1 //===- SplitKit.cpp - Toolkit for splitting live ranges -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the SplitAnalysis class as well as mutator functions for 10 // live range splitting. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SplitKit.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/None.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/AliasAnalysis.h" 23 #include "llvm/CodeGen/LiveInterval.h" 24 #include "llvm/CodeGen/LiveIntervalCalc.h" 25 #include "llvm/CodeGen/LiveIntervals.h" 26 #include "llvm/CodeGen/LiveRangeEdit.h" 27 #include "llvm/CodeGen/MachineBasicBlock.h" 28 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 29 #include "llvm/CodeGen/MachineDominators.h" 30 #include "llvm/CodeGen/MachineFunction.h" 31 #include "llvm/CodeGen/MachineInstr.h" 32 #include "llvm/CodeGen/MachineInstrBuilder.h" 33 #include "llvm/CodeGen/MachineLoopInfo.h" 34 #include "llvm/CodeGen/MachineOperand.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/CodeGen/SlotIndexes.h" 37 #include "llvm/CodeGen/TargetInstrInfo.h" 38 #include "llvm/CodeGen/TargetOpcodes.h" 39 #include "llvm/CodeGen/TargetRegisterInfo.h" 40 #include "llvm/CodeGen/TargetSubtargetInfo.h" 41 #include "llvm/CodeGen/VirtRegMap.h" 42 #include "llvm/Config/llvm-config.h" 43 #include "llvm/IR/DebugLoc.h" 44 #include "llvm/MC/LaneBitmask.h" 45 #include "llvm/Support/Allocator.h" 46 #include "llvm/Support/BlockFrequency.h" 47 #include "llvm/Support/Compiler.h" 48 #include "llvm/Support/Debug.h" 49 #include "llvm/Support/ErrorHandling.h" 50 #include "llvm/Support/raw_ostream.h" 51 #include <algorithm> 52 #include <cassert> 53 #include <iterator> 54 #include <limits> 55 #include <tuple> 56 #include <utility> 57 58 using namespace llvm; 59 60 #define DEBUG_TYPE "regalloc" 61 62 STATISTIC(NumFinished, "Number of splits finished"); 63 STATISTIC(NumSimple, "Number of splits that were simple"); 64 STATISTIC(NumCopies, "Number of copies inserted for splitting"); 65 STATISTIC(NumRemats, "Number of rematerialized defs for splitting"); 66 STATISTIC(NumRepairs, "Number of invalid live ranges repaired"); 67 68 //===----------------------------------------------------------------------===// 69 // Last Insert Point Analysis 70 //===----------------------------------------------------------------------===// 71 72 InsertPointAnalysis::InsertPointAnalysis(const LiveIntervals &lis, 73 unsigned BBNum) 74 : LIS(lis), LastInsertPoint(BBNum) {} 75 76 SlotIndex 77 InsertPointAnalysis::computeLastInsertPoint(const LiveInterval &CurLI, 78 const MachineBasicBlock &MBB) { 79 unsigned Num = MBB.getNumber(); 80 std::pair<SlotIndex, SlotIndex> &LIP = LastInsertPoint[Num]; 81 SlotIndex MBBEnd = LIS.getMBBEndIdx(&MBB); 82 83 SmallVector<const MachineBasicBlock *, 1> EHPadSuccessors; 84 for (const MachineBasicBlock *SMBB : MBB.successors()) 85 if (SMBB->isEHPad()) 86 EHPadSuccessors.push_back(SMBB); 87 88 // Compute insert points on the first call. The pair is independent of the 89 // current live interval. 90 if (!LIP.first.isValid()) { 91 MachineBasicBlock::const_iterator FirstTerm = MBB.getFirstTerminator(); 92 if (FirstTerm == MBB.end()) 93 LIP.first = MBBEnd; 94 else 95 LIP.first = LIS.getInstructionIndex(*FirstTerm); 96 97 // If there is a landing pad successor, also find the call instruction. 98 if (EHPadSuccessors.empty()) 99 return LIP.first; 100 // There may not be a call instruction (?) in which case we ignore LPad. 101 LIP.second = LIP.first; 102 for (MachineBasicBlock::const_iterator I = MBB.end(), E = MBB.begin(); 103 I != E;) { 104 --I; 105 if (I->isCall()) { 106 LIP.second = LIS.getInstructionIndex(*I); 107 break; 108 } 109 } 110 } 111 112 // If CurLI is live into a landing pad successor, move the last insert point 113 // back to the call that may throw. 114 if (!LIP.second) 115 return LIP.first; 116 117 if (none_of(EHPadSuccessors, [&](const MachineBasicBlock *EHPad) { 118 return LIS.isLiveInToMBB(CurLI, EHPad); 119 })) 120 return LIP.first; 121 122 // Find the value leaving MBB. 123 const VNInfo *VNI = CurLI.getVNInfoBefore(MBBEnd); 124 if (!VNI) 125 return LIP.first; 126 127 // If the value leaving MBB was defined after the call in MBB, it can't 128 // really be live-in to the landing pad. This can happen if the landing pad 129 // has a PHI, and this register is undef on the exceptional edge. 130 // <rdar://problem/10664933> 131 if (!SlotIndex::isEarlierInstr(VNI->def, LIP.second) && VNI->def < MBBEnd) 132 return LIP.first; 133 134 // Value is properly live-in to the landing pad. 135 // Only allow inserts before the call. 136 return LIP.second; 137 } 138 139 MachineBasicBlock::iterator 140 InsertPointAnalysis::getLastInsertPointIter(const LiveInterval &CurLI, 141 MachineBasicBlock &MBB) { 142 SlotIndex LIP = getLastInsertPoint(CurLI, MBB); 143 if (LIP == LIS.getMBBEndIdx(&MBB)) 144 return MBB.end(); 145 return LIS.getInstructionFromIndex(LIP); 146 } 147 148 //===----------------------------------------------------------------------===// 149 // Split Analysis 150 //===----------------------------------------------------------------------===// 151 152 SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm, const LiveIntervals &lis, 153 const MachineLoopInfo &mli) 154 : MF(vrm.getMachineFunction()), VRM(vrm), LIS(lis), Loops(mli), 155 TII(*MF.getSubtarget().getInstrInfo()), IPA(lis, MF.getNumBlockIDs()) {} 156 157 void SplitAnalysis::clear() { 158 UseSlots.clear(); 159 UseBlocks.clear(); 160 ThroughBlocks.clear(); 161 CurLI = nullptr; 162 DidRepairRange = false; 163 } 164 165 /// analyzeUses - Count instructions, basic blocks, and loops using CurLI. 166 void SplitAnalysis::analyzeUses() { 167 assert(UseSlots.empty() && "Call clear first"); 168 169 // First get all the defs from the interval values. This provides the correct 170 // slots for early clobbers. 