1 //===- StackColoring.cpp --------------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass implements the stack-coloring optimization that looks for
11 // lifetime markers machine instructions (LIFESTART_BEGIN and LIFESTART_END),
12 // which represent the possible lifetime of stack slots. It attempts to
13 // merge disjoint stack slots and reduce the used stack space.
14 // NOTE: This pass is not StackSlotColoring, which optimizes spill slots.
15 //
16 // TODO: In the future we plan to improve stack coloring in the following ways:
17 // 1. Allow merging multiple small slots into a single larger slot at different
18 //    offsets.
19 // 2. Merge this pass with StackSlotColoring and allow merging of allocas with
20 //    spill slots.
21 //
22 //===----------------------------------------------------------------------===//
23 
24 #include "llvm/ADT/BitVector.h"
25 #include "llvm/ADT/DenseMap.h"
26 #include "llvm/ADT/DepthFirstIterator.h"
27 #include "llvm/ADT/SmallPtrSet.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/CodeGen/LiveInterval.h"
32 #include "llvm/CodeGen/MachineBasicBlock.h"
33 #include "llvm/CodeGen/MachineFrameInfo.h"
34 #include "llvm/CodeGen/MachineFunction.h"
35 #include "llvm/CodeGen/MachineFunctionPass.h"
36 #include "llvm/CodeGen/MachineInstr.h"
37 #include "llvm/CodeGen/MachineMemOperand.h"
38 #include "llvm/CodeGen/MachineOperand.h"
39 #include "llvm/CodeGen/Passes.h"
40 #include "llvm/CodeGen/SelectionDAGNodes.h"
41 #include "llvm/CodeGen/SlotIndexes.h"
42 #include "llvm/CodeGen/StackProtector.h"
43 #include "llvm/CodeGen/TargetOpcodes.h"
44 #include "llvm/CodeGen/WinEHFuncInfo.h"
45 #include "llvm/Config/llvm-config.h"
46 #include "llvm/IR/Constants.h"
47 #include "llvm/IR/DebugInfoMetadata.h"
48 #include "llvm/IR/Function.h"
49 #include "llvm/IR/Instructions.h"
50 #include "llvm/IR/Metadata.h"
51 #include "llvm/IR/Use.h"
52 #include "llvm/IR/Value.h"
53 #include "llvm/Pass.h"
54 #include "llvm/Support/Casting.h"
55 #include "llvm/Support/CommandLine.h"
56 #include "llvm/Support/Compiler.h"
57 #include "llvm/Support/Debug.h"
58 #include "llvm/Support/raw_ostream.h"
59 #include <algorithm>
60 #include <cassert>
61 #include <limits>
62 #include <memory>
63 #include <utility>
64 
65 using namespace llvm;
66 
67 #define DEBUG_TYPE "stack-coloring"
68 
69 static cl::opt<bool>
70 DisableColoring("no-stack-coloring",
71         cl::init(false), cl::Hidden,
72         cl::desc("Disable stack coloring"));
73 
74 /// The user may write code that uses allocas outside of the declared lifetime
75 /// zone. This can happen when the user returns a reference to a local
76 /// data-structure. We can detect these cases and decide not to optimize the
77 /// code. If this flag is enabled, we try to save the user. This option
78 /// is treated as overriding LifetimeStartOnFirstUse below.
79 static cl::opt<bool>
80 ProtectFromEscapedAllocas("protect-from-escaped-allocas",
81                           cl::init(false), cl::Hidden,
82                           cl::desc("Do not optimize lifetime zones that "
83                                    "are broken"));
84 
85 /// Enable enhanced dataflow scheme for lifetime analysis (treat first
86 /// use of stack slot as start of slot lifetime, as opposed to looking
87 /// for LIFETIME_START marker). See "Implementation notes" below for
88 /// more info.
89 static cl::opt<bool>
90 LifetimeStartOnFirstUse("stackcoloring-lifetime-start-on-first-use",
91         cl::init(true), cl::Hidden,
92         cl::desc("Treat stack lifetimes as starting on first use, not on START marker."));
93 
94 
95 STATISTIC(NumMarkerSeen,  "Number of lifetime markers found.");
96 STATISTIC(StackSpaceSaved, "Number of bytes saved due to merging slots.");
97 STATISTIC(StackSlotMerged, "Number of stack slot merged.");
98 STATISTIC(EscapedAllocas, "Number of allocas that escaped the lifetime region");
99 
100 //===----------------------------------------------------------------------===//
101 //                           StackColoring Pass
102 //===----------------------------------------------------------------------===//
103 //
104 // Stack Coloring reduces stack usage by merging stack slots when they
105 // can't be used together. For example, consider the following C program:
106 //
107 //     void bar(char *, int);
108 //     void foo(bool var) {
109 //         A: {
110 //             char z[4096];
111 //             bar(z, 0);
112 //         }
113 //
114 //         char *p;
115 //         char x[4096];
116 //         char y[4096];
117 //         if (var) {
118 //             p = x;
119 //         } else {
120 //             bar(y, 1);
121 //             p = y + 1024;
122 //         }
123 //     B:
124 //         bar(p, 2);
125 //     }
126 //
127 // Naively-compiled, this program would use 12k of stack space. However, the
128 // stack slot corresponding to `z` is always destroyed before either of the
129 // stack slots for `x` or `y` are used, and then `x` is only used if `var`
130 // is true, while `y` is only used if `var` is false. So in no time are 2
131 // of the stack slots used together, and therefore we can merge them,
132 // compiling the function using only a single 4k alloca:
133 //
134 //     void foo(bool var) { // equivalent
135 //         char x[4096];
136 //         char *p;
137 //         bar(x, 0);
138 //         if (var) {
139 //             p = x;
140 //         } else {
141 //             bar(x, 1);
142 //             p = x + 1024;
143 //         }
144 //         bar(p, 2);
145 //     }
146 //
147 // This is an important optimization if we want stack space to be under
148 // control in large functions, both open-coded ones and ones created by
149 // inlining.
150 //
151 // Implementation Notes:
152 // ---------------------
153 //
154 // An important part of the above reasoning is that `z` can't be accessed
155 // while the latter 2 calls to `bar` are running. This is justified because
156 // `z`'s lifetime is over after we exit from block `A:`, so any further
157 // accesses to it would be UB. The way we represent this information
158 // in LLVM is by having frontends delimit blocks with `lifetime.start`
159 // and `lifetime.end` intrinsics.
160 //
161 // The effect of these intrinsics seems to be as follows (maybe I should
162 // specify this in the reference?):
163 //
164 //   L1) at start, each stack-slot is marked as *out-of-scope*, unless no
165 //   lifetime intrinsic refers to that stack slot, in which case
166 //   it is marked as *in-scope*.
167 //   L2) on a `lifetime.start`, a stack slot is marked as *in-scope* and
168 //   the stack slot is overwritten with `undef`.
169 //   L3) on a `lifetime.end`, a stack slot is marked as *out-of-scope*.
