1 //===- SwitchLoweringUtils.cpp - Switch Lowering --------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains switch inst lowering optimizations and utilities for 10 // codegen, so that it can be used for both SelectionDAG and GlobalISel. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/MachineJumpTableInfo.h" 15 #include "llvm/CodeGen/SwitchLoweringUtils.h" 16 17 using namespace llvm; 18 using namespace SwitchCG; 19 20 uint64_t SwitchCG::getJumpTableRange(const CaseClusterVector &Clusters, 21 unsigned First, unsigned Last) { 22 assert(Last >= First); 23 const APInt &LowCase = Clusters[First].Low->getValue(); 24 const APInt &HighCase = Clusters[Last].High->getValue(); 25 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 26 27 // FIXME: A range of consecutive cases has 100% density, but only requires one 28 // comparison to lower. We should discriminate against such consecutive ranges 29 // in jump tables. 30 return (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100) + 1; 31 } 32 33 uint64_t 34 SwitchCG::getJumpTableNumCases(const SmallVectorImpl<unsigned> &TotalCases, 35 unsigned First, unsigned Last) { 36 assert(Last >= First); 37 assert(TotalCases[Last] >= TotalCases[First]); 38 uint64_t NumCases = 39 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 40 return NumCases; 41 } 42 43 void SwitchCG::SwitchLowering::findJumpTables(CaseClusterVector &Clusters, 44 const SwitchInst *SI, 45 MachineBasicBlock *DefaultMBB) { 46 #ifndef NDEBUG 47 // Clusters must be non-empty, sorted, and only contain Range clusters. 48 assert(!Clusters.empty()); 49 for (CaseCluster &C : Clusters) 50 assert(C.Kind == CC_Range); 51 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 52 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 53 #endif 54 55 if (!TLI->areJTsAllowed(SI->getParent()->getParent())) 56 return; 57 58 const unsigned MinJumpTableEntries = TLI->getMinimumJumpTableEntries(); 59 const unsigned SmallNumberOfEntries = MinJumpTableEntries / 2; 60 61 // Bail if not enough cases. 62 const int64_t N = Clusters.size(); 63 if (N < 2 || N < MinJumpTableEntries) 64 return; 65 66 // Accumulated number of cases in each cluster and those prior to it. 67 SmallVector<unsigned, 8> TotalCases(N); 68 for (unsigned i = 0; i < N; ++i) { 69 const APInt &Hi = Clusters[i].High->getValue(); 70 const APInt &Lo = Clusters[i].Low->getValue(); 71 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 72 if (i != 0) 73 TotalCases[i] += TotalCases[i - 1]; 74 } 75 76 uint64_t Range = getJumpTableRange(Clusters,0, N - 1); 77 uint64_t NumCases = getJumpTableNumCases(TotalCases, 0, N - 1); 78 assert(NumCases < UINT64_MAX / 100); 79 assert(Range >= NumCases); 80 81 // Cheap case: the whole range may be suitable for jump table. 82 if (TLI->isSuitableForJumpTable(SI, NumCases, Range)) { 83 CaseCluster JTCluster; 84 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { 85 Clusters[0] = JTCluster; 86 Clusters.resize(1); 87 return; 88 } 89 } 90 91 // The algorithm below is not suitable for -O0. 92 if (TM->getOptLevel() == CodeGenOpt::None) 93 return; 94 95 // Split Clusters into minimum number of dense partitions. The algorithm uses 96 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 97 // for the Case Statement'" (1994), but builds the MinPartitions array in 98 // reverse order to make it easier to reconstruct the partitions in ascending 99 // order. In the choice between two optimal partitionings, it picks the one 100 // which yields more jump tables. 101 102 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 103 SmallVector<unsigned, 8> MinPartitions(N); 104 // LastElement[i] is the last element of the partition starting at i. 105 SmallVector<unsigned, 8> LastElement(N); 106 // PartitionsScore[i] is used to break ties when choosing between two 107 // partitionings resulting in the same number of partitions. 108 SmallVector<unsigned, 8> PartitionsScore(N); 109 // For PartitionsScore, a small number of comparisons is considered as good as 110 // a jump table and a single comparison is considered better than a jump 111 // table. 112 enum PartitionScores : unsigned { 113 NoTable = 0, 114 Table = 1, 115 FewCases = 1, 116 SingleCase = 2 117 }; 118 119 // Base case: There is only one way to partition Clusters[N-1]. 