1 //===-- StackColoring.cpp -------------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass implements the stack-coloring optimization that looks for 11 // lifetime markers machine instructions (LIFESTART_BEGIN and LIFESTART_END), 12 // which represent the possible lifetime of stack slots. It attempts to 13 // merge disjoint stack slots and reduce the used stack space. 14 // NOTE: This pass is not StackSlotColoring, which optimizes spill slots. 15 // 16 // TODO: In the future we plan to improve stack coloring in the following ways: 17 // 1. Allow merging multiple small slots into a single larger slot at different 18 // offsets. 19 // 2. Merge this pass with StackSlotColoring and allow merging of allocas with 20 // spill slots. 21 // 22 //===----------------------------------------------------------------------===// 23 24 #include "llvm/ADT/BitVector.h" 25 #include "llvm/ADT/DepthFirstIterator.h" 26 #include "llvm/ADT/PostOrderIterator.h" 27 #include "llvm/ADT/SetVector.h" 28 #include "llvm/ADT/SmallPtrSet.h" 29 #include "llvm/ADT/SparseSet.h" 30 #include "llvm/ADT/Statistic.h" 31 #include "llvm/Analysis/ValueTracking.h" 32 #include "llvm/CodeGen/LiveInterval.h" 33 #include "llvm/CodeGen/MachineBasicBlock.h" 34 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 35 #include "llvm/CodeGen/MachineDominators.h" 36 #include "llvm/CodeGen/MachineFrameInfo.h" 37 #include "llvm/CodeGen/MachineFunctionPass.h" 38 #include "llvm/CodeGen/MachineLoopInfo.h" 39 #include "llvm/CodeGen/MachineMemOperand.h" 40 #include "llvm/CodeGen/MachineModuleInfo.h" 41 #include "llvm/CodeGen/MachineRegisterInfo.h" 42 #include "llvm/CodeGen/Passes.h" 43 #include "llvm/CodeGen/PseudoSourceValue.h" 44 #include "llvm/CodeGen/SlotIndexes.h" 45 #include "llvm/CodeGen/StackProtector.h" 46 #include "llvm/CodeGen/WinEHFuncInfo.h" 47 #include "llvm/IR/DebugInfo.h" 48 #include "llvm/IR/Dominators.h" 49 #include "llvm/IR/Function.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/IR/IntrinsicInst.h" 52 #include "llvm/IR/Module.h" 53 #include "llvm/Support/CommandLine.h" 54 #include "llvm/Support/Debug.h" 55 #include "llvm/Support/raw_ostream.h" 56 #include "llvm/Target/TargetInstrInfo.h" 57 #include "llvm/Target/TargetRegisterInfo.h" 58 59 using namespace llvm; 60 61 #define DEBUG_TYPE "stackcoloring" 62 63 static cl::opt<bool> 64 DisableColoring("no-stack-coloring", 65 cl::init(false), cl::Hidden, 66 cl::desc("Disable stack coloring")); 67 68 /// The user may write code that uses allocas outside of the declared lifetime 69 /// zone. This can happen when the user returns a reference to a local 70 /// data-structure. We can detect these cases and decide not to optimize the 71 /// code. If this flag is enabled, we try to save the user. 72 static cl::opt<bool> 73 ProtectFromEscapedAllocas("protect-from-escaped-allocas", 74 cl::init(false), cl::Hidden, 75 cl::desc("Do not optimize lifetime zones that " 76 "are broken")); 77 78 STATISTIC(NumMarkerSeen, "Number of lifetime markers found."); 79 STATISTIC(StackSpaceSaved, "Number of bytes saved due to merging slots."); 80 STATISTIC(StackSlotMerged, "Number of stack slot merged."); 81 STATISTIC(EscapedAllocas, "Number of allocas that escaped the lifetime region"); 82 83 //===----------------------------------------------------------------------===// 84 // StackColoring Pass 85 //===----------------------------------------------------------------------===// 86 87 namespace { 88 /// StackColoring - A machine pass for merging disjoint stack allocations, 89 /// marked by the LIFETIME_START and LIFETIME_END pseudo instructions. 