170 //   L4) on function exit, all stack slots are marked as *out-of-scope*.
171 //   L5) `lifetime.end` is a no-op when called on a slot that is already
172 //   *out-of-scope*.
173 //   L6) memory accesses to *out-of-scope* stack slots are UB.
174 //   L7) when a stack-slot is marked as *out-of-scope*, all pointers to it
175 //   are invalidated, unless the slot is "degenerate". This is used to
176 //   justify not marking slots as in-use until the pointer to them is
177 //   used, but feels a bit hacky in the presence of things like LICM. See
178 //   the "Degenerate Slots" section for more details.
179 //
180 // Now, let's ground stack coloring on these rules. We'll define a slot
181 // as *in-use* at a (dynamic) point in execution if it either can be
182 // written to at that point, or if it has a live and non-undef content
183 // at that point.
184 //
185 // Obviously, slots that are never *in-use* together can be merged, and
186 // in our example `foo`, the slots for `x`, `y` and `z` are never
187 // in-use together (of course, sometimes slots that *are* in-use together
188 // might still be mergable, but we don't care about that here).
189 //
190 // In this implementation, we successively merge pairs of slots that are
191 // not *in-use* together. We could be smarter - for example, we could merge
192 // a single large slot with 2 small slots, or we could construct the
193 // interference graph and run a "smart" graph coloring algorithm, but with
194 // that aside, how do we find out whether a pair of slots might be *in-use*
195 // together?
196 //
197 // From our rules, we see that *out-of-scope* slots are never *in-use*,
198 // and from (L7) we see that "non-degenerate" slots remain non-*in-use*
199 // until their address is taken. Therefore, we can approximate slot activity
200 // using dataflow.
201 //
202 // A subtle point: naively, we might try to figure out which pairs of
203 // stack-slots interfere by propagating `S in-use` through the CFG for every
204 // stack-slot `S`, and having `S` and `T` interfere if there is a CFG point in
205 // which they are both *in-use*.
206 //
207 // That is sound, but overly conservative in some cases: in our (artificial)
208 // example `foo`, either `x` or `y` might be in use at the label `B:`, but
209 // as `x` is only in use if we came in from the `var` edge and `y` only
210 // if we came from the `!var` edge, they still can't be in use together.
211 // See PR32488 for an important real-life case.
212 //
213 // If we wanted to find all points of interference precisely, we could
214 // propagate `S in-use` and `S&T in-use` predicates through the CFG. That
215 // would be precise, but requires propagating `O(n^2)` dataflow facts.
216 //
217 // However, we aren't interested in the *set* of points of interference
218 // between 2 stack slots, only *whether* there *is* such a point. So we
219 // can rely on a little trick: for `S` and `T` to be in-use together,
220 // one of them needs to become in-use while the other is in-use (or
221 // they might both become in use simultaneously). We can check this
222 // by also keeping track of the points at which a stack slot might *start*
223 // being in-use.
224 //
225 // Exact first use:
226 // ----------------
227 //
228 // Consider the following motivating example:
229 //
230 //     int foo() {
231 //       char b1[1024], b2[1024];
232 //       if (...) {
233 //         char b3[1024];
234 //         <uses of b1, b3>;
235 //         return x;
236 //       } else {
237 //         char b4[1024], b5[1024];
238 //         <uses of b2, b4, b5>;
239 //         return y;
240 //       }
241 //     }
242 //
243 // In the code above, "b3" and "b4" are declared in distinct lexical
244 // scopes, meaning that it is easy to prove that they can share the
245 // same stack slot. Variables "b1" and "b2" are declared in the same
246 // scope, meaning that from a lexical point of view, their lifetimes
247 // overlap. From a control flow pointer of view, however, the two
248 // variables are accessed in disjoint regions of the CFG, thus it
249 // should be possible for them to share the same stack slot. An ideal
250 // stack allocation for the function above would look like:
251 //
252 //     slot 0: b1, b2
253 //     slot 1: b3, b4
254 //     slot 2: b5
255 //
256 // Achieving this allocation is tricky, however, due to the way
257 // lifetime markers are inserted. Here is a simplified view of the
258 // control flow graph for the code above:
259 //
260 //                +------  block 0 -------+
261 //               0| LIFETIME_START b1, b2 |
262 //               1| <test 'if' condition> |
263 //                +-----------------------+
264 //                   ./              \.
265 //   +------  block 1 -------+   +------  block 2 -------+
266 //  2| LIFETIME_START b3     |  5| LIFETIME_START b4, b5 |
267 //  3| <uses of b1, b3>      |  6| <uses of b2, b4, b5>  |
268 //  4| LIFETIME_END b3       |  7| LIFETIME_END b4, b5   |
269 //   +-----------------------+   +-----------------------+
270 //                   \.              /.
271 //                +------  block 3 -------+
272 //               8| <cleanupcode>         |
273 //               9| LIFETIME_END b1, b2   |
274 //              10| return                |
275 //                +-----------------------+
276 //
277 // If we create live intervals for the variables above strictly based
278 // on the lifetime markers, we'll get the set of intervals on the
279 // left. If we ignore the lifetime start markers and instead treat a
280 // variable's lifetime as beginning with the first reference to the
281 // var, then we get the intervals on the right.
282 //
283 //            LIFETIME_START      First Use
284 //     b1:    [0,9]               [3,4] [8,9]
285 //     b2:    [0,9]               [6,9]
286 //     b3:    [2,4]               [3,4]
287 //     b4:    [5,7]               [6,7]
288 //     b5:    [5,7]               [6,7]
289 //
290 // For the intervals on the left, the best we can do is overlap two
291 // variables (b3 and b4, for example); this gives us a stack size of
292 // 4*1024 bytes, not ideal. When treating first-use as the start of a
293 // lifetime, we can additionally overlap b1 and b5, giving us a 3*1024
294 // byte stack (better).
295 //
296 // Degenerate Slots:
297 // -----------------
298 //
299 // Relying entirely on first-use of stack slots is problematic,
300 // however, due to the fact that optimizations can sometimes migrate
301 // uses of a variable outside of its lifetime start/end region. Here
302 // is an example:
303 //
304 //     int bar() {
305 //       char b1[1024], b2[1024];
306 //       if (...) {
307 //         <uses of b2>
308 //         return y;
309 //       } else {
310 //         <uses of b1>
311 //         while (...) {
312 //           char b3[1024];
313 //           <uses of b3>
314 //         }
315 //       }
316 //     }
317 //
318 // Before optimization, the control flow graph for the code above
319 // might look like the following:
320 //
321 //                +------  block 0 -------+
322 //               0| LIFETIME_START b1, b2 |
323 //               1| <test 'if' condition> |
324 //                +-----------------------+
325 //                   ./              \.
326 //   +------  block 1 -------+    +------- block 2 -------+
327 //  2| <uses of b2>          |   3| <uses of b1>          |
328 //   +-----------------------+    +-----------------------+
329 //              |                            |
330 //              |                 +------- block 3 -------+ <-\.