120 MinPartitions[N - 1] = 1; 121 LastElement[N - 1] = N - 1; 122 PartitionsScore[N - 1] = PartitionScores::SingleCase; 123 124 // Note: loop indexes are signed to avoid underflow. 125 for (int64_t i = N - 2; i >= 0; i--) { 126 // Find optimal partitioning of Clusters[i..N-1]. 127 // Baseline: Put Clusters[i] into a partition on its own. 128 MinPartitions[i] = MinPartitions[i + 1] + 1; 129 LastElement[i] = i; 130 PartitionsScore[i] = PartitionsScore[i + 1] + PartitionScores::SingleCase; 131 132 // Search for a solution that results in fewer partitions. 133 for (int64_t j = N - 1; j > i; j--) { 134 // Try building a partition from Clusters[i..j]. 135 Range = getJumpTableRange(Clusters, i, j); 136 NumCases = getJumpTableNumCases(TotalCases, i, j); 137 assert(NumCases < UINT64_MAX / 100); 138 assert(Range >= NumCases); 139 140 if (TLI->isSuitableForJumpTable(SI, NumCases, Range)) { 141 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 142 unsigned Score = j == N - 1 ? 0 : PartitionsScore[j + 1]; 143 int64_t NumEntries = j - i + 1; 144 145 if (NumEntries == 1) 146 Score += PartitionScores::SingleCase; 147 else if (NumEntries <= SmallNumberOfEntries) 148 Score += PartitionScores::FewCases; 149 else if (NumEntries >= MinJumpTableEntries) 150 Score += PartitionScores::Table; 151 152 // If this leads to fewer partitions, or to the same number of 153 // partitions with better score, it is a better partitioning. 154 if (NumPartitions < MinPartitions[i] || 155 (NumPartitions == MinPartitions[i] && Score > PartitionsScore[i])) { 156 MinPartitions[i] = NumPartitions; 157 LastElement[i] = j; 158 PartitionsScore[i] = Score; 159 } 160 } 161 } 162 } 163 164 // Iterate over the partitions, replacing some with jump tables in-place. 165 unsigned DstIndex = 0; 166 for (unsigned First = 0, Last; First < N; First = Last + 1) { 167 Last = LastElement[First]; 168 assert(Last >= First); 169 assert(DstIndex <= First); 170 unsigned NumClusters = Last - First + 1; 171 172 CaseCluster JTCluster; 173 if (NumClusters >= MinJumpTableEntries && 174 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 175 Clusters[DstIndex++] = JTCluster; 176 } else { 177 for (unsigned I = First; I <= Last; ++I) 178 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 179 } 180 } 181 Clusters.resize(DstIndex); 182 } 183 184 bool SwitchCG::SwitchLowering::buildJumpTable(const CaseClusterVector &Clusters, 185 unsigned First, unsigned Last, 186 const SwitchInst *SI, 187 MachineBasicBlock *DefaultMBB, 188 CaseCluster &JTCluster) { 189 assert(First <= Last); 190 191 auto Prob = BranchProbability::getZero(); 192 unsigned NumCmps = 0; 193 std::vector<MachineBasicBlock*> Table; 194 DenseMap<MachineBasicBlock*, BranchProbability> JTProbs; 195 196 // Initialize probabilities in JTProbs. 197 for (unsigned I = First; I <= Last; ++I) 198 JTProbs[Clusters[I].MBB] = BranchProbability::getZero(); 199 200 for (unsigned I = First; I <= Last; ++I) { 201 assert(Clusters[I].Kind == CC_Range); 202 Prob += Clusters[I].Prob; 203 const APInt &Low = Clusters[I].Low->getValue(); 204 const APInt &High = Clusters[I].High->getValue(); 205 NumCmps += (Low == High) ? 1 : 2; 206 if (I != First) { 207 // Fill the gap between this and the previous cluster. 208 const APInt &PreviousHigh = Clusters[I - 1].High->getValue(); 209 assert(PreviousHigh.slt(Low)); 210 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 211 for (uint64_t J = 0; J < Gap; J++) 212 Table.push_back(DefaultMBB); 213 } 214 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 215 for (uint64_t J = 0; J < ClusterSize; ++J) 216 Table.push_back(Clusters[I].MBB); 217 JTProbs[Clusters[I].MBB] += Clusters[I].Prob; 218 } 219 220 unsigned NumDests = JTProbs.size(); 221 if (TLI->isSuitableForBitTests(NumDests, NumCmps, 222 Clusters[First].Low->getValue(), 223 Clusters[Last].High->getValue(), *DL)) { 224 // Clusters[First..Last] should be lowered as bit tests instead. 225 return false; 226 } 227 228 // Create the MBB that will load from and jump through the table. 229 // Note: We create it here, but it's not inserted into the function yet. 230 MachineFunction *CurMF = FuncInfo.MF; 231 MachineBasicBlock *JumpTableMBB = 232 CurMF->CreateMachineBasicBlock(SI->getParent()); 233 234 // Add successors. Note: use table order for determinism. 