1 //===- StackProtector.cpp - Stack Protector Insertion ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass inserts stack protectors into functions which need them. A variable 10 // with a random value in it is stored onto the stack before the local variables 11 // are allocated. Upon exiting the block, the stored value is checked. If it's 12 // changed, then there was some sort of violation and the program aborts. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/CodeGen/StackProtector.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/BranchProbabilityInfo.h" 20 #include "llvm/Analysis/EHPersonalities.h" 21 #include "llvm/Analysis/MemoryLocation.h" 22 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 23 #include "llvm/CodeGen/Passes.h" 24 #include "llvm/CodeGen/TargetLowering.h" 25 #include "llvm/CodeGen/TargetPassConfig.h" 26 #include "llvm/CodeGen/TargetSubtargetInfo.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/BasicBlock.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/DebugInfo.h" 32 #include "llvm/IR/DebugLoc.h" 33 #include "llvm/IR/DerivedTypes.h" 34 #include "llvm/IR/Dominators.h" 35 #include "llvm/IR/Function.h" 36 #include "llvm/IR/IRBuilder.h" 37 #include "llvm/IR/Instruction.h" 38 #include "llvm/IR/Instructions.h" 39 #include "llvm/IR/IntrinsicInst.h" 40 #include "llvm/IR/Intrinsics.h" 41 #include "llvm/IR/MDBuilder.h" 42 #include "llvm/IR/Module.h" 43 #include "llvm/IR/Type.h" 44 #include "llvm/IR/User.h" 45 #include "llvm/InitializePasses.h" 46 #include "llvm/Pass.h" 47 #include "llvm/Support/Casting.h" 48 #include "llvm/Support/CommandLine.h" 49 #include "llvm/Target/TargetMachine.h" 50 #include "llvm/Target/TargetOptions.h" 51 #include <utility> 52 53 using namespace llvm; 54 55 #define DEBUG_TYPE "stack-protector" 56 57 STATISTIC(NumFunProtected, "Number of functions protected"); 58 STATISTIC(NumAddrTaken, "Number of local variables that have their address" 59 " taken."); 60 61 static cl::opt<bool> EnableSelectionDAGSP("enable-selectiondag-sp", 62 cl::init(true), cl::Hidden); 63 64 char StackProtector::ID = 0; 65 66 StackProtector::StackProtector() : FunctionPass(ID), SSPBufferSize(8) { 67 initializeStackProtectorPass(*PassRegistry::getPassRegistry()); 68 } 69 70 INITIALIZE_PASS_BEGIN(StackProtector, DEBUG_TYPE, 71 "Insert stack protectors", false, true) 72 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 73 INITIALIZE_PASS_END(StackProtector, DEBUG_TYPE, 74 "Insert stack protectors", false, true) 75 76 FunctionPass *llvm::createStackProtectorPass() { return new StackProtector(); } 77 78 void StackProtector::getAnalysisUsage(AnalysisUsage &AU) const { 79 AU.addRequired<TargetPassConfig>(); 80 AU.addPreserved<DominatorTreeWrapperPass>(); 81 } 82 83 bool StackProtector::runOnFunction(Function &Fn) { 84 F = &Fn; 85 M = F->getParent(); 86 DominatorTreeWrapperPass *DTWP = 87 getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 88 DT = DTWP ? &DTWP->getDomTree() : nullptr; 89 TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>(); 90 Trip = TM->getTargetTriple(); 91 TLI = TM->getSubtargetImpl(Fn)->getTargetLowering(); 92 HasPrologue = false; 93 HasIRCheck = false; 94 95 Attribute Attr = Fn.getFnAttribute("stack-protector-buffer-size"); 96 if (Attr.isStringAttribute() && 97 Attr.getValueAsString().getAsInteger(10, SSPBufferSize)) 98 return false; // Invalid integer string 99 100 if (!RequiresStackProtector()) 101 return false; 102 103 // TODO(etienneb): Functions with funclets are not correctly supported now. 104 // Do nothing if this is funclet-based personality. 