1 //===- SwitchLoweringUtils.cpp - Switch Lowering --------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains switch inst lowering optimizations and utilities for
10 // codegen, so that it can be used for both SelectionDAG and GlobalISel.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/MachineJumpTableInfo.h"
15 #include "llvm/CodeGen/SwitchLoweringUtils.h"
16 
17 using namespace llvm;
18 using namespace SwitchCG;
19 
20 uint64_t SwitchCG::getJumpTableRange(const CaseClusterVector &Clusters,
21                                      unsigned First, unsigned Last) {
22   assert(Last >= First);
23   const APInt &LowCase = Clusters[First].Low->getValue();
24   const APInt &HighCase = Clusters[Last].High->getValue();
25   assert(LowCase.getBitWidth() == HighCase.getBitWidth());
26 
27   // FIXME: A range of consecutive cases has 100% density, but only requires one
28   // comparison to lower. We should discriminate against such consecutive ranges
29   // in jump tables.
30 
31   return (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100) + 1;
32 }
33 
34 uint64_t
35 SwitchCG::getJumpTableNumCases(const SmallVectorImpl<unsigned> &TotalCases,
36                                unsigned First, unsigned Last) {
37   assert(Last >= First);
38   assert(TotalCases[Last] >= TotalCases[First]);
39   uint64_t NumCases =
40       TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]);
41   return NumCases;
42 }
43 
44 void SwitchCG::SwitchLowering::findJumpTables(CaseClusterVector &Clusters,
45                                               const SwitchInst *SI,
46                                               MachineBasicBlock *DefaultMBB) {
47 #ifndef NDEBUG
48   // Clusters must be non-empty, sorted, and only contain Range clusters.
49   assert(!Clusters.empty());
50   for (CaseCluster &C : Clusters)
51     assert(C.Kind == CC_Range);
52   for (unsigned i = 1, e = Clusters.size(); i < e; ++i)
53     assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue()));
54 #endif
55 
56   if (!TLI->areJTsAllowed(SI->getParent()->getParent()))
57     return;
58 
59   const int64_t N = Clusters.size();
60   const unsigned MinJumpTableEntries = TLI->getMinimumJumpTableEntries();
61   const unsigned SmallNumberOfEntries = MinJumpTableEntries / 2;
62 
63   if (N < 2 || N < MinJumpTableEntries)
64     return;
65 
66   // TotalCases[i]: Total nbr of cases in Clusters[0..i].
67   SmallVector<unsigned, 8> TotalCases(N);
68   for (unsigned i = 0; i < N; ++i) {
69     const APInt &Hi = Clusters[i].High->getValue();
70     const APInt &Lo = Clusters[i].Low->getValue();
71     TotalCases[i] = (Hi - Lo).getLimitedValue() + 1;
72     if (i != 0)
73       TotalCases[i] += TotalCases[i - 1];
74   }
75 
76   // Cheap case: the whole range may be suitable for jump table.
77   uint64_t Range = getJumpTableRange(Clusters,0, N - 1);
78   uint64_t NumCases = getJumpTableNumCases(TotalCases, 0, N - 1);
79   assert(NumCases < UINT64_MAX / 100);
80   assert(Range >= NumCases);
81   if (TLI->isSuitableForJumpTable(SI, NumCases, Range)) {
82     CaseCluster JTCluster;
83     if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) {
84       Clusters[0] = JTCluster;
85       Clusters.resize(1);
86       return;
87     }
88   }
89 
90   // The algorithm below is not suitable for -O0.
91   if (TM->getOptLevel() == CodeGenOpt::None)
92     return;
93 
94   // Split Clusters into minimum number of dense partitions. The algorithm uses
95   // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code
96   // for the Case Statement'" (1994), but builds the MinPartitions array in
97   // reverse order to make it easier to reconstruct the partitions in ascending
98   // order. In the choice between two optimal partitionings, it picks the one
99   // which yields more jump tables.