331 //              |                4| <while condition>     |    |
332 //              |                 +-----------------------+    |
333 //              |               /          |                   |
334 //              |              /  +------- block 4 -------+
335 //              \             /  5| LIFETIME_START b3     |    |
336 //               \           /   6| <uses of b3>          |    |
337 //                \         /    7| LIFETIME_END b3       |    |
338 //                 \        |    +------------------------+    |
339 //                  \       |                 \                /
340 //                +------  block 5 -----+      \---------------
341 //               8| <cleanupcode>       |
342 //               9| LIFETIME_END b1, b2 |
343 //              10| return              |
344 //                +---------------------+
345 //
346 // During optimization, however, it can happen that an instruction
347 // computing an address in "b3" (for example, a loop-invariant GEP) is
348 // hoisted up out of the loop from block 4 to block 2.  [Note that
349 // this is not an actual load from the stack, only an instruction that
350 // computes the address to be loaded]. If this happens, there is now a
351 // path leading from the first use of b3 to the return instruction
352 // that does not encounter the b3 LIFETIME_END, hence b3's lifetime is
353 // now larger than if we were computing live intervals strictly based
354 // on lifetime markers. In the example above, this lengthened lifetime
355 // would mean that it would appear illegal to overlap b3 with b2.
356 //
357 // To deal with this such cases, the code in ::collectMarkers() below
358 // tries to identify "degenerate" slots -- those slots where on a single
359 // forward pass through the CFG we encounter a first reference to slot
360 // K before we hit the slot K lifetime start marker. For such slots,
361 // we fall back on using the lifetime start marker as the beginning of
362 // the variable's lifetime.  NB: with this implementation, slots can
363 // appear degenerate in cases where there is unstructured control flow:
364 //
365 //    if (q) goto mid;
366 //    if (x > 9) {
367 //         int b[100];
368 //         memcpy(&b[0], ...);
369 //    mid: b[k] = ...;
370 //         abc(&b);
371 //    }
372 //
373 // If in RPO ordering chosen to walk the CFG  we happen to visit the b[k]
374 // before visiting the memcpy block (which will contain the lifetime start
375 // for "b" then it will appear that 'b' has a degenerate lifetime.
376 //
377 
378 namespace {
379 
380 /// StackColoring - A machine pass for merging disjoint stack allocations,
381 /// marked by the LIFETIME_START and LIFETIME_END pseudo instructions.
382 class StackColoring : public MachineFunctionPass {
383   MachineFrameInfo *MFI;
384   MachineFunction *MF;
385 
386   /// A class representing liveness information for a single basic block.
387   /// Each bit in the BitVector represents the liveness property
388   /// for a different stack slot.
389   struct BlockLifetimeInfo {
390     /// Which slots BEGINs in each basic block.
391     BitVector Begin;
392 
393     /// Which slots ENDs in each basic block.
394     BitVector End;
395 
396     /// Which slots are marked as LIVE_IN, coming into each basic block.
397     BitVector LiveIn;
398 
399     /// Which slots are marked as LIVE_OUT, coming out of each basic block.
400     BitVector LiveOut;
401   };
402 
403   /// Maps active slots (per bit) for each basic block.
404   using LivenessMap = DenseMap<const MachineBasicBlock *, BlockLifetimeInfo>;
405   LivenessMap BlockLiveness;
406 
407   /// Maps serial numbers to basic blocks.
408   DenseMap<const MachineBasicBlock *, int> BasicBlocks;
409 
410   /// Maps basic blocks to a serial number.
411   SmallVector<const MachineBasicBlock *, 8> BasicBlockNumbering;
412 
413   /// Maps slots to their use interval. Outside of this interval, slots
414   /// values are either dead or `undef` and they will not be written to.
415   SmallVector<std::unique_ptr<LiveInterval>, 16> Intervals;
416 
417   /// Maps slots to the points where they can become in-use.
418   SmallVector<SmallVector<SlotIndex, 4>, 16> LiveStarts;
419 
420   /// VNInfo is used for the construction of LiveIntervals.
421   VNInfo::Allocator VNInfoAllocator;
422 
423   /// SlotIndex analysis object.
424   SlotIndexes *Indexes;
425 
426   /// The stack protector object.
427   StackProtector *SP;
428 
429   /// The list of lifetime markers found. These markers are to be removed
430   /// once the coloring is done.
431   SmallVector<MachineInstr*, 8> Markers;
432 
433   /// Record the FI slots for which we have seen some sort of
434   /// lifetime marker (either start or end).
435   BitVector InterestingSlots;
436 
437   /// FI slots that need to be handled conservatively (for these
438   /// slots lifetime-start-on-first-use is disabled).
439   BitVector ConservativeSlots;
440 
441   /// Number of iterations taken during data flow analysis.
442   unsigned NumIterations;
443 
444 public:
445   static char ID;
446 
447   StackColoring() : MachineFunctionPass(ID) {
448     initializeStackColoringPass(*PassRegistry::getPassRegistry());
449   }
450 
451   void getAnalysisUsage(AnalysisUsage &AU) const override;
452   bool runOnMachineFunction(MachineFunction &MF) override;
453 
454 private:
455   /// Used in collectMarkers
456   using BlockBitVecMap = DenseMap<const MachineBasicBlock *, BitVector>;
457 
458   /// Debug.
459   void dump() const;
460   void dumpIntervals() const;
461   void dumpBB(MachineBasicBlock *MBB) const;
462   void dumpBV(const char *tag, const BitVector &BV) const;
463 
464   /// Removes all of the lifetime marker instructions from the function.
465   /// \returns true if any markers were removed.
466   bool removeAllMarkers();
467 
468   /// Scan the machine function and find all of the lifetime markers.
469   /// Record the findings in the BEGIN and END vectors.
470   /// \returns the number of markers found.
471   unsigned collectMarkers(unsigned NumSlot);
472 
473   /// Perform the dataflow calculation and calculate the lifetime for each of
474   /// the slots, based on the BEGIN/END vectors. Set the LifetimeLIVE_IN and
475   /// LifetimeLIVE_OUT maps that represent which stack slots are live coming
476   /// in and out blocks.
477   void calculateLocalLiveness();
478 
479   /// Returns TRUE if we're using the first-use-begins-lifetime method for
480   /// this slot (if FALSE, then the start marker is treated as start of lifetime).
481   bool applyFirstUse(int Slot) {
482     if (!LifetimeStartOnFirstUse || ProtectFromEscapedAllocas)
483       return false;
484     if (ConservativeSlots.test(Slot))
485       return false;
486     return true;
487   }
488 
489   /// Examines the specified instruction and returns TRUE if the instruction
490   /// represents the start or end of an interesting lifetime. The slot or slots
491   /// starting or ending are added to the vector "slots" and "isStart" is set
492   /// accordingly.
493   /// \returns True if inst contains a lifetime start or end
494   bool isLifetimeStartOrEnd(const MachineInstr &MI,
495                             SmallVector<int, 4> &slots,
496                             bool &isStart);
497 
498   /// Construct the LiveIntervals for the slots.
