1 //===-- StackColoring.cpp -------------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass implements the stack-coloring optimization that looks for
11 // lifetime markers machine instructions (LIFESTART_BEGIN and LIFESTART_END),
12 // which represent the possible lifetime of stack slots. It attempts to
13 // merge disjoint stack slots and reduce the used stack space.
14 // NOTE: This pass is not StackSlotColoring, which optimizes spill slots.
15 //
16 // TODO: In the future we plan to improve stack coloring in the following ways:
17 // 1. Allow merging multiple small slots into a single larger slot at different
18 //    offsets.
19 // 2. Merge this pass with StackSlotColoring and allow merging of allocas with
20 //    spill slots.
21 //
22 //===----------------------------------------------------------------------===//
23 
24 #include "llvm/ADT/BitVector.h"
25 #include "llvm/ADT/DepthFirstIterator.h"
26 #include "llvm/ADT/PostOrderIterator.h"
27 #include "llvm/ADT/SetVector.h"
28 #include "llvm/ADT/SmallPtrSet.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/CodeGen/LiveInterval.h"
32 #include "llvm/CodeGen/MachineBasicBlock.h"
33 #include "llvm/CodeGen/MachineFrameInfo.h"
34 #include "llvm/CodeGen/MachineFunctionPass.h"
35 #include "llvm/CodeGen/MachineLoopInfo.h"
36 #include "llvm/CodeGen/MachineMemOperand.h"
37 #include "llvm/CodeGen/MachineModuleInfo.h"
38 #include "llvm/CodeGen/MachineRegisterInfo.h"
39 #include "llvm/CodeGen/Passes.h"
40 #include "llvm/CodeGen/PseudoSourceValue.h"
41 #include "llvm/CodeGen/SlotIndexes.h"
42 #include "llvm/CodeGen/StackProtector.h"
43 #include "llvm/CodeGen/WinEHFuncInfo.h"
44 #include "llvm/IR/DebugInfo.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/Instructions.h"
47 #include "llvm/IR/IntrinsicInst.h"
48 #include "llvm/IR/Module.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/Debug.h"
51 #include "llvm/Support/raw_ostream.h"
52 #include "llvm/Target/TargetInstrInfo.h"
53 #include "llvm/Target/TargetRegisterInfo.h"
54 
55 using namespace llvm;
56 
57 #define DEBUG_TYPE "stackcoloring"
58 
59 static cl::opt<bool>
60 DisableColoring("no-stack-coloring",
61         cl::init(false), cl::Hidden,
62         cl::desc("Disable stack coloring"));
63 
64 /// The user may write code that uses allocas outside of the declared lifetime
65 /// zone. This can happen when the user returns a reference to a local
66 /// data-structure. We can detect these cases and decide not to optimize the
67 /// code. If this flag is enabled, we try to save the user.
68 static cl::opt<bool>
69 ProtectFromEscapedAllocas("protect-from-escaped-allocas",
70                           cl::init(false), cl::Hidden,
71                           cl::desc("Do not optimize lifetime zones that "
72                                    "are broken"));
73 
74 STATISTIC(NumMarkerSeen,  "Number of lifetime markers found.");
75 STATISTIC(StackSpaceSaved, "Number of bytes saved due to merging slots.");
76 STATISTIC(StackSlotMerged, "Number of stack slot merged.");
77 STATISTIC(EscapedAllocas, "Number of allocas that escaped the lifetime region");
78 
79 //===----------------------------------------------------------------------===//
80 //                           StackColoring Pass
81 //===----------------------------------------------------------------------===//
82 
83 namespace {
84 /// StackColoring - A machine pass for merging disjoint stack allocations,
85 /// marked by the LIFETIME_START and LIFETIME_END pseudo instructions.
86 class StackColoring : public MachineFunctionPass {
87   MachineFrameInfo *MFI;
88   MachineFunction *MF;
89 
90   /// A class representing liveness information for a single basic block.
91   /// Each bit in the BitVector represents the liveness property
92   /// for a different stack slot.
93   struct BlockLifetimeInfo {
94     /// Which slots BEGINs in each basic block.
95     BitVector Begin;
96     /// Which slots ENDs in each basic block.
97     BitVector End;
98     /// Which slots are marked as LIVE_IN, coming into each basic block.
99     BitVector LiveIn;
100     /// Which slots are marked as LIVE_OUT, coming out of each basic block.