100 
101   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
102   SmallVector<unsigned, 8> MinPartitions(N);
103   // LastElement[i] is the last element of the partition starting at i.
104   SmallVector<unsigned, 8> LastElement(N);
105   // PartitionsScore[i] is used to break ties when choosing between two
106   // partitionings resulting in the same number of partitions.
107   SmallVector<unsigned, 8> PartitionsScore(N);
108   // For PartitionsScore, a small number of comparisons is considered as good as
109   // a jump table and a single comparison is considered better than a jump
110   // table.
111   enum PartitionScores : unsigned {
112     NoTable = 0,
113     Table = 1,
114     FewCases = 1,
115     SingleCase = 2
116   };
117 
118   // Base case: There is only one way to partition Clusters[N-1].
119   MinPartitions[N - 1] = 1;
120   LastElement[N - 1] = N - 1;
121   PartitionsScore[N - 1] = PartitionScores::SingleCase;
122 
123   // Note: loop indexes are signed to avoid underflow.
124   for (int64_t i = N - 2; i >= 0; i--) {
125     // Find optimal partitioning of Clusters[i..N-1].
126     // Baseline: Put Clusters[i] into a partition on its own.
127     MinPartitions[i] = MinPartitions[i + 1] + 1;
128     LastElement[i] = i;
129     PartitionsScore[i] = PartitionsScore[i + 1] + PartitionScores::SingleCase;
130 
131     // Search for a solution that results in fewer partitions.
132     for (int64_t j = N - 1; j > i; j--) {
133       // Try building a partition from Clusters[i..j].
134       uint64_t Range = getJumpTableRange(Clusters, i, j);
135       uint64_t NumCases = getJumpTableNumCases(TotalCases, i, j);
136       assert(NumCases < UINT64_MAX / 100);
137       assert(Range >= NumCases);
138       if (TLI->isSuitableForJumpTable(SI, NumCases, Range)) {
139         unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
140         unsigned Score = j == N - 1 ? 0 : PartitionsScore[j + 1];
141         int64_t NumEntries = j - i + 1;
142 
143         if (NumEntries == 1)
144           Score += PartitionScores::SingleCase;
145         else if (NumEntries <= SmallNumberOfEntries)
146           Score += PartitionScores::FewCases;
147         else if (NumEntries >= MinJumpTableEntries)
148           Score += PartitionScores::Table;
149 
150         // If this leads to fewer partitions, or to the same number of
151         // partitions with better score, it is a better partitioning.
152         if (NumPartitions < MinPartitions[i] ||
153             (NumPartitions == MinPartitions[i] && Score > PartitionsScore[i])) {
154           MinPartitions[i] = NumPartitions;
155           LastElement[i] = j;
156           PartitionsScore[i] = Score;
157         }
158       }
159     }
160   }
161 
162   // Iterate over the partitions, replacing some with jump tables in-place.
163   unsigned DstIndex = 0;
164   for (unsigned First = 0, Last; First < N; First = Last + 1) {
165     Last = LastElement[First];
166     assert(Last >= First);
167     assert(DstIndex <= First);
168     unsigned NumClusters = Last - First + 1;
169 
170     CaseCluster JTCluster;
171     if (NumClusters >= MinJumpTableEntries &&
172         buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) {
173       Clusters[DstIndex++] = JTCluster;
174     } else {
175       for (unsigned I = First; I <= Last; ++I)
176         std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I]));
177     }
178   }
179   Clusters.resize(DstIndex);
180 }
181 
182 bool SwitchCG::SwitchLowering::buildJumpTable(const CaseClusterVector &Clusters,
183                                               unsigned First, unsigned Last,
184                                               const SwitchInst *SI,
185                                               MachineBasicBlock *DefaultMBB,
186                                               CaseCluster &JTCluster) {
187   assert(First <= Last);
188 
189   auto Prob = BranchProbability::getZero();
190   unsigned NumCmps = 0;
191   std::vector<MachineBasicBlock*> Table;
192   DenseMap<MachineBasicBlock*, BranchProbability> JTProbs;
193 
194   // Initialize probabilities in JTProbs.