105 if (Fn.hasPersonalityFn()) { 106 EHPersonality Personality = classifyEHPersonality(Fn.getPersonalityFn()); 107 if (isFuncletEHPersonality(Personality)) 108 return false; 109 } 110 111 ++NumFunProtected; 112 return InsertStackProtectors(); 113 } 114 115 /// \param [out] IsLarge is set to true if a protectable array is found and 116 /// it is "large" ( >= ssp-buffer-size). In the case of a structure with 117 /// multiple arrays, this gets set if any of them is large. 118 bool StackProtector::ContainsProtectableArray(Type *Ty, bool &IsLarge, 119 bool Strong, 120 bool InStruct) const { 121 if (!Ty) 122 return false; 123 if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) { 124 if (!AT->getElementType()->isIntegerTy(8)) { 125 // If we're on a non-Darwin platform or we're inside of a structure, don't 126 // add stack protectors unless the array is a character array. 127 // However, in strong mode any array, regardless of type and size, 128 // triggers a protector. 129 if (!Strong && (InStruct || !Trip.isOSDarwin())) 130 return false; 131 } 132 133 // If an array has more than SSPBufferSize bytes of allocated space, then we 134 // emit stack protectors. 135 if (SSPBufferSize <= M->getDataLayout().getTypeAllocSize(AT)) { 136 IsLarge = true; 137 return true; 138 } 139 140 if (Strong) 141 // Require a protector for all arrays in strong mode 142 return true; 143 } 144 145 const StructType *ST = dyn_cast<StructType>(Ty); 146 if (!ST) 147 return false; 148 149 bool NeedsProtector = false; 150 for (StructType::element_iterator I = ST->element_begin(), 151 E = ST->element_end(); 152 I != E; ++I) 153 if (ContainsProtectableArray(*I, IsLarge, Strong, true)) { 154 // If the element is a protectable array and is large (>= SSPBufferSize) 155 // then we are done. If the protectable array is not large, then 156 // keep looking in case a subsequent element is a large array. 157 if (IsLarge) 158 return true; 159 NeedsProtector = true; 160 } 161 162 return NeedsProtector; 163 } 164 165 bool StackProtector::HasAddressTaken(const Instruction *AI, 166 uint64_t AllocSize) { 167 const DataLayout &DL = M->getDataLayout(); 168 for (const User *U : AI->users()) { 169 const auto *I = cast<Instruction>(U); 170 // If this instruction accesses memory make sure it doesn't access beyond 171 // the bounds of the allocated object. 172 Optional<MemoryLocation> MemLoc = MemoryLocation::getOrNone(I); 173 if (MemLoc.hasValue() && MemLoc->Size.getValue() > AllocSize) 174 return true; 175 switch (I->getOpcode()) { 176 case Instruction::Store: 177 if (AI == cast<StoreInst>(I)->getValueOperand()) 178 return true; 179 break; 180 case Instruction::AtomicCmpXchg: 181 // cmpxchg conceptually includes both a load and store from the same 182 // location. So, like store, the value being stored is what matters. 183 if (AI == cast<AtomicCmpXchgInst>(I)->getNewValOperand()) 184 return true; 185 break; 186 case Instruction::PtrToInt: 187 if (AI == cast<PtrToIntInst>(I)->getOperand(0)) 188 return true; 189 break; 190 case Instruction::Call: { 191 // Ignore intrinsics that do not become real instructions. 192 // TODO: Narrow this to intrinsics that have store-like effects. 193 const auto *CI = cast<CallInst>(I); 194 if (!isa<DbgInfoIntrinsic>(CI) && !CI->isLifetimeStartOrEnd()) 195 return true; 196 break; 197 } 198 case Instruction::Invoke: 199 return true; 200 case Instruction::GetElementPtr: { 201 // If the GEP offset is out-of-bounds, or is non-constant and so has to be 202 // assumed to be potentially out-of-bounds, then any memory access that 203 // would use it could also be out-of-bounds meaning stack protection is 204 // required. 