1 //===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the SplitAnalysis class as well as mutator functions for 11 // live range splitting. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "regalloc" 16 #include "SplitKit.h" 17 #include "LiveRangeEdit.h" 18 #include "VirtRegMap.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 21 #include "llvm/CodeGen/MachineDominators.h" 22 #include "llvm/CodeGen/MachineInstrBuilder.h" 23 #include "llvm/CodeGen/MachineRegisterInfo.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/raw_ostream.h" 26 #include "llvm/Target/TargetInstrInfo.h" 27 #include "llvm/Target/TargetMachine.h" 28 29 using namespace llvm; 30 31 STATISTIC(NumFinished, "Number of splits finished"); 32 STATISTIC(NumSimple, "Number of splits that were simple"); 33 34 //===----------------------------------------------------------------------===// 35 // Split Analysis 36 //===----------------------------------------------------------------------===// 37 38 SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm, 39 const LiveIntervals &lis, 40 const MachineLoopInfo &mli) 41 : MF(vrm.getMachineFunction()), 42 VRM(vrm), 43 LIS(lis), 44 Loops(mli), 45 TII(*MF.getTarget().getInstrInfo()), 46 CurLI(0), 47 LastSplitPoint(MF.getNumBlockIDs()) {} 48 49 void SplitAnalysis::clear() { 50 UseSlots.clear(); 51 LiveBlocks.clear(); 52 CurLI = 0; 53 } 54 55 SlotIndex SplitAnalysis::computeLastSplitPoint(unsigned Num) { 56 const MachineBasicBlock *MBB = MF.getBlockNumbered(Num); 57 const MachineBasicBlock *LPad = MBB->getLandingPadSuccessor(); 58 std::pair<SlotIndex, SlotIndex> &LSP = LastSplitPoint[Num]; 59 60 // Compute split points on the first call. The pair is independent of the 61 // current live interval. 62 if (!LSP.first.isValid()) { 63 MachineBasicBlock::const_iterator FirstTerm = MBB->getFirstTerminator(); 64 if (FirstTerm == MBB->end()) 65 LSP.first = LIS.getMBBEndIdx(MBB); 66 else 67 LSP.first = LIS.getInstructionIndex(FirstTerm); 68 69 // If there is a landing pad successor, also find the call instruction. 70 if (!LPad) 71 return LSP.first; 72 // There may not be a call instruction (?) in which case we ignore LPad. 73 LSP.second = LSP.first; 74 for (MachineBasicBlock::const_iterator I = FirstTerm, E = MBB->begin(); 75 I != E; --I) 76 if (I->getDesc().isCall()) { 77 LSP.second = LIS.getInstructionIndex(I); 78 break; 79 } 80 } 81 82 // If CurLI is live into a landing pad successor, move the last split point 83 // back to the call that may throw. 84 if (LPad && LSP.second.isValid() && !LIS.isLiveInToMBB(*CurLI, LPad)) 85 return LSP.second; 86 else 87 return LSP.first; 88 } 89 90 /// analyzeUses - Count instructions, basic blocks, and loops using CurLI. 91 void SplitAnalysis::analyzeUses() { 92 assert(UseSlots.empty() && "Call clear first"); 93 94 // First get all the defs from the interval values. This provides the correct 95 // slots for early clobbers. 96 for (LiveInterval::const_vni_iterator I = CurLI->vni_begin(), 97 E = CurLI->vni_end(); I != E; ++I) 98 if (!(*I)->isPHIDef() && !(*I)->isUnused()) 99 UseSlots.push_back((*I)->def); 100 101 // Get use slots form the use-def chain. 102 const MachineRegisterInfo &MRI = MF.getRegInfo(); 103 for (MachineRegisterInfo::use_nodbg_iterator 104 I = MRI.use_nodbg_begin(CurLI->reg), E = MRI.use_nodbg_end(); I != E; 105 ++I) 106 if (!I.getOperand().isUndef()) 107 UseSlots.push_back(LIS.getInstructionIndex(&*I).getDefIndex()); 108 109 array_pod_sort(UseSlots.begin(), UseSlots.end()); 110 111 // Remove duplicates, keeping the smaller slot for each instruction. 112 // That is what we want for early clobbers. 113 UseSlots.erase(std::unique(UseSlots.begin(), UseSlots.end(), 114 SlotIndex::isSameInstr), 115 UseSlots.end()); 116 117 // Compute per-live block info. 118 if (!calcLiveBlockInfo()) { 119 // FIXME: calcLiveBlockInfo found inconsistencies in the live range. 120 // I am looking at you, SimpleRegisterCoalescing! 