1 //===-- StackProtector.cpp - Stack Protector Insertion --------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass inserts stack protectors into functions which need them. A variable 11 // with a random value in it is stored onto the stack before the local variables 12 // are allocated. Upon exiting the block, the stored value is checked. If it's 13 // changed, then there was some sort of violation and the program aborts. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/CodeGen/StackProtector.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/BranchProbabilityInfo.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/CodeGen/Analysis.h" 23 #include "llvm/CodeGen/Passes.h" 24 #include "llvm/IR/Attributes.h" 25 #include "llvm/IR/Constants.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/DerivedTypes.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/IR/GlobalValue.h" 30 #include "llvm/IR/GlobalVariable.h" 31 #include "llvm/IR/IRBuilder.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/Intrinsics.h" 35 #include "llvm/IR/MDBuilder.h" 36 #include "llvm/IR/Module.h" 37 #include "llvm/Support/CommandLine.h" 38 #include "llvm/Target/TargetSubtargetInfo.h" 39 #include <cstdlib> 40 using namespace llvm; 41 42 #define DEBUG_TYPE "stack-protector" 43 44 STATISTIC(NumFunProtected, "Number of functions protected"); 45 STATISTIC(NumAddrTaken, "Number of local variables that have their address" 46 " taken."); 47 48 static cl::opt<bool> EnableSelectionDAGSP("enable-selectiondag-sp", 49 cl::init(true), cl::Hidden); 50 51 char StackProtector::ID = 0; 52 INITIALIZE_PASS(StackProtector, "stack-protector", "Insert stack protectors", 53 false, true) 54 55 FunctionPass *llvm::createStackProtectorPass(const TargetMachine *TM) { 56 return new StackProtector(TM); 57 } 58 59 StackProtector::SSPLayoutKind 60 StackProtector::getSSPLayout(const AllocaInst *AI) const { 61 return AI ? Layout.lookup(AI) : SSPLK_None; 62 } 63 64 void StackProtector::adjustForColoring(const AllocaInst *From, 65 const AllocaInst *To) { 66 // When coloring replaces one alloca with another, transfer the SSPLayoutKind 67 // tag from the remapped to the target alloca. The remapped alloca should 68 // have a size smaller than or equal to the replacement alloca. 69 SSPLayoutMap::iterator I = Layout.find(From); 70 if (I != Layout.end()) { 71 SSPLayoutKind Kind = I->second; 72 Layout.erase(I); 73 74 // Transfer the tag, but make sure that SSPLK_AddrOf does not overwrite 75 // SSPLK_SmallArray or SSPLK_LargeArray, and make sure that 76 // SSPLK_SmallArray does not overwrite SSPLK_LargeArray. 77 I = Layout.find(To); 78 if (I == Layout.end()) 79 Layout.insert(std::make_pair(To, Kind)); 80 else if (I->second != SSPLK_LargeArray && Kind != SSPLK_AddrOf) 81 I->second = Kind; 82 } 83 } 84 85 bool StackProtector::runOnFunction(Function &Fn) { 86 F = &Fn; 87 M = F->getParent(); 88 DominatorTreeWrapperPass *DTWP = 89 getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 90 DT = DTWP ? &DTWP->getDomTree() : nullptr; 91 TLI = TM->getSubtargetImpl(Fn)->getTargetLowering(); 92 93 Attribute Attr = Fn.getAttributes().getAttribute( 94 AttributeSet::FunctionIndex, "stack-protector-buffer-size"); 95 if (Attr.isStringAttribute() && 96 Attr.getValueAsString().getAsInteger(10, SSPBufferSize)) 97 return false; // Invalid integer string 98 99 if (!RequiresStackProtector()) 100 return false; 101 102 ++NumFunProtected; 103 return InsertStackProtectors(); 104 } 105 106 /// \param [out] IsLarge is set to true if a protectable array is found and 107 /// it is "large" ( >= ssp-buffer-size). In the case of a structure with 108 /// multiple arrays, this gets set if any of them is large. 