499   void calculateLiveIntervals(unsigned NumSlots);
500 
501   /// Go over the machine function and change instructions which use stack
502   /// slots to use the joint slots.
503   void remapInstructions(DenseMap<int, int> &SlotRemap);
504 
505   /// The input program may contain instructions which are not inside lifetime
506   /// markers. This can happen due to a bug in the compiler or due to a bug in
507   /// user code (for example, returning a reference to a local variable).
508   /// This procedure checks all of the instructions in the function and
509   /// invalidates lifetime ranges which do not contain all of the instructions
510   /// which access that frame slot.
511   void removeInvalidSlotRanges();
512 
513   /// Map entries which point to other entries to their destination.
514   ///   A->B->C becomes A->C.
515   void expungeSlotMap(DenseMap<int, int> &SlotRemap, unsigned NumSlots);
516 };
517 
518 } // end anonymous namespace
519 
520 char StackColoring::ID = 0;
521 
522 char &llvm::StackColoringID = StackColoring::ID;
523 
524 INITIALIZE_PASS_BEGIN(StackColoring, DEBUG_TYPE,
525                       "Merge disjoint stack slots", false, false)
526 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
527 INITIALIZE_PASS_DEPENDENCY(StackProtector)
528 INITIALIZE_PASS_END(StackColoring, DEBUG_TYPE,
529                     "Merge disjoint stack slots", false, false)
530 
531 void StackColoring::getAnalysisUsage(AnalysisUsage &AU) const {
532   AU.addRequired<SlotIndexes>();
533   AU.addRequired<StackProtector>();
534   MachineFunctionPass::getAnalysisUsage(AU);
535 }
536 
537 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
538 LLVM_DUMP_METHOD void StackColoring::dumpBV(const char *tag,
539                                             const BitVector &BV) const {
540   dbgs() << tag << " : { ";
541   for (unsigned I = 0, E = BV.size(); I != E; ++I)
542     dbgs() << BV.test(I) << " ";
543   dbgs() << "}\n";
544 }
545 
546 LLVM_DUMP_METHOD void StackColoring::dumpBB(MachineBasicBlock *MBB) const {
547   LivenessMap::const_iterator BI = BlockLiveness.find(MBB);
548   assert(BI != BlockLiveness.end() && "Block not found");
549   const BlockLifetimeInfo &BlockInfo = BI->second;
550 
551   dumpBV("BEGIN", BlockInfo.Begin);
552   dumpBV("END", BlockInfo.End);
553   dumpBV("LIVE_IN", BlockInfo.LiveIn);
554   dumpBV("LIVE_OUT", BlockInfo.LiveOut);
555 }
556 
557 LLVM_DUMP_METHOD void StackColoring::dump() const {
558   for (MachineBasicBlock *MBB : depth_first(MF)) {
559     dbgs() << "Inspecting block #" << MBB->getNumber() << " ["
560            << MBB->getName() << "]\n";
561     dumpBB(MBB);
562   }
563 }
564 
565 LLVM_DUMP_METHOD void StackColoring::dumpIntervals() const {
566   for (unsigned I = 0, E = Intervals.size(); I != E; ++I) {
567     dbgs() << "Interval[" << I << "]:\n";
568     Intervals[I]->dump();
569   }
570 }
571 #endif
572 
573 static inline int getStartOrEndSlot(const MachineInstr &MI)
574 {
575   assert((MI.getOpcode() == TargetOpcode::LIFETIME_START ||
576           MI.getOpcode() == TargetOpcode::LIFETIME_END) &&
577          "Expected LIFETIME_START or LIFETIME_END op");
578   const MachineOperand &MO = MI.getOperand(0);
579   int Slot = MO.getIndex();
580   if (Slot >= 0)
581     return Slot;
582   return -1;
583 }
584 
585 // At the moment the only way to end a variable lifetime is with
586 // a VARIABLE_LIFETIME op (which can't contain a start). If things
587 // change and the IR allows for a single inst that both begins
588 // and ends lifetime(s), this interface will need to be reworked.
589 bool StackColoring::isLifetimeStartOrEnd(const MachineInstr &MI,
590                                          SmallVector<int, 4> &slots,
591                                          bool &isStart) {
592   if (MI.getOpcode() == TargetOpcode::LIFETIME_START ||
593       MI.getOpcode() == TargetOpcode::LIFETIME_END) {
594     int Slot = getStartOrEndSlot(MI);
595     if (Slot < 0)
596       return false;
597     if (!InterestingSlots.test(Slot))
598       return false;
599     slots.push_back(Slot);
600     if (MI.getOpcode() == TargetOpcode::LIFETIME_END) {
601       isStart = false;
602       return true;
603     }
604     if (!applyFirstUse(Slot)) {
605       isStart = true;
606       return true;
607     }
608   } else if (LifetimeStartOnFirstUse && !ProtectFromEscapedAllocas) {
609     if (!MI.isDebugInstr()) {
610       bool found = false;
611       for (const MachineOperand &MO : MI.operands()) {
612         if (!MO.isFI())
613           continue;
614         int Slot = MO.getIndex();
615         if (Slot<0)
616           continue;
617         if (InterestingSlots.test(Slot) && applyFirstUse(Slot)) {
618           slots.push_back(Slot);
619           found = true;
620         }
621       }
622       if (found) {
623         isStart = true;
624         return true;
625       }
626     }
627   }
628   return false;
629 }
630 
631 unsigned StackColoring::collectMarkers(unsigned NumSlot) {
632   unsigned MarkersFound = 0;
633   BlockBitVecMap SeenStartMap;
634   InterestingSlots.clear();
635   InterestingSlots.resize(NumSlot);
636   ConservativeSlots.clear();
637   ConservativeSlots.resize(NumSlot);
638 
639   // number of start and end lifetime ops for each slot
640   SmallVector<int, 8> NumStartLifetimes(NumSlot, 0);
641   SmallVector<int, 8> NumEndLifetimes(NumSlot, 0);
642 
643   // Step 1: collect markers and populate the "InterestingSlots"
644   // and "ConservativeSlots" sets.
645   for (MachineBasicBlock *MBB : depth_first(MF)) {
646     // Compute the set of slots for which we've seen a START marker but have
647     // not yet seen an END marker at this point in the walk (e.g. on entry
648     // to this bb).
649     BitVector BetweenStartEnd;
650     BetweenStartEnd.resize(NumSlot);
651     for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
652              PE = MBB->pred_end(); PI != PE; ++PI) {
653       BlockBitVecMap::const_iterator I = SeenStartMap.find(*PI);
654       if (I != SeenStartMap.end()) {
655         BetweenStartEnd |= I->second;
656       }
657     }
658 
659     // Walk the instructions in the block to look for start/end ops.
