1 //===-- StackColoring.cpp -------------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass implements the stack-coloring optimization that looks for 11 // lifetime markers machine instructions (LIFESTART_BEGIN and LIFESTART_END), 12 // which represent the possible lifetime of stack slots. It attempts to 13 // merge disjoint stack slots and reduce the used stack space. 14 // NOTE: This pass is not StackSlotColoring, which optimizes spill slots. 15 // 16 // TODO: In the future we plan to improve stack coloring in the following ways: 17 // 1. Allow merging multiple small slots into a single larger slot at different 18 // offsets. 19 // 2. Merge this pass with StackSlotColoring and allow merging of allocas with 20 // spill slots. 21 // 22 //===----------------------------------------------------------------------===// 23 24 #include "llvm/ADT/BitVector.h" 25 #include "llvm/ADT/DepthFirstIterator.h" 26 #include "llvm/ADT/PostOrderIterator.h" 27 #include "llvm/ADT/SetVector.h" 28 #include "llvm/ADT/SmallPtrSet.h" 29 #include "llvm/ADT/Statistic.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/CodeGen/LiveInterval.h" 32 #include "llvm/CodeGen/MachineBasicBlock.h" 33 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 34 #include "llvm/CodeGen/MachineDominators.h" 35 #include "llvm/CodeGen/MachineFrameInfo.h" 36 #include "llvm/CodeGen/MachineFunctionPass.h" 37 #include "llvm/CodeGen/MachineLoopInfo.h" 38 #include "llvm/CodeGen/MachineMemOperand.h" 39 #include "llvm/CodeGen/MachineModuleInfo.h" 40 #include "llvm/CodeGen/MachineRegisterInfo.h" 41 #include "llvm/CodeGen/Passes.h" 42 #include "llvm/CodeGen/PseudoSourceValue.h" 43 #include "llvm/CodeGen/SlotIndexes.h" 44 #include "llvm/CodeGen/StackProtector.h" 45 #include "llvm/CodeGen/WinEHFuncInfo.h" 46 #include "llvm/IR/DebugInfo.h" 47 #include "llvm/IR/Dominators.h" 48 #include "llvm/IR/Function.h" 49 #include "llvm/IR/Instructions.h" 50 #include "llvm/IR/IntrinsicInst.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/Support/CommandLine.h" 53 #include "llvm/Support/Debug.h" 54 #include "llvm/Support/raw_ostream.h" 55 #include "llvm/Target/TargetInstrInfo.h" 56 #include "llvm/Target/TargetRegisterInfo.h" 57 58 using namespace llvm; 59 60 #define DEBUG_TYPE "stackcoloring" 61 62 static cl::opt<bool> 63 DisableColoring("no-stack-coloring", 64 cl::init(false), cl::Hidden, 65 cl::desc("Disable stack coloring")); 66 67 /// The user may write code that uses allocas outside of the declared lifetime 68 /// zone. This can happen when the user returns a reference to a local 69 /// data-structure. We can detect these cases and decide not to optimize the 70 /// code. If this flag is enabled, we try to save the user. 71 static cl::opt<bool> 72 ProtectFromEscapedAllocas("protect-from-escaped-allocas", 73 cl::init(false), cl::Hidden, 74 cl::desc("Do not optimize lifetime zones that " 75 "are broken")); 76 77 STATISTIC(NumMarkerSeen, "Number of lifetime markers found."); 78 STATISTIC(StackSpaceSaved, "Number of bytes saved due to merging slots."); 79 STATISTIC(StackSlotMerged, "Number of stack slot merged."); 80 STATISTIC(EscapedAllocas, "Number of allocas that escaped the lifetime region"); 81 82 //===----------------------------------------------------------------------===// 83 // StackColoring Pass 84 //===----------------------------------------------------------------------===// 85 86 namespace { 87 /// StackColoring - A machine pass for merging disjoint stack allocations, 88 /// marked by the LIFETIME_START and LIFETIME_END pseudo instructions. 89 class StackColoring : public MachineFunctionPass { 90 MachineFrameInfo *MFI; 91 MachineFunction *MF; 92 93 /// A class representing liveness information for a single basic block. 