205 const GetElementPtrInst *GEP = cast<GetElementPtrInst>(I); 206 unsigned TypeSize = DL.getIndexTypeSizeInBits(I->getType()); 207 APInt Offset(TypeSize, 0); 208 APInt MaxOffset(TypeSize, AllocSize); 209 if (!GEP->accumulateConstantOffset(DL, Offset) || Offset.ugt(MaxOffset)) 210 return true; 211 // Adjust AllocSize to be the space remaining after this offset. 212 if (HasAddressTaken(I, AllocSize - Offset.getLimitedValue())) 213 return true; 214 break; 215 } 216 case Instruction::BitCast: 217 case Instruction::Select: 218 case Instruction::AddrSpaceCast: 219 if (HasAddressTaken(I, AllocSize)) 220 return true; 221 break; 222 case Instruction::PHI: { 223 // Keep track of what PHI nodes we have already visited to ensure 224 // they are only visited once. 225 const auto *PN = cast<PHINode>(I); 226 if (VisitedPHIs.insert(PN).second) 227 if (HasAddressTaken(PN, AllocSize)) 228 return true; 229 break; 230 } 231 case Instruction::Load: 232 case Instruction::AtomicRMW: 233 case Instruction::Ret: 234 // These instructions take an address operand, but have load-like or 235 // other innocuous behavior that should not trigger a stack protector. 236 // atomicrmw conceptually has both load and store semantics, but the 237 // value being stored must be integer; so if a pointer is being stored, 238 // we'll catch it in the PtrToInt case above. 239 break; 240 default: 241 // Conservatively return true for any instruction that takes an address 242 // operand, but is not handled above. 243 return true; 244 } 245 } 246 return false; 247 } 248 249 /// Search for the first call to the llvm.stackprotector intrinsic and return it 250 /// if present. 251 static const CallInst *findStackProtectorIntrinsic(Function &F) { 252 for (const BasicBlock &BB : F) 253 for (const Instruction &I : BB) 254 if (const auto *II = dyn_cast<IntrinsicInst>(&I)) 255 if (II->getIntrinsicID() == Intrinsic::stackprotector) 256 return II; 257 return nullptr; 258 } 259 260 /// Check whether or not this function needs a stack protector based 261 /// upon the stack protector level. 262 /// 263 /// We use two heuristics: a standard (ssp) and strong (sspstrong). 264 /// The standard heuristic which will add a guard variable to functions that 265 /// call alloca with a either a variable size or a size >= SSPBufferSize, 266 /// functions with character buffers larger than SSPBufferSize, and functions 267 /// with aggregates containing character buffers larger than SSPBufferSize. The 268 /// strong heuristic will add a guard variables to functions that call alloca 269 /// regardless of size, functions with any buffer regardless of type and size, 270 /// functions with aggregates that contain any buffer regardless of type and 271 /// size, and functions that contain stack-based variables that have had their 272 /// address taken. 273 bool StackProtector::RequiresStackProtector() { 274 bool Strong = false; 275 bool NeedsProtector = false; 276 HasPrologue = findStackProtectorIntrinsic(*F); 277 278 if (F->hasFnAttribute(Attribute::SafeStack)) 279 return false; 280 281 // We are constructing the OptimizationRemarkEmitter on the fly rather than 282 // using the analysis pass to avoid building DominatorTree and LoopInfo which 283 // are not available this late in the IR pipeline. 284 OptimizationRemarkEmitter ORE(F); 285 286 if (F->hasFnAttribute(Attribute::StackProtectReq)) { 287 ORE.emit([&]() { 288 return OptimizationRemark(DEBUG_TYPE, "StackProtectorRequested", F) 289 << "Stack protection applied to function " 290 << ore::NV("Function", F) 291 << " due to a function attribute or command-line switch"; 292 }); 293 NeedsProtector = true; 294 Strong = true; // Use the same heuristic as strong to determine SSPLayout 295 } else if (F->hasFnAttribute(Attribute::StackProtectStrong)) 296 Strong = true; 297 else if (HasPrologue) 298 