109 bool StackProtector::ContainsProtectableArray(Type *Ty, bool &IsLarge, 110 bool Strong, 111 bool InStruct) const { 112 if (!Ty) 113 return false; 114 if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) { 115 if (!AT->getElementType()->isIntegerTy(8)) { 116 // If we're on a non-Darwin platform or we're inside of a structure, don't 117 // add stack protectors unless the array is a character array. 118 // However, in strong mode any array, regardless of type and size, 119 // triggers a protector. 120 if (!Strong && (InStruct || !Trip.isOSDarwin())) 121 return false; 122 } 123 124 // If an array has more than SSPBufferSize bytes of allocated space, then we 125 // emit stack protectors. 126 if (SSPBufferSize <= TLI->getDataLayout()->getTypeAllocSize(AT)) { 127 IsLarge = true; 128 return true; 129 } 130 131 if (Strong) 132 // Require a protector for all arrays in strong mode 133 return true; 134 } 135 136 const StructType *ST = dyn_cast<StructType>(Ty); 137 if (!ST) 138 return false; 139 140 bool NeedsProtector = false; 141 for (StructType::element_iterator I = ST->element_begin(), 142 E = ST->element_end(); 143 I != E; ++I) 144 if (ContainsProtectableArray(*I, IsLarge, Strong, true)) { 145 // If the element is a protectable array and is large (>= SSPBufferSize) 146 // then we are done. If the protectable array is not large, then 147 // keep looking in case a subsequent element is a large array. 148 if (IsLarge) 149 return true; 150 NeedsProtector = true; 151 } 152 153 return NeedsProtector; 154 } 155 156 bool StackProtector::HasAddressTaken(const Instruction *AI) { 157 for (const User *U : AI->users()) { 158 if (const StoreInst *SI = dyn_cast<StoreInst>(U)) { 159 if (AI == SI->getValueOperand()) 160 return true; 161 } else if (const PtrToIntInst *SI = dyn_cast<PtrToIntInst>(U)) { 162 if (AI == SI->getOperand(0)) 163 return true; 164 } else if (isa<CallInst>(U)) { 165 return true; 166 } else if (isa<InvokeInst>(U)) { 167 return true; 168 } else if (const SelectInst *SI = dyn_cast<SelectInst>(U)) { 169 if (HasAddressTaken(SI)) 170 return true; 171 } else if (const PHINode *PN = dyn_cast<PHINode>(U)) { 172 // Keep track of what PHI nodes we have already visited to ensure 173 // they are only visited once. 174 if (VisitedPHIs.insert(PN).second) 175 if (HasAddressTaken(PN)) 176 return true; 177 } else if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) { 178 if (HasAddressTaken(GEP)) 179 return true; 180 } else if (const BitCastInst *BI = dyn_cast<BitCastInst>(U)) { 181 if (HasAddressTaken(BI)) 182 return true; 183 } 184 } 185 return false; 186 } 187 188 /// \brief Check whether or not this function needs a stack protector based 189 /// upon the stack protector level. 190 /// 191 /// We use two heuristics: a standard (ssp) and strong (sspstrong). 192 /// The standard heuristic which will add a guard variable to functions that 193 /// call alloca with a either a variable size or a size >= SSPBufferSize, 194 /// functions with character buffers larger than SSPBufferSize, and functions 195 /// with aggregates containing character buffers larger than SSPBufferSize. The 196 /// strong heuristic will add a guard variables to functions that call alloca 197 /// regardless of size, functions with any buffer regardless of type and size, 198 /// functions with aggregates that contain any buffer regardless of type and 199 /// size, and functions that contain stack-based variables that have had their 200 /// address taken. 