660     for (MachineInstr &MI : *MBB) {
661       if (MI.getOpcode() == TargetOpcode::LIFETIME_START ||
662           MI.getOpcode() == TargetOpcode::LIFETIME_END) {
663         int Slot = getStartOrEndSlot(MI);
664         if (Slot < 0)
665           continue;
666         InterestingSlots.set(Slot);
667         if (MI.getOpcode() == TargetOpcode::LIFETIME_START) {
668           BetweenStartEnd.set(Slot);
669           NumStartLifetimes[Slot] += 1;
670         } else {
671           BetweenStartEnd.reset(Slot);
672           NumEndLifetimes[Slot] += 1;
673         }
674         const AllocaInst *Allocation = MFI->getObjectAllocation(Slot);
675         if (Allocation) {
676           LLVM_DEBUG(dbgs() << "Found a lifetime ");
677           LLVM_DEBUG(dbgs() << (MI.getOpcode() == TargetOpcode::LIFETIME_START
678                                     ? "start"
679                                     : "end"));
680           LLVM_DEBUG(dbgs() << " marker for slot #" << Slot);
681           LLVM_DEBUG(dbgs()
682                      << " with allocation: " << Allocation->getName() << "\n");
683         }
684         Markers.push_back(&MI);
685         MarkersFound += 1;
686       } else {
687         for (const MachineOperand &MO : MI.operands()) {
688           if (!MO.isFI())
689             continue;
690           int Slot = MO.getIndex();
691           if (Slot < 0)
692             continue;
693           if (! BetweenStartEnd.test(Slot)) {
694             ConservativeSlots.set(Slot);
695           }
696         }
697       }
698     }
699     BitVector &SeenStart = SeenStartMap[MBB];
700     SeenStart |= BetweenStartEnd;
701   }
702   if (!MarkersFound) {
703     return 0;
704   }
705 
706   // PR27903: slots with multiple start or end lifetime ops are not
707   // safe to enable for "lifetime-start-on-first-use".
708   for (unsigned slot = 0; slot < NumSlot; ++slot)
709     if (NumStartLifetimes[slot] > 1 || NumEndLifetimes[slot] > 1)
710       ConservativeSlots.set(slot);
711   LLVM_DEBUG(dumpBV("Conservative slots", ConservativeSlots));
712 
713   // Step 2: compute begin/end sets for each block
714 
715   // NOTE: We use a depth-first iteration to ensure that we obtain a
716   // deterministic numbering.
717   for (MachineBasicBlock *MBB : depth_first(MF)) {
718     // Assign a serial number to this basic block.
719     BasicBlocks[MBB] = BasicBlockNumbering.size();
720     BasicBlockNumbering.push_back(MBB);
721 
722     // Keep a reference to avoid repeated lookups.
723     BlockLifetimeInfo &BlockInfo = BlockLiveness[MBB];
724 
725     BlockInfo.Begin.resize(NumSlot);
726     BlockInfo.End.resize(NumSlot);
727 
728     SmallVector<int, 4> slots;
729     for (MachineInstr &MI : *MBB) {
730       bool isStart = false;
731       slots.clear();
732       if (isLifetimeStartOrEnd(MI, slots, isStart)) {
733         if (!isStart) {
734           assert(slots.size() == 1 && "unexpected: MI ends multiple slots");
735           int Slot = slots[0];
736           if (BlockInfo.Begin.test(Slot)) {
737             BlockInfo.Begin.reset(Slot);
738           }
739           BlockInfo.End.set(Slot);
740         } else {
741           for (auto Slot : slots) {
742             LLVM_DEBUG(dbgs() << "Found a use of slot #" << Slot);
743             LLVM_DEBUG(dbgs()
744                        << " at " << printMBBReference(*MBB) << " index ");
745             LLVM_DEBUG(Indexes->getInstructionIndex(MI).print(dbgs()));
746             const AllocaInst *Allocation = MFI->getObjectAllocation(Slot);
747             if (Allocation) {
748               LLVM_DEBUG(dbgs()
749                          << " with allocation: " << Allocation->getName());
750             }
751             LLVM_DEBUG(dbgs() << "\n");
752             if (BlockInfo.End.test(Slot)) {
753               BlockInfo.End.reset(Slot);
754             }
755             BlockInfo.Begin.set(Slot);
756           }
757         }
758       }
759     }
760   }
761 
762   // Update statistics.
763   NumMarkerSeen += MarkersFound;
764   return MarkersFound;
765 }
766 
767 void StackColoring::calculateLocalLiveness() {
768   unsigned NumIters = 0;
769   bool changed = true;
770   while (changed) {
771     changed = false;
772     ++NumIters;
773 
774     for (const MachineBasicBlock *BB : BasicBlockNumbering) {
775       // Use an iterator to avoid repeated lookups.
776       LivenessMap::iterator BI = BlockLiveness.find(BB);
777       assert(BI != BlockLiveness.end() && "Block not found");
778       BlockLifetimeInfo &BlockInfo = BI->second;
779 
780       // Compute LiveIn by unioning together the LiveOut sets of all preds.
781       BitVector LocalLiveIn;
782       for (MachineBasicBlock::const_pred_iterator PI = BB->pred_begin(),
783            PE = BB->pred_end(); PI != PE; ++PI) {
784         LivenessMap::const_iterator I = BlockLiveness.find(*PI);
785         // PR37130: transformations prior to stack coloring can
786         // sometimes leave behind statically unreachable blocks; these
787         // can be safely skipped here.
788         if (I != BlockLiveness.end())
789           LocalLiveIn |= I->second.LiveOut;
790       }
791 
792       // Compute LiveOut by subtracting out lifetimes that end in this
793       // block, then adding in lifetimes that begin in this block.  If
794       // we have both BEGIN and END markers in the same basic block
795       // then we know that the BEGIN marker comes after the END,
796       // because we already handle the case where the BEGIN comes
797       // before the END when collecting the markers (and building the
798       // BEGIN/END vectors).
799       BitVector LocalLiveOut = LocalLiveIn;
800       LocalLiveOut.reset(BlockInfo.End);
801       LocalLiveOut |= BlockInfo.Begin;
802 
803       // Update block LiveIn set, noting whether it has changed.
804       if (LocalLiveIn.test(BlockInfo.LiveIn)) {
805         changed = true;
806         BlockInfo.LiveIn |= LocalLiveIn;
807       }
808 
809       // Update block LiveOut set, noting whether it has changed.
810       if (LocalLiveOut.test(BlockInfo.LiveOut)) {
811         changed = true;
812         BlockInfo.LiveOut |= LocalLiveOut;
813       }
814     }
815   } // while changed.
816 
817   NumIterations = NumIters;
818 }
819 
820 void StackColoring::calculateLiveIntervals(unsigned NumSlots) {
821   SmallVector<SlotIndex, 16> Starts;
822   SmallVector<bool, 16> DefinitelyInUse;
823 
824   // For each block, find which slots are active within this block
825   // and update the live intervals.
826   for (const MachineBasicBlock &MBB : *MF) {
827     Starts.clear();
828     Starts.resize(NumSlots);
829     DefinitelyInUse.clear();
830     DefinitelyInUse.resize(NumSlots);
831 
832     // Start the interval of the slots that we previously found to be 'in-use'.