121 DEBUG(dbgs() << "*** Fixing inconsistent live interval! ***\n"); 122 const_cast<LiveIntervals&>(LIS) 123 .shrinkToUses(const_cast<LiveInterval*>(CurLI)); 124 LiveBlocks.clear(); 125 bool fixed = calcLiveBlockInfo(); 126 (void)fixed; 127 assert(fixed && "Couldn't fix broken live interval"); 128 } 129 130 DEBUG(dbgs() << "Analyze counted " 131 << UseSlots.size() << " instrs, " 132 << LiveBlocks.size() << " spanned.\n"); 133 } 134 135 /// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks 136 /// where CurLI is live. 137 bool SplitAnalysis::calcLiveBlockInfo() { 138 if (CurLI->empty()) 139 return true; 140 141 LiveInterval::const_iterator LVI = CurLI->begin(); 142 LiveInterval::const_iterator LVE = CurLI->end(); 143 144 SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE; 145 UseI = UseSlots.begin(); 146 UseE = UseSlots.end(); 147 148 // Loop over basic blocks where CurLI is live. 149 MachineFunction::iterator MFI = LIS.getMBBFromIndex(LVI->start); 150 for (;;) { 151 BlockInfo BI; 152 BI.MBB = MFI; 153 SlotIndex Start, Stop; 154 tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); 155 156 // LVI is the first live segment overlapping MBB. 157 BI.LiveIn = LVI->start <= Start; 158 if (!BI.LiveIn) 159 BI.Def = LVI->start; 160 161 // Find the first and last uses in the block. 162 BI.Uses = UseI != UseE && *UseI < Stop; 163 if (BI.Uses) { 164 BI.FirstUse = *UseI; 165 assert(BI.FirstUse >= Start); 166 do ++UseI; 167 while (UseI != UseE && *UseI < Stop); 168 BI.LastUse = UseI[-1]; 169 assert(BI.LastUse < Stop); 170 } 171 172 // Look for gaps in the live range. 173 bool hasGap = false; 174 BI.LiveOut = true; 175 while (LVI->end < Stop) { 176 SlotIndex LastStop = LVI->end; 177 if (++LVI == LVE || LVI->start >= Stop) { 178 BI.Kill = LastStop; 179 BI.LiveOut = false; 180 break; 181 } 182 if (LastStop < LVI->start) { 183 hasGap = true; 184 BI.Kill = LastStop; 185 BI.Def = LVI->start; 186 } 187 } 188 189 // Don't set LiveThrough when the block has a gap. 190 BI.LiveThrough = !hasGap && BI.LiveIn && BI.LiveOut; 191 LiveBlocks.push_back(BI); 192 193 // FIXME: This should never happen. The live range stops or starts without a 194 // corresponding use. An earlier pass did something wrong. 195 if (!BI.LiveThrough && !BI.Uses) 196 return false; 197 198 // LVI is now at LVE or LVI->end >= Stop. 199 if (LVI == LVE) 200 break; 201 202 // Live segment ends exactly at Stop. Move to the next segment. 203 if (LVI->end == Stop && ++LVI == LVE) 204 break; 205 206 // Pick the next basic block. 207 if (LVI->start < Stop) 208 ++MFI; 209 else 210 MFI = LIS.getMBBFromIndex(LVI->start); 211 } 212 return true; 213 } 214 215 bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const { 216 unsigned OrigReg = VRM.getOriginal(CurLI->reg); 217 const LiveInterval &Orig = LIS.getInterval(OrigReg); 218 assert(!Orig.empty() && "Splitting empty interval?"); 219 LiveInterval::const_iterator I = Orig.find(Idx); 220 221 // Range containing Idx should begin at Idx. 222 if (I != Orig.end() && I->start <= Idx) 223 return I->start == Idx; 224 225 // Range does not contain Idx, previous must end at Idx. 226 return I != Orig.begin() && (--I)->end == Idx; 227 } 228 229 void SplitAnalysis::analyze(const LiveInterval *li) { 230 clear(); 231 CurLI = li; 232 analyzeUses(); 233 } 234 235 236 //===----------------------------------------------------------------------===// 237 // Split Editor 238 //===----------------------------------------------------------------------===// 239 240 /// Create a new SplitEditor for editing the LiveInterval analyzed by SA. 241 SplitEditor::SplitEditor(SplitAnalysis &sa, 242 LiveIntervals &lis, 243 VirtRegMap &vrm, 244 MachineDominatorTree &mdt) 245 : SA(sa), LIS(lis), VRM(vrm), 246 MRI(vrm.getMachineFunction().getRegInfo()), 247 MDT(mdt), 248 TII(*vrm.getMachineFunction().getTarget().getInstrInfo()), 249 TRI(*vrm.getMachineFunction().getTarget().getRegisterInfo()), 250 Edit(0), 251 OpenIdx(0), 252 RegAssign(Allocator) 253 {} 254 255 void SplitEditor::reset(LiveRangeEdit &lre) { 256 Edit = &lre; 257 OpenIdx = 0; 258 RegAssign.clear(); 259 Values.clear(); 260 261 // We don't need to clear LiveOutCache, only LiveOutSeen entries are read. 262 LiveOutSeen.clear(); 263 264 // We don't need an AliasAnalysis since we will only be performing 265 // cheap-as-a-copy remats anyway. 