90 class StackColoring : public MachineFunctionPass { 91 MachineFrameInfo *MFI; 92 MachineFunction *MF; 93 94 /// A class representing liveness information for a single basic block. 95 /// Each bit in the BitVector represents the liveness property 96 /// for a different stack slot. 97 struct BlockLifetimeInfo { 98 /// Which slots BEGINs in each basic block. 99 BitVector Begin; 100 /// Which slots ENDs in each basic block. 101 BitVector End; 102 /// Which slots are marked as LIVE_IN, coming into each basic block. 103 BitVector LiveIn; 104 /// Which slots are marked as LIVE_OUT, coming out of each basic block. 105 BitVector LiveOut; 106 }; 107 108 /// Maps active slots (per bit) for each basic block. 109 typedef DenseMap<const MachineBasicBlock*, BlockLifetimeInfo> LivenessMap; 110 LivenessMap BlockLiveness; 111 112 /// Maps serial numbers to basic blocks. 113 DenseMap<const MachineBasicBlock*, int> BasicBlocks; 114 /// Maps basic blocks to a serial number. 115 SmallVector<const MachineBasicBlock*, 8> BasicBlockNumbering; 116 117 /// Maps liveness intervals for each slot. 118 SmallVector<std::unique_ptr<LiveInterval>, 16> Intervals; 119 /// VNInfo is used for the construction of LiveIntervals. 120 VNInfo::Allocator VNInfoAllocator; 121 /// SlotIndex analysis object. 122 SlotIndexes *Indexes; 123 /// The stack protector object. 124 StackProtector *SP; 125 126 /// The list of lifetime markers found. These markers are to be removed 127 /// once the coloring is done. 128 SmallVector<MachineInstr*, 8> Markers; 129 130 public: 131 static char ID; 132 StackColoring() : MachineFunctionPass(ID) { 133 initializeStackColoringPass(*PassRegistry::getPassRegistry()); 134 } 135 void getAnalysisUsage(AnalysisUsage &AU) const override; 136 bool runOnMachineFunction(MachineFunction &MF) override; 137 138 private: 139 /// Debug. 140 void dump() const; 141 142 /// Removes all of the lifetime marker instructions from the function. 143 /// \returns true if any markers were removed. 144 bool removeAllMarkers(); 145 146 /// Scan the machine function and find all of the lifetime markers. 147 /// Record the findings in the BEGIN and END vectors. 148 /// \returns the number of markers found. 149 unsigned collectMarkers(unsigned NumSlot); 150 151 /// Perform the dataflow calculation and calculate the lifetime for each of 152 /// the slots, based on the BEGIN/END vectors. Set the LifetimeLIVE_IN and 153 /// LifetimeLIVE_OUT maps that represent which stack slots are live coming 154 /// in and out blocks. 155 void calculateLocalLiveness(); 156 157 /// Construct the LiveIntervals for the slots. 158 void calculateLiveIntervals(unsigned NumSlots); 159 160 /// Go over the machine function and change instructions which use stack 161 /// slots to use the joint slots. 162 void remapInstructions(DenseMap<int, int> &SlotRemap); 163 164 /// The input program may contain instructions which are not inside lifetime 165 /// markers. This can happen due to a bug in the compiler or due to a bug in 166 /// user code (for example, returning a reference to a local variable). 167 /// This procedure checks all of the instructions in the function and 168 /// invalidates lifetime ranges which do not contain all of the instructions 169 /// which access that frame slot. 170 void removeInvalidSlotRanges(); 171 172 /// Map entries which point to other entries to their destination. 