1 //===-- StackProtector.cpp - Stack Protector Insertion --------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass inserts stack protectors into functions which need them. A variable 11 // with a random value in it is stored onto the stack before the local variables 12 // are allocated. Upon exiting the block, the stored value is checked. If it's 13 // changed, then there was some sort of violation and the program aborts. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/CodeGen/StackProtector.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/BranchProbabilityInfo.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/CodeGen/Analysis.h" 23 #include "llvm/CodeGen/Passes.h" 24 #include "llvm/IR/Attributes.h" 25 #include "llvm/IR/Constants.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/DerivedTypes.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/IR/GlobalValue.h" 30 #include "llvm/IR/GlobalVariable.h" 31 #include "llvm/IR/IRBuilder.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/Intrinsics.h" 35 #include "llvm/IR/MDBuilder.h" 36 #include "llvm/IR/Module.h" 37 #include "llvm/Support/CommandLine.h" 38 #include "llvm/Target/TargetSubtargetInfo.h" 39 #include <cstdlib> 40 using namespace llvm; 41 42 #define DEBUG_TYPE "stack-protector" 43 44 STATISTIC(NumFunProtected, "Number of functions protected"); 45 STATISTIC(NumAddrTaken, "Number of local variables that have their address" 46 " taken."); 47 48 static cl::opt<bool> EnableSelectionDAGSP("enable-selectiondag-sp", 49 cl::init(true), cl::Hidden); 50 51 char StackProtector::ID = 0; 52 INITIALIZE_PASS(StackProtector, "stack-protector", "Insert stack protectors", 53 false, true) 54 55 FunctionPass *llvm::createStackProtectorPass(const TargetMachine *TM) { 56 return new StackProtector(TM); 57 } 58 59 StackProtector::SSPLayoutKind 60 StackProtector::getSSPLayout(const AllocaInst *AI) const { 61 return AI ? Layout.lookup(AI) : SSPLK_None; 62 } 63 64 void StackProtector::adjustForColoring(const AllocaInst *From, 65 const AllocaInst *To) { 66 // When coloring replaces one alloca with another, transfer the SSPLayoutKind 67 // tag from the remapped to the target alloca. The remapped alloca should 68 // have a size smaller than or equal to the replacement alloca. 69 SSPLayoutMap::iterator I = Layout.find(From); 70 if (I != Layout.end()) { 71 SSPLayoutKind Kind = I->second; 72 Layout.erase(I); 73 74 // Transfer the tag, but make sure that SSPLK_AddrOf does not overwrite 75 // SSPLK_SmallArray or SSPLK_LargeArray, and make sure that 76 // SSPLK_SmallArray does not overwrite SSPLK_LargeArray. 77 I = Layout.find(To); 78 if (I == Layout.end()) 79 Layout.insert(std::make_pair(To, Kind)); 80 else if (I->second != SSPLK_LargeArray && Kind != SSPLK_AddrOf) 81 I->second = Kind; 82 } 83 } 84 85 bool StackProtector::runOnFunction(Function &Fn) { 86 F = &Fn; 87 M = F->getParent(); 88 DominatorTreeWrapperPass *DTWP = 89 getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 90 DT = DTWP ? &DTWP->getDomTree() : nullptr; 91 TLI = TM->getSubtargetImpl(Fn)->getTargetLowering(); 92 HasPrologue = false; 93 HasIRCheck = false; 94 95 Attribute Attr = Fn.getFnAttribute("stack-protector-buffer-size"); 96 if (Attr.isStringAttribute() && 97 Attr.getValueAsString().getAsInteger(10, SSPBufferSize)) 98 return false; // Invalid integer string 99 100 if (!RequiresStackProtector()) 101 return false; 102 103 ++NumFunProtected; 104 return InsertStackProtectors(); 105 } 106 107 /// \param [out] IsLarge is set to true if a protectable array is found and 108 /// it is "large" ( >= ssp-buffer-size). In the case of a structure with 109 /// multiple arrays, this gets set if any of them is large. 110 bool StackProtector::ContainsProtectableArray(Type *Ty, bool &IsLarge, 111 bool Strong, 112 bool InStruct) const { 113 if (!Ty) 114 return false; 115 if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) { 116 if (!AT->getElementType()->isIntegerTy(8)) { 117 // If we're on a non-Darwin platform or we're inside of a structure, don't 118 // add stack protectors unless the array is a character array. 