94 /// Each bit in the BitVector represents the liveness property 95 /// for a different stack slot. 96 struct BlockLifetimeInfo { 97 /// Which slots BEGINs in each basic block. 98 BitVector Begin; 99 /// Which slots ENDs in each basic block. 100 BitVector End; 101 /// Which slots are marked as LIVE_IN, coming into each basic block. 102 BitVector LiveIn; 103 /// Which slots are marked as LIVE_OUT, coming out of each basic block. 104 BitVector LiveOut; 105 }; 106 107 /// Maps active slots (per bit) for each basic block. 108 typedef DenseMap<const MachineBasicBlock*, BlockLifetimeInfo> LivenessMap; 109 LivenessMap BlockLiveness; 110 111 /// Maps serial numbers to basic blocks. 112 DenseMap<const MachineBasicBlock*, int> BasicBlocks; 113 /// Maps basic blocks to a serial number. 114 SmallVector<const MachineBasicBlock*, 8> BasicBlockNumbering; 115 116 /// Maps liveness intervals for each slot. 117 SmallVector<std::unique_ptr<LiveInterval>, 16> Intervals; 118 /// VNInfo is used for the construction of LiveIntervals. 119 VNInfo::Allocator VNInfoAllocator; 120 /// SlotIndex analysis object. 121 SlotIndexes *Indexes; 122 /// The stack protector object. 123 StackProtector *SP; 124 125 /// The list of lifetime markers found. These markers are to be removed 126 /// once the coloring is done. 127 SmallVector<MachineInstr*, 8> Markers; 128 129 public: 130 static char ID; 131 StackColoring() : MachineFunctionPass(ID) { 132 initializeStackColoringPass(*PassRegistry::getPassRegistry()); 133 } 134 void getAnalysisUsage(AnalysisUsage &AU) const override; 135 bool runOnMachineFunction(MachineFunction &MF) override; 136 137 private: 138 /// Debug. 139 void dump() const; 140 141 /// Removes all of the lifetime marker instructions from the function. 142 /// \returns true if any markers were removed. 143 bool removeAllMarkers(); 144 145 /// Scan the machine function and find all of the lifetime markers. 146 /// Record the findings in the BEGIN and END vectors. 147 /// \returns the number of markers found. 148 unsigned collectMarkers(unsigned NumSlot); 149 150 /// Perform the dataflow calculation and calculate the lifetime for each of 151 /// the slots, based on the BEGIN/END vectors. Set the LifetimeLIVE_IN and 152 /// LifetimeLIVE_OUT maps that represent which stack slots are live coming 153 /// in and out blocks. 154 void calculateLocalLiveness(); 155 156 /// Construct the LiveIntervals for the slots. 157 void calculateLiveIntervals(unsigned NumSlots); 158 159 /// Go over the machine function and change instructions which use stack 160 /// slots to use the joint slots. 161 void remapInstructions(DenseMap<int, int> &SlotRemap); 162 163 /// The input program may contain instructions which are not inside lifetime 164 /// markers. This can happen due to a bug in the compiler or due to a bug in 165 /// user code (for example, returning a reference to a local variable). 166 /// This procedure checks all of the instructions in the function and 167 /// invalidates lifetime ranges which do not contain all of the instructions 168 /// which access that frame slot. 169 void removeInvalidSlotRanges(); 170 171 /// Map entries which point to other entries to their destination. 