173 /// A->B->C becomes A->C. 174 void expungeSlotMap(DenseMap<int, int> &SlotRemap, unsigned NumSlots); 175 }; 176 } // end anonymous namespace 177 178 char StackColoring::ID = 0; 179 char &llvm::StackColoringID = StackColoring::ID; 180 181 INITIALIZE_PASS_BEGIN(StackColoring, 182 "stack-coloring", "Merge disjoint stack slots", false, false) 183 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 184 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 185 INITIALIZE_PASS_DEPENDENCY(StackProtector) 186 INITIALIZE_PASS_END(StackColoring, 187 "stack-coloring", "Merge disjoint stack slots", false, false) 188 189 void StackColoring::getAnalysisUsage(AnalysisUsage &AU) const { 190 AU.addRequired<MachineDominatorTree>(); 191 AU.addPreserved<MachineDominatorTree>(); 192 AU.addRequired<SlotIndexes>(); 193 AU.addRequired<StackProtector>(); 194 MachineFunctionPass::getAnalysisUsage(AU); 195 } 196 197 LLVM_DUMP_METHOD void StackColoring::dump() const { 198 for (MachineBasicBlock *MBB : depth_first(MF)) { 199 DEBUG(dbgs() << "Inspecting block #" << BasicBlocks.lookup(MBB) << " [" 200 << MBB->getName() << "]\n"); 201 202 LivenessMap::const_iterator BI = BlockLiveness.find(MBB); 203 assert(BI != BlockLiveness.end() && "Block not found"); 204 const BlockLifetimeInfo &BlockInfo = BI->second; 205 206 DEBUG(dbgs()<<"BEGIN : {"); 207 for (unsigned i=0; i < BlockInfo.Begin.size(); ++i) 208 DEBUG(dbgs()<<BlockInfo.Begin.test(i)<<" "); 209 DEBUG(dbgs()<<"}\n"); 210 211 DEBUG(dbgs()<<"END : {"); 212 for (unsigned i=0; i < BlockInfo.End.size(); ++i) 213 DEBUG(dbgs()<<BlockInfo.End.test(i)<<" "); 214 215 DEBUG(dbgs()<<"}\n"); 216 217 DEBUG(dbgs()<<"LIVE_IN: {"); 218 for (unsigned i=0; i < BlockInfo.LiveIn.size(); ++i) 219 DEBUG(dbgs()<<BlockInfo.LiveIn.test(i)<<" "); 220 221 DEBUG(dbgs()<<"}\n"); 222 DEBUG(dbgs()<<"LIVEOUT: {"); 223 for (unsigned i=0; i < BlockInfo.LiveOut.size(); ++i) 224 DEBUG(dbgs()<<BlockInfo.LiveOut.test(i)<<" "); 225 DEBUG(dbgs()<<"}\n"); 226 } 227 } 228 229 unsigned StackColoring::collectMarkers(unsigned NumSlot) { 230 unsigned MarkersFound = 0; 231 // Scan the function to find all lifetime markers. 232 // NOTE: We use a reverse-post-order iteration to ensure that we obtain a 233 // deterministic numbering, and because we'll need a post-order iteration 234 // later for solving the liveness dataflow problem. 235 for (MachineBasicBlock *MBB : depth_first(MF)) { 236 237 // Assign a serial number to this basic block. 238 BasicBlocks[MBB] = BasicBlockNumbering.size(); 239 BasicBlockNumbering.push_back(MBB); 240 241 // Keep a reference to avoid repeated lookups. 242 BlockLifetimeInfo &BlockInfo = BlockLiveness[MBB]; 243 244 BlockInfo.Begin.resize(NumSlot); 245 BlockInfo.End.resize(NumSlot); 246 247 for (MachineInstr &MI : *MBB) { 248 if (MI.getOpcode() != TargetOpcode::LIFETIME_START && 249 MI.getOpcode() != TargetOpcode::LIFETIME_END) 250 continue; 251 252 bool IsStart = MI.getOpcode() == TargetOpcode::LIFETIME_START; 253 const MachineOperand &MO = MI.getOperand(0); 254 int Slot = MO.getIndex(); 255 if (Slot < 0) 256 continue; 257 258 Markers.push_back(&MI); 259 260 MarkersFound++; 261 262 const AllocaInst *Allocation = MFI->getObjectAllocation(Slot); 263 if (Allocation) { 264 DEBUG(dbgs()<<"Found a lifetime marker for slot #"<<Slot<< 265 " with allocation: "<< Allocation->getName()<<"\n"); 266 } 267 268 if (IsStart) { 269 BlockInfo.Begin.set(Slot); 270 } else { 271 if (BlockInfo.Begin.test(Slot)) { 272 // Allocas that start and end within a single block are handled 273 // specially when computing the LiveIntervals to avoid pessimizing 274 // the liveness propagation. 275 BlockInfo.Begin.reset(Slot); 276 } else { 277 BlockInfo.End.set(Slot); 278 } 279 } 280 } 281 } 282 283 // Update statistics. 284 NumMarkerSeen += MarkersFound; 285 return MarkersFound; 286 } 287 288 void StackColoring::calculateLocalLiveness() { 289 // Perform a standard reverse dataflow computation to solve for 290 // global liveness. The BEGIN set here is equivalent to KILL in the standard 291 // formulation, and END is equivalent to GEN. The result of this computation 292 // is a map from blocks to bitvectors where the bitvectors represent which 293 // allocas are live in/out of that block. 