101     BitVector LiveOut;
102   };
103 
104   /// Maps active slots (per bit) for each basic block.
105   typedef DenseMap<const MachineBasicBlock*, BlockLifetimeInfo> LivenessMap;
106   LivenessMap BlockLiveness;
107 
108   /// Maps serial numbers to basic blocks.
109   DenseMap<const MachineBasicBlock*, int> BasicBlocks;
110   /// Maps basic blocks to a serial number.
111   SmallVector<const MachineBasicBlock*, 8> BasicBlockNumbering;
112 
113   /// Maps liveness intervals for each slot.
114   SmallVector<std::unique_ptr<LiveInterval>, 16> Intervals;
115   /// VNInfo is used for the construction of LiveIntervals.
116   VNInfo::Allocator VNInfoAllocator;
117   /// SlotIndex analysis object.
118   SlotIndexes *Indexes;
119   /// The stack protector object.
120   StackProtector *SP;
121 
122   /// The list of lifetime markers found. These markers are to be removed
123   /// once the coloring is done.
124   SmallVector<MachineInstr*, 8> Markers;
125 
126 public:
127   static char ID;
128   StackColoring() : MachineFunctionPass(ID) {
129     initializeStackColoringPass(*PassRegistry::getPassRegistry());
130   }
131   void getAnalysisUsage(AnalysisUsage &AU) const override;
132   bool runOnMachineFunction(MachineFunction &MF) override;
133 
134 private:
135   /// Debug.
136   void dump() const;
137   void dumpIntervals() const;
138   void dumpBB(MachineBasicBlock *MBB) const;
139   void dumpBV(const char *tag, const BitVector &BV) const;
140 
141   /// Removes all of the lifetime marker instructions from the function.
142   /// \returns true if any markers were removed.
143   bool removeAllMarkers();
144 
145   /// Scan the machine function and find all of the lifetime markers.
146   /// Record the findings in the BEGIN and END vectors.
147   /// \returns the number of markers found.
148   unsigned collectMarkers(unsigned NumSlot);
149 
150   /// Perform the dataflow calculation and calculate the lifetime for each of
151   /// the slots, based on the BEGIN/END vectors. Set the LifetimeLIVE_IN and
152   /// LifetimeLIVE_OUT maps that represent which stack slots are live coming
153   /// in and out blocks.
154   void calculateLocalLiveness();
155 
156   /// Construct the LiveIntervals for the slots.
157   void calculateLiveIntervals(unsigned NumSlots);
158 
159   /// Go over the machine function and change instructions which use stack
160   /// slots to use the joint slots.
161   void remapInstructions(DenseMap<int, int> &SlotRemap);
162 
163   /// The input program may contain instructions which are not inside lifetime
164   /// markers. This can happen due to a bug in the compiler or due to a bug in
165   /// user code (for example, returning a reference to a local variable).
166   /// This procedure checks all of the instructions in the function and
167   /// invalidates lifetime ranges which do not contain all of the instructions
168   /// which access that frame slot.
169   void removeInvalidSlotRanges();
170 
171   /// Map entries which point to other entries to their destination.
172   ///   A->B->C becomes A->C.
173    void expungeSlotMap(DenseMap<int, int> &SlotRemap, unsigned NumSlots);
174 };
175 } // end anonymous namespace
176 
177 char StackColoring::ID = 0;
178 char &llvm::StackColoringID = StackColoring::ID;
179 
180 INITIALIZE_PASS_BEGIN(StackColoring,
181                    "stack-coloring", "Merge disjoint stack slots", false, false)
182 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
183 INITIALIZE_PASS_DEPENDENCY(StackProtector)
184 INITIALIZE_PASS_END(StackColoring,
185                    "stack-coloring", "Merge disjoint stack slots", false, false)
186 
187 void StackColoring::getAnalysisUsage(AnalysisUsage &AU) const {
188   AU.addRequired<SlotIndexes>();
189   AU.addRequired<StackProtector>();
190   MachineFunctionPass::getAnalysisUsage(AU);
191 }
192 
193 #ifndef NDEBUG
194 
195 LLVM_DUMP_METHOD void StackColoring::dumpBV(const char *tag,
196                                             const BitVector &BV) const {
197   DEBUG(dbgs() << tag << " : { ");
198   for (unsigned I = 0, E = BV.size(); I != E; ++I)
