1 //===-- StackProtector.cpp - Stack Protector Insertion --------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass inserts stack protectors into functions which need them. A variable 11 // with a random value in it is stored onto the stack before the local variables 12 // are allocated. Upon exiting the block, the stored value is checked. If it's 13 // changed, then there was some sort of violation and the program aborts. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #define DEBUG_TYPE "stack-protector" 18 #include "llvm/CodeGen/StackProtector.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/CodeGen/Analysis.h" 23 #include "llvm/CodeGen/Passes.h" 24 #include "llvm/IR/Attributes.h" 25 #include "llvm/IR/Constants.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/DerivedTypes.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/IR/GlobalValue.h" 30 #include "llvm/IR/GlobalVariable.h" 31 #include "llvm/IR/IRBuilder.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/Intrinsics.h" 35 #include "llvm/IR/Module.h" 36 #include "llvm/Support/CommandLine.h" 37 #include <cstdlib> 38 using namespace llvm; 39 40 STATISTIC(NumFunProtected, "Number of functions protected"); 41 STATISTIC(NumAddrTaken, "Number of local variables that have their address" 42 " taken."); 43 44 static cl::opt<bool> EnableSelectionDAGSP("enable-selectiondag-sp", 45 cl::init(true), cl::Hidden); 46 47 char StackProtector::ID = 0; 48 INITIALIZE_PASS(StackProtector, "stack-protector", "Insert stack protectors", 49 false, true) 50 51 FunctionPass *llvm::createStackProtectorPass(const TargetMachine *TM) { 52 return new StackProtector(TM); 53 } 54 55 StackProtector::SSPLayoutKind 56 StackProtector::getSSPLayout(const AllocaInst *AI) const { 57 return AI ? Layout.lookup(AI) : SSPLK_None; 58 } 59 60 void StackProtector::adjustForColoring(const AllocaInst *From, 61 const AllocaInst *To) { 62 // When coloring replaces one alloca with another, transfer the SSPLayoutKind 63 // tag from the remapped to the target alloca. The remapped alloca should 64 // have a size smaller than or equal to the replacement alloca. 65 SSPLayoutMap::iterator I = Layout.find(From); 66 if (I != Layout.end()) { 67 SSPLayoutKind Kind = I->second; 68 Layout.erase(I); 69 70 // Transfer the tag, but make sure that SSPLK_AddrOf does not overwrite 71 // SSPLK_SmallArray or SSPLK_LargeArray, and make sure that 72 // SSPLK_SmallArray does not overwrite SSPLK_LargeArray. 73 I = Layout.find(To); 74 if (I == Layout.end()) 75 Layout.insert(std::make_pair(To, Kind)); 76 else if (I->second != SSPLK_LargeArray && Kind != SSPLK_AddrOf) 77 I->second = Kind; 78 } 79 } 80 81 bool StackProtector::runOnFunction(Function &Fn) { 82 F = &Fn; 83 M = F->getParent(); 84 DominatorTreeWrapperPass *DTWP = 85 getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 86 DT = DTWP ? &DTWP->getDomTree() : 0; 87 TLI = TM->getTargetLowering(); 88 89 if (!RequiresStackProtector()) 90 return false; 91 92 Attribute Attr = Fn.getAttributes().getAttribute( 93 AttributeSet::FunctionIndex, "stack-protector-buffer-size"); 94 if (Attr.isStringAttribute() && 95 Attr.getValueAsString().getAsInteger(10, SSPBufferSize)) 96 return false; // Invalid integer string 97 98 ++NumFunProtected; 99 return InsertStackProtectors(); 100 } 101 102 /// \param [out] IsLarge is set to true if a protectable array is found and 103 /// it is "large" ( >= ssp-buffer-size). In the case of a structure with 104 /// multiple arrays, this gets set if any of them is large. 