294 SmallPtrSet<const MachineBasicBlock*, 8> BBSet(BasicBlockNumbering.begin(), 295 BasicBlockNumbering.end()); 296 unsigned NumSSMIters = 0; 297 bool changed = true; 298 while (changed) { 299 changed = false; 300 ++NumSSMIters; 301 302 SmallPtrSet<const MachineBasicBlock*, 8> NextBBSet; 303 304 for (const MachineBasicBlock *BB : BasicBlockNumbering) { 305 if (!BBSet.count(BB)) continue; 306 307 // Use an iterator to avoid repeated lookups. 308 LivenessMap::iterator BI = BlockLiveness.find(BB); 309 assert(BI != BlockLiveness.end() && "Block not found"); 310 BlockLifetimeInfo &BlockInfo = BI->second; 311 312 BitVector LocalLiveIn; 313 BitVector LocalLiveOut; 314 315 // Forward propagation from begins to ends. 316 for (MachineBasicBlock::const_pred_iterator PI = BB->pred_begin(), 317 PE = BB->pred_end(); PI != PE; ++PI) { 318 LivenessMap::const_iterator I = BlockLiveness.find(*PI); 319 assert(I != BlockLiveness.end() && "Predecessor not found"); 320 LocalLiveIn |= I->second.LiveOut; 321 } 322 LocalLiveIn |= BlockInfo.End; 323 LocalLiveIn.reset(BlockInfo.Begin); 324 325 // Reverse propagation from ends to begins. 326 for (MachineBasicBlock::const_succ_iterator SI = BB->succ_begin(), 327 SE = BB->succ_end(); SI != SE; ++SI) { 328 LivenessMap::const_iterator I = BlockLiveness.find(*SI); 329 assert(I != BlockLiveness.end() && "Successor not found"); 330 LocalLiveOut |= I->second.LiveIn; 331 } 332 LocalLiveOut |= BlockInfo.Begin; 333 LocalLiveOut.reset(BlockInfo.End); 334 335 LocalLiveIn |= LocalLiveOut; 336 LocalLiveOut |= LocalLiveIn; 337 338 // After adopting the live bits, we need to turn-off the bits which 339 // are de-activated in this block. 340 LocalLiveOut.reset(BlockInfo.End); 341 LocalLiveIn.reset(BlockInfo.Begin); 342 343 // If we have both BEGIN and END markers in the same basic block then 344 // we know that the BEGIN marker comes after the END, because we already 345 // handle the case where the BEGIN comes before the END when collecting 346 // the markers (and building the BEGIN/END vectore). 347 // Want to enable the LIVE_IN and LIVE_OUT of slots that have both 348 // BEGIN and END because it means that the value lives before and after 349 // this basic block. 350 BitVector LocalEndBegin = BlockInfo.End; 351 LocalEndBegin &= BlockInfo.Begin; 352 LocalLiveIn |= LocalEndBegin; 353 LocalLiveOut |= LocalEndBegin; 354 355 if (LocalLiveIn.test(BlockInfo.LiveIn)) { 356 changed = true; 357 BlockInfo.LiveIn |= LocalLiveIn; 358 359 NextBBSet.insert(BB->pred_begin(), BB->pred_end()); 360 } 361 362 if (LocalLiveOut.test(BlockInfo.LiveOut)) { 363 changed = true; 364 BlockInfo.LiveOut |= LocalLiveOut; 365 366 NextBBSet.insert(BB->succ_begin(), BB->succ_end()); 367 } 368 } 369 370 BBSet = std::move(NextBBSet); 371 }// while changed. 372 } 373 374 void StackColoring::calculateLiveIntervals(unsigned NumSlots) { 375 SmallVector<SlotIndex, 16> Starts; 376 SmallVector<SlotIndex, 16> Finishes; 377 378 // For each block, find which slots are active within this block 379 // and update the live intervals. 