1 //===-- StackColoring.cpp -------------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass implements the stack-coloring optimization that looks for
11 // lifetime markers machine instructions (LIFESTART_BEGIN and LIFESTART_END),
12 // which represent the possible lifetime of stack slots. It attempts to
13 // merge disjoint stack slots and reduce the used stack space.
14 // NOTE: This pass is not StackSlotColoring, which optimizes spill slots.
15 //
16 // TODO: In the future we plan to improve stack coloring in the following ways:
17 // 1. Allow merging multiple small slots into a single larger slot at different
18 //    offsets.
19 // 2. Merge this pass with StackSlotColoring and allow merging of allocas with
20 //    spill slots.
21 //
22 //===----------------------------------------------------------------------===//
23 
24 #include "llvm/ADT/BitVector.h"
25 #include "llvm/ADT/DepthFirstIterator.h"
26 #include "llvm/ADT/SetVector.h"
27 #include "llvm/ADT/SmallPtrSet.h"
28 #include "llvm/ADT/Statistic.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/CodeGen/LiveInterval.h"
31 #include "llvm/CodeGen/MachineBasicBlock.h"
32 #include "llvm/CodeGen/MachineFrameInfo.h"
33 #include "llvm/CodeGen/MachineFunctionPass.h"
34 #include "llvm/CodeGen/MachineLoopInfo.h"
35 #include "llvm/CodeGen/MachineMemOperand.h"
36 #include "llvm/CodeGen/MachineModuleInfo.h"
37 #include "llvm/CodeGen/MachineRegisterInfo.h"
38 #include "llvm/CodeGen/Passes.h"
39 #include "llvm/CodeGen/PseudoSourceValue.h"
40 #include "llvm/CodeGen/SlotIndexes.h"
41 #include "llvm/CodeGen/StackProtector.h"
42 #include "llvm/CodeGen/WinEHFuncInfo.h"
43 #include "llvm/IR/DebugInfo.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/IR/Module.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Support/Debug.h"
50 #include "llvm/Support/raw_ostream.h"
51 #include "llvm/Target/TargetInstrInfo.h"
52 #include "llvm/Target/TargetRegisterInfo.h"
53 
54 using namespace llvm;
55 
56 #define DEBUG_TYPE "stackcoloring"
57 
58 static cl::opt<bool>
59 DisableColoring("no-stack-coloring",
60         cl::init(false), cl::Hidden,
61         cl::desc("Disable stack coloring"));
62 
63 /// The user may write code that uses allocas outside of the declared lifetime
64 /// zone. This can happen when the user returns a reference to a local
65 /// data-structure. We can detect these cases and decide not to optimize the
66 /// code. If this flag is enabled, we try to save the user. This option
67 /// is treated as overriding LifetimeStartOnFirstUse below.
68 static cl::opt<bool>
69 ProtectFromEscapedAllocas("protect-from-escaped-allocas",
70                           cl::init(false), cl::Hidden,
71                           cl::desc("Do not optimize lifetime zones that "
72                                    "are broken"));
73 
74 /// Enable enhanced dataflow scheme for lifetime analysis (treat first
75 /// use of stack slot as start of slot lifetime, as opposed to looking
76 /// for LIFETIME_START marker). See "Implementation notes" below for
77 /// more info.
78 static cl::opt<bool>
79 LifetimeStartOnFirstUse("stackcoloring-lifetime-start-on-first-use",
80         cl::init(true), cl::Hidden,
81         cl::desc("Treat stack lifetimes as starting on first use, not on START marker."));
82 
83 
84 STATISTIC(NumMarkerSeen,  "Number of lifetime markers found.");
85 STATISTIC(StackSpaceSaved, "Number of bytes saved due to merging slots.");
86 STATISTIC(StackSlotMerged, "Number of stack slot merged.");
87 STATISTIC(EscapedAllocas, "Number of allocas that escaped the lifetime region");
88 
89 //
90 // Implementation Notes:
91 // ---------------------
92 //
93 // Consider the following motivating example:
94 //
95 //     int foo() {
96 //       char b1[1024], b2[1024];
97 //       if (...) {
98 //         char b3[1024];
99 //         <uses of b1, b3>;
100 //         return x;
101 //       } else {
102 //         char b4[1024], b5[1024];
103 //         <uses of b2, b4, b5>;
104 //         return y;
105 //       }
106 //     }
107 //
108 // In the code above, "b3" and "b4" are declared in distinct lexical
109 // scopes, meaning that it is easy to prove that they can share the
110 // same stack slot. Variables "b1" and "b2" are declared in the same
111 // scope, meaning that from a lexical point of view, their lifetimes
112 // overlap. From a control flow pointer of view, however, the two
113 // variables are accessed in disjoint regions of the CFG, thus it
114 // should be possible for them to share the same stack slot. An ideal
115 // stack allocation for the function above would look like:
116 //
117 //     slot 0: b1, b2
118 //     slot 1: b3, b4
119 //     slot 2: b5
120 //
121 // Achieving this allocation is tricky, however, due to the way
122 // lifetime markers are inserted. Here is a simplified view of the
123 // control flow graph for the code above:
124 //
125 //                +------  block 0 -------+
126 //               0| LIFETIME_START b1, b2 |
127 //               1| <test 'if' condition> |
128 //                +-----------------------+
129 //                   ./              \.
130 //   +------  block 1 -------+   +------  block 2 -------+
131 //  2| LIFETIME_START b3     |  5| LIFETIME_START b4, b5 |
132 //  3| <uses of b1, b3>      |  6| <uses of b2, b4, b5>  |
133 //  4| LIFETIME_END b3       |  7| LIFETIME_END b4, b5   |
134 //   +-----------------------+   +-----------------------+
135 //                   \.              /.