171 for (const VNInfo *VNI : CurLI->valnos) 172 if (!VNI->isPHIDef() && !VNI->isUnused()) 173 UseSlots.push_back(VNI->def); 174 175 // Get use slots form the use-def chain. 176 const MachineRegisterInfo &MRI = MF.getRegInfo(); 177 for (MachineOperand &MO : MRI.use_nodbg_operands(CurLI->reg)) 178 if (!MO.isUndef()) 179 UseSlots.push_back(LIS.getInstructionIndex(*MO.getParent()).getRegSlot()); 180 181 array_pod_sort(UseSlots.begin(), UseSlots.end()); 182 183 // Remove duplicates, keeping the smaller slot for each instruction. 184 // That is what we want for early clobbers. 185 UseSlots.erase(std::unique(UseSlots.begin(), UseSlots.end(), 186 SlotIndex::isSameInstr), 187 UseSlots.end()); 188 189 // Compute per-live block info. 190 if (!calcLiveBlockInfo()) { 191 // FIXME: calcLiveBlockInfo found inconsistencies in the live range. 192 // I am looking at you, RegisterCoalescer! 193 DidRepairRange = true; 194 ++NumRepairs; 195 LLVM_DEBUG(dbgs() << "*** Fixing inconsistent live interval! ***\n"); 196 const_cast<LiveIntervals&>(LIS) 197 .shrinkToUses(const_cast<LiveInterval*>(CurLI)); 198 UseBlocks.clear(); 199 ThroughBlocks.clear(); 200 bool fixed = calcLiveBlockInfo(); 201 (void)fixed; 202 assert(fixed && "Couldn't fix broken live interval"); 203 } 204 205 LLVM_DEBUG(dbgs() << "Analyze counted " << UseSlots.size() << " instrs in " 206 << UseBlocks.size() << " blocks, through " 207 << NumThroughBlocks << " blocks.\n"); 208 } 209 210 /// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks 211 /// where CurLI is live. 212 bool SplitAnalysis::calcLiveBlockInfo() { 213 ThroughBlocks.resize(MF.getNumBlockIDs()); 214 NumThroughBlocks = NumGapBlocks = 0; 215 if (CurLI->empty()) 216 return true; 217 218 LiveInterval::const_iterator LVI = CurLI->begin(); 219 LiveInterval::const_iterator LVE = CurLI->end(); 220 221 SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE; 222 UseI = UseSlots.begin(); 223 UseE = UseSlots.end(); 224 225 // Loop over basic blocks where CurLI is live. 226 MachineFunction::iterator MFI = 227 LIS.getMBBFromIndex(LVI->start)->getIterator(); 228 while (true) { 229 BlockInfo BI; 230 BI.MBB = &*MFI; 231 SlotIndex Start, Stop; 232 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); 233 234 // If the block contains no uses, the range must be live through. At one 235 // point, RegisterCoalescer could create dangling ranges that ended 236 // mid-block. 237 if (UseI == UseE || *UseI >= Stop) { 238 ++NumThroughBlocks; 239 ThroughBlocks.set(BI.MBB->getNumber()); 240 // The range shouldn't end mid-block if there are no uses. This shouldn't 241 // happen. 242 if (LVI->end < Stop) 243 return false; 244 } else { 245 // This block has uses. Find the first and last uses in the block. 246 BI.FirstInstr = *UseI; 247 assert(BI.FirstInstr >= Start); 248 do ++UseI; 249 while (UseI != UseE && *UseI < Stop); 250 BI.LastInstr = UseI[-1]; 251 assert(BI.LastInstr < Stop); 252 253 // LVI is the first live segment overlapping MBB. 254 BI.LiveIn = LVI->start <= Start; 255 256 // When not live in, the first use should be a def. 257 if (!BI.LiveIn) { 258 assert(LVI->start == LVI->valno->def && "Dangling Segment start"); 259 assert(LVI->start == BI.FirstInstr && "First instr should be a def"); 260 BI.FirstDef = BI.FirstInstr; 261 } 262 263 // Look for gaps in the live range. 264 BI.LiveOut = true; 265 while (LVI->end < Stop) { 266 SlotIndex LastStop = LVI->end; 267 if (++LVI == LVE || LVI->start >= Stop) { 268 BI.LiveOut = false; 269 BI.LastInstr = LastStop; 270 break; 271 } 272 273 if (LastStop < LVI->start) { 274 // There is a gap in the live range. Create duplicate entries for the 275 // live-in snippet and the live-out snippet. 276 ++NumGapBlocks; 277 278 // Push the Live-in part. 279 BI.LiveOut = false; 280 UseBlocks.push_back(BI); 281 UseBlocks.back().LastInstr = LastStop; 282 283 // Set up BI for the live-out part. 284 BI.LiveIn = false; 285 BI.LiveOut = true; 286 BI.FirstInstr = BI.FirstDef = LVI->start; 287 } 288 289 // A Segment that starts in the middle of the block must be a def. 290 assert(LVI->start == LVI->valno->def && "Dangling Segment start"); 291 if (!BI.FirstDef) 292 BI.FirstDef = LVI->start; 293 } 294 295 UseBlocks.push_back(BI); 296 297 // LVI is now at LVE or LVI->end >= Stop. 298 if (LVI == LVE) 299 break; 300 } 301 302 // Live segment ends exactly at Stop. Move to the next segment. 303 if (LVI->end == Stop && ++LVI == LVE) 304 break; 305 306 // Pick the next basic block. 307 if (LVI->start < Stop) 308 ++MFI; 309 else 310 MFI = LIS.getMBBFromIndex(LVI->start)->getIterator(); 311 } 312 313 assert(getNumLiveBlocks() == countLiveBlocks(CurLI) && "Bad block count"); 314 return true; 315 } 316 317 unsigned SplitAnalysis::countLiveBlocks(const LiveInterval *cli) const { 318 if (cli->empty()) 319 return 0; 320 LiveInterval *li = const_cast<LiveInterval*>(cli); 321 LiveInterval::iterator LVI = li->begin(); 322 LiveInterval::iterator LVE = li->end(); 323 unsigned Count = 0; 324 325 // Loop over basic blocks where li is live. 326 MachineFunction::const_iterator MFI = 327 LIS.getMBBFromIndex(LVI->start)->getIterator(); 328 SlotIndex Stop = LIS.getMBBEndIdx(&*MFI); 329 while (true) { 330 ++Count; 331 LVI = li->advanceTo(LVI, Stop); 332 if (LVI == LVE) 333 return Count; 334 do { 335 ++MFI; 336 Stop = LIS.getMBBEndIdx(&*MFI); 337 } while (Stop <= LVI->start); 338 } 339 } 340 341 bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const { 342 unsigned OrigReg = VRM.getOriginal(CurLI->reg); 343 const LiveInterval &Orig = LIS.getInterval(OrigReg); 344 assert(!Orig.empty() && "Splitting empty interval?"); 345 LiveInterval::const_iterator I = Orig.find(Idx); 346 347 // Range containing Idx should begin at Idx. 348 if (I != Orig.end() && I->start <= Idx) 349 return I->start == Idx; 350 351 // Range does not contain Idx, previous must end