1 //===- StackProtector.cpp - Stack Protector Insertion ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass inserts stack protectors into functions which need them. A variable 11 // with a random value in it is stored onto the stack before the local variables 12 // are allocated. Upon exiting the block, the stored value is checked. If it's 13 // changed, then there was some sort of violation and the program aborts. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/CodeGen/StackProtector.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/BranchProbabilityInfo.h" 21 #include "llvm/Analysis/EHPersonalities.h" 22 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 23 #include "llvm/CodeGen/Passes.h" 24 #include "llvm/CodeGen/TargetLowering.h" 25 #include "llvm/CodeGen/TargetPassConfig.h" 26 #include "llvm/CodeGen/TargetSubtargetInfo.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/BasicBlock.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/DebugInfo.h" 32 #include "llvm/IR/DebugLoc.h" 33 #include "llvm/IR/DerivedTypes.h" 34 #include "llvm/IR/Dominators.h" 35 #include "llvm/IR/Function.h" 36 #include "llvm/IR/IRBuilder.h" 37 #include "llvm/IR/Instruction.h" 38 #include "llvm/IR/Instructions.h" 39 #include "llvm/IR/IntrinsicInst.h" 40 #include "llvm/IR/Intrinsics.h" 41 #include "llvm/IR/MDBuilder.h" 42 #include "llvm/IR/Module.h" 43 #include "llvm/IR/Type.h" 44 #include "llvm/IR/User.h" 45 #include "llvm/Pass.h" 46 #include "llvm/Support/Casting.h" 47 #include "llvm/Support/CommandLine.h" 48 #include "llvm/Target/TargetMachine.h" 49 #include "llvm/Target/TargetOptions.h" 50 #include <utility> 51 52 using namespace llvm; 53 54 #define DEBUG_TYPE "stack-protector" 55 56 STATISTIC(NumFunProtected, "Number of functions protected"); 57 STATISTIC(NumAddrTaken, "Number of local variables that have their address" 58 " taken."); 59 60 static cl::opt<bool> EnableSelectionDAGSP("enable-selectiondag-sp", 61 cl::init(true), cl::Hidden); 62 63 char StackProtector::ID = 0; 64 65 INITIALIZE_PASS_BEGIN(StackProtector, DEBUG_TYPE, 66 "Insert stack protectors", false, true) 67 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 68 INITIALIZE_PASS_END(StackProtector, DEBUG_TYPE, 69 "Insert stack protectors", false, true) 70 71 FunctionPass *llvm::createStackProtectorPass() { return new StackProtector(); } 72 73 StackProtector::SSPLayoutKind 74 StackProtector::getSSPLayout(const AllocaInst *AI) const { 75 return AI ? Layout.lookup(AI) : SSPLK_None; 76 } 77 78 void StackProtector::adjustForColoring(const AllocaInst *From, 79 const AllocaInst *To) { 80 // When coloring replaces one alloca with another, transfer the SSPLayoutKind 81 // tag from the remapped to the target alloca. The remapped alloca should 82 // have a size smaller than or equal to the replacement alloca. 83 SSPLayoutMap::iterator I = Layout.find(From); 84 if (I != Layout.end()) { 85 SSPLayoutKind Kind = I->second; 86 Layout.erase(I); 87 88 // Transfer the tag, but make sure that SSPLK_AddrOf does not overwrite 89 // SSPLK_SmallArray or SSPLK_LargeArray, and make sure that 90 // SSPLK_SmallArray does not overwrite SSPLK_LargeArray. 91 I = Layout.find(To); 92 if (I == Layout.end()) 93 Layout.insert(std::make_pair(To, Kind)); 94 else if (I->second != SSPLK_LargeArray && Kind != SSPLK_AddrOf) 95 I->second = Kind; 96 } 97 } 98 99 void StackProtector::getAnalysisUsage(AnalysisUsage &AU) const { 100 AU.addRequired<TargetPassConfig>(); 101 AU.addPreserved<DominatorTreeWrapperPass>(); 102 } 103 104 bool StackProtector::runOnFunction(Function &Fn) { 105 F = &Fn; 106 M = F->getParent(); 107 DominatorTreeWrapperPass *DTWP = 108 getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 109 DT = DTWP ? &DTWP->getDomTree() : nullptr; 110 TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>(); 111 Trip = TM->getTargetTriple(); 112 TLI = TM->getSubtargetImpl(Fn)->getTargetLowering(); 113 HasPrologue = false; 114 HasIRCheck = false; 115 116 Attribute Attr = Fn.getFnAttribute("stack-protector-buffer-size"); 117 if (Attr.isStringAttribute() && 118 Attr.getValueAsString().getAsInteger(10, SSPBufferSize)) 119 return false; // Invalid integer string 120 121 if (!RequiresStackProtector()) 122 return false; 123 124 // TODO(etienneb): Functions with funclets are not correctly supported now. 125 // Do nothing if this is funclet-based personality. 