NeedsProtector = true; 299 else if (!F->hasFnAttribute(Attribute::StackProtect)) 300 return false; 301 302 for (const BasicBlock &BB : *F) { 303 for (const Instruction &I : BB) { 304 if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) { 305 if (AI->isArrayAllocation()) { 306 auto RemarkBuilder = [&]() { 307 return OptimizationRemark(DEBUG_TYPE, "StackProtectorAllocaOrArray", 308 &I) 309 << "Stack protection applied to function " 310 << ore::NV("Function", F) 311 << " due to a call to alloca or use of a variable length " 312 "array"; 313 }; 314 if (const auto *CI = dyn_cast<ConstantInt>(AI->getArraySize())) { 315 if (CI->getLimitedValue(SSPBufferSize) >= SSPBufferSize) { 316 // A call to alloca with size >= SSPBufferSize requires 317 // stack protectors. 318 Layout.insert(std::make_pair(AI, 319 MachineFrameInfo::SSPLK_LargeArray)); 320 ORE.emit(RemarkBuilder); 321 NeedsProtector = true; 322 } else if (Strong) { 323 // Require protectors for all alloca calls in strong mode. 324 Layout.insert(std::make_pair(AI, 325 MachineFrameInfo::SSPLK_SmallArray)); 326 ORE.emit(RemarkBuilder); 327 NeedsProtector = true; 328 } 329 } else { 330 // A call to alloca with a variable size requires protectors. 331 Layout.insert(std::make_pair(AI, 332 MachineFrameInfo::SSPLK_LargeArray)); 333 ORE.emit(RemarkBuilder); 334 NeedsProtector = true; 335 } 336 continue; 337 } 338 339 bool IsLarge = false; 340 if (ContainsProtectableArray(AI->getAllocatedType(), IsLarge, Strong)) { 341 Layout.insert(std::make_pair(AI, IsLarge 342 ? MachineFrameInfo::SSPLK_LargeArray 343 : MachineFrameInfo::SSPLK_SmallArray)); 344 ORE.emit([&]() { 345 return OptimizationRemark(DEBUG_TYPE, "StackProtectorBuffer", &I) 346 << "Stack protection applied to function " 347 << ore::NV("Function", F) 348 << " due to a stack allocated buffer or struct containing a " 349 "buffer"; 350 }); 351 NeedsProtector = true; 352 continue; 353 } 354 355 if (Strong && HasAddressTaken(AI, M->getDataLayout().getTypeAllocSize( 356 AI->getAllocatedType()))) { 357 ++NumAddrTaken; 358 Layout.insert(std::make_pair(AI, MachineFrameInfo::SSPLK_AddrOf)); 359 ORE.emit([&]() { 360 return OptimizationRemark(DEBUG_TYPE, "StackProtectorAddressTaken", 361 &I) 362 << "Stack protection applied to function " 363 << ore::NV("Function", F) 364 << " due to the address of a local variable being taken"; 365 }); 366 NeedsProtector = true; 367 } 368 // Clear any PHIs that we visited, to make sure we examine all uses of 369 // any subsequent allocas that we look at. 370 VisitedPHIs.clear(); 371 } 372 } 373 } 374 375 return NeedsProtector; 376 } 377 378 /// Create a stack guard loading and populate whether SelectionDAG SSP is 379 /// supported. 380 static Value *getStackGuard(const TargetLoweringBase *TLI, Module *M, 381 IRBuilder<> &B, 382 bool *SupportsSelectionDAGSP = nullptr) { 383 if (Value *Guard = TLI->getIRStackGuard(B)) 384 return B.CreateLoad(B.getInt8PtrTy(), Guard, true, "StackGuard"); 385 386 // Use SelectionDAG SSP handling, since there isn't an IR guard. 387 // 388 // This is more or less weird, since we optionally output whether we 389 // should perform a SelectionDAG SP here. The reason is that it's strictly 390 // defined as !TLI->getIRStackGuard(B), where getIRStackGuard is also 391 // mutating. There is no way to get this bit without mutating the IR, so 392 // getting this bit has to happen in this right time. 393 // 394 // We could have define a new function TLI::supportsSelectionDAGSP(), but that 395 // will put more burden on the backends' overriding work, especially when it 396 // actually conveys the same information getIRStackGuard() already gives. 