at Idx. 352 return I != Orig.begin() && (--I)->end == Idx; 353 } 354 355 void SplitAnalysis::analyze(const LiveInterval *li) { 356 clear(); 357 CurLI = li; 358 analyzeUses(); 359 } 360 361 //===----------------------------------------------------------------------===// 362 // Split Editor 363 //===----------------------------------------------------------------------===// 364 365 /// Create a new SplitEditor for editing the LiveInterval analyzed by SA. 366 SplitEditor::SplitEditor(SplitAnalysis &sa, AliasAnalysis &aa, 367 LiveIntervals &lis, VirtRegMap &vrm, 368 MachineDominatorTree &mdt, 369 MachineBlockFrequencyInfo &mbfi) 370 : SA(sa), AA(aa), LIS(lis), VRM(vrm), 371 MRI(vrm.getMachineFunction().getRegInfo()), MDT(mdt), 372 TII(*vrm.getMachineFunction().getSubtarget().getInstrInfo()), 373 TRI(*vrm.getMachineFunction().getSubtarget().getRegisterInfo()), 374 MBFI(mbfi), RegAssign(Allocator) {} 375 376 void SplitEditor::reset(LiveRangeEdit &LRE, ComplementSpillMode SM) { 377 Edit = &LRE; 378 SpillMode = SM; 379 OpenIdx = 0; 380 RegAssign.clear(); 381 Values.clear(); 382 383 // Reset the LiveIntervalCalc instances needed for this spill mode. 384 LICalc[0].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT, 385 &LIS.getVNInfoAllocator()); 386 if (SpillMode) 387 LICalc[1].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT, 388 &LIS.getVNInfoAllocator()); 389 390 // We don't need an AliasAnalysis since we will only be performing 391 // cheap-as-a-copy remats anyway. 392 Edit->anyRematerializable(nullptr); 393 } 394 395 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 396 LLVM_DUMP_METHOD void SplitEditor::dump() const { 397 if (RegAssign.empty()) { 398 dbgs() << " empty\n"; 399 return; 400 } 401 402 for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I) 403 dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value(); 404 dbgs() << '\n'; 405 } 406 #endif 407 408 LiveInterval::SubRange &SplitEditor::getSubRangeForMask(LaneBitmask LM, 409 LiveInterval &LI) { 410 for (LiveInterval::SubRange &S : LI.subranges()) 411 if (S.LaneMask == LM) 412 return S; 413 llvm_unreachable("SubRange for this mask not found"); 414 } 415 416 void SplitEditor::addDeadDef(LiveInterval &LI, VNInfo *VNI, bool Original) { 417 if (!LI.hasSubRanges()) { 418 LI.createDeadDef(VNI); 419 return; 420 } 421 422 SlotIndex Def = VNI->def; 423 if (Original) { 424 // If we are transferring a def from the original interval, make sure 425 // to only update the subranges for which the original subranges had 426 // a def at this location. 427 for (LiveInterval::SubRange &S : LI.subranges()) { 428 auto &PS = getSubRangeForMask(S.LaneMask, Edit->getParent()); 429 VNInfo *PV = PS.getVNInfoAt(Def); 430 if (PV != nullptr && PV->def == Def) 431 S.createDeadDef(Def, LIS.getVNInfoAllocator()); 432 } 433 } else { 434 // This is a new def: either from rematerialization, or from an inserted 435 // copy. Since rematerialization can regenerate a definition of a sub- 436 // register, we need to check which subranges need to be updated. 437 const MachineInstr *DefMI = LIS.getInstructionFromIndex(Def); 438 assert(DefMI != nullptr); 439 LaneBitmask LM; 440 for (const MachineOperand &DefOp : DefMI->defs()) { 441 Register R = DefOp.getReg(); 442 if (R != LI.reg) 443 continue; 444 if (unsigned SR = DefOp.getSubReg()) 445 LM |= TRI.getSubRegIndexLaneMask(SR); 446 else { 447 LM = MRI.getMaxLaneMaskForVReg(R); 448 break; 449 } 450 } 451 for (LiveInterval::SubRange &S : LI.subranges()) 452 if ((S.LaneMask & LM).any()) 453 S.createDeadDef(Def, LIS.getVNInfoAllocator()); 454 } 455 } 456 457 VNInfo *SplitEditor::defValue(unsigned RegIdx, 458 const VNInfo *ParentVNI, 459 SlotIndex Idx, 460 bool Original) { 461 assert(ParentVNI && "Mapping NULL value"); 462 assert(Idx.isValid() && "Invalid SlotIndex"); 463 assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI"); 464 LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx)); 465 466 // Create a new value. 467 VNInfo *VNI = LI->getNextValue(Idx, LIS.getVNInfoAllocator()); 468 469 bool Force = LI->hasSubRanges(); 470 ValueForcePair FP(Force ? nullptr : VNI, Force); 471 // Use insert for lookup, so we can add missing values with a second lookup. 472 std::pair<ValueMap::iterator, bool> InsP = 473 Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id), FP)); 474 475 // This was the first time (RegIdx, ParentVNI) was mapped, and it is not 476 // forced. Keep it as a simple def without any liveness. 477 if (!Force && InsP.second) 478 return VNI; 479 480 // If the previous value was a simple mapping, add liveness for it now. 481 if (VNInfo *OldVNI = InsP.first->second.getPointer()) { 482 addDeadDef(*LI, OldVNI, Original); 483 484 // No longer a simple mapping. Switch to a complex mapping. If the 485 // interval has subranges, make it a forced mapping. 486 InsP.first->second = ValueForcePair(nullptr, Force); 487 } 488 489 // This is a complex mapping, add liveness for VNI 490 addDeadDef(*LI, VNI, Original); 491 return VNI; 492 } 493 494 void SplitEditor::forceRecompute(unsigned RegIdx, const VNInfo &ParentVNI) { 495 ValueForcePair &VFP = Values[std::make_pair(RegIdx, ParentVNI.id)]; 496 VNInfo *VNI = VFP.getPointer(); 497 498 // ParentVNI was either unmapped or already complex mapped. Either way, just 499 // set the force bit. 500 if (!VNI) { 501 VFP.setInt(true); 502 return; 503 } 504 505 // This was previously a single mapping. Make sure the old def is represented 506 // by a trivial live range. 507 addDeadDef(LIS.getInterval(Edit->get(RegIdx)), VNI, false); 508 509 // Mark as complex mapped, forced. 