172 /// A->B->C becomes A->C. 173 void expungeSlotMap(DenseMap<int, int> &SlotRemap, unsigned NumSlots); 174 }; 175 } // end anonymous namespace 176 177 char StackColoring::ID = 0; 178 char &llvm::StackColoringID = StackColoring::ID; 179 180 INITIALIZE_PASS_BEGIN(StackColoring, 181 "stack-coloring", "Merge disjoint stack slots", false, false) 182 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 183 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 184 INITIALIZE_PASS_DEPENDENCY(StackProtector) 185 INITIALIZE_PASS_END(StackColoring, 186 "stack-coloring", "Merge disjoint stack slots", false, false) 187 188 void StackColoring::getAnalysisUsage(AnalysisUsage &AU) const { 189 AU.addRequired<MachineDominatorTree>(); 190 AU.addPreserved<MachineDominatorTree>(); 191 AU.addRequired<SlotIndexes>(); 192 AU.addRequired<StackProtector>(); 193 MachineFunctionPass::getAnalysisUsage(AU); 194 } 195 196 LLVM_DUMP_METHOD void StackColoring::dump() const { 197 for (MachineBasicBlock *MBB : depth_first(MF)) { 198 DEBUG(dbgs() << "Inspecting block #" << BasicBlocks.lookup(MBB) << " [" 199 << MBB->getName() << "]\n"); 200 201 LivenessMap::const_iterator BI = BlockLiveness.find(MBB); 202 assert(BI != BlockLiveness.end() && "Block not found"); 203 const BlockLifetimeInfo &BlockInfo = BI->second; 204 205 DEBUG(dbgs()<<"BEGIN : {"); 206 for (unsigned i=0; i < BlockInfo.Begin.size(); ++i) 207 DEBUG(dbgs()<<BlockInfo.Begin.test(i)<<" "); 208 DEBUG(dbgs()<<"}\n"); 209 210 DEBUG(dbgs()<<"END : {"); 211 for (unsigned i=0; i < BlockInfo.End.size(); ++i) 212 DEBUG(dbgs()<<BlockInfo.End.test(i)<<" "); 213 214 DEBUG(dbgs()<<"}\n"); 215 216 DEBUG(dbgs()<<"LIVE_IN: {"); 217 for (unsigned i=0; i < BlockInfo.LiveIn.size(); ++i) 218 DEBUG(dbgs()<<BlockInfo.LiveIn.test(i)<<" "); 219 220 DEBUG(dbgs()<<"}\n"); 221 DEBUG(dbgs()<<"LIVEOUT: {"); 222 for (unsigned i=0; i < BlockInfo.LiveOut.size(); ++i) 223 DEBUG(dbgs()<<BlockInfo.LiveOut.test(i)<<" "); 224 DEBUG(dbgs()<<"}\n"); 225 } 226 } 227 228 unsigned StackColoring::collectMarkers(unsigned NumSlot) { 229 unsigned MarkersFound = 0; 230 // Scan the function to find all lifetime markers. 231 // NOTE: We use a reverse-post-order iteration to ensure that we obtain a 232 // deterministic numbering, and because we'll need a post-order iteration 233 // later for solving the liveness dataflow problem. 234 for (MachineBasicBlock *MBB : depth_first(MF)) { 235 236 // Assign a serial number to this basic block. 237 BasicBlocks[MBB] = BasicBlockNumbering.size(); 238 BasicBlockNumbering.push_back(MBB); 239 240 // Keep a reference to avoid repeated lookups. 241 BlockLifetimeInfo &BlockInfo = BlockLiveness[MBB]; 242 243 BlockInfo.Begin.resize(NumSlot); 244 BlockInfo.End.resize(NumSlot); 245 246 for (MachineInstr &MI : *MBB) { 247 if (MI.getOpcode() != TargetOpcode::LIFETIME_START && 248 MI.getOpcode() != TargetOpcode::LIFETIME_END) 249 continue; 250 251 bool IsStart = MI.getOpcode() == TargetOpcode::LIFETIME_START; 252 const MachineOperand &MO = MI.getOperand(0); 253 int Slot = MO.getIndex(); 254 if (Slot < 0) 255 continue; 256 257 Markers.push_back(&MI); 258 259 MarkersFound++; 260 261 const AllocaInst *Allocation = MFI->getObjectAllocation(Slot); 262 if (Allocation) { 263 DEBUG(dbgs()<<"Found a lifetime marker for slot #"<<Slot<< 264 " with allocation: "<< Allocation->getName()<<"\n"); 265 } 266 267 if (IsStart) { 268 BlockInfo.Begin.set(Slot); 269 } else { 270 if (BlockInfo.Begin.test(Slot)) { 271 // Allocas that start and end within a single block are handled 272 // specially when computing the LiveIntervals to avoid pessimizing 273 // the liveness propagation. 274 BlockInfo.Begin.reset(Slot); 275 } else { 276 BlockInfo.End.set(Slot); 277 } 278 } 279 } 280 } 281 282 // Update statistics. 283 NumMarkerSeen += MarkersFound; 284 return MarkersFound; 285 } 286 287 void StackColoring::calculateLocalLiveness() { 288 // Perform a standard reverse dataflow computation to solve for 289 // global liveness. The BEGIN set here is equivalent to KILL in the standard 290 // formulation, and END is equivalent to GEN. The result of this computation 291 // is a map from blocks to bitvectors where the bitvectors represent which 292 // allocas are live in/out of that block. 