266 Edit->anyRematerializable(LIS, TII, 0); 267 } 268 269 void SplitEditor::dump() const { 270 if (RegAssign.empty()) { 271 dbgs() << " empty\n"; 272 return; 273 } 274 275 for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I) 276 dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value(); 277 dbgs() << '\n'; 278 } 279 280 VNInfo *SplitEditor::defValue(unsigned RegIdx, 281 const VNInfo *ParentVNI, 282 SlotIndex Idx) { 283 assert(ParentVNI && "Mapping NULL value"); 284 assert(Idx.isValid() && "Invalid SlotIndex"); 285 assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI"); 286 LiveInterval *LI = Edit->get(RegIdx); 287 288 // Create a new value. 289 VNInfo *VNI = LI->getNextValue(Idx, 0, LIS.getVNInfoAllocator()); 290 291 // Use insert for lookup, so we can add missing values with a second lookup. 292 std::pair<ValueMap::iterator, bool> InsP = 293 Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id), VNI)); 294 295 // This was the first time (RegIdx, ParentVNI) was mapped. 296 // Keep it as a simple def without any liveness. 297 if (InsP.second) 298 return VNI; 299 300 // If the previous value was a simple mapping, add liveness for it now. 301 if (VNInfo *OldVNI = InsP.first->second) { 302 SlotIndex Def = OldVNI->def; 303 LI->addRange(LiveRange(Def, Def.getNextSlot(), OldVNI)); 304 // No longer a simple mapping. 305 InsP.first->second = 0; 306 } 307 308 // This is a complex mapping, add liveness for VNI 309 SlotIndex Def = VNI->def; 310 LI->addRange(LiveRange(Def, Def.getNextSlot(), VNI)); 311 312 return VNI; 313 } 314 315 void SplitEditor::markComplexMapped(unsigned RegIdx, const VNInfo *ParentVNI) { 316 assert(ParentVNI && "Mapping NULL value"); 317 VNInfo *&VNI = Values[std::make_pair(RegIdx, ParentVNI->id)]; 318 319 // ParentVNI was either unmapped or already complex mapped. Either way. 320 if (!VNI) 321 return; 322 323 // This was previously a single mapping. Make sure the old def is represented 324 // by a trivial live range. 325 SlotIndex Def = VNI->def; 326 Edit->get(RegIdx)->addRange(LiveRange(Def, Def.getNextSlot(), VNI)); 327 VNI = 0; 328 } 329 330 // extendRange - Extend the live range to reach Idx. 331 // Potentially create phi-def values. 332 void SplitEditor::extendRange(unsigned RegIdx, SlotIndex Idx) { 333 assert(Idx.isValid() && "Invalid SlotIndex"); 334 MachineBasicBlock *IdxMBB = LIS.getMBBFromIndex(Idx); 335 assert(IdxMBB && "No MBB at Idx"); 336 LiveInterval *LI = Edit->get(RegIdx); 337 338 // Is there a def in the same MBB we can extend? 339 if (LI->extendInBlock(LIS.getMBBStartIdx(IdxMBB), Idx)) 340 return; 341 342 // Now for the fun part. We know that ParentVNI potentially has multiple defs, 343 // and we may need to create even more phi-defs to preserve VNInfo SSA form. 344 // Perform a search for all predecessor blocks where we know the dominating 345 // VNInfo. Insert phi-def VNInfos along the path back to IdxMBB. 346 347 // Initialize the live-out cache the first time it is needed. 348 if (LiveOutSeen.empty()) { 349 unsigned N = VRM.getMachineFunction().getNumBlockIDs(); 350 LiveOutSeen.resize(N); 351 LiveOutCache.resize(N); 352 } 353 354 // Blocks where LI should be live-in. 355 SmallVector<MachineDomTreeNode*, 16> LiveIn; 356 LiveIn.push_back(MDT[IdxMBB]); 357 358 // Remember if we have seen more than one value. 359 bool UniqueVNI = true; 360 VNInfo *IdxVNI = 0; 361 362 // Using LiveOutCache as a visited set, perform a BFS for all reaching defs. 363 for (unsigned i = 0; i != LiveIn.size(); ++i) { 364 MachineBasicBlock *MBB = LiveIn[i]->getBlock(); 365 assert(!MBB->pred_empty() && "Value live-in to entry block?"); 366 for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), 367 PE = MBB->pred_end(); PI != PE; ++PI) { 368 MachineBasicBlock *Pred = *PI; 369 LiveOutPair &LOP = LiveOutCache[Pred]; 370 371 // Is this a known live-out block? 372 if (LiveOutSeen.test(Pred->getNumber())) { 373 if (VNInfo *VNI = LOP.first) { 374 if (IdxVNI && IdxVNI != VNI) 375 UniqueVNI = false; 376 IdxVNI = VNI; 377 } 378 continue; 379 } 380 381 // First time. LOP is garbage and must be cleared below. 