195   for (unsigned I = First; I <= Last; ++I)
196     JTProbs[Clusters[I].MBB] = BranchProbability::getZero();
197 
198   for (unsigned I = First; I <= Last; ++I) {
199     assert(Clusters[I].Kind == CC_Range);
200     Prob += Clusters[I].Prob;
201     const APInt &Low = Clusters[I].Low->getValue();
202     const APInt &High = Clusters[I].High->getValue();
203     NumCmps += (Low == High) ? 1 : 2;
204     if (I != First) {
205       // Fill the gap between this and the previous cluster.
206       const APInt &PreviousHigh = Clusters[I - 1].High->getValue();
207       assert(PreviousHigh.slt(Low));
208       uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1;
209       for (uint64_t J = 0; J < Gap; J++)
210         Table.push_back(DefaultMBB);
211     }
212     uint64_t ClusterSize = (High - Low).getLimitedValue() + 1;
213     for (uint64_t J = 0; J < ClusterSize; ++J)
214       Table.push_back(Clusters[I].MBB);
215     JTProbs[Clusters[I].MBB] += Clusters[I].Prob;
216   }
217 
218   unsigned NumDests = JTProbs.size();
219   if (TLI->isSuitableForBitTests(NumDests, NumCmps,
220                                  Clusters[First].Low->getValue(),
221                                  Clusters[Last].High->getValue(), *DL)) {
222     // Clusters[First..Last] should be lowered as bit tests instead.
223     return false;
224   }
225 
226   // Create the MBB that will load from and jump through the table.
227   // Note: We create it here, but it's not inserted into the function yet.
228   MachineFunction *CurMF = FuncInfo.MF;
229   MachineBasicBlock *JumpTableMBB =
230       CurMF->CreateMachineBasicBlock(SI->getParent());
231 
232   // Add successors. Note: use table order for determinism.
233   SmallPtrSet<MachineBasicBlock *, 8> Done;
234   for (MachineBasicBlock *Succ : Table) {
235     if (Done.count(Succ))
236       continue;
237     addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]);
238     Done.insert(Succ);
239   }
240   JumpTableMBB->normalizeSuccProbs();
241 
242   unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI->getJumpTableEncoding())
243                      ->createJumpTableIndex(Table);
244 
245   // Set up the jump table info.
246   JumpTable JT(-1U, JTI, JumpTableMBB, nullptr);
247   JumpTableHeader JTH(Clusters[First].Low->getValue(),
248                       Clusters[Last].High->getValue(), SI->getCondition(),
249                       nullptr, false);
250   JTCases.emplace_back(std::move(JTH), std::move(JT));
251 
252   JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High,
253                                      JTCases.size() - 1, Prob);
254   return true;
255 }
256 
257 void SwitchCG::SwitchLowering::findBitTestClusters(CaseClusterVector &Clusters,
258                                                    const SwitchInst *SI) {
259   // Partition Clusters into as few subsets as possible, where each subset has a
260   // range that fits in a machine word and has <= 3 unique destinations.
261 
262 #ifndef NDEBUG
263   // Clusters must be sorted and contain Range or JumpTable clusters.
264   assert(!Clusters.empty());
265   assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable);
266   for (const CaseCluster &C : Clusters)
267     assert(C.Kind == CC_Range || C.Kind == CC_JumpTable);
268   for (unsigned i = 1; i < Clusters.size(); ++i)
269     assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue()));
270 #endif
271 
272   // The algorithm below is not suitable for -O0.
273   if (TM->getOptLevel() == CodeGenOpt::None)
274     return;
275 
276   // If target does not have legal shift left, do not emit bit tests at all.