293 SmallPtrSet<const MachineBasicBlock*, 8> BBSet(BasicBlockNumbering.begin(), 294 BasicBlockNumbering.end()); 295 unsigned NumSSMIters = 0; 296 bool changed = true; 297 while (changed) { 298 changed = false; 299 ++NumSSMIters; 300 301 SmallPtrSet<const MachineBasicBlock*, 8> NextBBSet; 302 303 for (const MachineBasicBlock *BB : BasicBlockNumbering) { 304 if (!BBSet.count(BB)) continue; 305 306 // Use an iterator to avoid repeated lookups. 307 LivenessMap::iterator BI = BlockLiveness.find(BB); 308 assert(BI != BlockLiveness.end() && "Block not found"); 309 BlockLifetimeInfo &BlockInfo = BI->second; 310 311 BitVector LocalLiveIn; 312 BitVector LocalLiveOut; 313 314 // Forward propagation from begins to ends. 315 for (MachineBasicBlock::const_pred_iterator PI = BB->pred_begin(), 316 PE = BB->pred_end(); PI != PE; ++PI) { 317 LivenessMap::const_iterator I = BlockLiveness.find(*PI); 318 assert(I != BlockLiveness.end() && "Predecessor not found"); 319 LocalLiveIn |= I->second.LiveOut; 320 } 321 LocalLiveIn |= BlockInfo.End; 322 LocalLiveIn.reset(BlockInfo.Begin); 323 324 // Reverse propagation from ends to begins. 325 for (MachineBasicBlock::const_succ_iterator SI = BB->succ_begin(), 326 SE = BB->succ_end(); SI != SE; ++SI) { 327 LivenessMap::const_iterator I = BlockLiveness.find(*SI); 328 assert(I != BlockLiveness.end() && "Successor not found"); 329 LocalLiveOut |= I->second.LiveIn; 330 } 331 LocalLiveOut |= BlockInfo.Begin; 332 LocalLiveOut.reset(BlockInfo.End); 333 334 LocalLiveIn |= LocalLiveOut; 335 LocalLiveOut |= LocalLiveIn; 336 337 // After adopting the live bits, we need to turn-off the bits which 338 // are de-activated in this block. 339 LocalLiveOut.reset(BlockInfo.End); 340 LocalLiveIn.reset(BlockInfo.Begin); 341 342 // If we have both BEGIN and END markers in the same basic block then 343 // we know that the BEGIN marker comes after the END, because we already 344 // handle the case where the BEGIN comes before the END when collecting 345 // the markers (and building the BEGIN/END vectore). 346 // Want to enable the LIVE_IN and LIVE_OUT of slots that have both 347 // BEGIN and END because it means that the value lives before and after 348 // this basic block. 349 BitVector LocalEndBegin = BlockInfo.End; 350 LocalEndBegin &= BlockInfo.Begin; 351 LocalLiveIn |= LocalEndBegin; 352 LocalLiveOut |= LocalEndBegin; 353 354 if (LocalLiveIn.test(BlockInfo.LiveIn)) { 355 changed = true; 356 BlockInfo.LiveIn |= LocalLiveIn; 357 358 NextBBSet.insert(BB->pred_begin(), BB->pred_end()); 359 } 360 361 if (LocalLiveOut.test(BlockInfo.LiveOut)) { 362 changed = true; 363 BlockInfo.LiveOut |= LocalLiveOut; 364 365 NextBBSet.insert(BB->succ_begin(), BB->succ_end()); 366 } 367 } 368 369 BBSet = std::move(NextBBSet); 370 }// while changed. 371 } 372 373 void StackColoring::calculateLiveIntervals(unsigned NumSlots) { 374 SmallVector<SlotIndex, 16> Starts; 375 SmallVector<SlotIndex, 16> Finishes; 376 377 // For each block, find which slots are active within this block 378 // and update the live intervals. 