382 LiveOutSeen.set(Pred->getNumber()); 383 384 // Does Pred provide a live-out value? 385 SlotIndex Start, Last; 386 tie(Start, Last) = LIS.getSlotIndexes()->getMBBRange(Pred); 387 Last = Last.getPrevSlot(); 388 VNInfo *VNI = LI->extendInBlock(Start, Last); 389 LOP.first = VNI; 390 if (VNI) { 391 LOP.second = MDT[LIS.getMBBFromIndex(VNI->def)]; 392 if (IdxVNI && IdxVNI != VNI) 393 UniqueVNI = false; 394 IdxVNI = VNI; 395 continue; 396 } 397 LOP.second = 0; 398 399 // No, we need a live-in value for Pred as well 400 if (Pred != IdxMBB) 401 LiveIn.push_back(MDT[Pred]); 402 else 403 UniqueVNI = false; // Loopback to IdxMBB, ask updateSSA() for help. 404 } 405 } 406 407 // We may need to add phi-def values to preserve the SSA form. 408 if (UniqueVNI) { 409 LiveOutPair LOP(IdxVNI, MDT[LIS.getMBBFromIndex(IdxVNI->def)]); 410 // Update LiveOutCache, but skip IdxMBB at LiveIn[0]. 411 for (unsigned i = 1, e = LiveIn.size(); i != e; ++i) 412 LiveOutCache[LiveIn[i]->getBlock()] = LOP; 413 } else 414 IdxVNI = updateSSA(RegIdx, LiveIn, Idx, IdxMBB); 415 416 // Since we went through the trouble of a full BFS visiting all reaching defs, 417 // the values in LiveIn are now accurate. No more phi-defs are needed 418 // for these blocks, so we can color the live ranges. 419 for (unsigned i = 0, e = LiveIn.size(); i != e; ++i) { 420 MachineBasicBlock *MBB = LiveIn[i]->getBlock(); 421 SlotIndex Start = LIS.getMBBStartIdx(MBB); 422 VNInfo *VNI = LiveOutCache[MBB].first; 423 424 // Anything in LiveIn other than IdxMBB is live-through. 425 // In IdxMBB, we should stop at Idx unless the same value is live-out. 426 if (MBB == IdxMBB && IdxVNI != VNI) 427 LI->addRange(LiveRange(Start, Idx.getNextSlot(), IdxVNI)); 428 else 429 LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), VNI)); 430 } 431 } 432 433 VNInfo *SplitEditor::updateSSA(unsigned RegIdx, 434 SmallVectorImpl<MachineDomTreeNode*> &LiveIn, 435 SlotIndex Idx, 436 const MachineBasicBlock *IdxMBB) { 437 // This is essentially the same iterative algorithm that SSAUpdater uses, 438 // except we already have a dominator tree, so we don't have to recompute it. 439 LiveInterval *LI = Edit->get(RegIdx); 440 VNInfo *IdxVNI = 0; 441 unsigned Changes; 442 do { 443 Changes = 0; 444 // Propagate live-out values down the dominator tree, inserting phi-defs 445 // when necessary. Since LiveIn was created by a BFS, going backwards makes 446 // it more likely for us to visit immediate dominators before their 447 // children. 448 for (unsigned i = LiveIn.size(); i; --i) { 449 MachineDomTreeNode *Node = LiveIn[i-1]; 450 MachineBasicBlock *MBB = Node->getBlock(); 451 MachineDomTreeNode *IDom = Node->getIDom(); 452 LiveOutPair IDomValue; 453 454 // We need a live-in value to a block with no immediate dominator? 455 // This is probably an unreachable block that has survived somehow. 456 bool needPHI = !IDom || !LiveOutSeen.test(IDom->getBlock()->getNumber()); 457 458 // IDom dominates all of our predecessors, but it may not be the immediate 459 // dominator. Check if any of them have live-out values that are properly 460 // dominated by IDom. If so, we need a phi-def here. 461 if (!needPHI) { 462 IDomValue = LiveOutCache[IDom->getBlock()]; 463 for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), 464 PE = MBB->pred_end(); PI != PE; ++PI) { 465 LiveOutPair Value = LiveOutCache[*PI]; 466 if (!Value.first || Value.first == IDomValue.first) 467 continue; 468 // This predecessor is carrying something other than IDomValue. 469 // It could be because IDomValue hasn't propagated yet, or it could be 470 // because MBB is in the dominance frontier of that value. 471 if (MDT.dominates(IDom, Value.second)) { 472 needPHI = true; 473 break; 474 } 475 } 476 } 477 478 // Create a phi-def if required. 479 if (needPHI) { 480 ++Changes; 481 SlotIndex Start = LIS.getMBBStartIdx(MBB); 482 VNInfo *VNI = LI->getNextValue(Start, 0, LIS.getVNInfoAllocator()); 483 VNI->setIsPHIDef(true); 484 // We no longer need LI to be live-in. 485 LiveIn.erase(LiveIn.begin()+(i-1)); 486 // Blocks in LiveIn are either IdxMBB, or have a value live-through. 