833     BlockLifetimeInfo &MBBLiveness = BlockLiveness[&MBB];
834     for (int pos = MBBLiveness.LiveIn.find_first(); pos != -1;
835          pos = MBBLiveness.LiveIn.find_next(pos)) {
836       Starts[pos] = Indexes->getMBBStartIdx(&MBB);
837     }
838 
839     // Create the interval for the basic blocks containing lifetime begin/end.
840     for (const MachineInstr &MI : MBB) {
841       SmallVector<int, 4> slots;
842       bool IsStart = false;
843       if (!isLifetimeStartOrEnd(MI, slots, IsStart))
844         continue;
845       SlotIndex ThisIndex = Indexes->getInstructionIndex(MI);
846       for (auto Slot : slots) {
847         if (IsStart) {
848           // If a slot is already definitely in use, we don't have to emit
849           // a new start marker because there is already a pre-existing
850           // one.
851           if (!DefinitelyInUse[Slot]) {
852             LiveStarts[Slot].push_back(ThisIndex);
853             DefinitelyInUse[Slot] = true;
854           }
855           if (!Starts[Slot].isValid())
856             Starts[Slot] = ThisIndex;
857         } else {
858           if (Starts[Slot].isValid()) {
859             VNInfo *VNI = Intervals[Slot]->getValNumInfo(0);
860             Intervals[Slot]->addSegment(
861                 LiveInterval::Segment(Starts[Slot], ThisIndex, VNI));
862             Starts[Slot] = SlotIndex(); // Invalidate the start index
863             DefinitelyInUse[Slot] = false;
864           }
865         }
866       }
867     }
868 
869     // Finish up started segments
870     for (unsigned i = 0; i < NumSlots; ++i) {
871       if (!Starts[i].isValid())
872         continue;
873 
874       SlotIndex EndIdx = Indexes->getMBBEndIdx(&MBB);
875       VNInfo *VNI = Intervals[i]->getValNumInfo(0);
876       Intervals[i]->addSegment(LiveInterval::Segment(Starts[i], EndIdx, VNI));
877     }
878   }
879 }
880 
881 bool StackColoring::removeAllMarkers() {
882   unsigned Count = 0;
883   for (MachineInstr *MI : Markers) {
884     MI->eraseFromParent();
885     Count++;
886   }
887   Markers.clear();
888 
889   LLVM_DEBUG(dbgs() << "Removed " << Count << " markers.\n");
890   return Count;
891 }
892 
893 void StackColoring::remapInstructions(DenseMap<int, int> &SlotRemap) {
894   unsigned FixedInstr = 0;
895   unsigned FixedMemOp = 0;
896   unsigned FixedDbg = 0;
897 
898   // Remap debug information that refers to stack slots.
899   for (auto &VI : MF->getVariableDbgInfo()) {
900     if (!VI.Var)
901       continue;
902     if (SlotRemap.count(VI.Slot)) {
903       LLVM_DEBUG(dbgs() << "Remapping debug info for ["
904                         << cast<DILocalVariable>(VI.Var)->getName() << "].\n");
905       VI.Slot = SlotRemap[VI.Slot];
906       FixedDbg++;
907     }
908   }
909 
910   // Keep a list of *allocas* which need to be remapped.
911   DenseMap<const AllocaInst*, const AllocaInst*> Allocas;
912 
913   // Keep a list of allocas which has been affected by the remap.
914   SmallPtrSet<const AllocaInst*, 32> MergedAllocas;
915 
916   for (const std::pair<int, int> &SI : SlotRemap) {
917     const AllocaInst *From = MFI->getObjectAllocation(SI.first);
918     const AllocaInst *To = MFI->getObjectAllocation(SI.second);
919     assert(To && From && "Invalid allocation object");
920     Allocas[From] = To;
921 
922     // AA might be used later for instruction scheduling, and we need it to be
923     // able to deduce the correct aliasing releationships between pointers
924     // derived from the alloca being remapped and the target of that remapping.
925     // The only safe way, without directly informing AA about the remapping
926     // somehow, is to directly update the IR to reflect the change being made
927     // here.
928     Instruction *Inst = const_cast<AllocaInst *>(To);
929     if (From->getType() != To->getType()) {
930       BitCastInst *Cast = new BitCastInst(Inst, From->getType());
931       Cast->insertAfter(Inst);
932       Inst = Cast;
933     }
934 
935     // We keep both slots to maintain AliasAnalysis metadata later.
936     MergedAllocas.insert(From);
937     MergedAllocas.insert(To);
938 
939     // Allow the stack protector to adjust its value map to account for the
940     // upcoming replacement.
941     SP->adjustForColoring(From, To);
942 
943     // The new alloca might not be valid in a llvm.dbg.declare for this
944     // variable, so undef out the use to make the verifier happy.
945     AllocaInst *FromAI = const_cast<AllocaInst *>(From);
946     if (FromAI->isUsedByMetadata())
947       ValueAsMetadata::handleRAUW(FromAI, UndefValue::get(FromAI->getType()));
948     for (auto &Use : FromAI->uses()) {
949       if (BitCastInst *BCI = dyn_cast<BitCastInst>(Use.get()))
950         if (BCI->isUsedByMetadata())
951           ValueAsMetadata::handleRAUW(BCI, UndefValue::get(BCI->getType()));
952     }
953 
954     // Note that this will not replace uses in MMOs (which we'll update below),
955     // or anywhere else (which is why we won't delete the original
956     // instruction).
957     FromAI->replaceAllUsesWith(Inst);
958   }
959 
960   // Remap all instructions to the new stack slots.
961   for (MachineBasicBlock &BB : *MF)
962     for (MachineInstr &I : BB) {
963       // Skip lifetime markers. We'll remove them soon.
964       if (I.getOpcode() == TargetOpcode::LIFETIME_START ||
965           I.getOpcode() == TargetOpcode::LIFETIME_END)
966         continue;
967 
968       // Update the MachineMemOperand to use the new alloca.
969       for (MachineMemOperand *MMO : I.memoperands()) {
970         // We've replaced IR-level uses of the remapped allocas, so we only
971         // need to replace direct uses here.
972         const AllocaInst *AI = dyn_cast_or_null<AllocaInst>(MMO->getValue());
973         if (!AI)
974           continue;
975 
976         if (!Allocas.count(AI))
977           continue;
978 
979         MMO->setValue(Allocas[AI]);
980         FixedMemOp++;
981       }
982 
983       // Update all of the machine instruction operands.
984       for (MachineOperand &MO : I.operands()) {
985         if (!MO.isFI())
986           continue;
987         int FromSlot = MO.getIndex();
988 
989         // Don't touch arguments.
990         if (FromSlot<0)
991           continue;
992 
993         // Only look at mapped slots.
