1 //===-- StackProtector.cpp - Stack Protector Insertion --------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass inserts stack protectors into functions which need them. A variable 11 // with a random value in it is stored onto the stack before the local variables 12 // are allocated. Upon exiting the block, the stored value is checked. If it's 13 // changed, then there was some sort of violation and the program aborts. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/CodeGen/StackProtector.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/BranchProbabilityInfo.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/CodeGen/Analysis.h" 23 #include "llvm/CodeGen/Passes.h" 24 #include "llvm/IR/Attributes.h" 25 #include "llvm/IR/Constants.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/DerivedTypes.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/IR/GlobalValue.h" 30 #include "llvm/IR/GlobalVariable.h" 31 #include "llvm/IR/IRBuilder.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/Intrinsics.h" 35 #include "llvm/IR/MDBuilder.h" 36 #include "llvm/IR/Module.h" 37 #include "llvm/Support/CommandLine.h" 38 #include "llvm/Target/TargetSubtargetInfo.h" 39 #include <cstdlib> 40 using namespace llvm; 41 42 #define DEBUG_TYPE "stack-protector" 43 44 STATISTIC(NumFunProtected, "Number of functions protected"); 45 STATISTIC(NumAddrTaken, "Number of local variables that have their address" 46 " taken."); 47 48 static cl::opt<bool> EnableSelectionDAGSP("enable-selectiondag-sp", 49 cl::init(true), cl::Hidden); 50 51 char StackProtector::ID = 0; 52 INITIALIZE_PASS(StackProtector, "stack-protector", "Insert stack protectors", 53 false, true) 54 55 FunctionPass *llvm::createStackProtectorPass(const TargetMachine *TM) { 56 return new StackProtector(TM); 57 } 58 59 StackProtector::SSPLayoutKind 60 StackProtector::getSSPLayout(const AllocaInst *AI) const { 61 return AI ? Layout.lookup(AI) : SSPLK_None; 62 } 63 64 void StackProtector::adjustForColoring(const AllocaInst *From, 65 const AllocaInst *To) { 66 // When coloring replaces one alloca with another, transfer the SSPLayoutKind 67 // tag from the remapped to the target alloca. The remapped alloca should 68 // have a size smaller than or equal to the replacement alloca. 69 SSPLayoutMap::iterator I = Layout.find(From); 70 if (I != Layout.end()) { 71 SSPLayoutKind Kind = I->second; 72 Layout.erase(I); 73 74 // Transfer the tag, but make sure that SSPLK_AddrOf does not overwrite 75 // SSPLK_SmallArray or SSPLK_LargeArray, and make sure that 76 // SSPLK_SmallArray does not overwrite SSPLK_LargeArray. 77 I = Layout.find(To); 78 if (I == Layout.end()) 79 Layout.insert(std::make_pair(To, Kind)); 80 else if (I->second != SSPLK_LargeArray && Kind != SSPLK_AddrOf) 81 I->second = Kind; 82 } 83 } 84 85 bool StackProtector::runOnFunction(Function &Fn) { 86 F = &Fn; 87 M = F->getParent(); 88 DominatorTreeWrapperPass *DTWP = 89 getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 90 DT = DTWP ? &DTWP->getDomTree() : nullptr; 91 TLI = TM->getSubtargetImpl()->getTargetLowering(); 92 93 Attribute Attr = Fn.getAttributes().getAttribute( 94 AttributeSet::FunctionIndex, "stack-protector-buffer-size"); 95 if (Attr.isStringAttribute() && 96 Attr.getValueAsString().getAsInteger(10, SSPBufferSize)) 97 return false; // Invalid integer string 98 99 if (!RequiresStackProtector()) 100 return false; 101 102 ++NumFunProtected; 103 return InsertStackProtectors(); 104 } 105 106 /// \param [out] IsLarge is set to true if a protectable array is found and 107 /// it is "large" ( >= ssp-buffer-size). In the case of a structure with 108 /// multiple arrays, this gets set if any of them is large. 