136 //                +------  block 3 -------+
137 //               8| <cleanupcode>         |
138 //               9| LIFETIME_END b1, b2   |
139 //              10| return                |
140 //                +-----------------------+
141 //
142 // If we create live intervals for the variables above strictly based
143 // on the lifetime markers, we'll get the set of intervals on the
144 // left. If we ignore the lifetime start markers and instead treat a
145 // variable's lifetime as beginning with the first reference to the
146 // var, then we get the intervals on the right.
147 //
148 //            LIFETIME_START      First Use
149 //     b1:    [0,9]               [3,4] [8,9]
150 //     b2:    [0,9]               [6,9]
151 //     b3:    [2,4]               [3,4]
152 //     b4:    [5,7]               [6,7]
153 //     b5:    [5,7]               [6,7]
154 //
155 // For the intervals on the left, the best we can do is overlap two
156 // variables (b3 and b4, for example); this gives us a stack size of
157 // 4*1024 bytes, not ideal. When treating first-use as the start of a
158 // lifetime, we can additionally overlap b1 and b5, giving us a 3*1024
159 // byte stack (better).
160 //
161 // Relying entirely on first-use of stack slots is problematic,
162 // however, due to the fact that optimizations can sometimes migrate
163 // uses of a variable outside of its lifetime start/end region. Here
164 // is an example:
165 //
166 //     int bar() {
167 //       char b1[1024], b2[1024];
168 //       if (...) {
169 //         <uses of b2>
170 //         return y;
171 //       } else {
172 //         <uses of b1>
173 //         while (...) {
174 //           char b3[1024];
175 //           <uses of b3>
176 //         }
177 //       }
178 //     }
179 //
180 // Before optimization, the control flow graph for the code above
181 // might look like the following:
182 //
183 //                +------  block 0 -------+
184 //               0| LIFETIME_START b1, b2 |
185 //               1| <test 'if' condition> |
186 //                +-----------------------+
187 //                   ./              \.
188 //   +------  block 1 -------+    +------- block 2 -------+
189 //  2| <uses of b2>          |   3| <uses of b1>          |
190 //   +-----------------------+    +-----------------------+
191 //              |                            |
192 //              |                 +------- block 3 -------+ <-\.
193 //              |                4| <while condition>     |    |
194 //              |                 +-----------------------+    |
195 //              |               /          |                   |
196 //              |              /  +------- block 4 -------+
197 //              \             /  5| LIFETIME_START b3     |    |
198 //               \           /   6| <uses of b3>          |    |
199 //                \         /    7| LIFETIME_END b3       |    |
200 //                 \        |    +------------------------+    |
201 //                  \       |                 \                /
202 //                +------  block 5 -----+      \---------------
203 //               8| <cleanupcode>       |
204 //               9| LIFETIME_END b1, b2 |
205 //              10| return              |
206 //                +---------------------+
207 //
208 // During optimization, however, it can happen that an instruction
209 // computing an address in "b3" (for example, a loop-invariant GEP) is
210 // hoisted up out of the loop from block 4 to block 2.  [Note that
211 // this is not an actual load from the stack, only an instruction that
212 // computes the address to be loaded]. If this happens, there is now a
213 // path leading from the first use of b3 to the return instruction
214 // that does not encounter the b3 LIFETIME_END, hence b3's lifetime is
215 // now larger than if we were computing live intervals strictly based
216 // on lifetime markers. In the example above, this lengthened lifetime
217 // would mean that it would appear illegal to overlap b3 with b2.
218 //
219 // To deal with this such cases, the code in ::collectMarkers() below
220 // tries to identify "degenerate" slots -- those slots where on a single
221 // forward pass through the CFG we encounter a first reference to slot
222 // K before we hit the slot K lifetime start marker. For such slots,
223 // we fall back on using the lifetime start marker as the beginning of
224 // the variable's lifetime.  NB: with this implementation, slots can
225 // appear degenerate in cases where there is unstructured control flow:
226 //
227 //    if (q) goto mid;
228 //    if (x > 9) {
229 //         int b[100];
230 //         memcpy(&b[0], ...);
231 //    mid: b[k] = ...;
232 //         abc(&b);
233 //    }
234 //
235 // If in RPO ordering chosen to walk the CFG  we happen to visit the b[k]
236 // before visiting the memcpy block (which will contain the lifetime start
237 // for "b" then it will appear that 'b' has a degenerate lifetime.
238 //
239 
240 //===----------------------------------------------------------------------===//
241 //                           StackColoring Pass
242 //===----------------------------------------------------------------------===//
243 
244 namespace {
245 /// StackColoring - A machine pass for merging disjoint stack allocations,
246 /// marked by the LIFETIME_START and LIFETIME_END pseudo instructions.
247 class StackColoring : public MachineFunctionPass {
248   MachineFrameInfo *MFI;
249   MachineFunction *MF;
250 
251   /// A class representing liveness information for a single basic block.
252   /// Each bit in the BitVector represents the liveness property
253   /// for a different stack slot.
254   struct BlockLifetimeInfo {
255     /// Which slots BEGINs in each basic block.
256     BitVector Begin;
257     /// Which slots ENDs in each basic block.
258     BitVector End;
259     /// Which slots are marked as LIVE_IN, coming into each basic block.
260     BitVector LiveIn;
261     /// Which slots are marked as LIVE_OUT, coming out of each basic block.
262     BitVector LiveOut;
263   };
264 
265   /// Maps active slots (per bit) for each basic block.
266   typedef DenseMap<const MachineBasicBlock*, BlockLifetimeInfo> LivenessMap;
267   LivenessMap BlockLiveness;
268 
269   /// Maps serial numbers to basic blocks.
270   DenseMap<const MachineBasicBlock*, int> BasicBlocks;
271   /// Maps basic blocks to a serial number.
272   SmallVector<const MachineBasicBlock*, 8> BasicBlockNumbering;
273 
274   /// Maps liveness intervals for each slot.
275   SmallVector<std::unique_ptr<LiveInterval>, 16> Intervals;
276   /// VNInfo is used for the construction of LiveIntervals.
277   VNInfo::Allocator VNInfoAllocator;
278   /// SlotIndex analysis object.