105 bool StackProtector::ContainsProtectableArray(Type *Ty, bool &IsLarge, 106 bool Strong, 107 bool InStruct) const { 108 if (!Ty) 109 return false; 110 if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) { 111 if (!AT->getElementType()->isIntegerTy(8)) { 112 // If we're on a non-Darwin platform or we're inside of a structure, don't 113 // add stack protectors unless the array is a character array. 114 // However, in strong mode any array, regardless of type and size, 115 // triggers a protector. 116 if (!Strong && (InStruct || !Trip.isOSDarwin())) 117 return false; 118 } 119 120 // If an array has more than SSPBufferSize bytes of allocated space, then we 121 // emit stack protectors. 122 if (SSPBufferSize <= TLI->getDataLayout()->getTypeAllocSize(AT)) { 123 IsLarge = true; 124 return true; 125 } 126 127 if (Strong) 128 // Require a protector for all arrays in strong mode 129 return true; 130 } 131 132 const StructType *ST = dyn_cast<StructType>(Ty); 133 if (!ST) 134 return false; 135 136 bool NeedsProtector = false; 137 for (StructType::element_iterator I = ST->element_begin(), 138 E = ST->element_end(); 139 I != E; ++I) 140 if (ContainsProtectableArray(*I, IsLarge, Strong, true)) { 141 // If the element is a protectable array and is large (>= SSPBufferSize) 142 // then we are done. If the protectable array is not large, then 143 // keep looking in case a subsequent element is a large array. 144 if (IsLarge) 145 return true; 146 NeedsProtector = true; 147 } 148 149 return NeedsProtector; 150 } 151 152 bool StackProtector::HasAddressTaken(const Instruction *AI) { 153 for (Value::const_use_iterator UI = AI->use_begin(), UE = AI->use_end(); 154 UI != UE; ++UI) { 155 const User *U = *UI; 156 if (const StoreInst *SI = dyn_cast<StoreInst>(U)) { 157 if (AI == SI->getValueOperand()) 158 return true; 159 } else if (const PtrToIntInst *SI = dyn_cast<PtrToIntInst>(U)) { 160 if (AI == SI->getOperand(0)) 161 return true; 162 } else if (isa<CallInst>(U)) { 163 return true; 164 } else if (isa<InvokeInst>(U)) { 165 return true; 166 } else if (const SelectInst *SI = dyn_cast<SelectInst>(U)) { 167 if (HasAddressTaken(SI)) 168 return true; 169 } else if (const PHINode *PN = dyn_cast<PHINode>(U)) { 170 // Keep track of what PHI nodes we have already visited to ensure 171 // they are only visited once. 172 if (VisitedPHIs.insert(PN)) 173 if (HasAddressTaken(PN)) 174 return true; 175 } else if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) { 176 if (HasAddressTaken(GEP)) 177 return true; 178 } else if (const BitCastInst *BI = dyn_cast<BitCastInst>(U)) { 179 if (HasAddressTaken(BI)) 180 return true; 181 } 182 } 183 return false; 184 } 185 186 /// \brief Check whether or not this function needs a stack protector based 187 /// upon the stack protector level. 188 /// 189 /// We use two heuristics: a standard (ssp) and strong (sspstrong). 190 /// The standard heuristic which will add a guard variable to functions that 191 /// call alloca with a either a variable size or a size >= SSPBufferSize, 192 /// functions with character buffers larger than SSPBufferSize, and functions 193 /// with aggregates containing character buffers larger than SSPBufferSize. The 194 /// strong heuristic will add a guard variables to functions that call alloca 195 /// regardless of size, functions with any buffer regardless of type and size, 196 /// functions with aggregates that contain any buffer regardless of type and 197 /// size, and functions that contain stack-based variables that have had their 198 /// address taken. 