201 bool StackProtector::RequiresStackProtector() { 202 bool Strong = false; 203 bool NeedsProtector = false; 204 if (F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, 205 Attribute::StackProtectReq)) { 206 NeedsProtector = true; 207 Strong = true; // Use the same heuristic as strong to determine SSPLayout 208 } else if (F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, 209 Attribute::StackProtectStrong)) 210 Strong = true; 211 else if (!F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, 212 Attribute::StackProtect)) 213 return false; 214 215 for (const BasicBlock &BB : *F) { 216 for (const Instruction &I : BB) { 217 if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) { 218 if (AI->isArrayAllocation()) { 219 // SSP-Strong: Enable protectors for any call to alloca, regardless 220 // of size. 221 if (Strong) 222 return true; 223 224 if (const auto *CI = dyn_cast<ConstantInt>(AI->getArraySize())) { 225 if (CI->getLimitedValue(SSPBufferSize) >= SSPBufferSize) { 226 // A call to alloca with size >= SSPBufferSize requires 227 // stack protectors. 228 Layout.insert(std::make_pair(AI, SSPLK_LargeArray)); 229 NeedsProtector = true; 230 } else if (Strong) { 231 // Require protectors for all alloca calls in strong mode. 232 Layout.insert(std::make_pair(AI, SSPLK_SmallArray)); 233 NeedsProtector = true; 234 } 235 } else { 236 // A call to alloca with a variable size requires protectors. 237 Layout.insert(std::make_pair(AI, SSPLK_LargeArray)); 238 NeedsProtector = true; 239 } 240 continue; 241 } 242 243 bool IsLarge = false; 244 if (ContainsProtectableArray(AI->getAllocatedType(), IsLarge, Strong)) { 245 Layout.insert(std::make_pair(AI, IsLarge ? SSPLK_LargeArray 246 : SSPLK_SmallArray)); 247 NeedsProtector = true; 248 continue; 249 } 250 251 if (Strong && HasAddressTaken(AI)) { 252 ++NumAddrTaken; 253 Layout.insert(std::make_pair(AI, SSPLK_AddrOf)); 254 NeedsProtector = true; 255 } 256 } 257 } 258 } 259 260 return NeedsProtector; 261 } 262 263 static bool InstructionWillNotHaveChain(const Instruction *I) { 264 return !I->mayHaveSideEffects() && !I->mayReadFromMemory() && 265 isSafeToSpeculativelyExecute(I); 266 } 267 268 /// Identify if RI has a previous instruction in the "Tail Position" and return 269 /// it. Otherwise return 0. 270 /// 271 /// This is based off of the code in llvm::isInTailCallPosition. The difference 272 /// is that it inverts the first part of llvm::isInTailCallPosition since 273 /// isInTailCallPosition is checking if a call is in a tail call position, and 274 /// we are searching for an unknown tail call that might be in the tail call 275 /// position. Once we find the call though, the code uses the same refactored 276 /// code, returnTypeIsEligibleForTailCall. 277 static CallInst *FindPotentialTailCall(BasicBlock *BB, ReturnInst *RI, 278 const TargetLoweringBase *TLI) { 279 // Establish a reasonable upper bound on the maximum amount of instructions we 280 // will look through to find a tail call. 281 unsigned SearchCounter = 0; 282 const unsigned MaxSearch = 4; 283 bool NoInterposingChain = true; 284 285 for (BasicBlock::reverse_iterator I = std::next(BB->rbegin()), E = BB->rend(); 286 I != E && SearchCounter < MaxSearch; ++I) { 287 Instruction *Inst = &*I; 288 289 // Skip over debug intrinsics and do not allow them to affect our MaxSearch 290 // counter. 291 if (isa<DbgInfoIntrinsic>(Inst)) 292 continue; 293 294 // If we find a call and the following conditions are satisifed, then we 295 // have found a tail call that satisfies at least the target independent 296 // requirements of a tail call: 297 // 298 // 1. The call site has the tail marker. 