510 VFP = ValueForcePair(nullptr, true); 511 } 512 513 SlotIndex SplitEditor::buildSingleSubRegCopy(unsigned FromReg, unsigned ToReg, 514 MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore, 515 unsigned SubIdx, LiveInterval &DestLI, bool Late, SlotIndex Def) { 516 const MCInstrDesc &Desc = TII.get(TargetOpcode::COPY); 517 bool FirstCopy = !Def.isValid(); 518 MachineInstr *CopyMI = BuildMI(MBB, InsertBefore, DebugLoc(), Desc) 519 .addReg(ToReg, RegState::Define | getUndefRegState(FirstCopy) 520 | getInternalReadRegState(!FirstCopy), SubIdx) 521 .addReg(FromReg, 0, SubIdx); 522 523 BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator(); 524 SlotIndexes &Indexes = *LIS.getSlotIndexes(); 525 if (FirstCopy) { 526 Def = Indexes.insertMachineInstrInMaps(*CopyMI, Late).getRegSlot(); 527 } else { 528 CopyMI->bundleWithPred(); 529 } 530 LaneBitmask LaneMask = TRI.getSubRegIndexLaneMask(SubIdx); 531 DestLI.refineSubRanges(Allocator, LaneMask, 532 [Def, &Allocator](LiveInterval::SubRange &SR) { 533 SR.createDeadDef(Def, Allocator); 534 }, 535 Indexes, TRI); 536 return Def; 537 } 538 539 SlotIndex SplitEditor::buildCopy(unsigned FromReg, unsigned ToReg, 540 LaneBitmask LaneMask, MachineBasicBlock &MBB, 541 MachineBasicBlock::iterator InsertBefore, bool Late, unsigned RegIdx) { 542 const MCInstrDesc &Desc = TII.get(TargetOpcode::COPY); 543 if (LaneMask.all() || LaneMask == MRI.getMaxLaneMaskForVReg(FromReg)) { 544 // The full vreg is copied. 545 MachineInstr *CopyMI = 546 BuildMI(MBB, InsertBefore, DebugLoc(), Desc, ToReg).addReg(FromReg); 547 SlotIndexes &Indexes = *LIS.getSlotIndexes(); 548 return Indexes.insertMachineInstrInMaps(*CopyMI, Late).getRegSlot(); 549 } 550 551 // Only a subset of lanes needs to be copied. The following is a simple 552 // heuristic to construct a sequence of COPYs. We could add a target 553 // specific callback if this turns out to be suboptimal. 554 LiveInterval &DestLI = LIS.getInterval(Edit->get(RegIdx)); 555 556 // First pass: Try to find a perfectly matching subregister index. If none 557 // exists find the one covering the most lanemask bits. 558 SmallVector<unsigned, 8> PossibleIndexes; 559 unsigned BestIdx = 0; 560 unsigned BestCover = 0; 561 const TargetRegisterClass *RC = MRI.getRegClass(FromReg); 562 assert(RC == MRI.getRegClass(ToReg) && "Should have same reg class"); 563 for (unsigned Idx = 1, E = TRI.getNumSubRegIndices(); Idx < E; ++Idx) { 564 // Is this index even compatible with the given class? 565 if (TRI.getSubClassWithSubReg(RC, Idx) != RC) 566 continue; 567 LaneBitmask SubRegMask = TRI.getSubRegIndexLaneMask(Idx); 568 // Early exit if we found a perfect match. 569 if (SubRegMask == LaneMask) { 570 BestIdx = Idx; 571 break; 572 } 573 574 // The index must not cover any lanes outside \p LaneMask. 575 if ((SubRegMask & ~LaneMask).any()) 576 continue; 577 578 unsigned PopCount = SubRegMask.getNumLanes(); 579 PossibleIndexes.push_back(Idx); 580 if (PopCount > BestCover) { 581 BestCover = PopCount; 582 BestIdx = Idx; 583 } 584 } 585 586 // Abort if we cannot possibly implement the COPY with the given indexes. 587 if (BestIdx == 0) 588 report_fatal_error("Impossible to implement partial COPY"); 589 590 SlotIndex Def = buildSingleSubRegCopy(FromReg, ToReg, MBB, InsertBefore, 591 BestIdx, DestLI, Late, SlotIndex()); 592 593 // Greedy heuristic: Keep iterating keeping the best covering subreg index 594 // each time. 595 LaneBitmask LanesLeft = LaneMask & ~(TRI.getSubRegIndexLaneMask(BestIdx)); 596 while (LanesLeft.any()) { 597 unsigned BestIdx = 0; 598 int BestCover = std::numeric_limits<int>::min(); 599 for (unsigned Idx : PossibleIndexes) { 600 LaneBitmask SubRegMask = TRI.getSubRegIndexLaneMask(Idx); 601 // Early exit if we found a perfect match. 602 if (SubRegMask == LanesLeft) { 603 BestIdx = Idx; 604 break; 605 } 606 607 // Try to cover as much of the remaining lanes as possible but 608 // as few of the already covered lanes as possible. 609 int Cover = (SubRegMask & LanesLeft).getNumLanes() 610 - (SubRegMask & ~LanesLeft).getNumLanes(); 611 if (Cover > BestCover) { 612 BestCover = Cover; 613 BestIdx = Idx; 614 } 615 } 616 617 if (BestIdx == 0) 618 report_fatal_error("Impossible to implement partial COPY"); 619 620 buildSingleSubRegCopy(FromReg, ToReg, MBB, InsertBefore, BestIdx, 621 DestLI, Late, Def); 622 LanesLeft &= ~TRI.getSubRegIndexLaneMask(BestIdx); 623 } 624 625 return Def; 626 } 627 628 VNInfo *SplitEditor::defFromParent(unsigned RegIdx, 629 VNInfo *ParentVNI, 630 SlotIndex UseIdx, 631 MachineBasicBlock &MBB, 632 MachineBasicBlock::iterator I) { 633 SlotIndex Def; 634 LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx)); 635 636 // We may be trying to avoid interference that ends at a deleted instruction, 637 // so always begin RegIdx 0 early and all others late. 638 bool Late = RegIdx != 0; 639 640 // Attempt cheap-as-a-copy rematerialization. 641 unsigned Original = VRM.getOriginal(Edit->get(RegIdx)); 642 LiveInterval &OrigLI = LIS.getInterval(Original); 643 VNInfo *OrigVNI = OrigLI.getVNInfoAt(UseIdx); 644 645 unsigned Reg = LI->reg; 646 bool DidRemat = false; 647 if (OrigVNI) { 648 LiveRangeEdit::Remat RM(ParentVNI); 649 RM.OrigMI = LIS.getInstructionFromIndex(OrigVNI->def); 650 if (Edit->canRematerializeAt(RM, OrigVNI, UseIdx, true)) { 651 Def = Edit->rematerializeAt(MBB, I, Reg, RM, TRI, Late); 652 ++NumRemats; 653 DidRemat = true; 654 } 655 } 656 if (!DidRemat) { 657 LaneBitmask LaneMask; 658 if (LI->hasSubRanges()) { 659 LaneMask = LaneBitmask::getNone(); 660 for (LiveInterval::SubRange &S : LI->subranges()) 661 LaneMask |= S.LaneMask; 662 } else { 663 LaneMask = LaneBitmask::getAll(); 664 } 665 666 ++NumCopies; 667 Def = buildCopy(Edit->getReg(), Reg, LaneMask, MBB, I, Late, RegIdx); 668 } 669 670 // Define the value in Reg. 671 return defValue(RegIdx, ParentVNI, Def, false); 672 } 673 674 /// Create a new virtual register and live interval. 675 unsigned SplitEditor::openIntv() { 676 // Create the complement as index 0. 677 if (Edit->empty()) 678 Edit->createEmptyInterval(); 679 680 // Create the open interval. 