487 if (MBB == IdxMBB) 488 IdxVNI = VNI; 489 // Check if we need to update live-out info. 490 LiveOutPair &LOP = LiveOutCache[MBB]; 491 if (LOP.second == Node || !LiveOutSeen.test(MBB->getNumber())) { 492 // We already have a live-out defined in MBB, so this must be IdxMBB. 493 assert(MBB == IdxMBB && "Adding phi-def to known live-out"); 494 LI->addRange(LiveRange(Start, Idx.getNextSlot(), VNI)); 495 } else { 496 // This phi-def is also live-out, so color the whole block. 497 LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), VNI)); 498 LOP = LiveOutPair(VNI, Node); 499 } 500 } else if (IDomValue.first) { 501 // No phi-def here. Remember incoming value for IdxMBB. 502 if (MBB == IdxMBB) { 503 IdxVNI = IDomValue.first; 504 // IdxMBB need not be live-out. 505 if (!LiveOutSeen.test(MBB->getNumber())) 506 continue; 507 } 508 assert(LiveOutSeen.test(MBB->getNumber()) && "Expected live-out block"); 509 // Propagate IDomValue if needed: 510 // MBB is live-out and doesn't define its own value. 511 LiveOutPair &LOP = LiveOutCache[MBB]; 512 if (LOP.second != Node && LOP.first != IDomValue.first) { 513 ++Changes; 514 LOP = IDomValue; 515 } 516 } 517 } 518 } while (Changes); 519 520 assert(IdxVNI && "Didn't find value for Idx"); 521 return IdxVNI; 522 } 523 524 VNInfo *SplitEditor::defFromParent(unsigned RegIdx, 525 VNInfo *ParentVNI, 526 SlotIndex UseIdx, 527 MachineBasicBlock &MBB, 528 MachineBasicBlock::iterator I) { 529 MachineInstr *CopyMI = 0; 530 SlotIndex Def; 531 LiveInterval *LI = Edit->get(RegIdx); 532 533 // Attempt cheap-as-a-copy rematerialization. 534 LiveRangeEdit::Remat RM(ParentVNI); 535 if (Edit->canRematerializeAt(RM, UseIdx, true, LIS)) { 536 Def = Edit->rematerializeAt(MBB, I, LI->reg, RM, LIS, TII, TRI); 537 } else { 538 // Can't remat, just insert a copy from parent. 539 CopyMI = BuildMI(MBB, I, DebugLoc(), TII.get(TargetOpcode::COPY), LI->reg) 540 .addReg(Edit->getReg()); 541 Def = LIS.InsertMachineInstrInMaps(CopyMI).getDefIndex(); 542 } 543 544 // Define the value in Reg. 545 VNInfo *VNI = defValue(RegIdx, ParentVNI, Def); 546 VNI->setCopy(CopyMI); 547 return VNI; 548 } 549 550 /// Create a new virtual register and live interval. 551 void SplitEditor::openIntv() { 552 assert(!OpenIdx && "Previous LI not closed before openIntv"); 553 554 // Create the complement as index 0. 555 if (Edit->empty()) 556 Edit->create(LIS, VRM); 557 558 // Create the open interval. 559 OpenIdx = Edit->size(); 560 Edit->create(LIS, VRM); 561 } 562 563 SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) { 564 assert(OpenIdx && "openIntv not called before enterIntvBefore"); 565 DEBUG(dbgs() << " enterIntvBefore " << Idx); 566 Idx = Idx.getBaseIndex(); 567 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 568 if (!ParentVNI) { 569 DEBUG(dbgs() << ": not live\n"); 570 return Idx; 571 } 572 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 573 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 574 assert(MI && "enterIntvBefore called with invalid index"); 575 576 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI); 577 return VNI->def; 578 } 579 580 SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) { 581 assert(OpenIdx && "openIntv not called before enterIntvAtEnd"); 582 SlotIndex End = LIS.getMBBEndIdx(&MBB); 583 SlotIndex Last = End.getPrevSlot(); 584 DEBUG(dbgs() << " enterIntvAtEnd BB#" << MBB.getNumber() << ", " << Last); 585 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last); 586 if (!ParentVNI) { 587 DEBUG(dbgs() << ": not live\n"); 588 return End; 589 } 590 DEBUG(dbgs() << ": valno " << ParentVNI->id); 591 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB, 592 LIS.getLastSplitPoint(Edit->getParent(), &MBB)); 593 RegAssign.insert(VNI->def, End, OpenIdx); 594 DEBUG(dump()); 595 return VNI->def; 596 } 597 598 /// useIntv - indicate that all instructions in MBB should use OpenLI. 