279   SlotIndexes *Indexes;
280   /// The stack protector object.
281   StackProtector *SP;
282 
283   /// The list of lifetime markers found. These markers are to be removed
284   /// once the coloring is done.
285   SmallVector<MachineInstr*, 8> Markers;
286 
287   /// Record the FI slots for which we have seen some sort of
288   /// lifetime marker (either start or end).
289   BitVector InterestingSlots;
290 
291   /// FI slots that need to be handled conservatively (for these
292   /// slots lifetime-start-on-first-use is disabled).
293   BitVector ConservativeSlots;
294 
295   /// Number of iterations taken during data flow analysis.
296   unsigned NumIterations;
297 
298 public:
299   static char ID;
300   StackColoring() : MachineFunctionPass(ID) {
301     initializeStackColoringPass(*PassRegistry::getPassRegistry());
302   }
303   void getAnalysisUsage(AnalysisUsage &AU) const override;
304   bool runOnMachineFunction(MachineFunction &MF) override;
305 
306 private:
307   /// Debug.
308   void dump() const;
309   void dumpIntervals() const;
310   void dumpBB(MachineBasicBlock *MBB) const;
311   void dumpBV(const char *tag, const BitVector &BV) const;
312 
313   /// Removes all of the lifetime marker instructions from the function.
314   /// \returns true if any markers were removed.
315   bool removeAllMarkers();
316 
317   /// Scan the machine function and find all of the lifetime markers.
318   /// Record the findings in the BEGIN and END vectors.
319   /// \returns the number of markers found.
320   unsigned collectMarkers(unsigned NumSlot);
321 
322   /// Perform the dataflow calculation and calculate the lifetime for each of
323   /// the slots, based on the BEGIN/END vectors. Set the LifetimeLIVE_IN and
324   /// LifetimeLIVE_OUT maps that represent which stack slots are live coming
325   /// in and out blocks.
326   void calculateLocalLiveness();
327 
328   /// Returns TRUE if we're using the first-use-begins-lifetime method for
329   /// this slot (if FALSE, then the start marker is treated as start of lifetime).
330   bool applyFirstUse(int Slot) {
331     if (!LifetimeStartOnFirstUse || ProtectFromEscapedAllocas)
332       return false;
333     if (ConservativeSlots.test(Slot))
334       return false;
335     return true;
336   }
337 
338   /// Examines the specified instruction and returns TRUE if the instruction
339   /// represents the start or end of an interesting lifetime. The slot or slots
340   /// starting or ending are added to the vector "slots" and "isStart" is set
341   /// accordingly.
342   /// \returns True if inst contains a lifetime start or end
343   bool isLifetimeStartOrEnd(const MachineInstr &MI,
344                             SmallVector<int, 4> &slots,
345                             bool &isStart);
346 
347   /// Construct the LiveIntervals for the slots.
348   void calculateLiveIntervals(unsigned NumSlots);
349 
350   /// Go over the machine function and change instructions which use stack
351   /// slots to use the joint slots.
352   void remapInstructions(DenseMap<int, int> &SlotRemap);
353 
354   /// The input program may contain instructions which are not inside lifetime
355   /// markers. This can happen due to a bug in the compiler or due to a bug in
356   /// user code (for example, returning a reference to a local variable).
357   /// This procedure checks all of the instructions in the function and
358   /// invalidates lifetime ranges which do not contain all of the instructions
359   /// which access that frame slot.
360   void removeInvalidSlotRanges();
361 
362   /// Map entries which point to other entries to their destination.
363   ///   A->B->C becomes A->C.
364   void expungeSlotMap(DenseMap<int, int> &SlotRemap, unsigned NumSlots);
365 
366   /// Used in collectMarkers
367   typedef DenseMap<const MachineBasicBlock*, BitVector> BlockBitVecMap;
368 };
369 } // end anonymous namespace
370 
371 char StackColoring::ID = 0;
372 char &llvm::StackColoringID = StackColoring::ID;
373 
374 INITIALIZE_PASS_BEGIN(StackColoring,
375                    "stack-coloring", "Merge disjoint stack slots", false, false)
376 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
377 INITIALIZE_PASS_DEPENDENCY(StackProtector)
378 INITIALIZE_PASS_END(StackColoring,
379                    "stack-coloring", "Merge disjoint stack slots", false, false)
380 
381 void StackColoring::getAnalysisUsage(AnalysisUsage &AU) const {
382   AU.addRequired<SlotIndexes>();
383   AU.addRequired<StackProtector>();
384   MachineFunctionPass::getAnalysisUsage(AU);
385 }
386 
387 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
388 LLVM_DUMP_METHOD void StackColoring::dumpBV(const char *tag,
389                                             const BitVector &BV) const {
390   dbgs() << tag << " : { ";
391   for (unsigned I = 0, E = BV.size(); I != E; ++I)
392     dbgs() << BV.test(I) << " ";
393   dbgs() << "}\n";
394 }
395 
396 LLVM_DUMP_METHOD void StackColoring::dumpBB(MachineBasicBlock *MBB) const {
397   LivenessMap::const_iterator BI = BlockLiveness.find(MBB);
398   assert(BI != BlockLiveness.end() && "Block not found");
399   const BlockLifetimeInfo &BlockInfo = BI->second;
400 
401   dumpBV("BEGIN", BlockInfo.Begin);
402   dumpBV("END", BlockInfo.End);
403   dumpBV("LIVE_IN", BlockInfo.LiveIn);
404   dumpBV("LIVE_OUT", BlockInfo.LiveOut);
405 }
406 
407 LLVM_DUMP_METHOD void StackColoring::dump() const {
408   for (MachineBasicBlock *MBB : depth_first(MF)) {
409     dbgs() << "Inspecting block #" << MBB->getNumber() << " ["
410            << MBB->getName() << "]\n";
411     dumpBB(MBB);
412   }
413 }
414 
415 LLVM_DUMP_METHOD void StackColoring::dumpIntervals() const {
416   for (unsigned I = 0, E = Intervals.size(); I != E; ++I) {
417     dbgs() << "Interval[" << I << "]:\n";
418     Intervals[I]->dump();
419   }
420 }
421 #endif
422 
423 static inline int getStartOrEndSlot(const MachineInstr &MI)
424 {
425   assert((MI.getOpcode() == TargetOpcode::LIFETIME_START ||
426           MI.getOpcode() == TargetOpcode::LIFETIME_END) &&
427          "Expected LIFETIME_START or LIFETIME_END op");
428   const MachineOperand &MO = MI.getOperand(0);
429   int Slot = MO.getIndex();
430   if (Slot >= 0)
431     return Slot;
432   return -1;
433 }
434 
435 //
436 // At the moment the only way to end a variable lifetime is with
437 // a VARIABLE_LIFETIME op (which can't contain a start). If things
438 // change and the IR allows for a single inst that both begins
439 // and ends lifetime(s), this interface will need to be reworked.