126 if (Fn.hasPersonalityFn()) { 127 EHPersonality Personality = classifyEHPersonality(Fn.getPersonalityFn()); 128 if (isFuncletEHPersonality(Personality)) 129 return false; 130 } 131 132 ++NumFunProtected; 133 return InsertStackProtectors(); 134 } 135 136 /// \param [out] IsLarge is set to true if a protectable array is found and 137 /// it is "large" ( >= ssp-buffer-size). In the case of a structure with 138 /// multiple arrays, this gets set if any of them is large. 139 bool StackProtector::ContainsProtectableArray(Type *Ty, bool &IsLarge, 140 bool Strong, 141 bool InStruct) const { 142 if (!Ty) 143 return false; 144 if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) { 145 if (!AT->getElementType()->isIntegerTy(8)) { 146 // If we're on a non-Darwin platform or we're inside of a structure, don't 147 // add stack protectors unless the array is a character array. 148 // However, in strong mode any array, regardless of type and size, 149 // triggers a protector. 150 if (!Strong && (InStruct || !Trip.isOSDarwin())) 151 return false; 152 } 153 154 // If an array has more than SSPBufferSize bytes of allocated space, then we 155 // emit stack protectors. 156 if (SSPBufferSize <= M->getDataLayout().getTypeAllocSize(AT)) { 157 IsLarge = true; 158 return true; 159 } 160 161 if (Strong) 162 // Require a protector for all arrays in strong mode 163 return true; 164 } 165 166 const StructType *ST = dyn_cast<StructType>(Ty); 167 if (!ST) 168 return false; 169 170 bool NeedsProtector = false; 171 for (StructType::element_iterator I = ST->element_begin(), 172 E = ST->element_end(); 173 I != E; ++I) 174 if (ContainsProtectableArray(*I, IsLarge, Strong, true)) { 175 // If the element is a protectable array and is large (>= SSPBufferSize) 176 // then we are done. If the protectable array is not large, then 177 // keep looking in case a subsequent element is a large array. 178 if (IsLarge) 179 return true; 180 NeedsProtector = true; 181 } 182 183 return NeedsProtector; 184 } 185 186 static bool isLifetimeInst(const Instruction *I) { 187 if (const auto Intrinsic = dyn_cast<IntrinsicInst>(I)) { 188 const auto Id = Intrinsic->getIntrinsicID(); 189 return Id == Intrinsic::lifetime_start || Id == Intrinsic::lifetime_end; 190 } 191 return false; 192 } 193 194 bool StackProtector::HasAddressTaken(const Instruction *AI) { 195 for (const User *U : AI->users()) { 196 if (const StoreInst *SI = dyn_cast<StoreInst>(U)) { 197 if (AI == SI->getValueOperand()) 198 return true; 199 } else if (const PtrToIntInst *SI = dyn_cast<PtrToIntInst>(U)) { 200 if (AI == SI->getOperand(0)) 201 return true; 202 } else if (const CallInst *CI = dyn_cast<CallInst>(U)) { 203 // Ignore intrinsics that are not calls. TODO: Use isLoweredToCall(). 204 if (!isa<DbgInfoIntrinsic>(CI) && !isLifetimeInst(CI)) 205 return true; 206 } else if (isa<InvokeInst>(U)) { 207 return true; 208 } else if (const SelectInst *SI = dyn_cast<SelectInst>(U)) { 209 if (HasAddressTaken(SI)) 210 return true; 211 } else if (const PHINode *PN = dyn_cast<PHINode>(U)) { 212 // Keep track of what PHI nodes we have already visited to ensure 213 // they are only visited once. 214 if (VisitedPHIs.insert(PN).second) 215 if (HasAddressTaken(PN)) 216 return true; 217 } else if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) { 218 if (HasAddressTaken(GEP)) 219 return true; 220 } else if (const BitCastInst *BI = dyn_cast<BitCastInst>(U)) { 221 if (HasAddressTaken(BI)) 222 return true; 223 } 224 } 225 return false; 226 } 227 228 /// Check whether or not this function needs a stack protector based 229 /// upon the stack protector level. 