199 bool StackProtector::RequiresStackProtector() { 200 bool Strong = false; 201 bool NeedsProtector = false; 202 if (F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, 203 Attribute::StackProtectReq)) { 204 NeedsProtector = true; 205 Strong = true; // Use the same heuristic as strong to determine SSPLayout 206 } else if (F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, 207 Attribute::StackProtectStrong)) 208 Strong = true; 209 else if (!F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, 210 Attribute::StackProtect)) 211 return false; 212 213 for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I) { 214 BasicBlock *BB = I; 215 216 for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE; 217 ++II) { 218 if (AllocaInst *AI = dyn_cast<AllocaInst>(II)) { 219 if (AI->isArrayAllocation()) { 220 // SSP-Strong: Enable protectors for any call to alloca, regardless 221 // of size. 222 if (Strong) 223 return true; 224 225 if (const ConstantInt *CI = 226 dyn_cast<ConstantInt>(AI->getArraySize())) { 227 if (CI->getLimitedValue(SSPBufferSize) >= SSPBufferSize) { 228 // A call to alloca with size >= SSPBufferSize requires 229 // stack protectors. 230 Layout.insert(std::make_pair(AI, SSPLK_LargeArray)); 231 NeedsProtector = true; 232 } else if (Strong) { 233 // Require protectors for all alloca calls in strong mode. 234 Layout.insert(std::make_pair(AI, SSPLK_SmallArray)); 235 NeedsProtector = true; 236 } 237 } else { 238 // A call to alloca with a variable size requires protectors. 239 Layout.insert(std::make_pair(AI, SSPLK_LargeArray)); 240 NeedsProtector = true; 241 } 242 continue; 243 } 244 245 bool IsLarge = false; 246 if (ContainsProtectableArray(AI->getAllocatedType(), IsLarge, Strong)) { 247 Layout.insert(std::make_pair(AI, IsLarge ? SSPLK_LargeArray 248 : SSPLK_SmallArray)); 249 NeedsProtector = true; 250 continue; 251 } 252 253 if (Strong && HasAddressTaken(AI)) { 254 ++NumAddrTaken; 255 Layout.insert(std::make_pair(AI, SSPLK_AddrOf)); 256 NeedsProtector = true; 257 } 258 } 259 } 260 } 261 262 return NeedsProtector; 263 } 264 265 static bool InstructionWillNotHaveChain(const Instruction *I) { 266 return !I->mayHaveSideEffects() && !I->mayReadFromMemory() && 267 isSafeToSpeculativelyExecute(I); 268 } 269 270 /// Identify if RI has a previous instruction in the "Tail Position" and return 271 /// it. Otherwise return 0. 272 /// 273 /// This is based off of the code in llvm::isInTailCallPosition. The difference 274 /// is that it inverts the first part of llvm::isInTailCallPosition since 275 /// isInTailCallPosition is checking if a call is in a tail call position, and 276 /// we are searching for an unknown tail call that might be in the tail call 277 /// position. Once we find the call though, the code uses the same refactored 278 /// code, returnTypeIsEligibleForTailCall. 279 static CallInst *FindPotentialTailCall(BasicBlock *BB, ReturnInst *RI, 280 const TargetLoweringBase *TLI) { 281 // Establish a reasonable upper bound on the maximum amount of instructions we 282 // will look through to find a tail call. 283 unsigned SearchCounter = 0; 284 const unsigned MaxSearch = 4; 285 bool NoInterposingChain = true; 286 287 for (BasicBlock::reverse_iterator I = llvm::next(BB->rbegin()), 288 E = BB->rend(); 289 I != E && SearchCounter < MaxSearch; ++I) { 290 Instruction *Inst = &*I; 291 292 // Skip over debug intrinsics and do not allow them to affect our MaxSearch 293 // counter. 