379 for (const MachineBasicBlock &MBB : *MF) { 380 Starts.clear(); 381 Starts.resize(NumSlots); 382 Finishes.clear(); 383 Finishes.resize(NumSlots); 384 385 // Create the interval for the basic blocks with lifetime markers in them. 386 for (const MachineInstr *MI : Markers) { 387 if (MI->getParent() != &MBB) 388 continue; 389 390 assert((MI->getOpcode() == TargetOpcode::LIFETIME_START || 391 MI->getOpcode() == TargetOpcode::LIFETIME_END) && 392 "Invalid Lifetime marker"); 393 394 bool IsStart = MI->getOpcode() == TargetOpcode::LIFETIME_START; 395 const MachineOperand &Mo = MI->getOperand(0); 396 int Slot = Mo.getIndex(); 397 if (Slot < 0) 398 continue; 399 400 SlotIndex ThisIndex = Indexes->getInstructionIndex(*MI); 401 402 if (IsStart) { 403 if (!Starts[Slot].isValid() || Starts[Slot] > ThisIndex) 404 Starts[Slot] = ThisIndex; 405 } else { 406 if (!Finishes[Slot].isValid() || Finishes[Slot] < ThisIndex) 407 Finishes[Slot] = ThisIndex; 408 } 409 } 410 411 // Create the interval of the blocks that we previously found to be 'alive'. 412 BlockLifetimeInfo &MBBLiveness = BlockLiveness[&MBB]; 413 for (int pos = MBBLiveness.LiveIn.find_first(); pos != -1; 414 pos = MBBLiveness.LiveIn.find_next(pos)) { 415 Starts[pos] = Indexes->getMBBStartIdx(&MBB); 416 } 417 for (int pos = MBBLiveness.LiveOut.find_first(); pos != -1; 418 pos = MBBLiveness.LiveOut.find_next(pos)) { 419 Finishes[pos] = Indexes->getMBBEndIdx(&MBB); 420 } 421 422 for (unsigned i = 0; i < NumSlots; ++i) { 423 assert(Starts[i].isValid() == Finishes[i].isValid() && "Unmatched range"); 424 if (!Starts[i].isValid()) 425 continue; 426 427 assert(Starts[i] && Finishes[i] && "Invalid interval"); 428 VNInfo *ValNum = Intervals[i]->getValNumInfo(0); 429 SlotIndex S = Starts[i]; 430 SlotIndex F = Finishes[i]; 431 if (S < F) { 432 // We have a single consecutive region. 433 Intervals[i]->addSegment(LiveInterval::Segment(S, F, ValNum)); 434 } else { 435 // We have two non-consecutive regions. This happens when 436 // LIFETIME_START appears after the LIFETIME_END marker. 437 SlotIndex NewStart = Indexes->getMBBStartIdx(&MBB); 438 SlotIndex NewFin = Indexes->getMBBEndIdx(&MBB); 439 Intervals[i]->addSegment(LiveInterval::Segment(NewStart, F, ValNum)); 440 Intervals[i]->addSegment(LiveInterval::Segment(S, NewFin, ValNum)); 441 } 442 } 443 } 444 } 445 446 bool StackColoring::removeAllMarkers() { 447 unsigned Count = 0; 448 for (MachineInstr *MI : Markers) { 449 MI->eraseFromParent(); 450 Count++; 451 } 452 Markers.clear(); 453 454 DEBUG(dbgs()<<"Removed "<<Count<<" markers.\n"); 455 return Count; 456 } 457 458 void StackColoring::remapInstructions(DenseMap<int, int> &SlotRemap) { 459 unsigned FixedInstr = 0; 460 unsigned FixedMemOp = 0; 461 unsigned FixedDbg = 0; 462 MachineModuleInfo *MMI = &MF->getMMI(); 463 464 // Remap debug information that refers to stack slots. 465 for (auto &VI : MMI->getVariableDbgInfo()) { 466 if (!VI.Var) 467 continue; 468 if (SlotRemap.count(VI.Slot)) { 469 DEBUG(dbgs() << "Remapping debug info for [" 470 << cast<DILocalVariable>(VI.Var)->getName() << "].\n"); 471 VI.Slot = SlotRemap[VI.Slot]; 472 FixedDbg++; 473 } 474 } 475 476 // Keep a list of *allocas* which need to be remapped. 477 DenseMap<const AllocaInst*, const AllocaInst*> Allocas; 478 for (const std::pair<int, int> &SI : SlotRemap) { 479 const AllocaInst *From = MFI->getObjectAllocation(SI.first); 480 const AllocaInst *To = MFI->getObjectAllocation(SI.second); 481 assert(To && From && "Invalid allocation object"); 482 Allocas[From] = To; 483 484 // AA might be used later for instruction scheduling, and we need it to be 485 // able to deduce the correct aliasing releationships between pointers 486 // derived from the alloca being remapped and the target of that remapping. 487 // The only safe way, without directly informing AA about the remapping 488 // somehow, is to directly update the IR to reflect the change being made 489 // here. 490 Instruction *Inst = const_cast<AllocaInst *>(To); 491 if (From->getType() != To->getType()) { 492 BitCastInst *Cast = new BitCastInst(Inst, From->getType()); 493 Cast->insertAfter(Inst); 494 Inst = Cast; 495 } 496 497 // Allow the stack protector to adjust its value map to account for the 498 // upcoming replacement. 