109 bool StackProtector::ContainsProtectableArray(Type *Ty, bool &IsLarge, 110 bool Strong, 111 bool InStruct) const { 112 if (!Ty) 113 return false; 114 if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) { 115 if (!AT->getElementType()->isIntegerTy(8)) { 116 // If we're on a non-Darwin platform or we're inside of a structure, don't 117 // add stack protectors unless the array is a character array. 118 // However, in strong mode any array, regardless of type and size, 119 // triggers a protector. 120 if (!Strong && (InStruct || !Trip.isOSDarwin())) 121 return false; 122 } 123 124 // If an array has more than SSPBufferSize bytes of allocated space, then we 125 // emit stack protectors. 126 if (SSPBufferSize <= TLI->getDataLayout()->getTypeAllocSize(AT)) { 127 IsLarge = true; 128 return true; 129 } 130 131 if (Strong) 132 // Require a protector for all arrays in strong mode 133 return true; 134 } 135 136 const StructType *ST = dyn_cast<StructType>(Ty); 137 if (!ST) 138 return false; 139 140 bool NeedsProtector = false; 141 for (StructType::element_iterator I = ST->element_begin(), 142 E = ST->element_end(); 143 I != E; ++I) 144 if (ContainsProtectableArray(*I, IsLarge, Strong, true)) { 145 // If the element is a protectable array and is large (>= SSPBufferSize) 146 // then we are done. If the protectable array is not large, then 147 // keep looking in case a subsequent element is a large array. 148 if (IsLarge) 149 return true; 150 NeedsProtector = true; 151 } 152 153 return NeedsProtector; 154 } 155 156 bool StackProtector::HasAddressTaken(const Instruction *AI) { 157 for (const User *U : AI->users()) { 158 if (const StoreInst *SI = dyn_cast<StoreInst>(U)) { 159 if (AI == SI->getValueOperand()) 160 return true; 161 } else if (const PtrToIntInst *SI = dyn_cast<PtrToIntInst>(U)) { 162 if (AI == SI->getOperand(0)) 163 return true; 164 } else if (isa<CallInst>(U)) { 165 return true; 166 } else if (isa<InvokeInst>(U)) { 167 return true; 168 } else if (const SelectInst *SI = dyn_cast<SelectInst>(U)) { 169 if (HasAddressTaken(SI)) 170 return true; 171 } else if (const PHINode *PN = dyn_cast<PHINode>(U)) { 172 // Keep track of what PHI nodes we have already visited to ensure 173 // they are only visited once. 174 if (VisitedPHIs.insert(PN).second) 175 if (HasAddressTaken(PN)) 176 return true; 177 } else if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) { 178 if (HasAddressTaken(GEP)) 179 return true; 180 } else if (const BitCastInst *BI = dyn_cast<BitCastInst>(U)) { 181 if (HasAddressTaken(BI)) 182 return true; 183 } 184 } 185 return false; 186 } 187 188 /// \brief Check whether or not this function needs a stack protector based 189 /// upon the stack protector level. 190 /// 191 /// We use two heuristics: a standard (ssp) and strong (sspstrong). 192 /// The standard heuristic which will add a guard variable to functions that 193 /// call alloca with a either a variable size or a size >= SSPBufferSize, 194 /// functions with character buffers larger than SSPBufferSize, and functions 195 /// with aggregates containing character buffers larger than SSPBufferSize. The 196 /// strong heuristic will add a guard variables to functions that call alloca 197 /// regardless of size, functions with any buffer regardless of type and size, 198 /// functions with aggregates that contain any buffer regardless of type and 199 /// size, and functions that contain stack-based variables that have had their 200 /// address taken. 