380 for (const MachineBasicBlock &MBB : *MF) { 381 Starts.clear(); 382 Starts.resize(NumSlots); 383 Finishes.clear(); 384 Finishes.resize(NumSlots); 385 386 // Create the interval for the basic blocks with lifetime markers in them. 387 for (const MachineInstr *MI : Markers) { 388 if (MI->getParent() != &MBB) 389 continue; 390 391 assert((MI->getOpcode() == TargetOpcode::LIFETIME_START || 392 MI->getOpcode() == TargetOpcode::LIFETIME_END) && 393 "Invalid Lifetime marker"); 394 395 bool IsStart = MI->getOpcode() == TargetOpcode::LIFETIME_START; 396 const MachineOperand &Mo = MI->getOperand(0); 397 int Slot = Mo.getIndex(); 398 if (Slot < 0) 399 continue; 400 401 SlotIndex ThisIndex = Indexes->getInstructionIndex(*MI); 402 403 if (IsStart) { 404 if (!Starts[Slot].isValid() || Starts[Slot] > ThisIndex) 405 Starts[Slot] = ThisIndex; 406 } else { 407 if (!Finishes[Slot].isValid() || Finishes[Slot] < ThisIndex) 408 Finishes[Slot] = ThisIndex; 409 } 410 } 411 412 // Create the interval of the blocks that we previously found to be 'alive'. 413 BlockLifetimeInfo &MBBLiveness = BlockLiveness[&MBB]; 414 for (int pos = MBBLiveness.LiveIn.find_first(); pos != -1; 415 pos = MBBLiveness.LiveIn.find_next(pos)) { 416 Starts[pos] = Indexes->getMBBStartIdx(&MBB); 417 } 418 for (int pos = MBBLiveness.LiveOut.find_first(); pos != -1; 419 pos = MBBLiveness.LiveOut.find_next(pos)) { 420 Finishes[pos] = Indexes->getMBBEndIdx(&MBB); 421 } 422 423 for (unsigned i = 0; i < NumSlots; ++i) { 424 assert(Starts[i].isValid() == Finishes[i].isValid() && "Unmatched range"); 425 if (!Starts[i].isValid()) 426 continue; 427 428 assert(Starts[i] && Finishes[i] && "Invalid interval"); 429 VNInfo *ValNum = Intervals[i]->getValNumInfo(0); 430 SlotIndex S = Starts[i]; 431 SlotIndex F = Finishes[i]; 432 if (S < F) { 433 // We have a single consecutive region. 434 Intervals[i]->addSegment(LiveInterval::Segment(S, F, ValNum)); 435 } else { 436 // We have two non-consecutive regions. This happens when 437 // LIFETIME_START appears after the LIFETIME_END marker. 438 SlotIndex NewStart = Indexes->getMBBStartIdx(&MBB); 439 SlotIndex NewFin = Indexes->getMBBEndIdx(&MBB); 440 Intervals[i]->addSegment(LiveInterval::Segment(NewStart, F, ValNum)); 441 Intervals[i]->addSegment(LiveInterval::Segment(S, NewFin, ValNum)); 442 } 443 } 444 } 445 } 446 447 bool StackColoring::removeAllMarkers() { 448 unsigned Count = 0; 449 for (MachineInstr *MI : Markers) { 450 MI->eraseFromParent(); 451 Count++; 452 } 453 Markers.clear(); 454 455 DEBUG(dbgs()<<"Removed "<<Count<<" markers.\n"); 456 return Count; 457 } 458 459 void StackColoring::remapInstructions(DenseMap<int, int> &SlotRemap) { 460 unsigned FixedInstr = 0; 461 unsigned FixedMemOp = 0; 462 unsigned FixedDbg = 0; 463 MachineModuleInfo *MMI = &MF->getMMI(); 464 465 // Remap debug information that refers to stack slots. 466 for (auto &VI : MMI->getVariableDbgInfo()) { 467 if (!VI.Var) 468 continue; 469 if (SlotRemap.count(VI.Slot)) { 470 DEBUG(dbgs() << "Remapping debug info for [" 471 << cast<DILocalVariable>(VI.Var)->getName() << "].\n"); 472 VI.Slot = SlotRemap[VI.Slot]; 473 FixedDbg++; 474 } 475 } 476 477 // Keep a list of *allocas* which need to be remapped. 478 DenseMap<const AllocaInst*, const AllocaInst*> Allocas; 479 for (const std::pair<int, int> &SI : SlotRemap) { 480 const AllocaInst *From = MFI->getObjectAllocation(SI.first); 481 const AllocaInst *To = MFI->getObjectAllocation(SI.second); 482 assert(To && From && "Invalid allocation object"); 483 Allocas[From] = To; 484 485 // AA might be used later for instruction scheduling, and we need it to be 486 // able to deduce the correct aliasing releationships between pointers 487 // derived from the alloca being remapped and the target of that remapping. 488 // The only safe way, without directly informing AA about the remapping 489 // somehow, is to directly update the IR to reflect the change being made 490 // here. 491 Instruction *Inst = const_cast<AllocaInst *>(To); 492 if (From->getType() != To->getType()) { 493 BitCastInst *Cast = new BitCastInst(Inst, From->getType()); 494 Cast->insertAfter(Inst); 495 Inst = Cast; 496 } 497 498 // Allow the stack protector to adjust its value map to account for the 499 // upcoming replacement. 