199     DEBUG(dbgs() << BV.test(I) << " ");
200   DEBUG(dbgs() << "}\n");
201 }
202 
203 LLVM_DUMP_METHOD void StackColoring::dumpBB(MachineBasicBlock *MBB) const {
204   LivenessMap::const_iterator BI = BlockLiveness.find(MBB);
205   assert(BI != BlockLiveness.end() && "Block not found");
206   const BlockLifetimeInfo &BlockInfo = BI->second;
207 
208   dumpBV("BEGIN", BlockInfo.Begin);
209   dumpBV("END", BlockInfo.End);
210   dumpBV("LIVE_IN", BlockInfo.LiveIn);
211   dumpBV("LIVE_OUT", BlockInfo.LiveOut);
212 }
213 
214 LLVM_DUMP_METHOD void StackColoring::dump() const {
215   for (MachineBasicBlock *MBB : depth_first(MF)) {
216     DEBUG(dbgs() << "Inspecting block #" << MBB->getNumber() << " ["
217                  << MBB->getName() << "]\n");
218     DEBUG(dumpBB(MBB));
219   }
220 }
221 
222 LLVM_DUMP_METHOD void StackColoring::dumpIntervals() const {
223   for (unsigned I = 0, E = Intervals.size(); I != E; ++I) {
224     DEBUG(dbgs() << "Interval[" << I << "]:\n");
225     DEBUG(Intervals[I]->dump());
226   }
227 }
228 
229 #endif // not NDEBUG
230 
231 unsigned StackColoring::collectMarkers(unsigned NumSlot) {
232   unsigned MarkersFound = 0;
233   // Scan the function to find all lifetime markers.
234   // NOTE: We use a reverse-post-order iteration to ensure that we obtain a
235   // deterministic numbering, and because we'll need a post-order iteration
236   // later for solving the liveness dataflow problem.
237   for (MachineBasicBlock *MBB : depth_first(MF)) {
238 
239     // Assign a serial number to this basic block.
240     BasicBlocks[MBB] = BasicBlockNumbering.size();
241     BasicBlockNumbering.push_back(MBB);
242 
243     // Keep a reference to avoid repeated lookups.
244     BlockLifetimeInfo &BlockInfo = BlockLiveness[MBB];
245 
246     BlockInfo.Begin.resize(NumSlot);
247     BlockInfo.End.resize(NumSlot);
248 
249     for (MachineInstr &MI : *MBB) {
250       if (MI.getOpcode() != TargetOpcode::LIFETIME_START &&
251           MI.getOpcode() != TargetOpcode::LIFETIME_END)
252         continue;
253 
254       bool IsStart = MI.getOpcode() == TargetOpcode::LIFETIME_START;
255       const MachineOperand &MO = MI.getOperand(0);
256       int Slot = MO.getIndex();
257       if (Slot < 0)
258         continue;
259 
260       Markers.push_back(&MI);
261 
262       MarkersFound++;
263 
264       const AllocaInst *Allocation = MFI->getObjectAllocation(Slot);
265       if (Allocation) {
266         DEBUG(dbgs()<<"Found a lifetime marker for slot #"<<Slot<<
267               " with allocation: "<< Allocation->getName()<<"\n");
268       }
269 
270       if (IsStart) {
271         BlockInfo.Begin.set(Slot);
272       } else {
273         if (BlockInfo.Begin.test(Slot)) {
274           // Allocas that start and end within a single block are handled
275           // specially when computing the LiveIntervals to avoid pessimizing
276           // the liveness propagation.
277           BlockInfo.Begin.reset(Slot);
278         } else {
279           BlockInfo.End.set(Slot);
280         }
281       }
282     }
283   }
284 
285   // Update statistics.
286   NumMarkerSeen += MarkersFound;
287   return MarkersFound;
288 }
289 
290 void StackColoring::calculateLocalLiveness() {
291   // Perform a standard reverse dataflow computation to solve for
292   // global liveness.  The BEGIN set here is equivalent to KILL in the standard
293   // formulation, and END is equivalent to GEN.  The result of this computation
294   // is a map from blocks to bitvectors where the bitvectors represent which
295   // allocas are live in/out of that block.
296   SmallPtrSet<const MachineBasicBlock*, 8> BBSet(BasicBlockNumbering.begin(),
297                                                  BasicBlockNumbering.end());
298   unsigned NumSSMIters = 0;
299   bool changed = true;
300   while (changed) {
301     changed = false;
302     ++NumSSMIters;
303 
304     SmallPtrSet<const MachineBasicBlock*, 8> NextBBSet;
305 
306     for (const MachineBasicBlock *BB : BasicBlockNumbering) {
307       if (!BBSet.count(BB)) continue;
308 
309       // Use an iterator to avoid repeated lookups.