294 if (isa<DbgInfoIntrinsic>(Inst)) 295 continue; 296 297 // If we find a call and the following conditions are satisifed, then we 298 // have found a tail call that satisfies at least the target independent 299 // requirements of a tail call: 300 // 301 // 1. The call site has the tail marker. 302 // 303 // 2. The call site either will not cause the creation of a chain or if a 304 // chain is necessary there are no instructions in between the callsite and 305 // the call which would create an interposing chain. 306 // 307 // 3. The return type of the function does not impede tail call 308 // optimization. 309 if (CallInst *CI = dyn_cast<CallInst>(Inst)) { 310 if (CI->isTailCall() && 311 (InstructionWillNotHaveChain(CI) || NoInterposingChain) && 312 returnTypeIsEligibleForTailCall(BB->getParent(), CI, RI, *TLI)) 313 return CI; 314 } 315 316 // If we did not find a call see if we have an instruction that may create 317 // an interposing chain. 318 NoInterposingChain = 319 NoInterposingChain && InstructionWillNotHaveChain(Inst); 320 321 // Increment max search. 322 SearchCounter++; 323 } 324 325 return 0; 326 } 327 328 /// Insert code into the entry block that stores the __stack_chk_guard 329 /// variable onto the stack: 330 /// 331 /// entry: 332 /// StackGuardSlot = alloca i8* 333 /// StackGuard = load __stack_chk_guard 334 /// call void @llvm.stackprotect.create(StackGuard, StackGuardSlot) 335 /// 336 /// Returns true if the platform/triple supports the stackprotectorcreate pseudo 337 /// node. 338 static bool CreatePrologue(Function *F, Module *M, ReturnInst *RI, 339 const TargetLoweringBase *TLI, const Triple &Trip, 340 AllocaInst *&AI, Value *&StackGuardVar) { 341 bool SupportsSelectionDAGSP = false; 342 PointerType *PtrTy = Type::getInt8PtrTy(RI->getContext()); 343 unsigned AddressSpace, Offset; 344 if (TLI->getStackCookieLocation(AddressSpace, Offset)) { 345 Constant *OffsetVal = 346 ConstantInt::get(Type::getInt32Ty(RI->getContext()), Offset); 347 348 StackGuardVar = ConstantExpr::getIntToPtr( 349 OffsetVal, PointerType::get(PtrTy, AddressSpace)); 350 } else if (Trip.getOS() == llvm::Triple::OpenBSD) { 351 StackGuardVar = M->getOrInsertGlobal("__guard_local", PtrTy); 352 cast<GlobalValue>(StackGuardVar) 353 ->setVisibility(GlobalValue::HiddenVisibility); 354 } else { 355 SupportsSelectionDAGSP = true; 356 StackGuardVar = M->getOrInsertGlobal("__stack_chk_guard", PtrTy); 357 } 358 359 IRBuilder<> B(&F->getEntryBlock().front()); 360 AI = B.CreateAlloca(PtrTy, 0, "StackGuardSlot"); 361 LoadInst *LI = B.CreateLoad(StackGuardVar, "StackGuard"); 362 B.CreateCall2(Intrinsic::getDeclaration(M, Intrinsic::stackprotector), LI, 363 AI); 364 365 return SupportsSelectionDAGSP; 366 } 367 368 /// InsertStackProtectors - Insert code into the prologue and epilogue of the 369 /// function. 370 /// 371 /// - The prologue code loads and stores the stack guard onto the stack. 372 /// - The epilogue checks the value stored in the prologue against the original 373 /// value. It calls __stack_chk_fail if they differ. 374 bool StackProtector::InsertStackProtectors() { 375 bool HasPrologue = false; 376 bool SupportsSelectionDAGSP = 377 EnableSelectionDAGSP && !TM->Options.EnableFastISel; 378 AllocaInst *AI = 0; // Place on stack that stores the stack guard. 379 Value *StackGuardVar = 0; // The stack guard variable. 