500 SP->adjustForColoring(From, To); 501 502 // The new alloca might not be valid in a llvm.dbg.declare for this 503 // variable, so undef out the use to make the verifier happy. 504 AllocaInst *FromAI = const_cast<AllocaInst *>(From); 505 if (FromAI->isUsedByMetadata()) 506 ValueAsMetadata::handleRAUW(FromAI, UndefValue::get(FromAI->getType())); 507 for (auto &Use : FromAI->uses()) { 508 if (BitCastInst *BCI = dyn_cast<BitCastInst>(Use.get())) 509 if (BCI->isUsedByMetadata()) 510 ValueAsMetadata::handleRAUW(BCI, UndefValue::get(BCI->getType())); 511 } 512 513 // Note that this will not replace uses in MMOs (which we'll update below), 514 // or anywhere else (which is why we won't delete the original 515 // instruction). 516 FromAI->replaceAllUsesWith(Inst); 517 } 518 519 // Remap all instructions to the new stack slots. 520 for (MachineBasicBlock &BB : *MF) 521 for (MachineInstr &I : BB) { 522 // Skip lifetime markers. We'll remove them soon. 523 if (I.getOpcode() == TargetOpcode::LIFETIME_START || 524 I.getOpcode() == TargetOpcode::LIFETIME_END) 525 continue; 526 527 // Update the MachineMemOperand to use the new alloca. 528 for (MachineMemOperand *MMO : I.memoperands()) { 529 // FIXME: In order to enable the use of TBAA when using AA in CodeGen, 530 // we'll also need to update the TBAA nodes in MMOs with values 531 // derived from the merged allocas. When doing this, we'll need to use 532 // the same variant of GetUnderlyingObjects that is used by the 533 // instruction scheduler (that can look through ptrtoint/inttoptr 534 // pairs). 535 536 // We've replaced IR-level uses of the remapped allocas, so we only 537 // need to replace direct uses here. 538 const AllocaInst *AI = dyn_cast_or_null<AllocaInst>(MMO->getValue()); 539 if (!AI) 540 continue; 541 542 if (!Allocas.count(AI)) 543 continue; 544 545 MMO->setValue(Allocas[AI]); 546 FixedMemOp++; 547 } 548 549 // Update all of the machine instruction operands. 550 for (MachineOperand &MO : I.operands()) { 551 if (!MO.isFI()) 552 continue; 553 int FromSlot = MO.getIndex(); 554 555 // Don't touch arguments. 556 if (FromSlot<0) 557 continue; 558 559 // Only look at mapped slots. 560 if (!SlotRemap.count(FromSlot)) 561 continue; 562 563 // In a debug build, check that the instruction that we are modifying is 564 // inside the expected live range. If the instruction is not inside 565 // the calculated range then it means that the alloca usage moved 566 // outside of the lifetime markers, or that the user has a bug. 567 // NOTE: Alloca address calculations which happen outside the lifetime 568 // zone are are okay, despite the fact that we don't have a good way 569 // for validating all of the usages of the calculation. 570 #ifndef NDEBUG 571 bool TouchesMemory = I.mayLoad() || I.mayStore(); 572 // If we *don't* protect the user from escaped allocas, don't bother 573 // validating the instructions. 574 if (!I.isDebugValue() && TouchesMemory && ProtectFromEscapedAllocas) { 575 SlotIndex Index = Indexes->getInstructionIndex(I); 576 const LiveInterval *Interval = &*Intervals[FromSlot]; 577 assert(Interval->find(Index) != Interval->end() && 578 "Found instruction usage outside of live range."); 579 } 580 #endif 581 582 // Fix the machine instructions. 583 int ToSlot = SlotRemap[FromSlot]; 584 MO.setIndex(ToSlot); 585 FixedInstr++; 586 } 587 } 588 589 // Update the location of C++ catch objects for the MSVC personality routine. 