201 bool StackProtector::RequiresStackProtector() { 202 bool Strong = false; 203 bool NeedsProtector = false; 204 if (F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, 205 Attribute::StackProtectReq)) { 206 NeedsProtector = true; 207 Strong = true; // Use the same heuristic as strong to determine SSPLayout 208 } else if (F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, 209 Attribute::StackProtectStrong)) 210 Strong = true; 211 else if (!F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, 212 Attribute::StackProtect)) 213 return false; 214 215 for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I) { 216 BasicBlock *BB = I; 217 218 for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE; 219 ++II) { 220 if (AllocaInst *AI = dyn_cast<AllocaInst>(II)) { 221 if (AI->isArrayAllocation()) { 222 // SSP-Strong: Enable protectors for any call to alloca, regardless 223 // of size. 224 if (Strong) 225 return true; 226 227 if (const ConstantInt *CI = 228 dyn_cast<ConstantInt>(AI->getArraySize())) { 229 if (CI->getLimitedValue(SSPBufferSize) >= SSPBufferSize) { 230 // A call to alloca with size >= SSPBufferSize requires 231 // stack protectors. 232 Layout.insert(std::make_pair(AI, SSPLK_LargeArray)); 233 NeedsProtector = true; 234 } else if (Strong) { 235 // Require protectors for all alloca calls in strong mode. 236 Layout.insert(std::make_pair(AI, SSPLK_SmallArray)); 237 NeedsProtector = true; 238 } 239 } else { 240 // A call to alloca with a variable size requires protectors. 241 Layout.insert(std::make_pair(AI, SSPLK_LargeArray)); 242 NeedsProtector = true; 243 } 244 continue; 245 } 246 247 bool IsLarge = false; 248 if (ContainsProtectableArray(AI->getAllocatedType(), IsLarge, Strong)) { 249 Layout.insert(std::make_pair(AI, IsLarge ? SSPLK_LargeArray 250 : SSPLK_SmallArray)); 251 NeedsProtector = true; 252 continue; 253 } 254 255 if (Strong && HasAddressTaken(AI)) { 256 ++NumAddrTaken; 257 Layout.insert(std::make_pair(AI, SSPLK_AddrOf)); 258 NeedsProtector = true; 259 } 260 } 261 } 262 } 263 264 return NeedsProtector; 265 } 266 267 static bool InstructionWillNotHaveChain(const Instruction *I) { 268 return !I->mayHaveSideEffects() && !I->mayReadFromMemory() && 269 isSafeToSpeculativelyExecute(I); 270 } 271 272 /// Identify if RI has a previous instruction in the "Tail Position" and return 273 /// it. Otherwise return 0. 274 /// 275 /// This is based off of the code in llvm::isInTailCallPosition. The difference 276 /// is that it inverts the first part of llvm::isInTailCallPosition since 277 /// isInTailCallPosition is checking if a call is in a tail call position, and 278 /// we are searching for an unknown tail call that might be in the tail call 279 /// position. Once we find the call though, the code uses the same refactored 280 /// code, returnTypeIsEligibleForTailCall. 281 static CallInst *FindPotentialTailCall(BasicBlock *BB, ReturnInst *RI, 282 const TargetLoweringBase *TLI) { 283 // Establish a reasonable upper bound on the maximum amount of instructions we 284 // will look through to find a tail call. 285 unsigned SearchCounter = 0; 286 const unsigned MaxSearch = 4; 287 bool NoInterposingChain = true; 288 289 for (BasicBlock::reverse_iterator I = std::next(BB->rbegin()), E = BB->rend(); 290 I != E && SearchCounter < MaxSearch; ++I) { 291 Instruction *Inst = &*I; 292 293 // Skip over debug intrinsics and do not allow them to affect our MaxSearch 294 // counter. 295 if (isa<DbgInfoIntrinsic>(Inst)) 296 continue; 297 298 // If we find a call and the following conditions are satisifed, then we 299 // have found a tail call that satisfies at least the target independent 300 // requirements of a tail call: 301 // 302 // 1. The call site has the tail marker. 