230 /// 231 /// We use two heuristics: a standard (ssp) and strong (sspstrong). 232 /// The standard heuristic which will add a guard variable to functions that 233 /// call alloca with a either a variable size or a size >= SSPBufferSize, 234 /// functions with character buffers larger than SSPBufferSize, and functions 235 /// with aggregates containing character buffers larger than SSPBufferSize. The 236 /// strong heuristic will add a guard variables to functions that call alloca 237 /// regardless of size, functions with any buffer regardless of type and size, 238 /// functions with aggregates that contain any buffer regardless of type and 239 /// size, and functions that contain stack-based variables that have had their 240 /// address taken. 241 bool StackProtector::RequiresStackProtector() { 242 bool Strong = false; 243 bool NeedsProtector = false; 244 for (const BasicBlock &BB : *F) 245 for (const Instruction &I : BB) 246 if (const CallInst *CI = dyn_cast<CallInst>(&I)) 247 if (CI->getCalledFunction() == 248 Intrinsic::getDeclaration(F->getParent(), 249 Intrinsic::stackprotector)) 250 HasPrologue = true; 251 252 if (F->hasFnAttribute(Attribute::SafeStack)) 253 return false; 254 255 // We are constructing the OptimizationRemarkEmitter on the fly rather than 256 // using the analysis pass to avoid building DominatorTree and LoopInfo which 257 // are not available this late in the IR pipeline. 258 OptimizationRemarkEmitter ORE(F); 259 260 if (F->hasFnAttribute(Attribute::StackProtectReq)) { 261 ORE.emit([&]() { 262 return OptimizationRemark(DEBUG_TYPE, "StackProtectorRequested", F) 263 << "Stack protection applied to function " 264 << ore::NV("Function", F) 265 << " due to a function attribute or command-line switch"; 266 }); 267 NeedsProtector = true; 268 Strong = true; // Use the same heuristic as strong to determine SSPLayout 269 } else if (F->hasFnAttribute(Attribute::StackProtectStrong)) 270 Strong = true; 271 else if (HasPrologue) 272 NeedsProtector = true; 273 else if (!F->hasFnAttribute(Attribute::StackProtect)) 274 return false; 275 276 for (const BasicBlock &BB : *F) { 277 for (const Instruction &I : BB) { 278 if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) { 279 if (AI->isArrayAllocation()) { 280 auto RemarkBuilder = [&]() { 281 return OptimizationRemark(DEBUG_TYPE, "StackProtectorAllocaOrArray", 282 &I) 283 << "Stack protection applied to function " 284 << ore::NV("Function", F) 285 << " due to a call to alloca or use of a variable length " 286 "array"; 287 }; 288 if (const auto *CI = dyn_cast<ConstantInt>(AI->getArraySize())) { 289 if (CI->getLimitedValue(SSPBufferSize) >= SSPBufferSize) { 290 // A call to alloca with size >= SSPBufferSize requires 291 // stack protectors. 292 Layout.insert(std::make_pair(AI, SSPLK_LargeArray)); 293 ORE.emit(RemarkBuilder); 294 NeedsProtector = true; 295 } else if (Strong) { 296 // Require protectors for all alloca calls in strong mode. 297 Layout.insert(std::make_pair(AI, SSPLK_SmallArray)); 298 ORE.emit(RemarkBuilder); 299 NeedsProtector = true; 300 } 301 } else { 302 // A call to alloca with a variable size requires protectors. 303 Layout.insert(std::make_pair(AI, SSPLK_LargeArray)); 304 ORE.emit(RemarkBuilder); 305 NeedsProtector = true; 306 } 307 continue; 308 } 309 310 bool IsLarge = false; 311 if (ContainsProtectableArray(AI->getAllocatedType(), IsLarge, Strong)) { 312 Layout.insert(std::make_pair(AI, IsLarge ? SSPLK_LargeArray 313 : SSPLK_SmallArray)); 314 ORE.emit([&]() { 315 return OptimizationRemark(DEBUG_TYPE, "StackProtectorBuffer", &I) 316 << "Stack protection applied to function " 317 << ore::NV("Function", F) 318 << " due to a stack allocated buffer or struct containing a " 319 "buffer"; 320 }); 321 NeedsProtector = true; 322 continue; 323 } 324 325 if (Strong && HasAddressTaken(AI)) { 326 ++NumAddrTaken; 327 Layout.insert(std::make_pair(AI, SSPLK_AddrOf)); 328 ORE.emit([&]() { 329 return OptimizationRemark(DEBUG_TYPE, "StackProtectorAddressTaken", 330 &I) 331 << "Stack protection applied to function " 332 << ore::NV("Function", F) 333 << " due to the address of a local variable being taken"; 334 }); 335 NeedsProtector = true; 336 } 337 } 338 } 339 } 340 341 return NeedsProtector; 342 } 343 344 /// Create a stack guard loading and populate whether SelectionDAG SSP is 345 /// supported. 