277   EVT PTy = TLI->getPointerTy(*DL);
278   if (!TLI->isOperationLegal(ISD::SHL, PTy))
279     return;
280 
281   int BitWidth = PTy.getSizeInBits();
282   const int64_t N = Clusters.size();
283 
284   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
285   SmallVector<unsigned, 8> MinPartitions(N);
286   // LastElement[i] is the last element of the partition starting at i.
287   SmallVector<unsigned, 8> LastElement(N);
288 
289   // FIXME: This might not be the best algorithm for finding bit test clusters.
290 
291   // Base case: There is only one way to partition Clusters[N-1].
292   MinPartitions[N - 1] = 1;
293   LastElement[N - 1] = N - 1;
294 
295   // Note: loop indexes are signed to avoid underflow.
296   for (int64_t i = N - 2; i >= 0; --i) {
297     // Find optimal partitioning of Clusters[i..N-1].
298     // Baseline: Put Clusters[i] into a partition on its own.
299     MinPartitions[i] = MinPartitions[i + 1] + 1;
300     LastElement[i] = i;
301 
302     // Search for a solution that results in fewer partitions.
303     // Note: the search is limited by BitWidth, reducing time complexity.
304     for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) {
305       // Try building a partition from Clusters[i..j].
306 
307       // Check the range.
308       if (!TLI->rangeFitsInWord(Clusters[i].Low->getValue(),
309                                 Clusters[j].High->getValue(), *DL))
310         continue;
311 
312       // Check nbr of destinations and cluster types.
313       // FIXME: This works, but doesn't seem very efficient.
314       bool RangesOnly = true;
315       BitVector Dests(FuncInfo.MF->getNumBlockIDs());
316       for (int64_t k = i; k <= j; k++) {
317         if (Clusters[k].Kind != CC_Range) {
318           RangesOnly = false;
319           break;
320         }
321         Dests.set(Clusters[k].MBB->getNumber());
322       }
323       if (!RangesOnly || Dests.count() > 3)
324         break;
325 
326       // Check if it's a better partition.
327       unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
328       if (NumPartitions < MinPartitions[i]) {
329         // Found a better partition.
330         MinPartitions[i] = NumPartitions;
331         LastElement[i] = j;
332       }
333     }
334   }
335 
336   // Iterate over the partitions, replacing with bit-test clusters in-place.
337   unsigned DstIndex = 0;
338   for (unsigned First = 0, Last; First < N; First = Last + 1) {
339     Last = LastElement[First];
340     assert(First <= Last);
341     assert(DstIndex <= First);
342 
343     CaseCluster BitTestCluster;
344     if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) {
345       Clusters[DstIndex++] = BitTestCluster;
346     } else {
347       size_t NumClusters = Last - First + 1;
348       std::memmove(&Clusters[DstIndex], &Clusters[First],
349                    sizeof(Clusters[0]) * NumClusters);
350       DstIndex += NumClusters;
351     }
352   }
353   Clusters.resize(DstIndex);
354 }
355 
356 bool SwitchCG::SwitchLowering::buildBitTests(CaseClusterVector &Clusters,
357                                              unsigned First, unsigned Last,
358                                              const SwitchInst *SI,
359                                              CaseCluster &BTCluster) {
360   assert(First <= Last);
361   if (First == Last)
362     return false;
363 
364   BitVector Dests(FuncInfo.MF->getNumBlockIDs());
365   unsigned NumCmps = 0;
366   for (int64_t I = First; I <= Last; ++I) {
367     assert(Clusters[I].Kind == CC_Range);
368     Dests.set(Clusters[I].MBB->getNumber());
369     NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2;
370   }
371   unsigned NumDests = Dests.count();
372 
373   APInt Low = Clusters[First].Low->getValue();
374   APInt High = Clusters[Last].High->getValue();
375   assert(Low.slt(High));
376 
377   if (!TLI->isSuitableForBitTests(NumDests, NumCmps, Low, High, *DL))
378     return false;
379 
380   APInt LowBound;
381   APInt CmpRange;
382 
383   const int BitWidth = TLI->getPointerTy(*DL).getSizeInBits();
384   assert(TLI->rangeFitsInWord(Low, High, *DL) &&
385          "Case range must fit in bit mask!");
386 
387   // Check if the clusters cover a contiguous range such that no value in the
388   // range will jump to the default statement.