380 381 for (Function::iterator I = F->begin(), E = F->end(); I != E;) { 382 BasicBlock *BB = I++; 383 ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()); 384 if (!RI) 385 continue; 386 387 if (!HasPrologue) { 388 HasPrologue = true; 389 SupportsSelectionDAGSP &= 390 CreatePrologue(F, M, RI, TLI, Trip, AI, StackGuardVar); 391 } 392 393 if (SupportsSelectionDAGSP) { 394 // Since we have a potential tail call, insert the special stack check 395 // intrinsic. 396 Instruction *InsertionPt = 0; 397 if (CallInst *CI = FindPotentialTailCall(BB, RI, TLI)) { 398 InsertionPt = CI; 399 } else { 400 InsertionPt = RI; 401 // At this point we know that BB has a return statement so it *DOES* 402 // have a terminator. 403 assert(InsertionPt != 0 && "BB must have a terminator instruction at " 404 "this point."); 405 } 406 407 Function *Intrinsic = 408 Intrinsic::getDeclaration(M, Intrinsic::stackprotectorcheck); 409 CallInst::Create(Intrinsic, StackGuardVar, "", InsertionPt); 410 411 } else { 412 // If we do not support SelectionDAG based tail calls, generate IR level 413 // tail calls. 414 // 415 // For each block with a return instruction, convert this: 416 // 417 // return: 418 // ... 419 // ret ... 420 // 421 // into this: 422 // 423 // return: 424 // ... 425 // %1 = load __stack_chk_guard 426 // %2 = load StackGuardSlot 427 // %3 = cmp i1 %1, %2 428 // br i1 %3, label %SP_return, label %CallStackCheckFailBlk 429 // 430 // SP_return: 431 // ret ... 432 // 433 // CallStackCheckFailBlk: 434 // call void @__stack_chk_fail() 435 // unreachable 436 437 // Create the FailBB. We duplicate the BB every time since the MI tail 438 // merge pass will merge together all of the various BB into one including 439 // fail BB generated by the stack protector pseudo instruction. 440 BasicBlock *FailBB = CreateFailBB(); 441 442 // Split the basic block before the return instruction. 443 BasicBlock *NewBB = BB->splitBasicBlock(RI, "SP_return"); 444 445 // Update the dominator tree if we need to. 446 if (DT && DT->isReachableFromEntry(BB)) { 447 DT->addNewBlock(NewBB, BB); 448 DT->addNewBlock(FailBB, BB); 449 } 450 451 // Remove default branch instruction to the new BB. 452 BB->getTerminator()->eraseFromParent(); 453 454 // Move the newly created basic block to the point right after the old 455 // basic block so that it's in the "fall through" position. 456 NewBB->moveAfter(BB); 457 458 // Generate the stack protector instructions in the old basic block. 459 IRBuilder<> B(BB); 460 LoadInst *LI1 = B.CreateLoad(StackGuardVar); 461 LoadInst *LI2 = B.CreateLoad(AI); 462 Value *Cmp = B.CreateICmpEQ(LI1, LI2); 463 B.CreateCondBr(Cmp, NewBB, FailBB); 464 } 465 } 466 467 // Return if we didn't modify any basic blocks. I.e., there are no return 468 // statements in the function. 469 if (!HasPrologue) 470 return false; 471 472 return true; 473 } 474 475 /// CreateFailBB - Create a basic block to jump to when the stack protector 476 /// check fails. 477 BasicBlock *StackProtector::CreateFailBB() { 478 LLVMContext &Context = F->getContext(); 479 BasicBlock *FailBB = BasicBlock::Create(Context, "CallStackCheckFailBlk", F); 480 IRBuilder<> B(FailBB); 481 if (Trip.getOS() == llvm::Triple::OpenBSD) { 482 Constant *StackChkFail = M->getOrInsertFunction( 483 "__stack_smash_handler", Type::getVoidTy(Context), 484 Type::getInt8PtrTy(Context), NULL); 485 486 B.CreateCall(StackChkFail, B.CreateGlobalStringPtr(F->getName(), "SSH")); 487 } else { 488 Constant *StackChkFail = M->getOrInsertFunction( 489 "__stack_chk_fail", Type::getVoidTy(Context), NULL); 490 B.CreateCall(StackChkFail); 491 } 492 B.CreateUnreachable(); 493 return FailBB; 494 } 495