994         if (!SlotRemap.count(FromSlot))
995           continue;
996 
997         // In a debug build, check that the instruction that we are modifying is
998         // inside the expected live range. If the instruction is not inside
999         // the calculated range then it means that the alloca usage moved
1000         // outside of the lifetime markers, or that the user has a bug.
1001         // NOTE: Alloca address calculations which happen outside the lifetime
1002         // zone are okay, despite the fact that we don't have a good way
1003         // for validating all of the usages of the calculation.
1004 #ifndef NDEBUG
1005         bool TouchesMemory = I.mayLoad() || I.mayStore();
1006         // If we *don't* protect the user from escaped allocas, don't bother
1007         // validating the instructions.
1008         if (!I.isDebugInstr() && TouchesMemory && ProtectFromEscapedAllocas) {
1009           SlotIndex Index = Indexes->getInstructionIndex(I);
1010           const LiveInterval *Interval = &*Intervals[FromSlot];
1011           assert(Interval->find(Index) != Interval->end() &&
1012                  "Found instruction usage outside of live range.");
1013         }
1014 #endif
1015 
1016         // Fix the machine instructions.
1017         int ToSlot = SlotRemap[FromSlot];
1018         MO.setIndex(ToSlot);
1019         FixedInstr++;
1020       }
1021 
1022       // We adjust AliasAnalysis information for merged stack slots.
1023       MachineSDNode::mmo_iterator NewMemOps =
1024           MF->allocateMemRefsArray(I.getNumMemOperands());
1025       unsigned MemOpIdx = 0;
1026       bool ReplaceMemOps = false;
1027       for (MachineMemOperand *MMO : I.memoperands()) {
1028         // If this memory location can be a slot remapped here,
1029         // we remove AA information.
1030         bool MayHaveConflictingAAMD = false;
1031         if (MMO->getAAInfo()) {
1032           if (const Value *MMOV = MMO->getValue()) {
1033             SmallVector<Value *, 4> Objs;
1034             getUnderlyingObjectsForCodeGen(MMOV, Objs, MF->getDataLayout());
1035 
1036             if (Objs.empty())
1037               MayHaveConflictingAAMD = true;
1038             else
1039               for (Value *V : Objs) {
1040                 // If this memory location comes from a known stack slot
1041                 // that is not remapped, we continue checking.
1042                 // Otherwise, we need to invalidate AA infomation.
1043                 const AllocaInst *AI = dyn_cast_or_null<AllocaInst>(V);
1044                 if (AI && MergedAllocas.count(AI)) {
1045                   MayHaveConflictingAAMD = true;
1046                   break;
1047                 }
1048               }
1049           }
1050         }
1051         if (MayHaveConflictingAAMD) {
1052           NewMemOps[MemOpIdx++] = MF->getMachineMemOperand(MMO, AAMDNodes());
1053           ReplaceMemOps = true;
1054         }
1055         else
1056           NewMemOps[MemOpIdx++] = MMO;
1057       }
1058 
1059       // If any memory operand is updated, set memory references of
1060       // this instruction.
1061       if (ReplaceMemOps)
1062         I.setMemRefs(std::make_pair(NewMemOps, I.getNumMemOperands()));
1063     }
1064 
1065   // Update the location of C++ catch objects for the MSVC personality routine.
1066   if (WinEHFuncInfo *EHInfo = MF->getWinEHFuncInfo())
1067     for (WinEHTryBlockMapEntry &TBME : EHInfo->TryBlockMap)
1068       for (WinEHHandlerType &H : TBME.HandlerArray)
1069         if (H.CatchObj.FrameIndex != std::numeric_limits<int>::max() &&
1070             SlotRemap.count(H.CatchObj.FrameIndex))
1071           H.CatchObj.FrameIndex = SlotRemap[H.CatchObj.FrameIndex];
1072 
1073   LLVM_DEBUG(dbgs() << "Fixed " << FixedMemOp << " machine memory operands.\n");
1074   LLVM_DEBUG(dbgs() << "Fixed " << FixedDbg << " debug locations.\n");
1075   LLVM_DEBUG(dbgs() << "Fixed " << FixedInstr << " machine instructions.\n");
1076 }
1077 
1078 void StackColoring::removeInvalidSlotRanges() {
1079   for (MachineBasicBlock &BB : *MF)
1080     for (MachineInstr &I : BB) {
1081       if (I.getOpcode() == TargetOpcode::LIFETIME_START ||
1082           I.getOpcode() == TargetOpcode::LIFETIME_END || I.isDebugInstr())
1083         continue;
1084 
1085       // Some intervals are suspicious! In some cases we find address
1086       // calculations outside of the lifetime zone, but not actual memory
1087       // read or write. Memory accesses outside of the lifetime zone are a clear
1088       // violation, but address calculations are okay. This can happen when
1089       // GEPs are hoisted outside of the lifetime zone.
1090       // So, in here we only check instructions which can read or write memory.
1091       if (!I.mayLoad() && !I.mayStore())
1092         continue;
1093 
1094       // Check all of the machine operands.
1095       for (const MachineOperand &MO : I.operands()) {
1096         if (!MO.isFI())
1097           continue;
1098 
1099         int Slot = MO.getIndex();
1100 
1101         if (Slot<0)
1102           continue;
1103 
1104         if (Intervals[Slot]->empty())
1105           continue;
1106 
1107         // Check that the used slot is inside the calculated lifetime range.
1108         // If it is not, warn about it and invalidate the range.
1109         LiveInterval *Interval = &*Intervals[Slot];
1110         SlotIndex Index = Indexes->getInstructionIndex(I);
1111         if (Interval->find(Index) == Interval->end()) {
1112           Interval->clear();
1113           LLVM_DEBUG(dbgs() << "Invalidating range #" << Slot << "\n");
1114           EscapedAllocas++;
1115         }
1116       }
1117     }
1118 }
1119 
1120 void StackColoring::expungeSlotMap(DenseMap<int, int> &SlotRemap,
1121                                    unsigned NumSlots) {
1122   // Expunge slot remap map.
1123   for (unsigned i=0; i < NumSlots; ++i) {
1124     // If we are remapping i
1125     if (SlotRemap.count(i)) {
1126       int Target = SlotRemap[i];
1127       // As long as our target is mapped to something else, follow it.
1128       while (SlotRemap.count(Target)) {
1129         Target = SlotRemap[Target];
1130         SlotRemap[i] = Target;
1131       }
1132     }
1133   }
1134 }
1135 
1136 bool StackColoring::runOnMachineFunction(MachineFunction &Func) {
1137   LLVM_DEBUG(dbgs() << "********** Stack Coloring **********\n"
1138                     << "********** Function: " << Func.getName() << '\n');
1139   MF = &Func;
1140   MFI = &MF->getFrameInfo();
1141   Indexes = &getAnalysis<SlotIndexes>();
1142   SP = &getAnalysis<StackProtector>();
1143   BlockLiveness.clear();
1144   BasicBlocks.clear();
1145   BasicBlockNumbering.clear();
1146   Markers.clear();
1147   Intervals.clear();
1148   LiveStarts.clear();
1149   VNInfoAllocator.Reset();
1150 
1151   unsigned NumSlots = MFI->getObjectIndexEnd();
1152 
1153   // If there are no stack slots then there are no markers to remove.