346 static Value *getStackGuard(const TargetLoweringBase *TLI, Module *M, 347 IRBuilder<> &B, 348 bool *SupportsSelectionDAGSP = nullptr) { 349 if (Value *Guard = TLI->getIRStackGuard(B)) 350 return B.CreateLoad(Guard, true, "StackGuard"); 351 352 // Use SelectionDAG SSP handling, since there isn't an IR guard. 353 // 354 // This is more or less weird, since we optionally output whether we 355 // should perform a SelectionDAG SP here. The reason is that it's strictly 356 // defined as !TLI->getIRStackGuard(B), where getIRStackGuard is also 357 // mutating. There is no way to get this bit without mutating the IR, so 358 // getting this bit has to happen in this right time. 359 // 360 // We could have define a new function TLI::supportsSelectionDAGSP(), but that 361 // will put more burden on the backends' overriding work, especially when it 362 // actually conveys the same information getIRStackGuard() already gives. 363 if (SupportsSelectionDAGSP) 364 *SupportsSelectionDAGSP = true; 365 TLI->insertSSPDeclarations(*M); 366 return B.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackguard)); 367 } 368 369 /// Insert code into the entry block that stores the stack guard 370 /// variable onto the stack: 371 /// 372 /// entry: 373 /// StackGuardSlot = alloca i8* 374 /// StackGuard = <stack guard> 375 /// call void @llvm.stackprotector(StackGuard, StackGuardSlot) 376 /// 377 /// Returns true if the platform/triple supports the stackprotectorcreate pseudo 378 /// node. 379 static bool CreatePrologue(Function *F, Module *M, ReturnInst *RI, 380 const TargetLoweringBase *TLI, AllocaInst *&AI) { 381 bool SupportsSelectionDAGSP = false; 382 IRBuilder<> B(&F->getEntryBlock().front()); 383 PointerType *PtrTy = Type::getInt8PtrTy(RI->getContext()); 384 AI = B.CreateAlloca(PtrTy, nullptr, "StackGuardSlot"); 385 386 Value *GuardSlot = getStackGuard(TLI, M, B, &SupportsSelectionDAGSP); 387 B.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackprotector), 388 {GuardSlot, AI}); 389 return SupportsSelectionDAGSP; 390 } 391 392 /// InsertStackProtectors - Insert code into the prologue and epilogue of the 393 /// function. 394 /// 395 /// - The prologue code loads and stores the stack guard onto the stack. 396 /// - The epilogue checks the value stored in the prologue against the original 397 /// value. It calls __stack_chk_fail if they differ. 398 bool StackProtector::InsertStackProtectors() { 399 // If the target wants to XOR the frame pointer into the guard value, it's 400 // impossible to emit the check in IR, so the target *must* support stack 401 // protection in SDAG. 402 bool SupportsSelectionDAGSP = 403 TLI->useStackGuardXorFP() || 404 (EnableSelectionDAGSP && !TM->Options.EnableFastISel); 405 AllocaInst *AI = nullptr; // Place on stack that stores the stack guard. 406 407 for (Function::iterator I = F->begin(), E = F->end(); I != E;) { 408 BasicBlock *BB = &*I++; 409 ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()); 410 if (!RI) 411 continue; 412 413 // Generate prologue instrumentation if not already generated. 414 if (!HasPrologue) { 415 HasPrologue = true; 416 SupportsSelectionDAGSP &= CreatePrologue(F, M, RI, TLI, AI); 417 } 418 419 // SelectionDAG based code generation. Nothing else needs to be done here. 420 // The epilogue instrumentation is postponed to SelectionDAG. 421 if (SupportsSelectionDAGSP) 422 break; 423 424 // Set HasIRCheck to true, so that SelectionDAG will not generate its own 425 // version. SelectionDAG called 'shouldEmitSDCheck' to check whether 426 // instrumentation has already been generated. 