681 OpenIdx = Edit->size(); 682 Edit->createEmptyInterval(); 683 return OpenIdx; 684 } 685 686 void SplitEditor::selectIntv(unsigned Idx) { 687 assert(Idx != 0 && "Cannot select the complement interval"); 688 assert(Idx < Edit->size() && "Can only select previously opened interval"); 689 LLVM_DEBUG(dbgs() << " selectIntv " << OpenIdx << " -> " << Idx << '\n'); 690 OpenIdx = Idx; 691 } 692 693 SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) { 694 assert(OpenIdx && "openIntv not called before enterIntvBefore"); 695 LLVM_DEBUG(dbgs() << " enterIntvBefore " << Idx); 696 Idx = Idx.getBaseIndex(); 697 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 698 if (!ParentVNI) { 699 LLVM_DEBUG(dbgs() << ": not live\n"); 700 return Idx; 701 } 702 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 703 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 704 assert(MI && "enterIntvBefore called with invalid index"); 705 706 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI); 707 return VNI->def; 708 } 709 710 SlotIndex SplitEditor::enterIntvAfter(SlotIndex Idx) { 711 assert(OpenIdx && "openIntv not called before enterIntvAfter"); 712 LLVM_DEBUG(dbgs() << " enterIntvAfter " << Idx); 713 Idx = Idx.getBoundaryIndex(); 714 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 715 if (!ParentVNI) { 716 LLVM_DEBUG(dbgs() << ": not live\n"); 717 return Idx; 718 } 719 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 720 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 721 assert(MI && "enterIntvAfter called with invalid index"); 722 723 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), 724 std::next(MachineBasicBlock::iterator(MI))); 725 return VNI->def; 726 } 727 728 SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) { 729 assert(OpenIdx && "openIntv not called before enterIntvAtEnd"); 730 SlotIndex End = LIS.getMBBEndIdx(&MBB); 731 SlotIndex Last = End.getPrevSlot(); 732 LLVM_DEBUG(dbgs() << " enterIntvAtEnd " << printMBBReference(MBB) << ", " 733 << Last); 734 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last); 735 if (!ParentVNI) { 736 LLVM_DEBUG(dbgs() << ": not live\n"); 737 return End; 738 } 739 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id); 740 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB, 741 SA.getLastSplitPointIter(&MBB)); 742 RegAssign.insert(VNI->def, End, OpenIdx); 743 LLVM_DEBUG(dump()); 744 return VNI->def; 745 } 746 747 /// useIntv - indicate that all instructions in MBB should use OpenLI. 748 void SplitEditor::useIntv(const MachineBasicBlock &MBB) { 749 useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB)); 750 } 751 752 void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) { 753 assert(OpenIdx && "openIntv not called before useIntv"); 754 LLVM_DEBUG(dbgs() << " useIntv [" << Start << ';' << End << "):"); 755 RegAssign.insert(Start, End, OpenIdx); 756 LLVM_DEBUG(dump()); 757 } 758 759 SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) { 760 assert(OpenIdx && "openIntv not called before leaveIntvAfter"); 761 LLVM_DEBUG(dbgs() << " leaveIntvAfter " << Idx); 762 763 // The interval must be live beyond the instruction at Idx. 764 SlotIndex Boundary = Idx.getBoundaryIndex(); 765 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Boundary); 766 if (!ParentVNI) { 767 LLVM_DEBUG(dbgs() << ": not live\n"); 768 return Boundary.getNextSlot(); 769 } 770 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 771 MachineInstr *MI = LIS.getInstructionFromIndex(Boundary); 772 assert(MI && "No instruction at index"); 773 774 // In spill mode, make live ranges as short as possible by inserting the copy 775 // before MI. This is only possible if that instruction doesn't redefine the 776 // value. The inserted COPY is not a kill, and we don't need to recompute 777 // the source live range. The spiller also won't try to hoist this copy. 778 if (SpillMode && !SlotIndex::isSameInstr(ParentVNI->def, Idx) && 779 MI->readsVirtualRegister(Edit->getReg())) { 780 forceRecompute(0, *ParentVNI); 781 defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI); 782 return Idx; 783 } 784 785 VNInfo *VNI = defFromParent(0, ParentVNI, Boundary, *MI->getParent(), 786 std::next(MachineBasicBlock::iterator(MI))); 787 return VNI->def; 788 } 789 790 SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) { 791 assert(OpenIdx && "openIntv not called before leaveIntvBefore"); 792 LLVM_DEBUG(dbgs() << " leaveIntvBefore " << Idx); 793 794 // The interval must be live into the instruction at Idx. 795 Idx = Idx.getBaseIndex(); 796 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 797 if (!ParentVNI) { 798 LLVM_DEBUG(dbgs() << ": not live\n"); 799 return Idx.getNextSlot(); 800 } 801 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 802 803 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 804 assert(MI && "No instruction at index"); 805 VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI); 806 return VNI->def; 807 } 808 809 SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) { 810 assert(OpenIdx && "openIntv not called before leaveIntvAtTop"); 811 SlotIndex Start = LIS.getMBBStartIdx(&MBB); 812 LLVM_DEBUG(dbgs() << " leaveIntvAtTop " << printMBBReference(MBB) << ", " 813 << Start); 814 815 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start); 816 if (!ParentVNI) { 817 LLVM_DEBUG(dbgs() << ": not live\n"); 818 return Start; 819 } 820 821 VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB, 822 MBB.SkipPHIsLabelsAndDebug(MBB.begin())); 823 RegAssign.insert(Start, VNI->def, OpenIdx); 824 LLVM_DEBUG(dump()); 825 return VNI->def; 826 } 827 828 void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) { 829 assert(OpenIdx && "openIntv not called before overlapIntv"); 830 const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start); 831 assert(ParentVNI == Edit->getParent().getVNInfoBefore(End) && 832 "Parent changes value in extended range"); 833 assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) && 834 "Range cannot span basic blocks"); 835 836 // The complement interval will be extended as needed by LICalc.extend(). 