397 if (SupportsSelectionDAGSP) 398 *SupportsSelectionDAGSP = true; 399 TLI->insertSSPDeclarations(*M); 400 return B.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackguard)); 401 } 402 403 /// Insert code into the entry block that stores the stack guard 404 /// variable onto the stack: 405 /// 406 /// entry: 407 /// StackGuardSlot = alloca i8* 408 /// StackGuard = <stack guard> 409 /// call void @llvm.stackprotector(StackGuard, StackGuardSlot) 410 /// 411 /// Returns true if the platform/triple supports the stackprotectorcreate pseudo 412 /// node. 413 static bool CreatePrologue(Function *F, Module *M, ReturnInst *RI, 414 const TargetLoweringBase *TLI, AllocaInst *&AI) { 415 bool SupportsSelectionDAGSP = false; 416 IRBuilder<> B(&F->getEntryBlock().front()); 417 PointerType *PtrTy = Type::getInt8PtrTy(RI->getContext()); 418 AI = B.CreateAlloca(PtrTy, nullptr, "StackGuardSlot"); 419 420 Value *GuardSlot = getStackGuard(TLI, M, B, &SupportsSelectionDAGSP); 421 B.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackprotector), 422 {GuardSlot, AI}); 423 return SupportsSelectionDAGSP; 424 } 425 426 /// InsertStackProtectors - Insert code into the prologue and epilogue of the 427 /// function. 428 /// 429 /// - The prologue code loads and stores the stack guard onto the stack. 430 /// - The epilogue checks the value stored in the prologue against the original 431 /// value. It calls __stack_chk_fail if they differ. 432 bool StackProtector::InsertStackProtectors() { 433 // If the target wants to XOR the frame pointer into the guard value, it's 434 // impossible to emit the check in IR, so the target *must* support stack 435 // protection in SDAG. 436 bool SupportsSelectionDAGSP = 437 TLI->useStackGuardXorFP() || 438 (EnableSelectionDAGSP && !TM->Options.EnableFastISel && 439 !TM->Options.EnableGlobalISel); 440 AllocaInst *AI = nullptr; // Place on stack that stores the stack guard. 441 442 for (Function::iterator I = F->begin(), E = F->end(); I != E;) { 443 BasicBlock *BB = &*I++; 444 ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()); 445 if (!RI) 446 continue; 447 448 // Generate prologue instrumentation if not already generated. 449 if (!HasPrologue) { 450 HasPrologue = true; 451 SupportsSelectionDAGSP &= CreatePrologue(F, M, RI, TLI, AI); 452 } 453 454 // SelectionDAG based code generation. Nothing else needs to be done here. 455 // The epilogue instrumentation is postponed to SelectionDAG. 456 if (SupportsSelectionDAGSP) 457 break; 458 459 // Find the stack guard slot if the prologue was not created by this pass 460 // itself via a previous call to CreatePrologue(). 461 if (!AI) { 462 const CallInst *SPCall = findStackProtectorIntrinsic(*F); 463 assert(SPCall && "Call to llvm.stackprotector is missing"); 464 AI = cast<AllocaInst>(SPCall->getArgOperand(1)); 465 } 466 467 // Set HasIRCheck to true, so that SelectionDAG will not generate its own 468 // version. SelectionDAG called 'shouldEmitSDCheck' to check whether 469 // instrumentation has already been generated. 470 HasIRCheck = true; 471 472 // Generate epilogue instrumentation. The epilogue intrumentation can be 473 // function-based or inlined depending on which mechanism the target is 474 // providing. 475 if (Function *GuardCheck = TLI->getSSPStackGuardCheck(*M)) { 476 // Generate the function-based epilogue instrumentation. 477 // The target provides a guard check function, generate a call to it. 478 IRBuilder<> B(RI); 479 LoadInst *Guard = B.CreateLoad(B.getInt8PtrTy(), AI, true, "Guard"); 480 CallInst *Call = B.CreateCall(GuardCheck, {Guard}); 481 Call->setAttributes(GuardCheck->getAttributes()); 482 Call->setCallingConv(GuardCheck->getCallingConv()); 483 } else { 484 // Generate the epilogue with inline instrumentation. 