599 void SplitEditor::useIntv(const MachineBasicBlock &MBB) { 600 useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB)); 601 } 602 603 void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) { 604 assert(OpenIdx && "openIntv not called before useIntv"); 605 DEBUG(dbgs() << " useIntv [" << Start << ';' << End << "):"); 606 RegAssign.insert(Start, End, OpenIdx); 607 DEBUG(dump()); 608 } 609 610 SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) { 611 assert(OpenIdx && "openIntv not called before leaveIntvAfter"); 612 DEBUG(dbgs() << " leaveIntvAfter " << Idx); 613 614 // The interval must be live beyond the instruction at Idx. 615 Idx = Idx.getBoundaryIndex(); 616 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 617 if (!ParentVNI) { 618 DEBUG(dbgs() << ": not live\n"); 619 return Idx.getNextSlot(); 620 } 621 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 622 623 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 624 assert(MI && "No instruction at index"); 625 VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), 626 llvm::next(MachineBasicBlock::iterator(MI))); 627 return VNI->def; 628 } 629 630 SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) { 631 assert(OpenIdx && "openIntv not called before leaveIntvBefore"); 632 DEBUG(dbgs() << " leaveIntvBefore " << Idx); 633 634 // The interval must be live into the instruction at Idx. 635 Idx = Idx.getBoundaryIndex(); 636 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 637 if (!ParentVNI) { 638 DEBUG(dbgs() << ": not live\n"); 639 return Idx.getNextSlot(); 640 } 641 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 642 643 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 644 assert(MI && "No instruction at index"); 645 VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI); 646 return VNI->def; 647 } 648 649 SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) { 650 assert(OpenIdx && "openIntv not called before leaveIntvAtTop"); 651 SlotIndex Start = LIS.getMBBStartIdx(&MBB); 652 DEBUG(dbgs() << " leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start); 653 654 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start); 655 if (!ParentVNI) { 656 DEBUG(dbgs() << ": not live\n"); 657 return Start; 658 } 659 660 VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB, 661 MBB.SkipPHIsAndLabels(MBB.begin())); 662 RegAssign.insert(Start, VNI->def, OpenIdx); 663 DEBUG(dump()); 664 return VNI->def; 665 } 666 667 void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) { 668 assert(OpenIdx && "openIntv not called before overlapIntv"); 669 const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start); 670 assert(ParentVNI == Edit->getParent().getVNInfoAt(End.getPrevSlot()) && 671 "Parent changes value in extended range"); 672 assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) && 673 "Range cannot span basic blocks"); 674 675 // The complement interval will be extended as needed by extendRange(). 676 markComplexMapped(0, ParentVNI); 677 DEBUG(dbgs() << " overlapIntv [" << Start << ';' << End << "):"); 678 RegAssign.insert(Start, End, OpenIdx); 679 DEBUG(dump()); 680 } 681 682 /// closeIntv - Indicate that we are done editing the currently open 683 /// LiveInterval, and ranges can be trimmed. 684 void SplitEditor::closeIntv() { 685 assert(OpenIdx && "openIntv not called before closeIntv"); 686 OpenIdx = 0; 687 } 688 689 /// transferSimpleValues - Transfer all simply defined values to the new live 690 /// ranges. 691 /// Values that were rematerialized or that have multiple defs are left alone. 692 bool SplitEditor::transferSimpleValues() { 693 bool Skipped = false; 694 RegAssignMap::const_iterator AssignI = RegAssign.begin(); 695 for (LiveInterval::const_iterator ParentI = Edit->getParent().begin(), 696 ParentE = Edit->getParent().end(); ParentI != ParentE; ++ParentI) { 697 DEBUG(dbgs() << " blit " << *ParentI << ':'); 698 VNInfo *ParentVNI = ParentI->valno; 699 // RegAssign has holes where RegIdx 0 should be used. 700 SlotIndex Start = ParentI->start; 701 AssignI.advanceTo(Start); 702 do { 703 unsigned RegIdx; 704 SlotIndex End = ParentI->end; 705 if (!AssignI.valid()) { 706 RegIdx = 0; 707 } else if (AssignI.start() <= Start) { 708 RegIdx = AssignI.value(); 709 