440 //
441 bool StackColoring::isLifetimeStartOrEnd(const MachineInstr &MI,
442                                          SmallVector<int, 4> &slots,
443                                          bool &isStart)
444 {
445   if (MI.getOpcode() == TargetOpcode::LIFETIME_START ||
446       MI.getOpcode() == TargetOpcode::LIFETIME_END) {
447     int Slot = getStartOrEndSlot(MI);
448     if (Slot < 0)
449       return false;
450     if (!InterestingSlots.test(Slot))
451       return false;
452     slots.push_back(Slot);
453     if (MI.getOpcode() == TargetOpcode::LIFETIME_END) {
454       isStart = false;
455       return true;
456     }
457     if (! applyFirstUse(Slot)) {
458       isStart = true;
459       return true;
460     }
461   } else if (LifetimeStartOnFirstUse && !ProtectFromEscapedAllocas) {
462     if (! MI.isDebugValue()) {
463       bool found = false;
464       for (const MachineOperand &MO : MI.operands()) {
465         if (!MO.isFI())
466           continue;
467         int Slot = MO.getIndex();
468         if (Slot<0)
469           continue;
470         if (InterestingSlots.test(Slot) && applyFirstUse(Slot)) {
471           slots.push_back(Slot);
472           found = true;
473         }
474       }
475       if (found) {
476         isStart = true;
477         return true;
478       }
479     }
480   }
481   return false;
482 }
483 
484 unsigned StackColoring::collectMarkers(unsigned NumSlot)
485 {
486   unsigned MarkersFound = 0;
487   BlockBitVecMap SeenStartMap;
488   InterestingSlots.clear();
489   InterestingSlots.resize(NumSlot);
490   ConservativeSlots.clear();
491   ConservativeSlots.resize(NumSlot);
492 
493   // number of start and end lifetime ops for each slot
494   SmallVector<int, 8> NumStartLifetimes(NumSlot, 0);
495   SmallVector<int, 8> NumEndLifetimes(NumSlot, 0);
496 
497   // Step 1: collect markers and populate the "InterestingSlots"
498   // and "ConservativeSlots" sets.
499   for (MachineBasicBlock *MBB : depth_first(MF)) {
500 
501     // Compute the set of slots for which we've seen a START marker but have
502     // not yet seen an END marker at this point in the walk (e.g. on entry
503     // to this bb).
504     BitVector BetweenStartEnd;
505     BetweenStartEnd.resize(NumSlot);
506     for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
507              PE = MBB->pred_end(); PI != PE; ++PI) {
508       BlockBitVecMap::const_iterator I = SeenStartMap.find(*PI);
509       if (I != SeenStartMap.end()) {
510         BetweenStartEnd |= I->second;
511       }
512     }
513 
514     // Walk the instructions in the block to look for start/end ops.
515     for (MachineInstr &MI : *MBB) {
516       if (MI.getOpcode() == TargetOpcode::LIFETIME_START ||
517           MI.getOpcode() == TargetOpcode::LIFETIME_END) {
518         int Slot = getStartOrEndSlot(MI);
519         if (Slot < 0)
520           continue;
521         InterestingSlots.set(Slot);
522         if (MI.getOpcode() == TargetOpcode::LIFETIME_START) {
523           BetweenStartEnd.set(Slot);
524           NumStartLifetimes[Slot] += 1;
525         } else {
526           BetweenStartEnd.reset(Slot);
527           NumEndLifetimes[Slot] += 1;
528         }
529         const AllocaInst *Allocation = MFI->getObjectAllocation(Slot);
530         if (Allocation) {
531           DEBUG(dbgs() << "Found a lifetime ");
532           DEBUG(dbgs() << (MI.getOpcode() == TargetOpcode::LIFETIME_START
533                                ? "start"
534                                : "end"));
535           DEBUG(dbgs() << " marker for slot #" << Slot);
536           DEBUG(dbgs() << " with allocation: " << Allocation->getName()
537                        << "\n");
538         }
539         Markers.push_back(&MI);
540         MarkersFound += 1;
541       } else {
542         for (const MachineOperand &MO : MI.operands()) {
543           if (!MO.isFI())
544             continue;
545           int Slot = MO.getIndex();
546           if (Slot < 0)
547             continue;
548           if (! BetweenStartEnd.test(Slot)) {
549             ConservativeSlots.set(Slot);
550           }
551         }
552       }
553     }
554     BitVector &SeenStart = SeenStartMap[MBB];
555     SeenStart |= BetweenStartEnd;
556   }
557   if (!MarkersFound) {
558     return 0;
559   }
560 
561   // PR27903: slots with multiple start or end lifetime ops are not
562   // safe to enable for "lifetime-start-on-first-use".
563   for (unsigned slot = 0; slot < NumSlot; ++slot)
564     if (NumStartLifetimes[slot] > 1 || NumEndLifetimes[slot] > 1)
565       ConservativeSlots.set(slot);
566   DEBUG(dumpBV("Conservative slots", ConservativeSlots));
567 
568   // Step 2: compute begin/end sets for each block
569 
570   // NOTE: We use a depth-first iteration to ensure that we obtain a
571   // deterministic numbering.