1154   if (!NumSlots)
1155     return false;
1156 
1157   SmallVector<int, 8> SortedSlots;
1158   SortedSlots.reserve(NumSlots);
1159   Intervals.reserve(NumSlots);
1160   LiveStarts.resize(NumSlots);
1161 
1162   unsigned NumMarkers = collectMarkers(NumSlots);
1163 
1164   unsigned TotalSize = 0;
1165   LLVM_DEBUG(dbgs() << "Found " << NumMarkers << " markers and " << NumSlots
1166                     << " slots\n");
1167   LLVM_DEBUG(dbgs() << "Slot structure:\n");
1168 
1169   for (int i=0; i < MFI->getObjectIndexEnd(); ++i) {
1170     LLVM_DEBUG(dbgs() << "Slot #" << i << " - " << MFI->getObjectSize(i)
1171                       << " bytes.\n");
1172     TotalSize += MFI->getObjectSize(i);
1173   }
1174 
1175   LLVM_DEBUG(dbgs() << "Total Stack size: " << TotalSize << " bytes\n\n");
1176 
1177   // Don't continue because there are not enough lifetime markers, or the
1178   // stack is too small, or we are told not to optimize the slots.
1179   if (NumMarkers < 2 || TotalSize < 16 || DisableColoring ||
1180       skipFunction(Func.getFunction())) {
1181     LLVM_DEBUG(dbgs() << "Will not try to merge slots.\n");
1182     return removeAllMarkers();
1183   }
1184 
1185   for (unsigned i=0; i < NumSlots; ++i) {
1186     std::unique_ptr<LiveInterval> LI(new LiveInterval(i, 0));
1187     LI->getNextValue(Indexes->getZeroIndex(), VNInfoAllocator);
1188     Intervals.push_back(std::move(LI));
1189     SortedSlots.push_back(i);
1190   }
1191 
1192   // Calculate the liveness of each block.
1193   calculateLocalLiveness();
1194   LLVM_DEBUG(dbgs() << "Dataflow iterations: " << NumIterations << "\n");
1195   LLVM_DEBUG(dump());
1196 
1197   // Propagate the liveness information.
1198   calculateLiveIntervals(NumSlots);
1199   LLVM_DEBUG(dumpIntervals());
1200 
1201   // Search for allocas which are used outside of the declared lifetime
1202   // markers.
1203   if (ProtectFromEscapedAllocas)
1204     removeInvalidSlotRanges();
1205 
1206   // Maps old slots to new slots.
1207   DenseMap<int, int> SlotRemap;
1208   unsigned RemovedSlots = 0;
1209   unsigned ReducedSize = 0;
1210 
1211   // Do not bother looking at empty intervals.
1212   for (unsigned I = 0; I < NumSlots; ++I) {
1213     if (Intervals[SortedSlots[I]]->empty())
1214       SortedSlots[I] = -1;
1215   }
1216 
1217   // This is a simple greedy algorithm for merging allocas. First, sort the
1218   // slots, placing the largest slots first. Next, perform an n^2 scan and look
1219   // for disjoint slots. When you find disjoint slots, merge the samller one
1220   // into the bigger one and update the live interval. Remove the small alloca
1221   // and continue.
1222 
1223   // Sort the slots according to their size. Place unused slots at the end.
1224   // Use stable sort to guarantee deterministic code generation.
1225   std::stable_sort(SortedSlots.begin(), SortedSlots.end(),
1226                    [this](int LHS, int RHS) {
1227     // We use -1 to denote a uninteresting slot. Place these slots at the end.
1228     if (LHS == -1) return false;
1229     if (RHS == -1) return true;
1230     // Sort according to size.
1231     return MFI->getObjectSize(LHS) > MFI->getObjectSize(RHS);
1232   });
1233 
1234   for (auto &s : LiveStarts)
1235     llvm::sort(s.begin(), s.end());
1236 
1237   bool Changed = true;
1238   while (Changed) {
1239     Changed = false;
1240     for (unsigned I = 0; I < NumSlots; ++I) {
1241       if (SortedSlots[I] == -1)
1242         continue;
1243 
1244       for (unsigned J=I+1; J < NumSlots; ++J) {
1245         if (SortedSlots[J] == -1)
1246           continue;
1247 
1248         int FirstSlot = SortedSlots[I];
1249         int SecondSlot = SortedSlots[J];
1250         LiveInterval *First = &*Intervals[FirstSlot];
1251         LiveInterval *Second = &*Intervals[SecondSlot];
1252         auto &FirstS = LiveStarts[FirstSlot];
1253         auto &SecondS = LiveStarts[SecondSlot];
1254         assert(!First->empty() && !Second->empty() && "Found an empty range");
1255 
1256         // Merge disjoint slots. This is a little bit tricky - see the
1257         // Implementation Notes section for an explanation.
1258         if (!First->isLiveAtIndexes(SecondS) &&
1259             !Second->isLiveAtIndexes(FirstS)) {
1260           Changed = true;
1261           First->MergeSegmentsInAsValue(*Second, First->getValNumInfo(0));
1262 
1263           int OldSize = FirstS.size();
1264           FirstS.append(SecondS.begin(), SecondS.end());
1265           auto Mid = FirstS.begin() + OldSize;
1266           std::inplace_merge(FirstS.begin(), Mid, FirstS.end());
1267 
1268           SlotRemap[SecondSlot] = FirstSlot;
1269           SortedSlots[J] = -1;
1270           LLVM_DEBUG(dbgs() << "Merging #" << FirstSlot << " and slots #"
1271                             << SecondSlot << " together.\n");
1272           unsigned MaxAlignment = std::max(MFI->getObjectAlignment(FirstSlot),
1273                                            MFI->getObjectAlignment(SecondSlot));
1274 
1275           assert(MFI->getObjectSize(FirstSlot) >=
1276                  MFI->getObjectSize(SecondSlot) &&
1277                  "Merging a small object into a larger one");
1278 
1279           RemovedSlots+=1;
1280           ReducedSize += MFI->getObjectSize(SecondSlot);
1281           MFI->setObjectAlignment(FirstSlot, MaxAlignment);
1282           MFI->RemoveStackObject(SecondSlot);
1283         }
1284       }
1285     }
1286   }// While changed.
1287 
1288   // Record statistics.
1289   StackSpaceSaved += ReducedSize;
1290   StackSlotMerged += RemovedSlots;
1291   LLVM_DEBUG(dbgs() << "Merge " << RemovedSlots << " slots. Saved "
1292                     << ReducedSize << " bytes\n");
1293 
1294   // Scan the entire function and update all machine operands that use frame
1295   // indices to use the remapped frame index.
1296   expungeSlotMap(SlotRemap, NumSlots);
1297   remapInstructions(SlotRemap);
1298 
1299   return removeAllMarkers();
1300 }
1301