310       LivenessMap::iterator BI = BlockLiveness.find(BB);
311       assert(BI != BlockLiveness.end() && "Block not found");
312       BlockLifetimeInfo &BlockInfo = BI->second;
313 
314       BitVector LocalLiveIn;
315       BitVector LocalLiveOut;
316 
317       // Forward propagation from begins to ends.
318       for (MachineBasicBlock::const_pred_iterator PI = BB->pred_begin(),
319            PE = BB->pred_end(); PI != PE; ++PI) {
320         LivenessMap::const_iterator I = BlockLiveness.find(*PI);
321         assert(I != BlockLiveness.end() && "Predecessor not found");
322         LocalLiveIn |= I->second.LiveOut;
323       }
324       LocalLiveIn |= BlockInfo.End;
325       LocalLiveIn.reset(BlockInfo.Begin);
326 
327       // Reverse propagation from ends to begins.
328       for (MachineBasicBlock::const_succ_iterator SI = BB->succ_begin(),
329            SE = BB->succ_end(); SI != SE; ++SI) {
330         LivenessMap::const_iterator I = BlockLiveness.find(*SI);
331         assert(I != BlockLiveness.end() && "Successor not found");
332         LocalLiveOut |= I->second.LiveIn;
333       }
334       LocalLiveOut |= BlockInfo.Begin;
335       LocalLiveOut.reset(BlockInfo.End);
336 
337       LocalLiveIn |= LocalLiveOut;
338       LocalLiveOut |= LocalLiveIn;
339 
340       // After adopting the live bits, we need to turn-off the bits which
341       // are de-activated in this block.
342       LocalLiveOut.reset(BlockInfo.End);
343       LocalLiveIn.reset(BlockInfo.Begin);
344 
345       // If we have both BEGIN and END markers in the same basic block then
346       // we know that the BEGIN marker comes after the END, because we already
347       // handle the case where the BEGIN comes before the END when collecting
348       // the markers (and building the BEGIN/END vectore).
349       // Want to enable the LIVE_IN and LIVE_OUT of slots that have both
350       // BEGIN and END because it means that the value lives before and after
351       // this basic block.
352       BitVector LocalEndBegin = BlockInfo.End;
353       LocalEndBegin &= BlockInfo.Begin;
354       LocalLiveIn |= LocalEndBegin;
355       LocalLiveOut |= LocalEndBegin;
356 
357       if (LocalLiveIn.test(BlockInfo.LiveIn)) {
358         changed = true;
359         BlockInfo.LiveIn |= LocalLiveIn;
360 
361         NextBBSet.insert(BB->pred_begin(), BB->pred_end());
362       }
363 
364       if (LocalLiveOut.test(BlockInfo.LiveOut)) {
365         changed = true;
366         BlockInfo.LiveOut |= LocalLiveOut;
367 
368         NextBBSet.insert(BB->succ_begin(), BB->succ_end());
369       }
370     }
371 
372     BBSet = std::move(NextBBSet);
373   }// while changed.
374 }
375 
376 void StackColoring::calculateLiveIntervals(unsigned NumSlots) {
377   SmallVector<SlotIndex, 16> Starts;
378   SmallVector<SlotIndex, 16> Finishes;
379 
380   // For each block, find which slots are active within this block
381   // and update the live intervals.
382   for (const MachineBasicBlock &MBB : *MF) {
383     Starts.clear();
384     Starts.resize(NumSlots);
385     Finishes.clear();
386     Finishes.resize(NumSlots);
387 
388     // Create the interval for the basic blocks with lifetime markers in them.
389     for (const MachineInstr *MI : Markers) {
390       if (MI->getParent() != &MBB)
391         continue;
392 
393       assert((MI->getOpcode() == TargetOpcode::LIFETIME_START ||
394               MI->getOpcode() == TargetOpcode::LIFETIME_END) &&
395              "Invalid Lifetime marker");
396 
397       bool IsStart = MI->getOpcode() == TargetOpcode::LIFETIME_START;
398       const MachineOperand &Mo = MI->getOperand(0);
399       int Slot = Mo.getIndex();
400       if (Slot < 0)
401         continue;
402 
403       SlotIndex ThisIndex = Indexes->getInstructionIndex(*MI);
404 
405       if (IsStart) {
406         if (!Starts[Slot].isValid() || Starts[Slot] > ThisIndex)
407           Starts[Slot] = ThisIndex;
408       } else {
409         if (!Finishes[Slot].isValid() || Finishes[Slot] < ThisIndex)
410           Finishes[Slot] = ThisIndex;
411       }
412     }
413 
414     // Create the interval of the blocks that we previously found to be 'alive'.