119 // However, in strong mode any array, regardless of type and size, 120 // triggers a protector. 121 if (!Strong && (InStruct || !Trip.isOSDarwin())) 122 return false; 123 } 124 125 // If an array has more than SSPBufferSize bytes of allocated space, then we 126 // emit stack protectors. 127 if (SSPBufferSize <= M->getDataLayout().getTypeAllocSize(AT)) { 128 IsLarge = true; 129 return true; 130 } 131 132 if (Strong) 133 // Require a protector for all arrays in strong mode 134 return true; 135 } 136 137 const StructType *ST = dyn_cast<StructType>(Ty); 138 if (!ST) 139 return false; 140 141 bool NeedsProtector = false; 142 for (StructType::element_iterator I = ST->element_begin(), 143 E = ST->element_end(); 144 I != E; ++I) 145 if (ContainsProtectableArray(*I, IsLarge, Strong, true)) { 146 // If the element is a protectable array and is large (>= SSPBufferSize) 147 // then we are done. If the protectable array is not large, then 148 // keep looking in case a subsequent element is a large array. 149 if (IsLarge) 150 return true; 151 NeedsProtector = true; 152 } 153 154 return NeedsProtector; 155 } 156 157 bool StackProtector::HasAddressTaken(const Instruction *AI) { 158 for (const User *U : AI->users()) { 159 if (const StoreInst *SI = dyn_cast<StoreInst>(U)) { 160 if (AI == SI->getValueOperand()) 161 return true; 162 } else if (const PtrToIntInst *SI = dyn_cast<PtrToIntInst>(U)) { 163 if (AI == SI->getOperand(0)) 164 return true; 165 } else if (isa<CallInst>(U)) { 166 return true; 167 } else if (isa<InvokeInst>(U)) { 168 return true; 169 } else if (const SelectInst *SI = dyn_cast<SelectInst>(U)) { 170 if (HasAddressTaken(SI)) 171 return true; 172 } else if (const PHINode *PN = dyn_cast<PHINode>(U)) { 173 // Keep track of what PHI nodes we have already visited to ensure 174 // they are only visited once. 175 if (VisitedPHIs.insert(PN).second) 176 if (HasAddressTaken(PN)) 177 return true; 178 } else if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) { 179 if (HasAddressTaken(GEP)) 180 return true; 181 } else if (const BitCastInst *BI = dyn_cast<BitCastInst>(U)) { 182 if (HasAddressTaken(BI)) 183 return true; 184 } 185 } 186 return false; 187 } 188 189 /// \brief Check whether or not this function needs a stack protector based 190 /// upon the stack protector level. 191 /// 192 /// We use two heuristics: a standard (ssp) and strong (sspstrong). 193 /// The standard heuristic which will add a guard variable to functions that 194 /// call alloca with a either a variable size or a size >= SSPBufferSize, 195 /// functions with character buffers larger than SSPBufferSize, and functions 196 /// with aggregates containing character buffers larger than SSPBufferSize. The 197 /// strong heuristic will add a guard variables to functions that call alloca 198 /// regardless of size, functions with any buffer regardless of type and size, 199 /// functions with aggregates that contain any buffer regardless of type and 200 /// size, and functions that contain stack-based variables that have had their 201 /// address taken. 202 bool StackProtector::RequiresStackProtector() { 203 bool Strong = false; 204 bool NeedsProtector = false; 205 for (const BasicBlock &BB : *F) 206 for (const Instruction &I : BB) 207 if (const CallInst *CI = dyn_cast<CallInst>(&I)) 208 if (CI->getCalledFunction() == 209 Intrinsic::getDeclaration(F->getParent(), 210 Intrinsic::stackprotector)) 211 HasPrologue = true; 212 213 if (F->hasFnAttribute(Attribute::SafeStack)) 214 return false; 215 216 if (F->hasFnAttribute(Attribute::StackProtectReq)) { 217 NeedsProtector = true; 218 Strong = true; // Use the same heuristic as strong to determine SSPLayout 219 } else if (F->hasFnAttribute(Attribute::StackProtectStrong)) 