235 SmallPtrSet<MachineBasicBlock *, 8> Done; 236 for (MachineBasicBlock *Succ : Table) { 237 if (Done.count(Succ)) 238 continue; 239 addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]); 240 Done.insert(Succ); 241 } 242 JumpTableMBB->normalizeSuccProbs(); 243 244 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI->getJumpTableEncoding()) 245 ->createJumpTableIndex(Table); 246 247 // Set up the jump table info. 248 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 249 JumpTableHeader JTH(Clusters[First].Low->getValue(), 250 Clusters[Last].High->getValue(), SI->getCondition(), 251 nullptr, false); 252 JTCases.emplace_back(std::move(JTH), std::move(JT)); 253 254 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 255 JTCases.size() - 1, Prob); 256 return true; 257 } 258 259 void SwitchCG::SwitchLowering::findBitTestClusters(CaseClusterVector &Clusters, 260 const SwitchInst *SI) { 261 // Partition Clusters into as few subsets as possible, where each subset has a 262 // range that fits in a machine word and has <= 3 unique destinations. 263 264 #ifndef NDEBUG 265 // Clusters must be sorted and contain Range or JumpTable clusters. 266 assert(!Clusters.empty()); 267 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 268 for (const CaseCluster &C : Clusters) 269 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 270 for (unsigned i = 1; i < Clusters.size(); ++i) 271 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 272 #endif 273 274 // The algorithm below is not suitable for -O0. 275 if (TM->getOptLevel() == CodeGenOpt::None) 276 return; 277 278 // If target does not have legal shift left, do not emit bit tests at all. 279 EVT PTy = TLI->getPointerTy(*DL); 280 if (!TLI->isOperationLegal(ISD::SHL, PTy)) 281 return; 282 283 int BitWidth = PTy.getSizeInBits(); 284 const int64_t N = Clusters.size(); 285 286 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 287 SmallVector<unsigned, 8> MinPartitions(N); 288 // LastElement[i] is the last element of the partition starting at i. 289 SmallVector<unsigned, 8> LastElement(N); 290 291 // FIXME: This might not be the best algorithm for finding bit test clusters. 292 293 // Base case: There is only one way to partition Clusters[N-1]. 294 MinPartitions[N - 1] = 1; 295 LastElement[N - 1] = N - 1; 296 297 // Note: loop indexes are signed to avoid underflow. 298 for (int64_t i = N - 2; i >= 0; --i) { 299 // Find optimal partitioning of Clusters[i..N-1]. 300 // Baseline: Put Clusters[i] into a partition on its own. 301 MinPartitions[i] = MinPartitions[i + 1] + 1; 302 LastElement[i] = i; 303 304 // Search for a solution that results in fewer partitions. 305 // Note: the search is limited by BitWidth, reducing time complexity. 306 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 307 // Try building a partition from Clusters[i..j]. 308 309 // Check the range. 310 if (!TLI->rangeFitsInWord(Clusters[i].Low->getValue(), 311 Clusters[j].High->getValue(), *DL)) 312 continue; 313 314 // Check nbr of destinations and cluster types. 315 // FIXME: This works, but doesn't seem very efficient. 316 bool RangesOnly = true; 317 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 318 for (int64_t k = i; k <= j; k++) { 319 if (Clusters[k].Kind != CC_Range) { 320 RangesOnly = false; 321 break; 322 } 323 Dests.set(Clusters[k].MBB->getNumber()); 324 } 325 if (!RangesOnly || Dests.count() > 3) 326 break; 327 328 // Check if it's a better partition. 329 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 330 if (NumPartitions < MinPartitions[i]) { 331 // Found a better partition. 332 MinPartitions[i] = NumPartitions; 333 LastElement[i] = j; 334 } 335 } 336 } 337 338 // Iterate over the partitions, replacing with bit-test clusters in-place. 339 unsigned DstIndex = 0; 340 for (unsigned First = 0, Last; First < N; First = Last + 1) { 341 Last = LastElement[First]; 342 assert(First <= Last); 343 assert(DstIndex <= First); 344 345 CaseCluster BitTestCluster; 346 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 347 Clusters[DstIndex++] = BitTestCluster; 348 } else { 349 size_t NumClusters = Last - First + 1; 350 std::memmove(&Clusters[DstIndex], &Clusters[First], 351 sizeof(Clusters[0]) * NumClusters); 352 DstIndex += NumClusters; 353 } 354 } 355 Clusters.resize(DstIndex); 356 } 357 358 bool SwitchCG::SwitchLowering::buildBitTests(CaseClusterVector &Clusters, 359 unsigned First, unsigned Last, 360 const SwitchInst *SI, 361 CaseCluster &BTCluster) { 362 assert(First <= Last); 363 if (First == Last) 364 return false; 365 366 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 367 unsigned NumCmps = 0; 368 for (int64_t I = First; I <= Last; ++I) { 369 assert(Clusters[I].Kind == CC_Range); 370 Dests.set(Clusters[I].MBB->getNumber()); 371 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 372 } 373 unsigned NumDests = Dests.count(); 374 375 APInt Low = Clusters[First].Low->getValue(); 376 APInt High = Clusters[Last].High->getValue(); 377 assert(Low.slt(High)); 378 379 if (!TLI->isSuitableForBitTests(NumDests, NumCmps, Low, High, *DL)) 380 return false; 381 382 APInt LowBound; 383 APInt CmpRange; 384 385 const int BitWidth = TLI->getPointerTy(*DL).getSizeInBits(); 386 assert(TLI->rangeFitsInWord(Low, High, *DL) && 387 "Case range must fit in bit mask!"); 388 389 // Check if the clusters cover a contiguous range such that no value in the 390 // range will jump to the default statement. 391 bool ContiguousRange = true; 392 for (int64_t I = First + 1; I <= Last; ++I) { 393 if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) { 394 ContiguousRange = false; 395 break; 396 } 397 } 398 399 if (Low.isStrictlyPositive() && High.slt(BitWidth)) { 400 // Optimize the case where all the case values fit in a word without having 401 // to subtract minValue. In this case, we can optimize away the subtraction. 402 LowBound = APInt::getNullValue(Low.getBitWidth()); 403 CmpRange = High; 404 ContiguousRange = false; 405 } else { 406 LowBound = Low; 407 CmpRange = High - Low; 408 } 409 410 CaseBitsVector CBV; 411 auto TotalProb = BranchProbability::getZero(); 412 for (unsigned i = First; i <= Last; ++i) { 413 // Find the CaseBits for this destination. 414 unsigned j; 415 for (j = 0; j < CBV.size(); ++j) 416 if (CBV[j].BB == Clusters[i].MBB) 417 break; 418 if (j == CBV.size()) 419 CBV.push_back( 420 CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero())); 421 CaseBits *CB = &CBV[j]; 422 423 // Update Mask, Bits and ExtraProb. 424 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 425 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 426 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); 427 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; 428 CB->Bits += Hi - Lo + 1; 429 CB->ExtraProb += Clusters[i].Prob; 430 TotalProb += Clusters[i].Prob; 431 } 432 433 BitTestInfo BTI; 434 llvm::sort(CBV, [](const CaseBits &a, const CaseBits &b) { 435 // Sort by probability first, number of bits second, bit mask third. 436 if (a.ExtraProb != b.ExtraProb) 437 return a.ExtraProb > b.ExtraProb; 438 if (a.Bits != b.Bits) 439 return a.Bits > b.Bits; 440 return a.Mask < b.Mask; 441 }); 442 443 for (auto &CB : CBV) { 444 MachineBasicBlock *BitTestBB = 445 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 446 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb)); 447 } 448 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 449 SI->getCondition(), -1U, MVT::Other, false, 450 ContiguousRange, nullptr, nullptr, std::move(BTI), 451 TotalProb); 452 453 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 454 BitTestCases.size() - 1, TotalProb); 455 return true; 456 } 457 458 void SwitchCG::sortAndRangeify(CaseClusterVector &Clusters) { 459 #ifndef NDEBUG 460 for (const CaseCluster &CC : Clusters) 461 assert(CC.Low == CC.High && "Input clusters must be single-case"); 462 #endif 463 464 llvm::sort(Clusters, [](const CaseCluster &a, const CaseCluster &b) { 465 return a.Low->getValue().slt(b.Low->getValue()); 466 }); 467 468 // Merge adjacent clusters with the same destination. 469 const unsigned N = Clusters.size(); 470 unsigned DstIndex = 0; 471 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 472 CaseCluster &CC = Clusters[SrcIndex]; 473 const ConstantInt *CaseVal = CC.Low; 474 MachineBasicBlock *Succ = CC.MBB; 475 476 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 477 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 478 // If this case has the same successor and is a neighbour, merge it into 479 // the previous cluster. 480 Clusters[DstIndex - 1].High = CaseVal; 481 Clusters[DstIndex - 1].Prob += CC.Prob; 482 } else { 483 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 484 sizeof(Clusters[SrcIndex])); 485 } 486 } 487 Clusters.resize(DstIndex); 488 } 489