590 if (WinEHFuncInfo *EHInfo = MF->getWinEHFuncInfo()) 591 for (WinEHTryBlockMapEntry &TBME : EHInfo->TryBlockMap) 592 for (WinEHHandlerType &H : TBME.HandlerArray) 593 if (H.CatchObj.FrameIndex != INT_MAX && 594 SlotRemap.count(H.CatchObj.FrameIndex)) 595 H.CatchObj.FrameIndex = SlotRemap[H.CatchObj.FrameIndex]; 596 597 DEBUG(dbgs()<<"Fixed "<<FixedMemOp<<" machine memory operands.\n"); 598 DEBUG(dbgs()<<"Fixed "<<FixedDbg<<" debug locations.\n"); 599 DEBUG(dbgs()<<"Fixed "<<FixedInstr<<" machine instructions.\n"); 600 } 601 602 void StackColoring::removeInvalidSlotRanges() { 603 for (MachineBasicBlock &BB : *MF) 604 for (MachineInstr &I : BB) { 605 if (I.getOpcode() == TargetOpcode::LIFETIME_START || 606 I.getOpcode() == TargetOpcode::LIFETIME_END || I.isDebugValue()) 607 continue; 608 609 // Some intervals are suspicious! In some cases we find address 610 // calculations outside of the lifetime zone, but not actual memory 611 // read or write. Memory accesses outside of the lifetime zone are a clear 612 // violation, but address calculations are okay. This can happen when 613 // GEPs are hoisted outside of the lifetime zone. 614 // So, in here we only check instructions which can read or write memory. 615 if (!I.mayLoad() && !I.mayStore()) 616 continue; 617 618 // Check all of the machine operands. 619 for (const MachineOperand &MO : I.operands()) { 620 if (!MO.isFI()) 621 continue; 622 623 int Slot = MO.getIndex(); 624 625 if (Slot<0) 626 continue; 627 628 if (Intervals[Slot]->empty()) 629 continue; 630 631 // Check that the used slot is inside the calculated lifetime range. 632 // If it is not, warn about it and invalidate the range. 633 LiveInterval *Interval = &*Intervals[Slot]; 634 SlotIndex Index = Indexes->getInstructionIndex(I); 635 if (Interval->find(Index) == Interval->end()) { 636 Interval->clear(); 637 DEBUG(dbgs()<<"Invalidating range #"<<Slot<<"\n"); 638 EscapedAllocas++; 639 } 640 } 641 } 642 } 643 644 void StackColoring::expungeSlotMap(DenseMap<int, int> &SlotRemap, 645 unsigned NumSlots) { 646 // Expunge slot remap map. 647 for (unsigned i=0; i < NumSlots; ++i) { 648 // If we are remapping i 649 if (SlotRemap.count(i)) { 650 int Target = SlotRemap[i]; 651 // As long as our target is mapped to something else, follow it. 652 while (SlotRemap.count(Target)) { 653 Target = SlotRemap[Target]; 654 SlotRemap[i] = Target; 655 } 656 } 657 } 658 } 659 660 bool StackColoring::runOnMachineFunction(MachineFunction &Func) { 661 if (skipOptnoneFunction(*Func.getFunction())) 662 return false; 663 664 DEBUG(dbgs() << "********** Stack Coloring **********\n" 665 << "********** Function: " 666 << ((const Value*)Func.getFunction())->getName() << '\n'); 667 MF = &Func; 668 MFI = MF->getFrameInfo(); 669 Indexes = &getAnalysis<SlotIndexes>(); 670 SP = &getAnalysis<StackProtector>(); 671 BlockLiveness.clear(); 672 BasicBlocks.clear(); 673 BasicBlockNumbering.clear(); 674 Markers.clear(); 675 Intervals.clear(); 676 VNInfoAllocator.Reset(); 677 678 unsigned NumSlots = MFI->getObjectIndexEnd(); 679 680 // If there are no stack slots then there are no markers to remove. 681 if (!NumSlots) 682 return false; 683 684 SmallVector<int, 8> SortedSlots; 685 686 SortedSlots.reserve(NumSlots); 687 Intervals.reserve(NumSlots); 688 689 unsigned NumMarkers = collectMarkers(NumSlots); 690 691 unsigned TotalSize = 0; 692 DEBUG(dbgs()<<"Found "<<NumMarkers<<" markers and "<<NumSlots<<" slots\n"); 693 DEBUG(dbgs()<<"Slot structure:\n"); 694 695 for (int i=0; i < MFI->getObjectIndexEnd(); ++i) { 696 DEBUG(dbgs()<<"Slot #"<<i<<" - "<<MFI->getObjectSize(i)<<" bytes.\n"); 697 TotalSize += MFI->getObjectSize(i); 698 } 699 700 DEBUG(dbgs()<<"Total Stack size: "<<TotalSize<<" bytes\n\n"); 701 702 // Don't continue because there are not enough lifetime markers, or the 703 // stack is too small, or we are told not to optimize the slots. 