415     BlockLifetimeInfo &MBBLiveness = BlockLiveness[&MBB];
416     for (int pos = MBBLiveness.LiveIn.find_first(); pos != -1;
417          pos = MBBLiveness.LiveIn.find_next(pos)) {
418       Starts[pos] = Indexes->getMBBStartIdx(&MBB);
419     }
420     for (int pos = MBBLiveness.LiveOut.find_first(); pos != -1;
421          pos = MBBLiveness.LiveOut.find_next(pos)) {
422       Finishes[pos] = Indexes->getMBBEndIdx(&MBB);
423     }
424 
425     for (unsigned i = 0; i < NumSlots; ++i) {
426       assert(Starts[i].isValid() == Finishes[i].isValid() && "Unmatched range");
427       if (!Starts[i].isValid())
428         continue;
429 
430       assert(Starts[i] && Finishes[i] && "Invalid interval");
431       VNInfo *ValNum = Intervals[i]->getValNumInfo(0);
432       SlotIndex S = Starts[i];
433       SlotIndex F = Finishes[i];
434       if (S < F) {
435         // We have a single consecutive region.
436         Intervals[i]->addSegment(LiveInterval::Segment(S, F, ValNum));
437       } else {
438         // We have two non-consecutive regions. This happens when
439         // LIFETIME_START appears after the LIFETIME_END marker.
440         SlotIndex NewStart = Indexes->getMBBStartIdx(&MBB);
441         SlotIndex NewFin = Indexes->getMBBEndIdx(&MBB);
442         Intervals[i]->addSegment(LiveInterval::Segment(NewStart, F, ValNum));
443         Intervals[i]->addSegment(LiveInterval::Segment(S, NewFin, ValNum));
444       }
445     }
446   }
447 }
448 
449 bool StackColoring::removeAllMarkers() {
450   unsigned Count = 0;
451   for (MachineInstr *MI : Markers) {
452     MI->eraseFromParent();
453     Count++;
454   }
455   Markers.clear();
456 
457   DEBUG(dbgs()<<"Removed "<<Count<<" markers.\n");
458   return Count;
459 }
460 
461 void StackColoring::remapInstructions(DenseMap<int, int> &SlotRemap) {
462   unsigned FixedInstr = 0;
463   unsigned FixedMemOp = 0;
464   unsigned FixedDbg = 0;
465   MachineModuleInfo *MMI = &MF->getMMI();
466 
467   // Remap debug information that refers to stack slots.
468   for (auto &VI : MMI->getVariableDbgInfo()) {
469     if (!VI.Var)
470       continue;
471     if (SlotRemap.count(VI.Slot)) {
472       DEBUG(dbgs() << "Remapping debug info for ["
473                    << cast<DILocalVariable>(VI.Var)->getName() << "].\n");
474       VI.Slot = SlotRemap[VI.Slot];
475       FixedDbg++;
476     }
477   }
478 
479   // Keep a list of *allocas* which need to be remapped.
480   DenseMap<const AllocaInst*, const AllocaInst*> Allocas;
481   for (const std::pair<int, int> &SI : SlotRemap) {
482     const AllocaInst *From = MFI->getObjectAllocation(SI.first);
483     const AllocaInst *To = MFI->getObjectAllocation(SI.second);
484     assert(To && From && "Invalid allocation object");
485     Allocas[From] = To;
486 
487     // AA might be used later for instruction scheduling, and we need it to be
488     // able to deduce the correct aliasing releationships between pointers
489     // derived from the alloca being remapped and the target of that remapping.
490     // The only safe way, without directly informing AA about the remapping
491     // somehow, is to directly update the IR to reflect the change being made
492     // here.
493     Instruction *Inst = const_cast<AllocaInst *>(To);
494     if (From->getType() != To->getType()) {
495       BitCastInst *Cast = new BitCastInst(Inst, From->getType());
496       Cast->insertAfter(Inst);
497       Inst = Cast;
498     }
499 
500     // Allow the stack protector to adjust its value map to account for the
501     // upcoming replacement.