572   for (MachineBasicBlock *MBB : depth_first(MF)) {
573 
574     // Assign a serial number to this basic block.
575     BasicBlocks[MBB] = BasicBlockNumbering.size();
576     BasicBlockNumbering.push_back(MBB);
577 
578     // Keep a reference to avoid repeated lookups.
579     BlockLifetimeInfo &BlockInfo = BlockLiveness[MBB];
580 
581     BlockInfo.Begin.resize(NumSlot);
582     BlockInfo.End.resize(NumSlot);
583 
584     SmallVector<int, 4> slots;
585     for (MachineInstr &MI : *MBB) {
586       bool isStart = false;
587       slots.clear();
588       if (isLifetimeStartOrEnd(MI, slots, isStart)) {
589         if (!isStart) {
590           assert(slots.size() == 1 && "unexpected: MI ends multiple slots");
591           int Slot = slots[0];
592           if (BlockInfo.Begin.test(Slot)) {
593             BlockInfo.Begin.reset(Slot);
594           }
595           BlockInfo.End.set(Slot);
596         } else {
597           for (auto Slot : slots) {
598             DEBUG(dbgs() << "Found a use of slot #" << Slot);
599             DEBUG(dbgs() << " at BB#" << MBB->getNumber() << " index ");
600             DEBUG(Indexes->getInstructionIndex(MI).print(dbgs()));
601             const AllocaInst *Allocation = MFI->getObjectAllocation(Slot);
602             if (Allocation) {
603               DEBUG(dbgs() << " with allocation: "<< Allocation->getName());
604             }
605             DEBUG(dbgs() << "\n");
606             if (BlockInfo.End.test(Slot)) {
607               BlockInfo.End.reset(Slot);
608             }
609             BlockInfo.Begin.set(Slot);
610           }
611         }
612       }
613     }
614   }
615 
616   // Update statistics.
617   NumMarkerSeen += MarkersFound;
618   return MarkersFound;
619 }
620 
621 void StackColoring::calculateLocalLiveness()
622 {
623   unsigned NumIters = 0;
624   bool changed = true;
625   while (changed) {
626     changed = false;
627     ++NumIters;
628 
629     for (const MachineBasicBlock *BB : BasicBlockNumbering) {
630 
631       // Use an iterator to avoid repeated lookups.
632       LivenessMap::iterator BI = BlockLiveness.find(BB);
633       assert(BI != BlockLiveness.end() && "Block not found");
634       BlockLifetimeInfo &BlockInfo = BI->second;
635 
636       // Compute LiveIn by unioning together the LiveOut sets of all preds.
637       BitVector LocalLiveIn;
638       for (MachineBasicBlock::const_pred_iterator PI = BB->pred_begin(),
639            PE = BB->pred_end(); PI != PE; ++PI) {
640         LivenessMap::const_iterator I = BlockLiveness.find(*PI);
641         assert(I != BlockLiveness.end() && "Predecessor not found");
642         LocalLiveIn |= I->second.LiveOut;
643       }
644 
645       // Compute LiveOut by subtracting out lifetimes that end in this
646       // block, then adding in lifetimes that begin in this block.  If
647       // we have both BEGIN and END markers in the same basic block
648       // then we know that the BEGIN marker comes after the END,
649       // because we already handle the case where the BEGIN comes
650       // before the END when collecting the markers (and building the
651       // BEGIN/END vectors).
652       BitVector LocalLiveOut = LocalLiveIn;
653       LocalLiveOut.reset(BlockInfo.End);
654       LocalLiveOut |= BlockInfo.Begin;
655 
656       // Update block LiveIn set, noting whether it has changed.
657       if (LocalLiveIn.test(BlockInfo.LiveIn)) {
658         changed = true;
659         BlockInfo.LiveIn |= LocalLiveIn;
660       }
661 
662       // Update block LiveOut set, noting whether it has changed.
663       if (LocalLiveOut.test(BlockInfo.LiveOut)) {
664         changed = true;
665         BlockInfo.LiveOut |= LocalLiveOut;
666       }
667     }
668   }// while changed.
669 
670   NumIterations = NumIters;
671 }
672 
673 void StackColoring::calculateLiveIntervals(unsigned NumSlots) {
674   SmallVector<SlotIndex, 16> Starts;
675   SmallVector<SlotIndex, 16> Finishes;
676 
677   // For each block, find which slots are active within this block
678   // and update the live intervals.
679   for (const MachineBasicBlock &MBB : *MF) {
680     Starts.clear();
681     Starts.resize(NumSlots);
682     Finishes.clear();
683     Finishes.resize(NumSlots);
684 
685     // Create the interval for the basic blocks containing lifetime begin/end.
686     for (const MachineInstr &MI : MBB) {
687 
688       SmallVector<int, 4> slots;
689       bool IsStart = false;
690       if (!isLifetimeStartOrEnd(MI, slots, IsStart))
691         continue;
692       SlotIndex ThisIndex = Indexes->getInstructionIndex(MI);
693       for (auto Slot : slots) {
694         if (IsStart) {
695           if (!Starts[Slot].isValid() || Starts[Slot] > ThisIndex)
696             Starts[Slot] = ThisIndex;
697         } else {
698           if (!Finishes[Slot].isValid() || Finishes[Slot] < ThisIndex)
699             Finishes[Slot] = ThisIndex;
700         }
701       }
702     }
703 
704     // Create the interval of the blocks that we previously found to be 'alive'.