220 Strong = true; 221 else if (HasPrologue) 222 NeedsProtector = true; 223 else if (!F->hasFnAttribute(Attribute::StackProtect)) 224 return false; 225 226 for (const BasicBlock &BB : *F) { 227 for (const Instruction &I : BB) { 228 if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) { 229 if (AI->isArrayAllocation()) { 230 // SSP-Strong: Enable protectors for any call to alloca, regardless 231 // of size. 232 if (Strong) 233 return true; 234 235 if (const auto *CI = dyn_cast<ConstantInt>(AI->getArraySize())) { 236 if (CI->getLimitedValue(SSPBufferSize) >= SSPBufferSize) { 237 // A call to alloca with size >= SSPBufferSize requires 238 // stack protectors. 239 Layout.insert(std::make_pair(AI, SSPLK_LargeArray)); 240 NeedsProtector = true; 241 } else if (Strong) { 242 // Require protectors for all alloca calls in strong mode. 243 Layout.insert(std::make_pair(AI, SSPLK_SmallArray)); 244 NeedsProtector = true; 245 } 246 } else { 247 // A call to alloca with a variable size requires protectors. 248 Layout.insert(std::make_pair(AI, SSPLK_LargeArray)); 249 NeedsProtector = true; 250 } 251 continue; 252 } 253 254 bool IsLarge = false; 255 if (ContainsProtectableArray(AI->getAllocatedType(), IsLarge, Strong)) { 256 Layout.insert(std::make_pair(AI, IsLarge ? SSPLK_LargeArray 257 : SSPLK_SmallArray)); 258 NeedsProtector = true; 259 continue; 260 } 261 262 if (Strong && HasAddressTaken(AI)) { 263 ++NumAddrTaken; 264 Layout.insert(std::make_pair(AI, SSPLK_AddrOf)); 265 NeedsProtector = true; 266 } 267 } 268 } 269 } 270 271 return NeedsProtector; 272 } 273 274 /// Create a stack guard loading and populate whether SelectionDAG SSP is 275 /// supported. 276 static Value *getStackGuard(const TargetLoweringBase *TLI, Module *M, 277 IRBuilder<> &B, 278 bool *SupportsSelectionDAGSP = nullptr) { 279 if (Value *Guard = TLI->getIRStackGuard(B)) 280 return B.CreateLoad(Guard, true, "StackGuard"); 281 282 // Use SelectionDAG SSP handling, since there isn't an IR guard. 283 // 284 // This is more or less weird, since we optionally output whether we 285 // should perform a SelectionDAG SP here. The reason is that it's strictly 286 // defined as !TLI->getIRStackGuard(B), where getIRStackGuard is also 287 // mutating. There is no way to get this bit without mutating the IR, so 288 // getting this bit has to happen in this right time. 289 // 290 // We could have define a new function TLI::supportsSelectionDAGSP(), but that 291 // will put more burden on the backends' overriding work, especially when it 292 // actually conveys the same information getIRStackGuard() already gives. 293 if (SupportsSelectionDAGSP) 294 *SupportsSelectionDAGSP = true; 295 TLI->insertSSPDeclarations(*M); 296 return B.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackguard)); 297 } 298 299 /// Insert code into the entry block that stores the stack guard 300 /// variable onto the stack: 301 /// 302 /// entry: 303 /// StackGuardSlot = alloca i8* 304 /// StackGuard = <stack guard> 305 /// call void @llvm.stackprotector(StackGuard, StackGuardSlot) 306 /// 307 /// Returns true if the platform/triple supports the stackprotectorcreate pseudo 308 /// node. 309 static bool CreatePrologue(Function *F, Module *M, ReturnInst *RI, 310 const TargetLoweringBase *TLI, AllocaInst *&AI) { 311 bool SupportsSelectionDAGSP = false; 312 IRBuilder<> B(&F->getEntryBlock().front()); 313 PointerType *PtrTy = Type::getInt8PtrTy(RI->getContext()); 314 AI = B.CreateAlloca(PtrTy, nullptr, "StackGuardSlot"); 315 316 Value *Guard = getStackGuard(TLI, M, B, &SupportsSelectionDAGSP); 317 B.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackprotector), 318 {Guard, AI}); 319 return SupportsSelectionDAGSP; 320 } 321 322 /// InsertStackProtectors - Insert code into the prologue and epilogue of the 323 /// function. 324 /// 325 /// - The prologue code loads and stores the stack guard onto the stack. 