502     SP->adjustForColoring(From, To);
503 
504     // The new alloca might not be valid in a llvm.dbg.declare for this
505     // variable, so undef out the use to make the verifier happy.
506     AllocaInst *FromAI = const_cast<AllocaInst *>(From);
507     if (FromAI->isUsedByMetadata())
508       ValueAsMetadata::handleRAUW(FromAI, UndefValue::get(FromAI->getType()));
509     for (auto &Use : FromAI->uses()) {
510       if (BitCastInst *BCI = dyn_cast<BitCastInst>(Use.get()))
511         if (BCI->isUsedByMetadata())
512           ValueAsMetadata::handleRAUW(BCI, UndefValue::get(BCI->getType()));
513     }
514 
515     // Note that this will not replace uses in MMOs (which we'll update below),
516     // or anywhere else (which is why we won't delete the original
517     // instruction).
518     FromAI->replaceAllUsesWith(Inst);
519   }
520 
521   // Remap all instructions to the new stack slots.
522   for (MachineBasicBlock &BB : *MF)
523     for (MachineInstr &I : BB) {
524       // Skip lifetime markers. We'll remove them soon.
525       if (I.getOpcode() == TargetOpcode::LIFETIME_START ||
526           I.getOpcode() == TargetOpcode::LIFETIME_END)
527         continue;
528 
529       // Update the MachineMemOperand to use the new alloca.
530       for (MachineMemOperand *MMO : I.memoperands()) {
531         // FIXME: In order to enable the use of TBAA when using AA in CodeGen,
532         // we'll also need to update the TBAA nodes in MMOs with values
533         // derived from the merged allocas. When doing this, we'll need to use
534         // the same variant of GetUnderlyingObjects that is used by the
535         // instruction scheduler (that can look through ptrtoint/inttoptr
536         // pairs).
537 
538         // We've replaced IR-level uses of the remapped allocas, so we only
539         // need to replace direct uses here.
540         const AllocaInst *AI = dyn_cast_or_null<AllocaInst>(MMO->getValue());
541         if (!AI)
542           continue;
543 
544         if (!Allocas.count(AI))
545           continue;
546 
547         MMO->setValue(Allocas[AI]);
548         FixedMemOp++;
549       }
550 
551       // Update all of the machine instruction operands.
552       for (MachineOperand &MO : I.operands()) {
553         if (!MO.isFI())
554           continue;
555         int FromSlot = MO.getIndex();
556 
557         // Don't touch arguments.
558         if (FromSlot<0)
559           continue;
560 
561         // Only look at mapped slots.
562         if (!SlotRemap.count(FromSlot))
563           continue;
564 
565         // In a debug build, check that the instruction that we are modifying is
566         // inside the expected live range. If the instruction is not inside
567         // the calculated range then it means that the alloca usage moved
568         // outside of the lifetime markers, or that the user has a bug.
569         // NOTE: Alloca address calculations which happen outside the lifetime
570         // zone are are okay, despite the fact that we don't have a good way
571         // for validating all of the usages of the calculation.
572 #ifndef NDEBUG
573         bool TouchesMemory = I.mayLoad() || I.mayStore();
574         // If we *don't* protect the user from escaped allocas, don't bother
575         // validating the instructions.
576         if (!I.isDebugValue() && TouchesMemory && ProtectFromEscapedAllocas) {
577           SlotIndex Index = Indexes->getInstructionIndex(I);
578           const LiveInterval *Interval = &*Intervals[FromSlot];
579           assert(Interval->find(Index) != Interval->end() &&
580                  "Found instruction usage outside of live range.");
581         }
582 #endif
583 
584         // Fix the machine instructions.
585         int ToSlot = SlotRemap[FromSlot];
586         MO.setIndex(ToSlot);
587         FixedInstr++;
588       }
589     }
590 
591   // Update the location of C++ catch objects for the MSVC personality routine.