299 // 300 // 2. The call site either will not cause the creation of a chain or if a 301 // chain is necessary there are no instructions in between the callsite and 302 // the call which would create an interposing chain. 303 // 304 // 3. The return type of the function does not impede tail call 305 // optimization. 306 if (CallInst *CI = dyn_cast<CallInst>(Inst)) { 307 if (CI->isTailCall() && 308 (InstructionWillNotHaveChain(CI) || NoInterposingChain) && 309 returnTypeIsEligibleForTailCall(BB->getParent(), CI, RI, *TLI)) 310 return CI; 311 } 312 313 // If we did not find a call see if we have an instruction that may create 314 // an interposing chain. 315 NoInterposingChain = 316 NoInterposingChain && InstructionWillNotHaveChain(Inst); 317 318 // Increment max search. 319 SearchCounter++; 320 } 321 322 return nullptr; 323 } 324 325 /// Insert code into the entry block that stores the __stack_chk_guard 326 /// variable onto the stack: 327 /// 328 /// entry: 329 /// StackGuardSlot = alloca i8* 330 /// StackGuard = load __stack_chk_guard 331 /// call void @llvm.stackprotect.create(StackGuard, StackGuardSlot) 332 /// 333 /// Returns true if the platform/triple supports the stackprotectorcreate pseudo 334 /// node. 335 static bool CreatePrologue(Function *F, Module *M, ReturnInst *RI, 336 const TargetLoweringBase *TLI, const Triple &TT, 337 AllocaInst *&AI, Value *&StackGuardVar) { 338 bool SupportsSelectionDAGSP = false; 339 PointerType *PtrTy = Type::getInt8PtrTy(RI->getContext()); 340 unsigned AddressSpace, Offset; 341 if (TLI->getStackCookieLocation(AddressSpace, Offset)) { 342 Constant *OffsetVal = 343 ConstantInt::get(Type::getInt32Ty(RI->getContext()), Offset); 344 345 StackGuardVar = 346 ConstantExpr::getIntToPtr(OffsetVal, PointerType::get(PtrTy, 347 AddressSpace)); 348 } else if (TT.isOSOpenBSD()) { 349 StackGuardVar = M->getOrInsertGlobal("__guard_local", PtrTy); 350 cast<GlobalValue>(StackGuardVar) 351 ->setVisibility(GlobalValue::HiddenVisibility); 352 } else { 353 SupportsSelectionDAGSP = true; 354 StackGuardVar = M->getOrInsertGlobal("__stack_chk_guard", PtrTy); 355 } 356 357 IRBuilder<> B(&F->getEntryBlock().front()); 358 AI = B.CreateAlloca(PtrTy, nullptr, "StackGuardSlot"); 359 LoadInst *LI = B.CreateLoad(StackGuardVar, "StackGuard"); 360 B.CreateCall2(Intrinsic::getDeclaration(M, Intrinsic::stackprotector), LI, 361 AI); 362 363 return SupportsSelectionDAGSP; 364 } 365 366 /// InsertStackProtectors - Insert code into the prologue and epilogue of the 367 /// function. 368 /// 369 /// - The prologue code loads and stores the stack guard onto the stack. 370 /// - The epilogue checks the value stored in the prologue against the original 371 /// value. It calls __stack_chk_fail if they differ. 372 bool StackProtector::InsertStackProtectors() { 373 bool HasPrologue = false; 374 bool SupportsSelectionDAGSP = 375 EnableSelectionDAGSP && !TM->Options.EnableFastISel; 376 AllocaInst *AI = nullptr; // Place on stack that stores the stack guard. 377 Value *StackGuardVar = nullptr; // The stack guard variable. 378 379 for (Function::iterator I = F->begin(), E = F->end(); I != E;) { 380 BasicBlock *BB = I++; 381 ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()); 382 if (!RI) 383 continue; 384 385 if (!HasPrologue) { 386 HasPrologue = true; 387 SupportsSelectionDAGSP &= 388 CreatePrologue(F, M, RI, TLI, Trip, AI, StackGuardVar); 389 } 390 391 if (SupportsSelectionDAGSP) { 392 // Since we have a potential tail call, insert the special stack check 393 // intrinsic. 