499 SP->adjustForColoring(From, To); 500 501 // The new alloca might not be valid in a llvm.dbg.declare for this 502 // variable, so undef out the use to make the verifier happy. 503 AllocaInst *FromAI = const_cast<AllocaInst *>(From); 504 if (FromAI->isUsedByMetadata()) 505 ValueAsMetadata::handleRAUW(FromAI, UndefValue::get(FromAI->getType())); 506 for (auto &Use : FromAI->uses()) { 507 if (BitCastInst *BCI = dyn_cast<BitCastInst>(Use.get())) 508 if (BCI->isUsedByMetadata()) 509 ValueAsMetadata::handleRAUW(BCI, UndefValue::get(BCI->getType())); 510 } 511 512 // Note that this will not replace uses in MMOs (which we'll update below), 513 // or anywhere else (which is why we won't delete the original 514 // instruction). 515 FromAI->replaceAllUsesWith(Inst); 516 } 517 518 // Remap all instructions to the new stack slots. 519 for (MachineBasicBlock &BB : *MF) 520 for (MachineInstr &I : BB) { 521 // Skip lifetime markers. We'll remove them soon. 522 if (I.getOpcode() == TargetOpcode::LIFETIME_START || 523 I.getOpcode() == TargetOpcode::LIFETIME_END) 524 continue; 525 526 // Update the MachineMemOperand to use the new alloca. 527 for (MachineMemOperand *MMO : I.memoperands()) { 528 // FIXME: In order to enable the use of TBAA when using AA in CodeGen, 529 // we'll also need to update the TBAA nodes in MMOs with values 530 // derived from the merged allocas. When doing this, we'll need to use 531 // the same variant of GetUnderlyingObjects that is used by the 532 // instruction scheduler (that can look through ptrtoint/inttoptr 533 // pairs). 534 535 // We've replaced IR-level uses of the remapped allocas, so we only 536 // need to replace direct uses here. 537 const AllocaInst *AI = dyn_cast_or_null<AllocaInst>(MMO->getValue()); 538 if (!AI) 539 continue; 540 541 if (!Allocas.count(AI)) 542 continue; 543 544 MMO->setValue(Allocas[AI]); 545 FixedMemOp++; 546 } 547 548 // Update all of the machine instruction operands. 549 for (MachineOperand &MO : I.operands()) { 550 if (!MO.isFI()) 551 continue; 552 int FromSlot = MO.getIndex(); 553 554 // Don't touch arguments. 555 if (FromSlot<0) 556 continue; 557 558 // Only look at mapped slots. 559 if (!SlotRemap.count(FromSlot)) 560 continue; 561 562 // In a debug build, check that the instruction that we are modifying is 563 // inside the expected live range. If the instruction is not inside 564 // the calculated range then it means that the alloca usage moved 565 // outside of the lifetime markers, or that the user has a bug. 566 // NOTE: Alloca address calculations which happen outside the lifetime 567 // zone are are okay, despite the fact that we don't have a good way 568 // for validating all of the usages of the calculation. 569 #ifndef NDEBUG 570 bool TouchesMemory = I.mayLoad() || I.mayStore(); 571 // If we *don't* protect the user from escaped allocas, don't bother 572 // validating the instructions. 573 if (!I.isDebugValue() && TouchesMemory && ProtectFromEscapedAllocas) { 574 SlotIndex Index = Indexes->getInstructionIndex(I); 575 const LiveInterval *Interval = &*Intervals[FromSlot]; 576 assert(Interval->find(Index) != Interval->end() && 577 "Found instruction usage outside of live range."); 578 } 579 #endif 580 581 // Fix the machine instructions. 582 int ToSlot = SlotRemap[FromSlot]; 583 MO.setIndex(ToSlot); 584 FixedInstr++; 585 } 586 } 587 588 // Update the location of C++ catch objects for the MSVC personality routine. 