837 if (ParentVNI) 838 forceRecompute(0, *ParentVNI); 839 LLVM_DEBUG(dbgs() << " overlapIntv [" << Start << ';' << End << "):"); 840 RegAssign.insert(Start, End, OpenIdx); 841 LLVM_DEBUG(dump()); 842 } 843 844 //===----------------------------------------------------------------------===// 845 // Spill modes 846 //===----------------------------------------------------------------------===// 847 848 void SplitEditor::removeBackCopies(SmallVectorImpl<VNInfo*> &Copies) { 849 LiveInterval *LI = &LIS.getInterval(Edit->get(0)); 850 LLVM_DEBUG(dbgs() << "Removing " << Copies.size() << " back-copies.\n"); 851 RegAssignMap::iterator AssignI; 852 AssignI.setMap(RegAssign); 853 854 for (unsigned i = 0, e = Copies.size(); i != e; ++i) { 855 SlotIndex Def = Copies[i]->def; 856 MachineInstr *MI = LIS.getInstructionFromIndex(Def); 857 assert(MI && "No instruction for back-copy"); 858 859 MachineBasicBlock *MBB = MI->getParent(); 860 MachineBasicBlock::iterator MBBI(MI); 861 bool AtBegin; 862 do AtBegin = MBBI == MBB->begin(); 863 while (!AtBegin && (--MBBI)->isDebugInstr()); 864 865 LLVM_DEBUG(dbgs() << "Removing " << Def << '\t' << *MI); 866 LIS.removeVRegDefAt(*LI, Def); 867 LIS.RemoveMachineInstrFromMaps(*MI); 868 MI->eraseFromParent(); 869 870 // Adjust RegAssign if a register assignment is killed at Def. We want to 871 // avoid calculating the live range of the source register if possible. 872 AssignI.find(Def.getPrevSlot()); 873 if (!AssignI.valid() || AssignI.start() >= Def) 874 continue; 875 // If MI doesn't kill the assigned register, just leave it. 876 if (AssignI.stop() != Def) 877 continue; 878 unsigned RegIdx = AssignI.value(); 879 if (AtBegin || !MBBI->readsVirtualRegister(Edit->getReg())) { 880 LLVM_DEBUG(dbgs() << " cannot find simple kill of RegIdx " << RegIdx 881 << '\n'); 882 forceRecompute(RegIdx, *Edit->getParent().getVNInfoAt(Def)); 883 } else { 884 SlotIndex Kill = LIS.getInstructionIndex(*MBBI).getRegSlot(); 885 LLVM_DEBUG(dbgs() << " move kill to " << Kill << '\t' << *MBBI); 886 AssignI.setStop(Kill); 887 } 888 } 889 } 890 891 MachineBasicBlock* 892 SplitEditor::findShallowDominator(MachineBasicBlock *MBB, 893 MachineBasicBlock *DefMBB) { 894 if (MBB == DefMBB) 895 return MBB; 896 assert(MDT.dominates(DefMBB, MBB) && "MBB must be dominated by the def."); 897 898 const MachineLoopInfo &Loops = SA.Loops; 899 const MachineLoop *DefLoop = Loops.getLoopFor(DefMBB); 900 MachineDomTreeNode *DefDomNode = MDT[DefMBB]; 901 902 // Best candidate so far. 903 MachineBasicBlock *BestMBB = MBB; 904 unsigned BestDepth = std::numeric_limits<unsigned>::max(); 905 906 while (true) { 907 const MachineLoop *Loop = Loops.getLoopFor(MBB); 908 909 // MBB isn't in a loop, it doesn't get any better. All dominators have a 910 // higher frequency by definition. 911 if (!Loop) { 912 LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB) 913 << " dominates " << printMBBReference(*MBB) 914 << " at depth 0\n"); 915 return MBB; 916 } 917 918 // We'll never be able to exit the DefLoop. 919 if (Loop == DefLoop) { 920 LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB) 921 << " dominates " << printMBBReference(*MBB) 922 << " in the same loop\n"); 923 return MBB; 924 } 925 926 // Least busy dominator seen so far. 927 unsigned Depth = Loop->getLoopDepth(); 928 if (Depth < BestDepth) { 929 BestMBB = MBB; 930 BestDepth = Depth; 931 LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB) 932 << " dominates " << printMBBReference(*MBB) 933 << " at depth " << Depth << '\n'); 934 } 935 936 // Leave loop by going to the immediate dominator of the loop header. 937 // This is a bigger stride than simply walking up the dominator tree. 938 MachineDomTreeNode *IDom = MDT[Loop->getHeader()]->getIDom(); 939 940 // Too far up the dominator tree? 941 if (!IDom || !MDT.dominates(DefDomNode, IDom)) 942 return BestMBB; 943 944 MBB = IDom->getBlock(); 945 } 946 } 947 948 void SplitEditor::computeRedundantBackCopies( 949 DenseSet<unsigned> &NotToHoistSet, SmallVectorImpl<VNInfo *> &BackCopies) { 950 LiveInterval *LI = &LIS.getInterval(Edit->get(0)); 951 LiveInterval *Parent = &Edit->getParent(); 952 SmallVector<SmallPtrSet<VNInfo *, 8>, 8> EqualVNs(Parent->getNumValNums()); 953 SmallPtrSet<VNInfo *, 8> DominatedVNIs; 954 955 // Aggregate VNIs having the same value as ParentVNI. 956 for (VNInfo *VNI : LI->valnos) { 957 if (VNI->isUnused()) 958 continue; 959 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def); 960 EqualVNs[ParentVNI->id].insert(VNI); 961 } 962 963 // For VNI aggregation of each ParentVNI, collect dominated, i.e., 964 // redundant VNIs to BackCopies. 965 for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) { 966 VNInfo *ParentVNI = Parent->getValNumInfo(i); 967 if (!NotToHoistSet.count(ParentVNI->id)) 968 continue; 969 SmallPtrSetIterator<VNInfo *> It1 = EqualVNs[ParentVNI->id].begin(); 970 SmallPtrSetIterator<VNInfo *> It2 = It1; 971 for (; It1 != EqualVNs[ParentVNI->id].end(); ++It1) { 972 It2 = It1; 973 for (++It2; It2 != EqualVNs[ParentVNI->id].end(); ++It2) { 974 if (DominatedVNIs.count(*It1) || DominatedVNIs.count(*It2)) 975 continue; 976 977 MachineBasicBlock *MBB1 = LIS.getMBBFromIndex((*It1)->def); 978 MachineBasicBlock *MBB2 = LIS.getMBBFromIndex((*It2)->def); 979 if (MBB1 == MBB2) { 980 DominatedVNIs.insert((*It1)->def < (*It2)->def ? (*It2) : (*It1)); 981 } else if (MDT.dominates(MBB1, MBB2)) { 982 DominatedVNIs.insert(*It2); 983 } else if (MDT.dominates(MBB2, MBB1)) { 984 DominatedVNIs.insert(*It1); 985 } 986 } 987 } 988 if (!DominatedVNIs.empty()) { 989 forceRecompute(0, *ParentVNI); 990 for (auto VNI : DominatedVNIs) { 991 BackCopies.push_back(VNI); 992 } 993 DominatedVNIs.clear(); 994 } 995 } 996 } 997 998 /// For SM_Size mode, find a common dominator for all the back-copies for 999 /// the same ParentVNI and hoist the backcopies to the dominator BB. 1000 /// For SM_Speed mode, if the common dominator is hot and it is not beneficial 1001 /// to do the hoisting, simply remove the dominated backcopies for the same 1002 /// ParentVNI. 