705     BlockLifetimeInfo &MBBLiveness = BlockLiveness[&MBB];
706     for (int pos = MBBLiveness.LiveIn.find_first(); pos != -1;
707          pos = MBBLiveness.LiveIn.find_next(pos)) {
708       Starts[pos] = Indexes->getMBBStartIdx(&MBB);
709     }
710     for (int pos = MBBLiveness.LiveOut.find_first(); pos != -1;
711          pos = MBBLiveness.LiveOut.find_next(pos)) {
712       Finishes[pos] = Indexes->getMBBEndIdx(&MBB);
713     }
714 
715     for (unsigned i = 0; i < NumSlots; ++i) {
716       //
717       // When LifetimeStartOnFirstUse is turned on, data flow analysis
718       // is forward (from starts to ends), not bidirectional. A
719       // consequence of this is that we can wind up in situations
720       // where Starts[i] is invalid but Finishes[i] is valid and vice
721       // versa. Example:
722       //
723       //     LIFETIME_START x
724       //     if (...) {
725       //       <use of x>
726       //       throw ...;
727       //     }
728       //     LIFETIME_END x
729       //     return 2;
730       //
731       //
732       // Here the slot for "x" will not be live into the block
733       // containing the "return 2" (since lifetimes start with first
734       // use, not at the dominating LIFETIME_START marker).
735       //
736       if (Starts[i].isValid() && !Finishes[i].isValid()) {
737         Finishes[i] = Indexes->getMBBEndIdx(&MBB);
738       }
739       if (!Starts[i].isValid())
740         continue;
741 
742       assert(Starts[i] && Finishes[i] && "Invalid interval");
743       VNInfo *ValNum = Intervals[i]->getValNumInfo(0);
744       SlotIndex S = Starts[i];
745       SlotIndex F = Finishes[i];
746       if (S < F) {
747         // We have a single consecutive region.
748         Intervals[i]->addSegment(LiveInterval::Segment(S, F, ValNum));
749       } else {
750         // We have two non-consecutive regions. This happens when
751         // LIFETIME_START appears after the LIFETIME_END marker.
752         SlotIndex NewStart = Indexes->getMBBStartIdx(&MBB);
753         SlotIndex NewFin = Indexes->getMBBEndIdx(&MBB);
754         Intervals[i]->addSegment(LiveInterval::Segment(NewStart, F, ValNum));
755         Intervals[i]->addSegment(LiveInterval::Segment(S, NewFin, ValNum));
756       }
757     }
758   }
759 }
760 
761 bool StackColoring::removeAllMarkers() {
762   unsigned Count = 0;
763   for (MachineInstr *MI : Markers) {
764     MI->eraseFromParent();
765     Count++;
766   }
767   Markers.clear();
768 
769   DEBUG(dbgs()<<"Removed "<<Count<<" markers.\n");
770   return Count;
771 }
772 
773 void StackColoring::remapInstructions(DenseMap<int, int> &SlotRemap) {
774   unsigned FixedInstr = 0;
775   unsigned FixedMemOp = 0;
776   unsigned FixedDbg = 0;
777 
778   // Remap debug information that refers to stack slots.
779   for (auto &VI : MF->getVariableDbgInfo()) {
780     if (!VI.Var)
781       continue;
782     if (SlotRemap.count(VI.Slot)) {
783       DEBUG(dbgs() << "Remapping debug info for ["
784                    << cast<DILocalVariable>(VI.Var)->getName() << "].\n");
785       VI.Slot = SlotRemap[VI.Slot];
786       FixedDbg++;
787     }
788   }
789 
790   // Keep a list of *allocas* which need to be remapped.
791   DenseMap<const AllocaInst*, const AllocaInst*> Allocas;
792   for (const std::pair<int, int> &SI : SlotRemap) {
793     const AllocaInst *From = MFI->getObjectAllocation(SI.first);
794     const AllocaInst *To = MFI->getObjectAllocation(SI.second);
795     assert(To && From && "Invalid allocation object");
796     Allocas[From] = To;
797 
798     // AA might be used later for instruction scheduling, and we need it to be
799     // able to deduce the correct aliasing releationships between pointers
800     // derived from the alloca being remapped and the target of that remapping.
801     // The only safe way, without directly informing AA about the remapping
802     // somehow, is to directly update the IR to reflect the change being made
803     // here.
804     Instruction *Inst = const_cast<AllocaInst *>(To);
805     if (From->getType() != To->getType()) {
806       BitCastInst *Cast = new BitCastInst(Inst, From->getType());
807       Cast->insertAfter(Inst);
808       Inst = Cast;
809     }
810 
811     // Allow the stack protector to adjust its value map to account for the
812     // upcoming replacement.
813     SP->adjustForColoring(From, To);
814 
815     // The new alloca might not be valid in a llvm.dbg.declare for this
816     // variable, so undef out the use to make the verifier happy.
817     AllocaInst *FromAI = const_cast<AllocaInst *>(From);
818     if (FromAI->isUsedByMetadata())
819       ValueAsMetadata::handleRAUW(FromAI, UndefValue::get(FromAI->getType()));
820     for (auto &Use : FromAI->uses()) {
821       if (BitCastInst *BCI = dyn_cast<BitCastInst>(Use.get()))
822         if (BCI->isUsedByMetadata())
823           ValueAsMetadata::handleRAUW(BCI, UndefValue::get(BCI->getType()));
824     }
825 
826     // Note that this will not replace uses in MMOs (which we'll update below),
827     // or anywhere else (which is why we won't delete the original
828     // instruction).
829     FromAI->replaceAllUsesWith(Inst);
830   }
831 
832   // Remap all instructions to the new stack slots.
833   for (MachineBasicBlock &BB : *MF)
834     for (MachineInstr &I : BB) {
835       // Skip lifetime markers. We'll remove them soon.
836       if (I.getOpcode() == TargetOpcode::LIFETIME_START ||
837           I.getOpcode() == TargetOpcode::LIFETIME_END)
838         continue;
839 
840       // Update the MachineMemOperand to use the new alloca.
841       for (MachineMemOperand *MMO : I.memoperands()) {
842         // FIXME: In order to enable the use of TBAA when using AA in CodeGen,
843         // we'll also need to update the TBAA nodes in MMOs with values
844         // derived from the merged allocas. When doing this, we'll need to use
845         // the same variant of GetUnderlyingObjects that is used by the
846         // instruction scheduler (that can look through ptrtoint/inttoptr
847         // pairs).