303 // 304 // 2. The call site either will not cause the creation of a chain or if a 305 // chain is necessary there are no instructions in between the callsite and 306 // the call which would create an interposing chain. 307 // 308 // 3. The return type of the function does not impede tail call 309 // optimization. 310 if (CallInst *CI = dyn_cast<CallInst>(Inst)) { 311 if (CI->isTailCall() && 312 (InstructionWillNotHaveChain(CI) || NoInterposingChain) && 313 returnTypeIsEligibleForTailCall(BB->getParent(), CI, RI, *TLI)) 314 return CI; 315 } 316 317 // If we did not find a call see if we have an instruction that may create 318 // an interposing chain. 319 NoInterposingChain = 320 NoInterposingChain && InstructionWillNotHaveChain(Inst); 321 322 // Increment max search. 323 SearchCounter++; 324 } 325 326 return nullptr; 327 } 328 329 /// Insert code into the entry block that stores the __stack_chk_guard 330 /// variable onto the stack: 331 /// 332 /// entry: 333 /// StackGuardSlot = alloca i8* 334 /// StackGuard = load __stack_chk_guard 335 /// call void @llvm.stackprotect.create(StackGuard, StackGuardSlot) 336 /// 337 /// Returns true if the platform/triple supports the stackprotectorcreate pseudo 338 /// node. 339 static bool CreatePrologue(Function *F, Module *M, ReturnInst *RI, 340 const TargetLoweringBase *TLI, const Triple &Trip, 341 AllocaInst *&AI, Value *&StackGuardVar) { 342 bool SupportsSelectionDAGSP = false; 343 PointerType *PtrTy = Type::getInt8PtrTy(RI->getContext()); 344 unsigned AddressSpace, Offset; 345 if (TLI->getStackCookieLocation(AddressSpace, Offset)) { 346 Constant *OffsetVal = 347 ConstantInt::get(Type::getInt32Ty(RI->getContext()), Offset); 348 349 StackGuardVar = ConstantExpr::getIntToPtr( 350 OffsetVal, PointerType::get(PtrTy, AddressSpace)); 351 } else if (Trip.isOSOpenBSD()) { 352 StackGuardVar = M->getOrInsertGlobal("__guard_local", PtrTy); 353 cast<GlobalValue>(StackGuardVar) 354 ->setVisibility(GlobalValue::HiddenVisibility); 355 } else { 356 SupportsSelectionDAGSP = true; 357 StackGuardVar = M->getOrInsertGlobal("__stack_chk_guard", PtrTy); 358 } 359 360 IRBuilder<> B(&F->getEntryBlock().front()); 361 AI = B.CreateAlloca(PtrTy, nullptr, "StackGuardSlot"); 362 LoadInst *LI = B.CreateLoad(StackGuardVar, "StackGuard"); 363 B.CreateCall2(Intrinsic::getDeclaration(M, Intrinsic::stackprotector), LI, 364 AI); 365 366 return SupportsSelectionDAGSP; 367 } 368 369 /// InsertStackProtectors - Insert code into the prologue and epilogue of the 370 /// function. 371 /// 372 /// - The prologue code loads and stores the stack guard onto the stack. 373 /// - The epilogue checks the value stored in the prologue against the original 374 /// value. It calls __stack_chk_fail if they differ. 375 bool StackProtector::InsertStackProtectors() { 376 bool HasPrologue = false; 377 bool SupportsSelectionDAGSP = 378 EnableSelectionDAGSP && !TM->Options.EnableFastISel; 379 AllocaInst *AI = nullptr; // Place on stack that stores the stack guard. 380 Value *StackGuardVar = nullptr; // The stack guard variable. 381 382 for (Function::iterator I = F->begin(), E = F->end(); I != E;) { 383 BasicBlock *BB = I++; 384 ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()); 385 if (!RI) 386 continue; 387 388 if (!HasPrologue) { 389 HasPrologue = true; 390 SupportsSelectionDAGSP &= 391 CreatePrologue(F, M, RI, TLI, Trip, AI, StackGuardVar); 392 } 393 394 if (SupportsSelectionDAGSP) { 395 // Since we have a potential tail call, insert the special stack check 396 // intrinsic. 