427 HasIRCheck = true; 428 429 // Generate epilogue instrumentation. The epilogue intrumentation can be 430 // function-based or inlined depending on which mechanism the target is 431 // providing. 432 if (Value* GuardCheck = TLI->getSSPStackGuardCheck(*M)) { 433 // Generate the function-based epilogue instrumentation. 434 // The target provides a guard check function, generate a call to it. 435 IRBuilder<> B(RI); 436 LoadInst *Guard = B.CreateLoad(AI, true, "Guard"); 437 CallInst *Call = B.CreateCall(GuardCheck, {Guard}); 438 llvm::Function *Function = cast<llvm::Function>(GuardCheck); 439 Call->setAttributes(Function->getAttributes()); 440 Call->setCallingConv(Function->getCallingConv()); 441 } else { 442 // Generate the epilogue with inline instrumentation. 443 // If we do not support SelectionDAG based tail calls, generate IR level 444 // tail calls. 445 // 446 // For each block with a return instruction, convert this: 447 // 448 // return: 449 // ... 450 // ret ... 451 // 452 // into this: 453 // 454 // return: 455 // ... 456 // %1 = <stack guard> 457 // %2 = load StackGuardSlot 458 // %3 = cmp i1 %1, %2 459 // br i1 %3, label %SP_return, label %CallStackCheckFailBlk 460 // 461 // SP_return: 462 // ret ... 463 // 464 // CallStackCheckFailBlk: 465 // call void @__stack_chk_fail() 466 // unreachable 467 468 // Create the FailBB. We duplicate the BB every time since the MI tail 469 // merge pass will merge together all of the various BB into one including 470 // fail BB generated by the stack protector pseudo instruction. 471 BasicBlock *FailBB = CreateFailBB(); 472 473 // Split the basic block before the return instruction. 474 BasicBlock *NewBB = BB->splitBasicBlock(RI->getIterator(), "SP_return"); 475 476 // Update the dominator tree if we need to. 477 if (DT && DT->isReachableFromEntry(BB)) { 478 DT->addNewBlock(NewBB, BB); 479 DT->addNewBlock(FailBB, BB); 480 } 481 482 // Remove default branch instruction to the new BB. 483 BB->getTerminator()->eraseFromParent(); 484 485 // Move the newly created basic block to the point right after the old 486 // basic block so that it's in the "fall through" position. 487 NewBB->moveAfter(BB); 488 489 // Generate the stack protector instructions in the old basic block. 490 IRBuilder<> B(BB); 491 Value *Guard = getStackGuard(TLI, M, B); 492 LoadInst *LI2 = B.CreateLoad(AI, true); 493 Value *Cmp = B.CreateICmpEQ(Guard, LI2); 494 auto SuccessProb = 495 BranchProbabilityInfo::getBranchProbStackProtector(true); 496 auto FailureProb = 497 BranchProbabilityInfo::getBranchProbStackProtector(false); 498 MDNode *Weights = MDBuilder(F->getContext()) 499 .createBranchWeights(SuccessProb.getNumerator(), 500 FailureProb.getNumerator()); 501 B.CreateCondBr(Cmp, NewBB, FailBB, Weights); 502 } 503 } 504 505 // Return if we didn't modify any basic blocks. i.e., there are no return 506 // statements in the function. 507 return HasPrologue; 508 } 509 510 /// CreateFailBB - Create a basic block to jump to when the stack protector 511 /// check fails. 512 BasicBlock *StackProtector::CreateFailBB() { 513 LLVMContext &Context = F->getContext(); 514 BasicBlock *FailBB = BasicBlock::Create(Context, "CallStackCheckFailBlk", F); 515 IRBuilder<> B(FailBB); 516 B.SetCurrentDebugLocation(DebugLoc::get(0, 0, F->getSubprogram())); 517 if (Trip.isOSOpenBSD()) { 518 Constant *StackChkFail = 519 M->getOrInsertFunction("__stack_smash_handler", 520 Type::getVoidTy(Context), 521 Type::getInt8PtrTy(Context)); 522 523 B.CreateCall(StackChkFail, B.CreateGlobalStringPtr(F->getName(), "SSH")); 524 } else { 525 Constant *StackChkFail = 526 M->getOrInsertFunction("__stack_chk_fail", Type::getVoidTy(Context)); 527 528 B.CreateCall(StackChkFail, {}); 529 } 530 B.CreateUnreachable(); 531 return FailBB; 532 } 533 534 bool StackProtector::shouldEmitSDCheck(const BasicBlock &BB) const { 535 return HasPrologue && !HasIRCheck && dyn_cast<ReturnInst>(BB.getTerminator()); 536 } 537