable.
549   unsigned InstrCount = 0;
550   for (MachineInstr &MI : TailBB) {
551     // Non-duplicable things shouldn't be tail-duplicated.
552     if (MI.isNotDuplicable())
553       return false;
554 
555     // Convergent instructions can be duplicated only if doing so doesn't add
556     // new control dependencies, which is what we're going to do here.
557     if (MI.isConvergent())
558       return false;
559 
560     // Do not duplicate 'return' instructions if this is a pre-regalloc run.
561     // A return may expand into a lot more instructions (e.g. reload of callee
562     // saved registers) after PEI.
563     if (PreRegAlloc && MI.isReturn())
564       return false;
565 
566     // Avoid duplicating calls before register allocation. Calls presents a
567     // barrier to register allocation so duplicating them may end up increasing
568     // spills.
569     if (PreRegAlloc && MI.isCall())
570       return false;
571 
572     if (!MI.isPHI() && !MI.isDebugValue())
573       InstrCount += 1;
574 
575     if (InstrCount > MaxDuplicateCount)
576       return false;
577   }
578 
579   // Check if any of the successors of TailBB has a PHI node in which the
580   // value corresponding to TailBB uses a subregister.
581   // If a phi node uses a register paired with a subregister, the actual
582   // "value type" of the phi may differ from the type of the register without
583   // any subregisters. Due to a bug, tail duplication may add a new operand
584   // without a necessary subregister, producing an invalid code. This is
585   // demonstrated by test/CodeGen/Hexagon/tail-dup-subreg-abort.ll.
586   // Disable tail duplication for this case for now, until the problem is
587   // fixed.
588   for (auto SB : TailBB.successors()) {
589     for (auto &I : *SB) {
590       if (!I.isPHI())
591         break;
592       unsigned Idx = getPHISrcRegOpIdx(&I, &TailBB);
593       assert(Idx != 0);
594       MachineOperand &PU = I.getOperand(Idx);
595       if (PU.getSubReg() != 0)
596         return false;
597     }
598   }
599 
600   if (HasIndirectbr && PreRegAlloc)
601     return true;
602 
603   if (IsSimple)
604     return true;
605 
606   if (!PreRegAlloc)
607     return true;
608 
609   return canCompletelyDuplicateBB(TailBB);
610 }
611 
612 /// True if this BB has only one unconditional jump.
613 bool TailDuplicator::isSimpleBB(MachineBasicBlock *TailBB) {
614   if (TailBB->succ_size() != 1)
615     return false;
616   if (TailBB->pred_empty())
617     return false;
618   MachineBasicBlock::iterator I = TailBB->getFirstNonDebugInstr();
619   if (I == TailBB->end())
620     return true;
621   return I->isUnconditionalBranch();
622 }
623 
624 static bool bothUsedInPHI(const MachineBasicBlock &A,
625                           const SmallPtrSet<MachineBasicBlock *, 8> &SuccsB) {
626   for (MachineBasicBlock *BB : A.successors())
627     if (SuccsB.count(BB) && !BB->empty() && BB->begin()->isPHI())
628       return true;
629 
630   return false;
631 }
632 
633 bool TailDuplicator::canCompletelyDuplicateBB(MachineBasicBlock &BB) {
634   for (MachineBasicBlock *PredBB : BB.predecessors()) {
635     if (PredBB->succ_size() > 1)
636       return false;
637 
638     MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr;
639     SmallVector<MachineOperand, 4> PredCond;
640     if (TII->analyzeBranch(*PredBB, PredTBB, PredFBB, PredCond, true))
641       return false;
642 
643     if (!PredCond.empty())
644       return false;
645   }
646   return true;
647 }
648 
649 bool TailDuplicator::duplicateSimpleBB(
650     MachineBasicBlock *TailBB, SmallVectorImpl<MachineBasicBlock *> &TDBBs,
651     const DenseSet<unsigned> &UsedByPhi,
652     SmallVectorImpl<MachineInstr *> &Copies) {
653   SmallPtrSet<MachineBasicBlock *, 8> Succs(TailBB->succ_begin(),
654                                             TailBB->succ_end());
655   SmallVector<MachineBasicBlock *, 8> Preds(TailBB->pred_begin(),
656                                             TailBB->pred_end());
657   bool Changed = false;
658   for (MachineBasicBlock *PredBB : Preds) {
659     if (PredBB->hasEHPadSuccessor())
660       continue;
661 
662     if (bothUsedInPHI(*PredBB, Succs))
663       continue;
664 
665     MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr;
666     SmallVector<MachineOperand, 4> PredCond;
667     if (TII->analyzeBranch(*PredBB, PredTBB, PredFBB, PredCond, true))
668       continue;
669 
670     Changed = true;
671     DEBUG(dbgs() << "\nTail-duplicating into PredBB: " << *PredBB
672                  << "From simple Succ: " << *TailBB);
673 
674     MachineBasicBlock *NewTarget = *TailBB->succ_begin();
675     MachineBasicBlock *NextBB = PredBB->getNextNode();
676 
677     // Make PredFBB explicit.