848 
849         // We've replaced IR-level uses of the remapped allocas, so we only
850         // need to replace direct uses here.
851         const AllocaInst *AI = dyn_cast_or_null<AllocaInst>(MMO->getValue());
852         if (!AI)
853           continue;
854 
855         if (!Allocas.count(AI))
856           continue;
857 
858         MMO->setValue(Allocas[AI]);
859         FixedMemOp++;
860       }
861 
862       // Update all of the machine instruction operands.
863       for (MachineOperand &MO : I.operands()) {
864         if (!MO.isFI())
865           continue;
866         int FromSlot = MO.getIndex();
867 
868         // Don't touch arguments.
869         if (FromSlot<0)
870           continue;
871 
872         // Only look at mapped slots.
873         if (!SlotRemap.count(FromSlot))
874           continue;
875 
876         // In a debug build, check that the instruction that we are modifying is
877         // inside the expected live range. If the instruction is not inside
878         // the calculated range then it means that the alloca usage moved
879         // outside of the lifetime markers, or that the user has a bug.
880         // NOTE: Alloca address calculations which happen outside the lifetime
881         // zone are are okay, despite the fact that we don't have a good way
882         // for validating all of the usages of the calculation.
883 #ifndef NDEBUG
884         bool TouchesMemory = I.mayLoad() || I.mayStore();
885         // If we *don't* protect the user from escaped allocas, don't bother
886         // validating the instructions.
887         if (!I.isDebugValue() && TouchesMemory && ProtectFromEscapedAllocas) {
888           SlotIndex Index = Indexes->getInstructionIndex(I);
889           const LiveInterval *Interval = &*Intervals[FromSlot];
890           assert(Interval->find(Index) != Interval->end() &&
891                  "Found instruction usage outside of live range.");
892         }
893 #endif
894 
895         // Fix the machine instructions.
896         int ToSlot = SlotRemap[FromSlot];
897         MO.setIndex(ToSlot);
898         FixedInstr++;
899       }
900     }
901 
902   // Update the location of C++ catch objects for the MSVC personality routine.
903   if (WinEHFuncInfo *EHInfo = MF->getWinEHFuncInfo())
904     for (WinEHTryBlockMapEntry &TBME : EHInfo->TryBlockMap)
905       for (WinEHHandlerType &H : TBME.HandlerArray)
906         if (H.CatchObj.FrameIndex != INT_MAX &&
907             SlotRemap.count(H.CatchObj.FrameIndex))
908           H.CatchObj.FrameIndex = SlotRemap[H.CatchObj.FrameIndex];
909 
910   DEBUG(dbgs()<<"Fixed "<<FixedMemOp<<" machine memory operands.\n");
911   DEBUG(dbgs()<<"Fixed "<<FixedDbg<<" debug locations.\n");
912   DEBUG(dbgs()<<"Fixed "<<FixedInstr<<" machine instructions.\n");
913 }
914 
915 void StackColoring::removeInvalidSlotRanges() {
916   for (MachineBasicBlock &BB : *MF)
917     for (MachineInstr &I : BB) {
918       if (I.getOpcode() == TargetOpcode::LIFETIME_START ||
919           I.getOpcode() == TargetOpcode::LIFETIME_END || I.isDebugValue())
920         continue;
921 
922       // Some intervals are suspicious! In some cases we find address
923       // calculations outside of the lifetime zone, but not actual memory
924       // read or write. Memory accesses outside of the lifetime zone are a clear
925       // violation, but address calculations are okay. This can happen when
926       // GEPs are hoisted outside of the lifetime zone.
927       // So, in here we only check instructions which can read or write memory.
928       if (!I.mayLoad() && !I.mayStore())
929         continue;
930 
931       // Check all of the machine operands.
932       for (const MachineOperand &MO : I.operands()) {
933         if (!MO.isFI())
934           continue;
935 
936         int Slot = MO.getIndex();
937 
938         if (Slot<0)
939           continue;
940 
941         if (Intervals[Slot]->empty())
942           continue;
943 
944         // Check that the used slot is inside the calculated lifetime range.
945         // If it is not, warn about it and invalidate the range.
946         LiveInterval *Interval = &*Intervals[Slot];
947         SlotIndex Index = Indexes->getInstructionIndex(I);
948         if (Interval->find(Index) == Interval->end()) {
949           Interval->clear();
950           DEBUG(dbgs()<<"Invalidating range #"<<Slot<<"\n");
951           EscapedAllocas++;
952         }
953       }
954     }
955 }
956 
957 void StackColoring::expungeSlotMap(DenseMap<int, int> &SlotRemap,
958                                    unsigned NumSlots) {
959   // Expunge slot remap map.
960   for (unsigned i=0; i < NumSlots; ++i) {
961     // If we are remapping i
962     if (SlotRemap.count(i)) {
963       int Target = SlotRemap[i];
964       // As long as our target is mapped to something else, follow it.
965       while (SlotRemap.count(Target)) {
966         Target = SlotRemap[Target];
967         SlotRemap[i] = Target;
968       }
969     }
970   }
971 }
972 
973 bool StackColoring::runOnMachineFunction(MachineFunction &Func) {
974   DEBUG(dbgs() << "********** Stack Coloring **********\n"
975                << "********** Function: "
976                << ((const Value*)Func.getFunction())->getName() << '\n');
977   MF = &Func;
978   MFI = &MF->getFrameInfo();
979   Indexes = &getAnalysis<SlotIndexes>();
980   SP = &getAnalysis<StackProtector>();
981   BlockLiveness.clear();
982   BasicBlocks.clear();
983   BasicBlockNumbering.clear();
984   Markers.clear();
985   Intervals.clear();
986   VNInfoAllocator.Reset();
987 
988   unsigned NumSlots = MFI->getObjectIndexEnd();
989 
990   // If there are no stack slots then there are no markers to remove.