589 if (WinEHFuncInfo *EHInfo = MF->getWinEHFuncInfo()) 590 for (WinEHTryBlockMapEntry &TBME : EHInfo->TryBlockMap) 591 for (WinEHHandlerType &H : TBME.HandlerArray) 592 if (H.CatchObj.FrameIndex != INT_MAX && 593 SlotRemap.count(H.CatchObj.FrameIndex)) 594 H.CatchObj.FrameIndex = SlotRemap[H.CatchObj.FrameIndex]; 595 596 DEBUG(dbgs()<<"Fixed "<<FixedMemOp<<" machine memory operands.\n"); 597 DEBUG(dbgs()<<"Fixed "<<FixedDbg<<" debug locations.\n"); 598 DEBUG(dbgs()<<"Fixed "<<FixedInstr<<" machine instructions.\n"); 599 } 600 601 void StackColoring::removeInvalidSlotRanges() { 602 for (MachineBasicBlock &BB : *MF) 603 for (MachineInstr &I : BB) { 604 if (I.getOpcode() == TargetOpcode::LIFETIME_START || 605 I.getOpcode() == TargetOpcode::LIFETIME_END || I.isDebugValue()) 606 continue; 607 608 // Some intervals are suspicious! In some cases we find address 609 // calculations outside of the lifetime zone, but not actual memory 610 // read or write. Memory accesses outside of the lifetime zone are a clear 611 // violation, but address calculations are okay. This can happen when 612 // GEPs are hoisted outside of the lifetime zone. 613 // So, in here we only check instructions which can read or write memory. 614 if (!I.mayLoad() && !I.mayStore()) 615 continue; 616 617 // Check all of the machine operands. 618 for (const MachineOperand &MO : I.operands()) { 619 if (!MO.isFI()) 620 continue; 621 622 int Slot = MO.getIndex(); 623 624 if (Slot<0) 625 continue; 626 627 if (Intervals[Slot]->empty()) 628 continue; 629 630 // Check that the used slot is inside the calculated lifetime range. 631 // If it is not, warn about it and invalidate the range. 632 LiveInterval *Interval = &*Intervals[Slot]; 633 SlotIndex Index = Indexes->getInstructionIndex(I); 634 if (Interval->find(Index) == Interval->end()) { 635 Interval->clear(); 636 DEBUG(dbgs()<<"Invalidating range #"<<Slot<<"\n"); 637 EscapedAllocas++; 638 } 639 } 640 } 641 } 642 643 void StackColoring::expungeSlotMap(DenseMap<int, int> &SlotRemap, 644 unsigned NumSlots) { 645 // Expunge slot remap map. 646 for (unsigned i=0; i < NumSlots; ++i) { 647 // If we are remapping i 648 if (SlotRemap.count(i)) { 649 int Target = SlotRemap[i]; 650 // As long as our target is mapped to something else, follow it. 651 while (SlotRemap.count(Target)) { 652 Target = SlotRemap[Target]; 653 SlotRemap[i] = Target; 654 } 655 } 656 } 657 } 658 659 bool StackColoring::runOnMachineFunction(MachineFunction &Func) { 660 if (skipFunction(*Func.getFunction())) 661 return false; 662 663 DEBUG(dbgs() << "********** Stack Coloring **********\n" 664 << "********** Function: " 665 << ((const Value*)Func.getFunction())->getName() << '\n'); 666 MF = &Func; 667 MFI = MF->getFrameInfo(); 668 Indexes = &getAnalysis<SlotIndexes>(); 669 SP = &getAnalysis<StackProtector>(); 670 BlockLiveness.clear(); 671 BasicBlocks.clear(); 672 BasicBlockNumbering.clear(); 673 Markers.clear(); 674 Intervals.clear(); 675 VNInfoAllocator.Reset(); 676 677 unsigned NumSlots = MFI->getObjectIndexEnd(); 678 679 // If there are no stack slots then there are no markers to remove. 680 if (!NumSlots) 681 return false; 682 683 SmallVector<int, 8> SortedSlots; 684 685 SortedSlots.reserve(NumSlots); 686 Intervals.reserve(NumSlots); 687 688 unsigned NumMarkers = collectMarkers(NumSlots); 689 690 unsigned TotalSize = 0; 691 DEBUG(dbgs()<<"Found "<<NumMarkers<<" markers and "<<NumSlots<<" slots\n"); 692 DEBUG(dbgs()<<"Slot structure:\n"); 693 694 for (int i=0; i < MFI->getObjectIndexEnd(); ++i) { 695 DEBUG(dbgs()<<"Slot #"<<i<<" - "<<MFI->getObjectSize(i)<<" bytes.\n"); 696 TotalSize += MFI->getObjectSize(i); 697 } 698 699 DEBUG(dbgs()<<"Total Stack size: "<<TotalSize<<" bytes\n\n"); 700 701 // Don't continue because there are not enough lifetime markers, or the 702 // stack is too small, or we are told not to optimize the slots. 