678     if (PredCond.empty())
679       PredFBB = PredTBB;
680 
681     // Make fall through explicit.
682     if (!PredTBB)
683       PredTBB = NextBB;
684     if (!PredFBB)
685       PredFBB = NextBB;
686 
687     // Redirect
688     if (PredFBB == TailBB)
689       PredFBB = NewTarget;
690     if (PredTBB == TailBB)
691       PredTBB = NewTarget;
692 
693     // Make the branch unconditional if possible
694     if (PredTBB == PredFBB) {
695       PredCond.clear();
696       PredFBB = nullptr;
697     }
698 
699     // Avoid adding fall through branches.
700     if (PredFBB == NextBB)
701       PredFBB = nullptr;
702     if (PredTBB == NextBB && PredFBB == nullptr)
703       PredTBB = nullptr;
704 
705     TII->RemoveBranch(*PredBB);
706 
707     if (!PredBB->isSuccessor(NewTarget))
708       PredBB->replaceSuccessor(TailBB, NewTarget);
709     else {
710       PredBB->removeSuccessor(TailBB, true);
711       assert(PredBB->succ_size() <= 1);
712     }
713 
714     if (PredTBB)
715       TII->InsertBranch(*PredBB, PredTBB, PredFBB, PredCond, DebugLoc());
716 
717     TDBBs.push_back(PredBB);
718   }
719   return Changed;
720 }
721 
722 bool TailDuplicator::canTailDuplicate(MachineBasicBlock *TailBB,
723                                       MachineBasicBlock *PredBB) {
724   // EH edges are ignored by AnalyzeBranch.
725   if (PredBB->succ_size() > 1)
726     return false;
727 
728   MachineBasicBlock *PredTBB, *PredFBB;
729   SmallVector<MachineOperand, 4> PredCond;
730   if (TII->analyzeBranch(*PredBB, PredTBB, PredFBB, PredCond, true))
731     return false;
732   if (!PredCond.empty())
733     return false;
734   return true;
735 }
736 
737 /// If it is profitable, duplicate TailBB's contents in each
738 /// of its predecessors.
739 bool TailDuplicator::tailDuplicate(bool IsSimple, MachineBasicBlock *TailBB,
740                                    SmallVectorImpl<MachineBasicBlock *> &TDBBs,
741                                    SmallVectorImpl<MachineInstr *> &Copies) {
742   DEBUG(dbgs() << "\n*** Tail-duplicating BB#" << TailBB->getNumber() << '\n');
743 
744   DenseSet<unsigned> UsedByPhi;
745   getRegsUsedByPHIs(*TailBB, &UsedByPhi);
746 
747   if (IsSimple)
748     return duplicateSimpleBB(TailBB, TDBBs, UsedByPhi, Copies);
749 
750   // Iterate through all the unique predecessors and tail-duplicate this
751   // block into them, if possible. Copying the list ahead of time also
752   // avoids trouble with the predecessor list reallocating.
753   bool Changed = false;
754   SmallSetVector<MachineBasicBlock *, 8> Preds(TailBB->pred_begin(),
755                                                TailBB->pred_end());
756   for (MachineBasicBlock *PredBB : Preds) {
757     assert(TailBB != PredBB &&
758            "Single-block loop should have been rejected earlier!");
759 
760     if (!canTailDuplicate(TailBB, PredBB))
761       continue;
762 
763     // Don't duplicate into a fall-through predecessor (at least for now).