592   if (WinEHFuncInfo *EHInfo = MF->getWinEHFuncInfo())
593     for (WinEHTryBlockMapEntry &TBME : EHInfo->TryBlockMap)
594       for (WinEHHandlerType &H : TBME.HandlerArray)
595         if (H.CatchObj.FrameIndex != INT_MAX &&
596             SlotRemap.count(H.CatchObj.FrameIndex))
597           H.CatchObj.FrameIndex = SlotRemap[H.CatchObj.FrameIndex];
598 
599   DEBUG(dbgs()<<"Fixed "<<FixedMemOp<<" machine memory operands.\n");
600   DEBUG(dbgs()<<"Fixed "<<FixedDbg<<" debug locations.\n");
601   DEBUG(dbgs()<<"Fixed "<<FixedInstr<<" machine instructions.\n");
602 }
603 
604 void StackColoring::removeInvalidSlotRanges() {
605   for (MachineBasicBlock &BB : *MF)
606     for (MachineInstr &I : BB) {
607       if (I.getOpcode() == TargetOpcode::LIFETIME_START ||
608           I.getOpcode() == TargetOpcode::LIFETIME_END || I.isDebugValue())
609         continue;
610 
611       // Some intervals are suspicious! In some cases we find address
612       // calculations outside of the lifetime zone, but not actual memory
613       // read or write. Memory accesses outside of the lifetime zone are a clear
614       // violation, but address calculations are okay. This can happen when
615       // GEPs are hoisted outside of the lifetime zone.
616       // So, in here we only check instructions which can read or write memory.
617       if (!I.mayLoad() && !I.mayStore())
618         continue;
619 
620       // Check all of the machine operands.
621       for (const MachineOperand &MO : I.operands()) {
622         if (!MO.isFI())
623           continue;
624 
625         int Slot = MO.getIndex();
626 
627         if (Slot<0)
628           continue;
629 
630         if (Intervals[Slot]->empty())
631           continue;
632 
633         // Check that the used slot is inside the calculated lifetime range.
634         // If it is not, warn about it and invalidate the range.
635         LiveInterval *Interval = &*Intervals[Slot];
636         SlotIndex Index = Indexes->getInstructionIndex(I);
637         if (Interval->find(Index) == Interval->end()) {
638           Interval->clear();
639           DEBUG(dbgs()<<"Invalidating range #"<<Slot<<"\n");
640           EscapedAllocas++;
641         }
642       }
643     }
644 }
645 
646 void StackColoring::expungeSlotMap(DenseMap<int, int> &SlotRemap,
647                                    unsigned NumSlots) {
648   // Expunge slot remap map.
649   for (unsigned i=0; i < NumSlots; ++i) {
650     // If we are remapping i
651     if (SlotRemap.count(i)) {
652       int Target = SlotRemap[i];
653       // As long as our target is mapped to something else, follow it.
654       while (SlotRemap.count(Target)) {
655         Target = SlotRemap[Target];
656         SlotRemap[i] = Target;
657       }
658     }
659   }
660 }
661 
662 bool StackColoring::runOnMachineFunction(MachineFunction &Func) {
663   if (skipFunction(*Func.getFunction()))
664     return false;
665 
666   DEBUG(dbgs() << "********** Stack Coloring **********\n"
667                << "********** Function: "
668                << ((const Value*)Func.getFunction())->getName() << '\n');
669   MF = &Func;
670   MFI = MF->getFrameInfo();
671   Indexes = &getAnalysis<SlotIndexes>();
672   SP = &getAnalysis<StackProtector>();
673   BlockLiveness.clear();
674   BasicBlocks.clear();
675   BasicBlockNumbering.clear();
676   Markers.clear();
677   Intervals.clear();
678   VNInfoAllocator.Reset();
679 
680   unsigned NumSlots = MFI->getObjectIndexEnd();
681 
682   // If there are no stack slots then there are no markers to remove.
683   if (!NumSlots)
684     return false;
685 
686   SmallVector<int, 8> SortedSlots;
687 
688   SortedSlots.reserve(NumSlots);
689   Intervals.reserve(NumSlots);
690 
691   unsigned NumMarkers = collectMarkers(NumSlots);
692 
693   unsigned TotalSize = 0;
694   DEBUG(dbgs()<<"Found "<<NumMarkers<<" markers and "<<NumSlots<<" slots\n");
695   DEBUG(dbgs()<<"Slot structure:\n");
696 
697   for (int i=0; i < MFI->getObjectIndexEnd(); ++i) {
698     DEBUG(dbgs()<<"Slot #"<<i<<" - "<<MFI->getObjectSize(i)<<" bytes.\n");
699     TotalSize += MFI->getObjectSize(i);
700   }
701 
702   DEBUG(dbgs()<<"Total Stack size: "<<TotalSize<<" bytes\n\n");
703 
704   // Don't continue because there are not enough lifetime markers, or the
705   // stack is too small, or we are told not to optimize the slots.