if (AssignI.stop() < End) { 710 End = AssignI.stop(); 711 ++AssignI; 712 } 713 } else { 714 RegIdx = 0; 715 End = std::min(End, AssignI.start()); 716 } 717 DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx); 718 if (VNInfo *VNI = Values.lookup(std::make_pair(RegIdx, ParentVNI->id))) { 719 DEBUG(dbgs() << ':' << VNI->id); 720 Edit->get(RegIdx)->addRange(LiveRange(Start, End, VNI)); 721 } else 722 Skipped = true; 723 Start = End; 724 } while (Start != ParentI->end); 725 DEBUG(dbgs() << '\n'); 726 } 727 return Skipped; 728 } 729 730 void SplitEditor::extendPHIKillRanges() { 731 // Extend live ranges to be live-out for successor PHI values. 732 for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(), 733 E = Edit->getParent().vni_end(); I != E; ++I) { 734 const VNInfo *PHIVNI = *I; 735 if (PHIVNI->isUnused() || !PHIVNI->isPHIDef()) 736 continue; 737 unsigned RegIdx = RegAssign.lookup(PHIVNI->def); 738 MachineBasicBlock *MBB = LIS.getMBBFromIndex(PHIVNI->def); 739 for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), 740 PE = MBB->pred_end(); PI != PE; ++PI) { 741 SlotIndex End = LIS.getMBBEndIdx(*PI).getPrevSlot(); 742 // The predecessor may not have a live-out value. That is OK, like an 743 // undef PHI operand. 744 if (Edit->getParent().liveAt(End)) { 745 assert(RegAssign.lookup(End) == RegIdx && 746 "Different register assignment in phi predecessor"); 747 extendRange(RegIdx, End); 748 } 749 } 750 } 751 } 752 753 /// rewriteAssigned - Rewrite all uses of Edit->getReg(). 754 void SplitEditor::rewriteAssigned(bool ExtendRanges) { 755 for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Edit->getReg()), 756 RE = MRI.reg_end(); RI != RE;) { 757 MachineOperand &MO = RI.getOperand(); 758 MachineInstr *MI = MO.getParent(); 759 ++RI; 760 // LiveDebugVariables should have handled all DBG_VALUE instructions. 761 if (MI->isDebugValue()) { 762 DEBUG(dbgs() << "Zapping " << *MI); 763 MO.setReg(0); 764 continue; 765 } 766 767 // <undef> operands don't really read the register, so just assign them to 768 // the complement. 769 if (MO.isUse() && MO.isUndef()) { 770 MO.setReg(Edit->get(0)->reg); 771 continue; 772 } 773 774 SlotIndex Idx = LIS.getInstructionIndex(MI); 775 if (MO.isDef()) 776 Idx = MO.isEarlyClobber() ? Idx.getUseIndex() : Idx.getDefIndex(); 777 778 // Rewrite to the mapped register at Idx. 779 unsigned RegIdx = RegAssign.lookup(Idx); 780 MO.setReg(Edit->get(RegIdx)->reg); 781 DEBUG(dbgs() << " rewr BB#" << MI->getParent()->getNumber() << '\t' 782 << Idx << ':' << RegIdx << '\t' << *MI); 783 784 // Extend liveness to Idx if the instruction reads reg. 785 if (!ExtendRanges) 786 continue; 787 788 // Skip instructions that don't read Reg. 789 if (MO.isDef()) { 790 if (!MO.getSubReg() && !MO.isEarlyClobber()) 791 continue; 792 // We may wan't to extend a live range for a partial redef, or for a use 793 // tied to an early clobber. 794 Idx = Idx.getPrevSlot(); 795 if (!Edit->getParent().liveAt(Idx)) 796 continue; 797 } else 798 Idx = Idx.getUseIndex(); 799 800 extendRange(RegIdx, Idx); 801 } 802 } 803 804 void SplitEditor::deleteRematVictims() { 805 SmallVector<MachineInstr*, 8> Dead; 806 for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I){ 807 LiveInterval *LI = *I; 808 for (LiveInterval::const_iterator LII = LI->begin(), LIE = LI->end(); 809 LII != LIE; ++LII) { 810 // Dead defs end at the store slot. 811 if (LII->end != LII->valno->def.getNextSlot()) 812 continue; 813 MachineInstr *MI = LIS.getInstructionFromIndex(LII->valno->def); 814 assert(MI && "Missing instruction for dead def"); 815 MI->addRegisterDead(LI->reg, &TRI); 816 817 if (!MI->allDefsAreDead()) 818 continue; 819 820 DEBUG(dbgs() << "All defs dead: " << *MI); 821 Dead.push_back(MI); 822 } 823 } 824 825 if (Dead.empty()) 826 return; 827 828 Edit->eliminateDeadDefs(Dead, LIS, VRM, TII); 829 } 830 831 void SplitEditor::finish() { 832 assert(OpenIdx == 0 && "Previous LI not closed before rewrite"); 833 ++NumFinished; 834 835 // At this point, the live intervals in Edit contain VNInfos corresponding to 836 // the inserted copies. 