703 if (NumMarkers < 2 || TotalSize < 16 || DisableColoring) { 704 DEBUG(dbgs()<<"Will not try to merge slots.\n"); 705 return removeAllMarkers(); 706 } 707 708 for (unsigned i=0; i < NumSlots; ++i) { 709 std::unique_ptr<LiveInterval> LI(new LiveInterval(i, 0)); 710 LI->getNextValue(Indexes->getZeroIndex(), VNInfoAllocator); 711 Intervals.push_back(std::move(LI)); 712 SortedSlots.push_back(i); 713 } 714 715 // Calculate the liveness of each block. 716 calculateLocalLiveness(); 717 718 // Propagate the liveness information. 719 calculateLiveIntervals(NumSlots); 720 721 // Search for allocas which are used outside of the declared lifetime 722 // markers. 723 if (ProtectFromEscapedAllocas) 724 removeInvalidSlotRanges(); 725 726 // Maps old slots to new slots. 727 DenseMap<int, int> SlotRemap; 728 unsigned RemovedSlots = 0; 729 unsigned ReducedSize = 0; 730 731 // Do not bother looking at empty intervals. 732 for (unsigned I = 0; I < NumSlots; ++I) { 733 if (Intervals[SortedSlots[I]]->empty()) 734 SortedSlots[I] = -1; 735 } 736 737 // This is a simple greedy algorithm for merging allocas. First, sort the 738 // slots, placing the largest slots first. Next, perform an n^2 scan and look 739 // for disjoint slots. When you find disjoint slots, merge the samller one 740 // into the bigger one and update the live interval. Remove the small alloca 741 // and continue. 742 743 // Sort the slots according to their size. Place unused slots at the end. 744 // Use stable sort to guarantee deterministic code generation. 745 std::stable_sort(SortedSlots.begin(), SortedSlots.end(), 746 [this](int LHS, int RHS) { 747 // We use -1 to denote a uninteresting slot. Place these slots at the end. 748 if (LHS == -1) return false; 749 if (RHS == -1) return true; 750 // Sort according to size. 751 return MFI->getObjectSize(LHS) > MFI->getObjectSize(RHS); 752 }); 753 754 bool Changed = true; 755 while (Changed) { 756 Changed = false; 757 for (unsigned I = 0; I < NumSlots; ++I) { 758 if (SortedSlots[I] == -1) 759 continue; 760 761 for (unsigned J=I+1; J < NumSlots; ++J) { 762 if (SortedSlots[J] == -1) 763 continue; 764 765 int FirstSlot = SortedSlots[I]; 766 int SecondSlot = SortedSlots[J]; 767 LiveInterval *First = &*Intervals[FirstSlot]; 768 LiveInterval *Second = &*Intervals[SecondSlot]; 769 assert (!First->empty() && !Second->empty() && "Found an empty range"); 770 771 // Merge disjoint slots. 772 if (!First->overlaps(*Second)) { 773 Changed = true; 774 First->MergeSegmentsInAsValue(*Second, First->getValNumInfo(0)); 775 SlotRemap[SecondSlot] = FirstSlot; 776 SortedSlots[J] = -1; 777 DEBUG(dbgs()<<"Merging #"<<FirstSlot<<" and slots #"<< 778 SecondSlot<<" together.\n"); 779 unsigned MaxAlignment = std::max(MFI->getObjectAlignment(FirstSlot), 780 MFI->getObjectAlignment(SecondSlot)); 781 782 assert(MFI->getObjectSize(FirstSlot) >= 783 MFI->getObjectSize(SecondSlot) && 784 "Merging a small object into a larger one"); 785 786 RemovedSlots+=1; 787 ReducedSize += MFI->getObjectSize(SecondSlot); 788 MFI->setObjectAlignment(FirstSlot, MaxAlignment); 789 MFI->RemoveStackObject(SecondSlot); 790 } 791 } 792 } 793 }// While changed. 794 795 // Record statistics. 796 StackSpaceSaved += ReducedSize; 797 StackSlotMerged += RemovedSlots; 798 DEBUG(dbgs()<<"Merge "<<RemovedSlots<<" slots. Saved "<< 799 ReducedSize<<" bytes\n"); 800 801 // Scan the entire function and update all machine operands that use frame 802 // indices to use the remapped frame index. 803 expungeSlotMap(SlotRemap, NumSlots); 804 remapInstructions(SlotRemap); 805 806 return removeAllMarkers(); 807 } 808