326 /// - The epilogue checks the value stored in the prologue against the original 327 /// value. It calls __stack_chk_fail if they differ. 328 bool StackProtector::InsertStackProtectors() { 329 bool SupportsSelectionDAGSP = 330 EnableSelectionDAGSP && !TM->Options.EnableFastISel; 331 AllocaInst *AI = nullptr; // Place on stack that stores the stack guard. 332 333 for (Function::iterator I = F->begin(), E = F->end(); I != E;) { 334 BasicBlock *BB = &*I++; 335 ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()); 336 if (!RI) 337 continue; 338 339 if (!HasPrologue) { 340 HasPrologue = true; 341 SupportsSelectionDAGSP &= CreatePrologue(F, M, RI, TLI, AI); 342 } 343 344 if (!SupportsSelectionDAGSP) { 345 // If we do not support SelectionDAG based tail calls, generate IR level 346 // tail calls. 347 // 348 // For each block with a return instruction, convert this: 349 // 350 // return: 351 // ... 352 // ret ... 353 // 354 // into this: 355 // 356 // return: 357 // ... 358 // %1 = <stack guard> 359 // %2 = load StackGuardSlot 360 // %3 = cmp i1 %1, %2 361 // br i1 %3, label %SP_return, label %CallStackCheckFailBlk 362 // 363 // SP_return: 364 // ret ... 365 // 366 // CallStackCheckFailBlk: 367 // call void @__stack_chk_fail() 368 // unreachable 369 370 // Create the FailBB. We duplicate the BB every time since the MI tail 371 // merge pass will merge together all of the various BB into one including 372 // fail BB generated by the stack protector pseudo instruction. 373 BasicBlock *FailBB = CreateFailBB(); 374 375 // Set HasIRCheck to true, so that SelectionDAG will not generate its own 376 // version. 377 HasIRCheck = true; 378 379 // Split the basic block before the return instruction. 380 BasicBlock *NewBB = BB->splitBasicBlock(RI->getIterator(), "SP_return"); 381 382 // Update the dominator tree if we need to. 383 if (DT && DT->isReachableFromEntry(BB)) { 384 DT->addNewBlock(NewBB, BB); 385 DT->addNewBlock(FailBB, BB); 386 } 387 388 // Remove default branch instruction to the new BB. 389 BB->getTerminator()->eraseFromParent(); 390 391 // Move the newly created basic block to the point right after the old 392 // basic block so that it's in the "fall through" position. 393 NewBB->moveAfter(BB); 394 395 // Generate the stack protector instructions in the old basic block. 396 IRBuilder<> B(BB); 397 Value *Guard = getStackGuard(TLI, M, B); 398 LoadInst *LI2 = B.CreateLoad(AI, true); 399 Value *Cmp = B.CreateICmpEQ(Guard, LI2); 400 auto SuccessProb = 401 BranchProbabilityInfo::getBranchProbStackProtector(true); 402 auto FailureProb = 403 BranchProbabilityInfo::getBranchProbStackProtector(false); 404 MDNode *Weights = MDBuilder(F->getContext()) 405 .createBranchWeights(SuccessProb.getNumerator(), 406 FailureProb.getNumerator()); 407 B.CreateCondBr(Cmp, NewBB, FailBB, Weights); 408 } 409 } 410 411 // Return if we didn't modify any basic blocks. i.e., there are no return 412 // statements in the function. 413 return HasPrologue; 414 } 415 416 /// CreateFailBB - Create a basic block to jump to when the stack protector 417 /// check fails. 418 BasicBlock *StackProtector::CreateFailBB() { 419 LLVMContext &Context = F->getContext(); 420 BasicBlock *FailBB = BasicBlock::Create(Context, "CallStackCheckFailBlk", F); 421 IRBuilder<> B(FailBB); 422 if (Trip.isOSOpenBSD()) { 423 Constant *StackChkFail = 424 M->getOrInsertFunction("__stack_smash_handler", 425 Type::getVoidTy(Context), 426 Type::getInt8PtrTy(Context), nullptr); 427 428 B.CreateCall(StackChkFail, B.CreateGlobalStringPtr(F->getName(), "SSH")); 429 } else { 430 Constant *StackChkFail = 431 M->getOrInsertFunction("__stack_chk_fail", Type::getVoidTy(Context), 432 nullptr); 433 B.CreateCall(StackChkFail, {}); 434 } 435 B.CreateUnreachable(); 436 return FailBB; 437 } 438 439 bool StackProtector::shouldEmitSDCheck(const BasicBlock &BB) const { 440 return HasPrologue && !HasIRCheck && dyn_cast<ReturnInst>(BB.getTerminator()); 441 } 442