837 838 // Add the original defs from the parent interval. 839 for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(), 840 E = Edit->getParent().vni_end(); I != E; ++I) { 841 const VNInfo *ParentVNI = *I; 842 if (ParentVNI->isUnused()) 843 continue; 844 unsigned RegIdx = RegAssign.lookup(ParentVNI->def); 845 VNInfo *VNI = defValue(RegIdx, ParentVNI, ParentVNI->def); 846 VNI->setIsPHIDef(ParentVNI->isPHIDef()); 847 VNI->setCopy(ParentVNI->getCopy()); 848 849 // Mark rematted values as complex everywhere to force liveness computation. 850 // The new live ranges may be truncated. 851 if (Edit->didRematerialize(ParentVNI)) 852 for (unsigned i = 0, e = Edit->size(); i != e; ++i) 853 markComplexMapped(i, ParentVNI); 854 } 855 856 #ifndef NDEBUG 857 // Every new interval must have a def by now, otherwise the split is bogus. 858 for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I) 859 assert((*I)->hasAtLeastOneValue() && "Split interval has no value"); 860 #endif 861 862 // Transfer the simply mapped values, check if any are complex. 863 bool Complex = transferSimpleValues(); 864 if (Complex) 865 extendPHIKillRanges(); 866 else 867 ++NumSimple; 868 869 // Rewrite virtual registers, possibly extending ranges. 870 rewriteAssigned(Complex); 871 872 // Delete defs that were rematted everywhere. 873 if (Complex) 874 deleteRematVictims(); 875 876 // Get rid of unused values and set phi-kill flags. 877 for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I) 878 (*I)->RenumberValues(LIS); 879 880 // Now check if any registers were separated into multiple components. 881 ConnectedVNInfoEqClasses ConEQ(LIS); 882 for (unsigned i = 0, e = Edit->size(); i != e; ++i) { 883 // Don't use iterators, they are invalidated by create() below. 884 LiveInterval *li = Edit->get(i); 885 unsigned NumComp = ConEQ.Classify(li); 886 if (NumComp <= 1) 887 continue; 888 DEBUG(dbgs() << " " << NumComp << " components: " << *li << '\n'); 889 SmallVector<LiveInterval*, 8> dups; 890 dups.push_back(li); 891 for (unsigned i = 1; i != NumComp; ++i) 892 dups.push_back(&Edit->create(LIS, VRM)); 893 ConEQ.Distribute(&dups[0], MRI); 894 } 895 896 // Calculate spill weight and allocation hints for new intervals. 897 Edit->calculateRegClassAndHint(VRM.getMachineFunction(), LIS, SA.Loops); 898 } 899 900 901 //===----------------------------------------------------------------------===// 902 // Single Block Splitting 903 //===----------------------------------------------------------------------===// 904 905 /// getMultiUseBlocks - if CurLI has more than one use in a basic block, it 906 /// may be an advantage to split CurLI for the duration of the block. 907 bool SplitAnalysis::getMultiUseBlocks(BlockPtrSet &Blocks) { 908 // If CurLI is local to one block, there is no point to splitting it. 909 if (LiveBlocks.size() <= 1) 910 return false; 911 // Add blocks with multiple uses. 912 for (unsigned i = 0, e = LiveBlocks.size(); i != e; ++i) { 913 const BlockInfo &BI = LiveBlocks[i]; 914 if (!BI.Uses || BI.FirstUse == BI.LastUse) 915 continue; 916 Blocks.insert(BI.MBB); 917 } 918 return !Blocks.empty(); 919 } 920 921 /// splitSingleBlocks - Split CurLI into a separate live interval inside each 922 /// basic block in Blocks. 923 void SplitEditor::splitSingleBlocks(const SplitAnalysis::BlockPtrSet &Blocks) { 924 DEBUG(dbgs() << " splitSingleBlocks for " << Blocks.size() << " blocks.\n"); 925 926 for (unsigned i = 0, e = SA.LiveBlocks.size(); i != e; ++i) { 927 const SplitAnalysis::BlockInfo &BI = SA.LiveBlocks[i]; 928 if (!BI.Uses || !Blocks.count(BI.MBB)) 929 continue; 930 931 openIntv(); 932 SlotIndex LastSplitPoint = SA.getLastSplitPoint(BI.MBB->getNumber()); 933 SlotIndex SegStart = enterIntvBefore(std::min(BI.FirstUse, 934 LastSplitPoint)); 935 if (!BI.LiveOut || BI.LastUse < LastSplitPoint) { 936 useIntv(SegStart, leaveIntvAfter(BI.LastUse)); 937 } else { 938 // The last use is after the last valid split point. 939 SlotIndex SegStop = leaveIntvBefore(LastSplitPoint); 940 useIntv(SegStart, SegStop); 941 overlapIntv(SegStop, BI.LastUse); 942 } 943 closeIntv(); 944 } 945 finish(); 946 } 947