485 // If we do not support SelectionDAG based tail calls, generate IR level 486 // tail calls. 487 // 488 // For each block with a return instruction, convert this: 489 // 490 // return: 491 // ... 492 // ret ... 493 // 494 // into this: 495 // 496 // return: 497 // ... 498 // %1 = <stack guard> 499 // %2 = load StackGuardSlot 500 // %3 = cmp i1 %1, %2 501 // br i1 %3, label %SP_return, label %CallStackCheckFailBlk 502 // 503 // SP_return: 504 // ret ... 505 // 506 // CallStackCheckFailBlk: 507 // call void @__stack_chk_fail() 508 // unreachable 509 510 // Create the FailBB. We duplicate the BB every time since the MI tail 511 // merge pass will merge together all of the various BB into one including 512 // fail BB generated by the stack protector pseudo instruction. 513 BasicBlock *FailBB = CreateFailBB(); 514 515 // Split the basic block before the return instruction. 516 BasicBlock *NewBB = BB->splitBasicBlock(RI->getIterator(), "SP_return"); 517 518 // Update the dominator tree if we need to. 519 if (DT && DT->isReachableFromEntry(BB)) { 520 DT->addNewBlock(NewBB, BB); 521 DT->addNewBlock(FailBB, BB); 522 } 523 524 // Remove default branch instruction to the new BB. 525 BB->getTerminator()->eraseFromParent(); 526 527 // Move the newly created basic block to the point right after the old 528 // basic block so that it's in the "fall through" position. 529 NewBB->moveAfter(BB); 530 531 // Generate the stack protector instructions in the old basic block. 532 IRBuilder<> B(BB); 533 Value *Guard = getStackGuard(TLI, M, B); 534 LoadInst *LI2 = B.CreateLoad(B.getInt8PtrTy(), AI, true); 535 Value *Cmp = B.CreateICmpEQ(Guard, LI2); 536 auto SuccessProb = 537 BranchProbabilityInfo::getBranchProbStackProtector(true); 538 auto FailureProb = 539 BranchProbabilityInfo::getBranchProbStackProtector(false); 540 MDNode *Weights = MDBuilder(F->getContext()) 541 .createBranchWeights(SuccessProb.getNumerator(), 542 FailureProb.getNumerator()); 543 B.CreateCondBr(Cmp, NewBB, FailBB, Weights); 544 } 545 } 546 547 // Return if we didn't modify any basic blocks. i.e., there are no return 548 // statements in the function. 549 return HasPrologue; 550 } 551 552 /// CreateFailBB - Create a basic block to jump to when the stack protector 553 /// check fails. 554 BasicBlock *StackProtector::CreateFailBB() { 555 LLVMContext &Context = F->getContext(); 556 BasicBlock *FailBB = BasicBlock::Create(Context, "CallStackCheckFailBlk", F); 557 IRBuilder<> B(FailBB); 558 B.SetCurrentDebugLocation(DebugLoc::get(0, 0, F->getSubprogram())); 559 if (Trip.isOSOpenBSD()) { 560 FunctionCallee StackChkFail = M->getOrInsertFunction( 561 "__stack_smash_handler", Type::getVoidTy(Context), 562 Type::getInt8PtrTy(Context)); 563 564 B.CreateCall(StackChkFail, B.CreateGlobalStringPtr(F->getName(), "SSH")); 565 } else { 566 FunctionCallee StackChkFail = 567 M->getOrInsertFunction("__stack_chk_fail", Type::getVoidTy(Context)); 568 569 B.CreateCall(StackChkFail, {}); 570 } 571 B.CreateUnreachable(); 572 return FailBB; 573 } 574 575 bool StackProtector::shouldEmitSDCheck(const BasicBlock &BB) const { 576 return HasPrologue && !HasIRCheck && isa<ReturnInst>(BB.getTerminator()); 577 } 578 579 void StackProtector::copyToMachineFrameInfo(MachineFrameInfo &MFI) const { 580 if (Layout.empty()) 581 return; 582 583 for (int I = 0, E = MFI.getObjectIndexEnd(); I != E; ++I) { 584 if (MFI.isDeadObjectIndex(I)) 585 continue; 586 587 const AllocaInst *AI = MFI.getObjectAllocation(I); 588 if (!AI) 589 continue; 590 591 SSPLayoutMap::const_iterator LI = Layout.find(AI); 592 if (LI == Layout.end()) 593 continue; 594 595 MFI.setObjectSSPLayout(I, LI->second); 596 } 597 } 598