1003 void SplitEditor::hoistCopies() { 1004 // Get the complement interval, always RegIdx 0. 1005 LiveInterval *LI = &LIS.getInterval(Edit->get(0)); 1006 LiveInterval *Parent = &Edit->getParent(); 1007 1008 // Track the nearest common dominator for all back-copies for each ParentVNI, 1009 // indexed by ParentVNI->id. 1010 using DomPair = std::pair<MachineBasicBlock *, SlotIndex>; 1011 SmallVector<DomPair, 8> NearestDom(Parent->getNumValNums()); 1012 // The total cost of all the back-copies for each ParentVNI. 1013 SmallVector<BlockFrequency, 8> Costs(Parent->getNumValNums()); 1014 // The ParentVNI->id set for which hoisting back-copies are not beneficial 1015 // for Speed. 1016 DenseSet<unsigned> NotToHoistSet; 1017 1018 // Find the nearest common dominator for parent values with multiple 1019 // back-copies. If a single back-copy dominates, put it in DomPair.second. 1020 for (VNInfo *VNI : LI->valnos) { 1021 if (VNI->isUnused()) 1022 continue; 1023 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def); 1024 assert(ParentVNI && "Parent not live at complement def"); 1025 1026 // Don't hoist remats. The complement is probably going to disappear 1027 // completely anyway. 1028 if (Edit->didRematerialize(ParentVNI)) 1029 continue; 1030 1031 MachineBasicBlock *ValMBB = LIS.getMBBFromIndex(VNI->def); 1032 1033 DomPair &Dom = NearestDom[ParentVNI->id]; 1034 1035 // Keep directly defined parent values. This is either a PHI or an 1036 // instruction in the complement range. All other copies of ParentVNI 1037 // should be eliminated. 1038 if (VNI->def == ParentVNI->def) { 1039 LLVM_DEBUG(dbgs() << "Direct complement def at " << VNI->def << '\n'); 1040 Dom = DomPair(ValMBB, VNI->def); 1041 continue; 1042 } 1043 // Skip the singly mapped values. There is nothing to gain from hoisting a 1044 // single back-copy. 1045 if (Values.lookup(std::make_pair(0, ParentVNI->id)).getPointer()) { 1046 LLVM_DEBUG(dbgs() << "Single complement def at " << VNI->def << '\n'); 1047 continue; 1048 } 1049 1050 if (!Dom.first) { 1051 // First time we see ParentVNI. VNI dominates itself. 1052 Dom = DomPair(ValMBB, VNI->def); 1053 } else if (Dom.first == ValMBB) { 1054 // Two defs in the same block. Pick the earlier def. 1055 if (!Dom.second.isValid() || VNI->def < Dom.second) 1056 Dom.second = VNI->def; 1057 } else { 1058 // Different basic blocks. Check if one dominates. 1059 MachineBasicBlock *Near = 1060 MDT.findNearestCommonDominator(Dom.first, ValMBB); 1061 if (Near == ValMBB) 1062 // Def ValMBB dominates. 1063 Dom = DomPair(ValMBB, VNI->def); 1064 else if (Near != Dom.first) 1065 // None dominate. Hoist to common dominator, need new def. 1066 Dom = DomPair(Near, SlotIndex()); 1067 Costs[ParentVNI->id] += MBFI.getBlockFreq(ValMBB); 1068 } 1069 1070 LLVM_DEBUG(dbgs() << "Multi-mapped complement " << VNI->id << '@' 1071 << VNI->def << " for parent " << ParentVNI->id << '@' 1072 << ParentVNI->def << " hoist to " 1073 << printMBBReference(*Dom.first) << ' ' << Dom.second 1074 << '\n'); 1075 } 1076 1077 // Insert the hoisted copies. 1078 for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) { 1079 DomPair &Dom = NearestDom[i]; 1080 if (!Dom.first || Dom.second.isValid()) 1081 continue; 1082 // This value needs a hoisted copy inserted at the end of Dom.first. 1083 VNInfo *ParentVNI = Parent->getValNumInfo(i); 1084 MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(ParentVNI->def); 1085 // Get a less loopy dominator than Dom.first. 1086 Dom.first = findShallowDominator(Dom.first, DefMBB); 1087 if (SpillMode == SM_Speed && 1088 MBFI.getBlockFreq(Dom.first) > Costs[ParentVNI->id]) { 1089 NotToHoistSet.insert(ParentVNI->id); 1090 continue; 1091 } 1092 SlotIndex Last = LIS.getMBBEndIdx(Dom.first).getPrevSlot(); 1093 Dom.second = 1094 defFromParent(0, ParentVNI, Last, *Dom.first, 1095 SA.getLastSplitPointIter(Dom.first))->def; 1096 } 1097 1098 // Remove redundant back-copies that are now known to be dominated by another 1099 // def with the same value. 1100 SmallVector<VNInfo*, 8> BackCopies; 1101 for (VNInfo *VNI : LI->valnos) { 1102 if (VNI->isUnused()) 1103 continue; 1104 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def); 1105 const DomPair &Dom = NearestDom[ParentVNI->id]; 1106 if (!Dom.first || Dom.second == VNI->def || 1107 NotToHoistSet.count(ParentVNI->id)) 1108 continue; 1109 BackCopies.push_back(VNI); 1110 forceRecompute(0, *ParentVNI); 1111 } 1112 1113 // If it is not beneficial to hoist all the BackCopies, simply remove 1114 // redundant BackCopies in speed mode. 1115 if (SpillMode == SM_Speed && !NotToHoistSet.empty()) 1116 computeRedundantBackCopies(NotToHoistSet, BackCopies); 1117 1118 removeBackCopies(BackCopies); 1119 } 1120 1121 /// transferValues - Transfer all possible values to the new live ranges. 1122 /// Values that were rematerialized are left alone, they need LICalc.extend(). 1123 bool SplitEditor::transferValues() { 1124 bool Skipped = false; 1125 RegAssignMap::const_iterator AssignI = RegAssign.begin(); 1126 for (const LiveRange::Segment &S : Edit->getParent()) { 1127 LLVM_DEBUG(dbgs() << " blit " << S << ':'); 1128 VNInfo *ParentVNI = S.valno; 1129 // RegAssign has holes where RegIdx 0 should be used. 1130 SlotIndex Start = S.start; 1131 AssignI.advanceTo(Start); 1132 do { 1133 unsigned RegIdx; 1134 SlotIndex End = S.end; 1135 if (!AssignI.valid()) { 1136 RegIdx = 0; 1137 } else if (AssignI.start() <= Start) { 1138 RegIdx = AssignI.value(); 1139 if (AssignI.stop() < End) { 1140 End = AssignI.stop(); 1141 ++AssignI; 1142 } 1143 } else { 1144 RegIdx = 0; 1145 End = std::min(End, AssignI.start()); 1146 } 1147 1148 // The interval [Start;End) is continuously mapped to RegIdx, ParentVNI. 