706   if (NumMarkers < 2 || TotalSize < 16 || DisableColoring) {
707     DEBUG(dbgs()<<"Will not try to merge slots.\n");
708     return removeAllMarkers();
709   }
710 
711   for (unsigned i=0; i < NumSlots; ++i) {
712     std::unique_ptr<LiveInterval> LI(new LiveInterval(i, 0));
713     LI->getNextValue(Indexes->getZeroIndex(), VNInfoAllocator);
714     Intervals.push_back(std::move(LI));
715     SortedSlots.push_back(i);
716   }
717 
718   // Calculate the liveness of each block.
719   calculateLocalLiveness();
720 
721   // Propagate the liveness information.
722   calculateLiveIntervals(NumSlots);
723 
724   // Search for allocas which are used outside of the declared lifetime
725   // markers.
726   if (ProtectFromEscapedAllocas)
727     removeInvalidSlotRanges();
728 
729   // Maps old slots to new slots.
730   DenseMap<int, int> SlotRemap;
731   unsigned RemovedSlots = 0;
732   unsigned ReducedSize = 0;
733 
734   // Do not bother looking at empty intervals.
735   for (unsigned I = 0; I < NumSlots; ++I) {
736     if (Intervals[SortedSlots[I]]->empty())
737       SortedSlots[I] = -1;
738   }
739 
740   // This is a simple greedy algorithm for merging allocas. First, sort the
741   // slots, placing the largest slots first. Next, perform an n^2 scan and look
742   // for disjoint slots. When you find disjoint slots, merge the samller one
743   // into the bigger one and update the live interval. Remove the small alloca
744   // and continue.
745 
746   // Sort the slots according to their size. Place unused slots at the end.
747   // Use stable sort to guarantee deterministic code generation.
748   std::stable_sort(SortedSlots.begin(), SortedSlots.end(),
749                    [this](int LHS, int RHS) {
750     // We use -1 to denote a uninteresting slot. Place these slots at the end.
751     if (LHS == -1) return false;
752     if (RHS == -1) return true;
753     // Sort according to size.
754     return MFI->getObjectSize(LHS) > MFI->getObjectSize(RHS);
755   });
756 
757   bool Changed = true;
758   while (Changed) {
759     Changed = false;
760     for (unsigned I = 0; I < NumSlots; ++I) {
761       if (SortedSlots[I] == -1)
762         continue;
763 
764       for (unsigned J=I+1; J < NumSlots; ++J) {
765         if (SortedSlots[J] == -1)
766           continue;
767 
768         int FirstSlot = SortedSlots[I];
769         int SecondSlot = SortedSlots[J];
770         LiveInterval *First = &*Intervals[FirstSlot];
771         LiveInterval *Second = &*Intervals[SecondSlot];
772         assert (!First->empty() && !Second->empty() && "Found an empty range");
773 
774         // Merge disjoint slots.
775         if (!First->overlaps(*Second)) {
776           Changed = true;
777           First->MergeSegmentsInAsValue(*Second, First->getValNumInfo(0));
778           SlotRemap[SecondSlot] = FirstSlot;
779           SortedSlots[J] = -1;
780           DEBUG(dbgs()<<"Merging #"<<FirstSlot<<" and slots #"<<
781                 SecondSlot<<" together.\n");
782           unsigned MaxAlignment = std::max(MFI->getObjectAlignment(FirstSlot),
783                                            MFI->getObjectAlignment(SecondSlot));
784 
785           assert(MFI->getObjectSize(FirstSlot) >=
786                  MFI->getObjectSize(SecondSlot) &&
787                  "Merging a small object into a larger one");
788 
789           RemovedSlots+=1;
790           ReducedSize += MFI->getObjectSize(SecondSlot);
791           MFI->setObjectAlignment(FirstSlot, MaxAlignment);
792           MFI->RemoveStackObject(SecondSlot);
793         }
794       }
795     }
796   }// While changed.
797 
798   // Record statistics.
799   StackSpaceSaved += ReducedSize;
800   StackSlotMerged += RemovedSlots;
801   DEBUG(dbgs()<<"Merge "<<RemovedSlots<<" slots. Saved "<<
802         ReducedSize<<" bytes\n");
803 
804   // Scan the entire function and update all machine operands that use frame
805   // indices to use the remapped frame index.
806   expungeSlotMap(SlotRemap, NumSlots);
807   remapInstructions(SlotRemap);
808 
809   return removeAllMarkers();
810 }
811