389   bool ContiguousRange = true;
390   for (int64_t I = First + 1; I <= Last; ++I) {
391     if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) {
392       ContiguousRange = false;
393       break;
394     }
395   }
396 
397   if (Low.isStrictlyPositive() && High.slt(BitWidth)) {
398     // Optimize the case where all the case values fit in a word without having
399     // to subtract minValue. In this case, we can optimize away the subtraction.
400     LowBound = APInt::getNullValue(Low.getBitWidth());
401     CmpRange = High;
402     ContiguousRange = false;
403   } else {
404     LowBound = Low;
405     CmpRange = High - Low;
406   }
407 
408   CaseBitsVector CBV;
409   auto TotalProb = BranchProbability::getZero();
410   for (unsigned i = First; i <= Last; ++i) {
411     // Find the CaseBits for this destination.
412     unsigned j;
413     for (j = 0; j < CBV.size(); ++j)
414       if (CBV[j].BB == Clusters[i].MBB)
415         break;
416     if (j == CBV.size())
417       CBV.push_back(
418           CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero()));
419     CaseBits *CB = &CBV[j];
420 
421     // Update Mask, Bits and ExtraProb.
422     uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue();
423     uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue();
424     assert(Hi >= Lo && Hi < 64 && "Invalid bit case!");
425     CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo;
426     CB->Bits += Hi - Lo + 1;
427     CB->ExtraProb += Clusters[i].Prob;
428     TotalProb += Clusters[i].Prob;
429   }
430 
431   BitTestInfo BTI;
432   llvm::sort(CBV, [](const CaseBits &a, const CaseBits &b) {
433     // Sort by probability first, number of bits second, bit mask third.
434     if (a.ExtraProb != b.ExtraProb)
435       return a.ExtraProb > b.ExtraProb;
436     if (a.Bits != b.Bits)
437       return a.Bits > b.Bits;
438     return a.Mask < b.Mask;
439   });
440 
441   for (auto &CB : CBV) {
442     MachineBasicBlock *BitTestBB =
443         FuncInfo.MF->CreateMachineBasicBlock(SI->getParent());
444     BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb));
445   }
446   BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange),
447                             SI->getCondition(), -1U, MVT::Other, false,
448                             ContiguousRange, nullptr, nullptr, std::move(BTI),
449                             TotalProb);
450 
451   BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High,
452                                     BitTestCases.size() - 1, TotalProb);
453   return true;
454 }
455 
456 void SwitchCG::sortAndRangeify(CaseClusterVector &Clusters) {
457 #ifndef NDEBUG
458   for (const CaseCluster &CC : Clusters)
459     assert(CC.Low == CC.High && "Input clusters must be single-case");
460 #endif
461 
462   llvm::sort(Clusters, [](const CaseCluster &a, const CaseCluster &b) {
463     return a.Low->getValue().slt(b.Low->getValue());
464   });
465 
466   // Merge adjacent clusters with the same destination.
467   const unsigned N = Clusters.size();
468   unsigned DstIndex = 0;
469   for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) {
470     CaseCluster &CC = Clusters[SrcIndex];
471     const ConstantInt *CaseVal = CC.Low;
472     MachineBasicBlock *Succ = CC.MBB;
473 
474     if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ &&
475         (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) {
476       // If this case has the same successor and is a neighbour, merge it into
477       // the previous cluster.
478       Clusters[DstIndex - 1].High = CaseVal;
479       Clusters[DstIndex - 1].Prob += CC.Prob;
480     } else {
481       std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex],
482                    sizeof(Clusters[SrcIndex]));
483     }
484   }
485   Clusters.resize(DstIndex);
486 }
487