394 Instruction *InsertionPt = nullptr; 395 if (CallInst *CI = FindPotentialTailCall(BB, RI, TLI)) { 396 InsertionPt = CI; 397 } else { 398 InsertionPt = RI; 399 // At this point we know that BB has a return statement so it *DOES* 400 // have a terminator. 401 assert(InsertionPt != nullptr && 402 "BB must have a terminator instruction at this point."); 403 } 404 405 Function *Intrinsic = 406 Intrinsic::getDeclaration(M, Intrinsic::stackprotectorcheck); 407 CallInst::Create(Intrinsic, StackGuardVar, "", InsertionPt); 408 } else { 409 // If we do not support SelectionDAG based tail calls, generate IR level 410 // tail calls. 411 // 412 // For each block with a return instruction, convert this: 413 // 414 // return: 415 // ... 416 // ret ... 417 // 418 // into this: 419 // 420 // return: 421 // ... 422 // %1 = load __stack_chk_guard 423 // %2 = load StackGuardSlot 424 // %3 = cmp i1 %1, %2 425 // br i1 %3, label %SP_return, label %CallStackCheckFailBlk 426 // 427 // SP_return: 428 // ret ... 429 // 430 // CallStackCheckFailBlk: 431 // call void @__stack_chk_fail() 432 // unreachable 433 434 // Create the FailBB. We duplicate the BB every time since the MI tail 435 // merge pass will merge together all of the various BB into one including 436 // fail BB generated by the stack protector pseudo instruction. 437 BasicBlock *FailBB = CreateFailBB(); 438 439 // Split the basic block before the return instruction. 440 BasicBlock *NewBB = BB->splitBasicBlock(RI, "SP_return"); 441 442 // Update the dominator tree if we need to. 443 if (DT && DT->isReachableFromEntry(BB)) { 444 DT->addNewBlock(NewBB, BB); 445 DT->addNewBlock(FailBB, BB); 446 } 447 448 // Remove default branch instruction to the new BB. 449 BB->getTerminator()->eraseFromParent(); 450 451 // Move the newly created basic block to the point right after the old 452 // basic block so that it's in the "fall through" position. 453 NewBB->moveAfter(BB); 454 455 // Generate the stack protector instructions in the old basic block. 456 IRBuilder<> B(BB); 457 LoadInst *LI1 = B.CreateLoad(StackGuardVar); 458 LoadInst *LI2 = B.CreateLoad(AI); 459 Value *Cmp = B.CreateICmpEQ(LI1, LI2); 460 unsigned SuccessWeight = 461 BranchProbabilityInfo::getBranchWeightStackProtector(true); 462 unsigned FailureWeight = 463 BranchProbabilityInfo::getBranchWeightStackProtector(false); 464 MDNode *Weights = MDBuilder(F->getContext()) 465 .createBranchWeights(SuccessWeight, FailureWeight); 466 B.CreateCondBr(Cmp, NewBB, FailBB, Weights); 467 } 468 } 469 470 // Return if we didn't modify any basic blocks. i.e., there are no return 471 // statements in the function. 472 if (!HasPrologue) 473 return false; 474 475 return true; 476 } 477 478 /// CreateFailBB - Create a basic block to jump to when the stack protector 479 /// check fails. 480 BasicBlock *StackProtector::CreateFailBB() { 481 LLVMContext &Context = F->getContext(); 482 BasicBlock *FailBB = BasicBlock::Create(Context, "CallStackCheckFailBlk", F); 483 IRBuilder<> B(FailBB); 484 if (Trip.isOSOpenBSD()) { 485 Constant *StackChkFail = 486 M->getOrInsertFunction("__stack_smash_handler", 487 Type::getVoidTy(Context), 488 Type::getInt8PtrTy(Context), nullptr); 489 490 B.CreateCall(StackChkFail, B.CreateGlobalStringPtr(F->getName(), "SSH")); 491 } else { 492 Constant *StackChkFail = 493 M->getOrInsertFunction("__stack_chk_fail", Type::getVoidTy(Context), 494 nullptr); 495 B.CreateCall(StackChkFail); 496 } 497 B.CreateUnreachable(); 498 return FailBB; 499 } 500