764     if (PredBB->isLayoutSuccessor(TailBB) && PredBB->canFallThrough())
765       continue;
766 
767     DEBUG(dbgs() << "\nTail-duplicating into PredBB: " << *PredBB
768                  << "From Succ: " << *TailBB);
769 
770     TDBBs.push_back(PredBB);
771 
772     // Remove PredBB's unconditional branch.
773     TII->RemoveBranch(*PredBB);
774 
775     // Clone the contents of TailBB into PredBB.
776     DenseMap<unsigned, RegSubRegPair> LocalVRMap;
777     SmallVector<std::pair<unsigned, RegSubRegPair>, 4> CopyInfos;
778     // Use instr_iterator here to properly handle bundles, e.g.
779     // ARM Thumb2 IT block.
780     MachineBasicBlock::instr_iterator I = TailBB->instr_begin();
781     while (I != TailBB->instr_end()) {
782       MachineInstr *MI = &*I;
783       ++I;
784       if (MI->isPHI()) {
785         // Replace the uses of the def of the PHI with the register coming
786         // from PredBB.
787         processPHI(MI, TailBB, PredBB, LocalVRMap, CopyInfos, UsedByPhi, true);
788       } else {
789         // Replace def of virtual registers with new registers, and update
790         // uses with PHI source register or the new registers.
791         duplicateInstruction(MI, TailBB, PredBB, LocalVRMap, UsedByPhi);
792       }
793     }
794     appendCopies(PredBB, CopyInfos, Copies);
795 
796     // Simplify
797     MachineBasicBlock *PredTBB, *PredFBB;
798     SmallVector<MachineOperand, 4> PredCond;
799     TII->analyzeBranch(*PredBB, PredTBB, PredFBB, PredCond, true);
800 
801     NumTailDupAdded += TailBB->size() - 1; // subtract one for removed branch
802 
803     // Update the CFG.
804     PredBB->removeSuccessor(PredBB->succ_begin());
805     assert(PredBB->succ_empty() &&
806            "TailDuplicate called on block with multiple successors!");
807     for (MachineBasicBlock *Succ : TailBB->successors())
808       PredBB->addSuccessor(Succ, MBPI->getEdgeProbability(TailBB, Succ));
809 
810     Changed = true;
811     ++NumTailDups;
812   }
813 
814   // If TailBB was duplicated into all its predecessors except for the prior
815   // block, which falls through unconditionally, move the contents of this
816   // block into the prior block.
817   MachineBasicBlock *PrevBB = &*std::prev(TailBB->getIterator());
818   MachineBasicBlock *PriorTBB = nullptr, *PriorFBB = nullptr;
819   SmallVector<MachineOperand, 4> PriorCond;
820   // This has to check PrevBB->succ_size() because EH edges are ignored by
821   // AnalyzeBranch.
822   if (PrevBB->succ_size() == 1 &&
823       // Layout preds are not always CFG preds. Check.
824       *PrevBB->succ_begin() == TailBB &&
825       !TII->analyzeBranch(*PrevBB, PriorTBB, PriorFBB, PriorCond, true) &&
826       PriorCond.empty() && !PriorTBB && TailBB->pred_size() == 1 &&
827       !TailBB->hasAddressTaken()) {
828     DEBUG(dbgs() << "\nMerging into block: " << *PrevBB
829                  << "From MBB: " << *TailBB);
830     if (PreRegAlloc) {
831       DenseMap<unsigned, RegSubRegPair> LocalVRMap;
832       SmallVector<std::pair<unsigned, RegSubRegPair>, 4> CopyInfos;
833       MachineBasicBlock::iterator I = TailBB->begin();
834       // Process PHI instructions first.
835       while (I != TailBB->end() && I->isPHI()) {
836         // Replace the uses of the def of the PHI with the register coming
837         // from PredBB.
838         MachineInstr *MI = &*I++;
839         processPHI(MI, TailBB, PrevBB, LocalVRMap, CopyInfos, UsedByPhi, true);
840       }
841 
842       // Now copy the non-PHI instructions.
843       while (I != TailBB->end()) {
844         // Replace def of virtual registers with new registers, and update
845         // uses with PHI source register or the new registers.