397 Instruction *InsertionPt = nullptr; 398 if (CallInst *CI = FindPotentialTailCall(BB, RI, TLI)) { 399 InsertionPt = CI; 400 } else { 401 InsertionPt = RI; 402 // At this point we know that BB has a return statement so it *DOES* 403 // have a terminator. 404 assert(InsertionPt != nullptr && "BB must have a terminator instruction at " 405 "this point."); 406 } 407 408 Function *Intrinsic = 409 Intrinsic::getDeclaration(M, Intrinsic::stackprotectorcheck); 410 CallInst::Create(Intrinsic, StackGuardVar, "", InsertionPt); 411 412 } else { 413 // If we do not support SelectionDAG based tail calls, generate IR level 414 // tail calls. 415 // 416 // For each block with a return instruction, convert this: 417 // 418 // return: 419 // ... 420 // ret ... 421 // 422 // into this: 423 // 424 // return: 425 // ... 426 // %1 = load __stack_chk_guard 427 // %2 = load StackGuardSlot 428 // %3 = cmp i1 %1, %2 429 // br i1 %3, label %SP_return, label %CallStackCheckFailBlk 430 // 431 // SP_return: 432 // ret ... 433 // 434 // CallStackCheckFailBlk: 435 // call void @__stack_chk_fail() 436 // unreachable 437 438 // Create the FailBB. We duplicate the BB every time since the MI tail 439 // merge pass will merge together all of the various BB into one including 440 // fail BB generated by the stack protector pseudo instruction. 441 BasicBlock *FailBB = CreateFailBB(); 442 443 // Split the basic block before the return instruction. 444 BasicBlock *NewBB = BB->splitBasicBlock(RI, "SP_return"); 445 446 // Update the dominator tree if we need to. 447 if (DT && DT->isReachableFromEntry(BB)) { 448 DT->addNewBlock(NewBB, BB); 449 DT->addNewBlock(FailBB, BB); 450 } 451 452 // Remove default branch instruction to the new BB. 453 BB->getTerminator()->eraseFromParent(); 454 455 // Move the newly created basic block to the point right after the old 456 // basic block so that it's in the "fall through" position. 457 NewBB->moveAfter(BB); 458 459 // Generate the stack protector instructions in the old basic block. 460 IRBuilder<> B(BB); 461 LoadInst *LI1 = B.CreateLoad(StackGuardVar); 462 LoadInst *LI2 = B.CreateLoad(AI); 463 Value *Cmp = B.CreateICmpEQ(LI1, LI2); 464 unsigned SuccessWeight = 465 BranchProbabilityInfo::getBranchWeightStackProtector(true); 466 unsigned FailureWeight = 467 BranchProbabilityInfo::getBranchWeightStackProtector(false); 468 MDNode *Weights = MDBuilder(F->getContext()) 469 .createBranchWeights(SuccessWeight, FailureWeight); 470 B.CreateCondBr(Cmp, NewBB, FailBB, Weights); 471 } 472 } 473 474 // Return if we didn't modify any basic blocks. I.e., there are no return 475 // statements in the function. 476 if (!HasPrologue) 477 return false; 478 479 return true; 480 } 481 482 /// CreateFailBB - Create a basic block to jump to when the stack protector 483 /// check fails. 484 BasicBlock *StackProtector::CreateFailBB() { 485 LLVMContext &Context = F->getContext(); 486 BasicBlock *FailBB = BasicBlock::Create(Context, "CallStackCheckFailBlk", F); 487 IRBuilder<> B(FailBB); 488 if (Trip.isOSOpenBSD()) { 489 Constant *StackChkFail = M->getOrInsertFunction( 490 "__stack_smash_handler", Type::getVoidTy(Context), 491 Type::getInt8PtrTy(Context), nullptr); 492 493 B.CreateCall(StackChkFail, B.CreateGlobalStringPtr(F->getName(), "SSH")); 494 } else { 495 Constant *StackChkFail = M->getOrInsertFunction( 496 "__stack_chk_fail", Type::getVoidTy(Context), nullptr); 497 B.CreateCall(StackChkFail); 498 } 499 B.CreateUnreachable(); 500 return FailBB; 501 } 502