991   if (!NumSlots)
992     return false;
993 
994   SmallVector<int, 8> SortedSlots;
995   SortedSlots.reserve(NumSlots);
996   Intervals.reserve(NumSlots);
997 
998   unsigned NumMarkers = collectMarkers(NumSlots);
999 
1000   unsigned TotalSize = 0;
1001   DEBUG(dbgs()<<"Found "<<NumMarkers<<" markers and "<<NumSlots<<" slots\n");
1002   DEBUG(dbgs()<<"Slot structure:\n");
1003 
1004   for (int i=0; i < MFI->getObjectIndexEnd(); ++i) {
1005     DEBUG(dbgs()<<"Slot #"<<i<<" - "<<MFI->getObjectSize(i)<<" bytes.\n");
1006     TotalSize += MFI->getObjectSize(i);
1007   }
1008 
1009   DEBUG(dbgs()<<"Total Stack size: "<<TotalSize<<" bytes\n\n");
1010 
1011   // Don't continue because there are not enough lifetime markers, or the
1012   // stack is too small, or we are told not to optimize the slots.
1013   if (NumMarkers < 2 || TotalSize < 16 || DisableColoring ||
1014       skipFunction(*Func.getFunction())) {
1015     DEBUG(dbgs()<<"Will not try to merge slots.\n");
1016     return removeAllMarkers();
1017   }
1018 
1019   for (unsigned i=0; i < NumSlots; ++i) {
1020     std::unique_ptr<LiveInterval> LI(new LiveInterval(i, 0));
1021     LI->getNextValue(Indexes->getZeroIndex(), VNInfoAllocator);
1022     Intervals.push_back(std::move(LI));
1023     SortedSlots.push_back(i);
1024   }
1025 
1026   // Calculate the liveness of each block.
1027   calculateLocalLiveness();
1028   DEBUG(dbgs() << "Dataflow iterations: " << NumIterations << "\n");
1029   DEBUG(dump());
1030 
1031   // Propagate the liveness information.
1032   calculateLiveIntervals(NumSlots);
1033   DEBUG(dumpIntervals());
1034 
1035   // Search for allocas which are used outside of the declared lifetime
1036   // markers.
1037   if (ProtectFromEscapedAllocas)
1038     removeInvalidSlotRanges();
1039 
1040   // Maps old slots to new slots.
1041   DenseMap<int, int> SlotRemap;
1042   unsigned RemovedSlots = 0;
1043   unsigned ReducedSize = 0;
1044 
1045   // Do not bother looking at empty intervals.
1046   for (unsigned I = 0; I < NumSlots; ++I) {
1047     if (Intervals[SortedSlots[I]]->empty())
1048       SortedSlots[I] = -1;
1049   }
1050 
1051   // This is a simple greedy algorithm for merging allocas. First, sort the
1052   // slots, placing the largest slots first. Next, perform an n^2 scan and look
1053   // for disjoint slots. When you find disjoint slots, merge the samller one
1054   // into the bigger one and update the live interval. Remove the small alloca
1055   // and continue.
1056 
1057   // Sort the slots according to their size. Place unused slots at the end.
1058   // Use stable sort to guarantee deterministic code generation.
1059   std::stable_sort(SortedSlots.begin(), SortedSlots.end(),
1060                    [this](int LHS, int RHS) {
1061     // We use -1 to denote a uninteresting slot. Place these slots at the end.
1062     if (LHS == -1) return false;
1063     if (RHS == -1) return true;
1064     // Sort according to size.
1065     return MFI->getObjectSize(LHS) > MFI->getObjectSize(RHS);
1066   });
1067 
1068   bool Changed = true;
1069   while (Changed) {
1070     Changed = false;
1071     for (unsigned I = 0; I < NumSlots; ++I) {
1072       if (SortedSlots[I] == -1)
1073         continue;
1074 
1075       for (unsigned J=I+1; J < NumSlots; ++J) {
1076         if (SortedSlots[J] == -1)
1077           continue;
1078 
1079         int FirstSlot = SortedSlots[I];
1080         int SecondSlot = SortedSlots[J];
1081         LiveInterval *First = &*Intervals[FirstSlot];
1082         LiveInterval *Second = &*Intervals[SecondSlot];
1083         assert (!First->empty() && !Second->empty() && "Found an empty range");
1084 
1085         // Merge disjoint slots.
1086         if (!First->overlaps(*Second)) {
1087           Changed = true;
1088           First->MergeSegmentsInAsValue(*Second, First->getValNumInfo(0));
1089           SlotRemap[SecondSlot] = FirstSlot;
1090           SortedSlots[J] = -1;
1091           DEBUG(dbgs()<<"Merging #"<<FirstSlot<<" and slots #"<<
1092                 SecondSlot<<" together.\n");
1093           unsigned MaxAlignment = std::max(MFI->getObjectAlignment(FirstSlot),
1094                                            MFI->getObjectAlignment(SecondSlot));
1095 
1096           assert(MFI->getObjectSize(FirstSlot) >=
1097                  MFI->getObjectSize(SecondSlot) &&
1098                  "Merging a small object into a larger one");
1099 
1100           RemovedSlots+=1;
1101           ReducedSize += MFI->getObjectSize(SecondSlot);
1102           MFI->setObjectAlignment(FirstSlot, MaxAlignment);
1103           MFI->RemoveStackObject(SecondSlot);
1104         }
1105       }
1106     }
1107   }// While changed.
1108 
1109   // Record statistics.
1110   StackSpaceSaved += ReducedSize;
1111   StackSlotMerged += RemovedSlots;
1112   DEBUG(dbgs()<<"Merge "<<RemovedSlots<<" slots. Saved "<<
1113         ReducedSize<<" bytes\n");
1114 
1115   // Scan the entire function and update all machine operands that use frame
1116   // indices to use the remapped frame index.
1117   expungeSlotMap(SlotRemap, NumSlots);
1118   remapInstructions(SlotRemap);
1119 
1120   return removeAllMarkers();
1121 }
1122