846         MachineInstr *MI = &*I++;
847         assert(!MI->isBundle() && "Not expecting bundles before regalloc!");
848         duplicateInstruction(MI, TailBB, PrevBB, LocalVRMap, UsedByPhi);
849         MI->eraseFromParent();
850       }
851       appendCopies(PrevBB, CopyInfos, Copies);
852     } else {
853       // No PHIs to worry about, just splice the instructions over.
854       PrevBB->splice(PrevBB->end(), TailBB, TailBB->begin(), TailBB->end());
855     }
856     PrevBB->removeSuccessor(PrevBB->succ_begin());
857     assert(PrevBB->succ_empty());
858     PrevBB->transferSuccessors(TailBB);
859     TDBBs.push_back(PrevBB);
860     Changed = true;
861   }
862 
863   // If this is after register allocation, there are no phis to fix.
864   if (!PreRegAlloc)
865     return Changed;
866 
867   // If we made no changes so far, we are safe.
868   if (!Changed)
869     return Changed;
870 
871   // Handle the nasty case in that we duplicated a block that is part of a loop
872   // into some but not all of its predecessors. For example:
873   //    1 -> 2 <-> 3                 |
874   //          \                      |
875   //           \---> rest            |
876   // if we duplicate 2 into 1 but not into 3, we end up with
877   // 12 -> 3 <-> 2 -> rest           |
878   //   \             /               |
879   //    \----->-----/                |
880   // If there was a "var = phi(1, 3)" in 2, it has to be ultimately replaced
881   // with a phi in 3 (which now dominates 2).
882   // What we do here is introduce a copy in 3 of the register defined by the
883   // phi, just like when we are duplicating 2 into 3, but we don't copy any
884   // real instructions or remove the 3 -> 2 edge from the phi in 2.
885   for (MachineBasicBlock *PredBB : Preds) {
886     if (is_contained(TDBBs, PredBB))
887       continue;
888 
889     // EH edges
890     if (PredBB->succ_size() != 1)
891       continue;
892 
893     DenseMap<unsigned, RegSubRegPair> LocalVRMap;
894     SmallVector<std::pair<unsigned, RegSubRegPair>, 4> CopyInfos;
895     MachineBasicBlock::iterator I = TailBB->begin();
896     // Process PHI instructions first.
897     while (I != TailBB->end() && I->isPHI()) {
898       // Replace the uses of the def of the PHI with the register coming
899       // from PredBB.
900       MachineInstr *MI = &*I++;
901       processPHI(MI, TailBB, PredBB, LocalVRMap, CopyInfos, UsedByPhi, false);
902     }
903     appendCopies(PredBB, CopyInfos, Copies);
904   }
905 
906   return Changed;
907 }
908 
909 /// At the end of the block \p MBB generate COPY instructions between registers
910 /// described by \p CopyInfos. Append resulting instructions to \p Copies.
911 void TailDuplicator::appendCopies(MachineBasicBlock *MBB,
912       SmallVectorImpl<std::pair<unsigned,RegSubRegPair>> &CopyInfos,
913       SmallVectorImpl<MachineInstr*> &Copies) {
914   MachineBasicBlock::iterator Loc = MBB->getFirstTerminator();
915   const MCInstrDesc &CopyD = TII->get(TargetOpcode::COPY);
916   for (auto &CI : CopyInfos) {
917     auto C = BuildMI(*MBB, Loc, DebugLoc(), CopyD, CI.first)
918                 .addReg(CI.second.Reg, 0, CI.second.SubReg);
919     Copies.push_back(C);
920   }
921 }
922 
923 /// Remove the specified dead machine basic block from the function, updating
924 /// the CFG.
925 void TailDuplicator::removeDeadBlock(MachineBasicBlock *MBB) {
926   assert(MBB->pred_empty() && "MBB must be dead!");
927   DEBUG(dbgs() << "\nRemoving MBB: " << *MBB);
928 
929   // Remove all successors.
930   while (!MBB->succ_empty())
931     MBB->removeSuccessor(MBB->succ_end() - 1);
932 
933   // Remove the block.
934   MBB->eraseFromParent();
935 }
936 
937 } // End llvm namespace
938