704 if (NumMarkers < 2 || TotalSize < 16 || DisableColoring) { 705 DEBUG(dbgs()<<"Will not try to merge slots.\n"); 706 return removeAllMarkers(); 707 } 708 709 for (unsigned i=0; i < NumSlots; ++i) { 710 std::unique_ptr<LiveInterval> LI(new LiveInterval(i, 0)); 711 LI->getNextValue(Indexes->getZeroIndex(), VNInfoAllocator); 712 Intervals.push_back(std::move(LI)); 713 SortedSlots.push_back(i); 714 } 715 716 // Calculate the liveness of each block. 717 calculateLocalLiveness(); 718 719 // Propagate the liveness information. 720 calculateLiveIntervals(NumSlots); 721 722 // Search for allocas which are used outside of the declared lifetime 723 // markers. 724 if (ProtectFromEscapedAllocas) 725 removeInvalidSlotRanges(); 726 727 // Maps old slots to new slots. 728 DenseMap<int, int> SlotRemap; 729 unsigned RemovedSlots = 0; 730 unsigned ReducedSize = 0; 731 732 // Do not bother looking at empty intervals. 733 for (unsigned I = 0; I < NumSlots; ++I) { 734 if (Intervals[SortedSlots[I]]->empty()) 735 SortedSlots[I] = -1; 736 } 737 738 // This is a simple greedy algorithm for merging allocas. First, sort the 739 // slots, placing the largest slots first. Next, perform an n^2 scan and look 740 // for disjoint slots. When you find disjoint slots, merge the samller one 741 // into the bigger one and update the live interval. Remove the small alloca 742 // and continue. 743 744 // Sort the slots according to their size. Place unused slots at the end. 745 // Use stable sort to guarantee deterministic code generation. 746 std::stable_sort(SortedSlots.begin(), SortedSlots.end(), 747 [this](int LHS, int RHS) { 748 // We use -1 to denote a uninteresting slot. Place these slots at the end. 749 if (LHS == -1) return false; 750 if (RHS == -1) return true; 751 // Sort according to size. 752 return MFI->getObjectSize(LHS) > MFI->getObjectSize(RHS); 753 }); 754 755 bool Changed = true; 756 while (Changed) { 757 Changed = false; 758 for (unsigned I = 0; I < NumSlots; ++I) { 759 if (SortedSlots[I] == -1) 760 continue; 761 762 for (unsigned J=I+1; J < NumSlots; ++J) { 763 if (SortedSlots[J] == -1) 764 continue; 765 766 int FirstSlot = SortedSlots[I]; 767 int SecondSlot = SortedSlots[J]; 768 LiveInterval *First = &*Intervals[FirstSlot]; 769 LiveInterval *Second = &*Intervals[SecondSlot]; 770 assert (!First->empty() && !Second->empty() && "Found an empty range"); 771 772 // Merge disjoint slots. 773 if (!First->overlaps(*Second)) { 774 Changed = true; 775 First->MergeSegmentsInAsValue(*Second, First->getValNumInfo(0)); 776 SlotRemap[SecondSlot] = FirstSlot; 777 SortedSlots[J] = -1; 778 DEBUG(dbgs()<<"Merging #"<<FirstSlot<<" and slots #"<< 779 SecondSlot<<" together.\n"); 780 unsigned MaxAlignment = std::max(MFI->getObjectAlignment(FirstSlot), 781 MFI->getObjectAlignment(SecondSlot)); 782 783 assert(MFI->getObjectSize(FirstSlot) >= 784 MFI->getObjectSize(SecondSlot) && 785 "Merging a small object into a larger one"); 786 787 RemovedSlots+=1; 788 ReducedSize += MFI->getObjectSize(SecondSlot); 789 MFI->setObjectAlignment(FirstSlot, MaxAlignment); 790 MFI->RemoveStackObject(SecondSlot); 791 } 792 } 793 } 794 }// While changed. 795 796 // Record statistics. 797 StackSpaceSaved += ReducedSize; 798 StackSlotMerged += RemovedSlots; 799 DEBUG(dbgs()<<"Merge "<<RemovedSlots<<" slots. Saved "<< 800 ReducedSize<<" bytes\n"); 801 802 // Scan the entire function and update all machine operands that use frame 803 // indices to use the remapped frame index. 804 expungeSlotMap(SlotRemap, NumSlots); 805 remapInstructions(SlotRemap); 806 807 return removeAllMarkers(); 808 } 809