1149 LLVM_DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx << '(' 1150 << printReg(Edit->get(RegIdx)) << ')'); 1151 LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx)); 1152 1153 // Check for a simply defined value that can be blitted directly. 1154 ValueForcePair VFP = Values.lookup(std::make_pair(RegIdx, ParentVNI->id)); 1155 if (VNInfo *VNI = VFP.getPointer()) { 1156 LLVM_DEBUG(dbgs() << ':' << VNI->id); 1157 LI.addSegment(LiveInterval::Segment(Start, End, VNI)); 1158 Start = End; 1159 continue; 1160 } 1161 1162 // Skip values with forced recomputation. 1163 if (VFP.getInt()) { 1164 LLVM_DEBUG(dbgs() << "(recalc)"); 1165 Skipped = true; 1166 Start = End; 1167 continue; 1168 } 1169 1170 LiveIntervalCalc &LIC = getLICalc(RegIdx); 1171 1172 // This value has multiple defs in RegIdx, but it wasn't rematerialized, 1173 // so the live range is accurate. Add live-in blocks in [Start;End) to the 1174 // LiveInBlocks. 1175 MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start)->getIterator(); 1176 SlotIndex BlockStart, BlockEnd; 1177 std::tie(BlockStart, BlockEnd) = LIS.getSlotIndexes()->getMBBRange(&*MBB); 1178 1179 // The first block may be live-in, or it may have its own def. 1180 if (Start != BlockStart) { 1181 VNInfo *VNI = LI.extendInBlock(BlockStart, std::min(BlockEnd, End)); 1182 assert(VNI && "Missing def for complex mapped value"); 1183 LLVM_DEBUG(dbgs() << ':' << VNI->id << "*" << printMBBReference(*MBB)); 1184 // MBB has its own def. Is it also live-out? 1185 if (BlockEnd <= End) 1186 LIC.setLiveOutValue(&*MBB, VNI); 1187 1188 // Skip to the next block for live-in. 1189 ++MBB; 1190 BlockStart = BlockEnd; 1191 } 1192 1193 // Handle the live-in blocks covered by [Start;End). 1194 assert(Start <= BlockStart && "Expected live-in block"); 1195 while (BlockStart < End) { 1196 LLVM_DEBUG(dbgs() << ">" << printMBBReference(*MBB)); 1197 BlockEnd = LIS.getMBBEndIdx(&*MBB); 1198 if (BlockStart == ParentVNI->def) { 1199 // This block has the def of a parent PHI, so it isn't live-in. 1200 assert(ParentVNI->isPHIDef() && "Non-phi defined at block start?"); 1201 VNInfo *VNI = LI.extendInBlock(BlockStart, std::min(BlockEnd, End)); 1202 assert(VNI && "Missing def for complex mapped parent PHI"); 1203 if (End >= BlockEnd) 1204 LIC.setLiveOutValue(&*MBB, VNI); // Live-out as well. 1205 } else { 1206 // This block needs a live-in value. The last block covered may not 1207 // be live-out. 1208 if (End < BlockEnd) 1209 LIC.addLiveInBlock(LI, MDT[&*MBB], End); 1210 else { 1211 // Live-through, and we don't know the value. 1212 LIC.addLiveInBlock(LI, MDT[&*MBB]); 1213 LIC.setLiveOutValue(&*MBB, nullptr); 1214 } 1215 } 1216 BlockStart = BlockEnd; 1217 ++MBB; 1218 } 1219 Start = End; 1220 } while (Start != S.end); 1221 LLVM_DEBUG(dbgs() << '\n'); 1222 } 1223 1224 LICalc[0].calculateValues(); 1225 if (SpillMode) 1226 LICalc[1].calculateValues(); 1227 1228 return Skipped; 1229 } 1230 1231 static bool removeDeadSegment(SlotIndex Def, LiveRange &LR) { 1232 const LiveRange::Segment *Seg = LR.getSegmentContaining(Def); 1233 if (Seg == nullptr) 1234 return true; 1235 if (Seg->end != Def.getDeadSlot()) 1236 return false; 1237 // This is a dead PHI. Remove it. 1238 LR.removeSegment(*Seg, true); 1239 return true; 1240 } 1241 1242 void SplitEditor::extendPHIRange(MachineBasicBlock &B, LiveIntervalCalc &LIC, 1243 LiveRange &LR, LaneBitmask LM, 1244 ArrayRef<SlotIndex> Undefs) { 1245 for (MachineBasicBlock *P : B.predecessors()) { 1246 SlotIndex End = LIS.getMBBEndIdx(P); 1247 SlotIndex LastUse = End.getPrevSlot(); 1248 // The predecessor may not have a live-out value. That is OK, like an 1249 // undef PHI operand. 1250 LiveInterval &PLI = Edit->getParent(); 1251 // Need the cast because the inputs to ?: would otherwise be deemed 1252 // "incompatible": SubRange vs LiveInterval. 1253 LiveRange &PSR = !LM.all() ? getSubRangeForMask(LM, PLI) 1254 : static_cast<LiveRange&>(PLI); 1255 if (PSR.liveAt(LastUse)) 1256 LIC.extend(LR, End, /*PhysReg=*/0, Undefs); 1257 } 1258 } 1259 1260 void SplitEditor::extendPHIKillRanges() { 1261 // Extend live ranges to be live-out for successor PHI values. 1262 1263 // Visit each PHI def slot in the parent live interval. If the def is dead, 1264 // remove it. Otherwise, extend the live interval to reach the end indexes 1265 // of all predecessor blocks. 1266 1267 LiveInterval &ParentLI = Edit->getParent(); 1268 for (const VNInfo *V : ParentLI.valnos) { 1269 if (V->isUnused() || !V->isPHIDef()) 1270 continue; 1271 1272 unsigned RegIdx = RegAssign.lookup(V->def); 1273 LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx)); 1274 LiveIntervalCalc &LIC = getLICalc(RegIdx); 1275 MachineBasicBlock &B = *LIS.getMBBFromIndex(V->def); 1276 if (!removeDeadSegment(V->def, LI)) 1277 extendPHIRange(B, LIC, LI, LaneBitmask::getAll(), /*Undefs=*/{}); 1278 } 1279 1280 SmallVector<SlotIndex, 4> Undefs; 1281 LiveIntervalCalc SubLIC; 1282 1283 for (LiveInterval::SubRange &PS : ParentLI.subranges()) { 1284 for (const VNInfo *V : PS.valnos) { 1285 if (V->isUnused() || !V->isPHIDef()) 1286 continue; 1287 unsigned RegIdx = RegAssign.lookup(V->def); 1288 LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx)); 1289 LiveInterval::SubRange &S = getSubRangeForMask(PS.LaneMask, LI); 1290 if (removeDeadSegment(V->def, S)) 1291 continue; 1292 1293 MachineBasicBlock &B = *LIS.getMBBFromIndex(V->def); 1294 SubLIC.reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT, 1295 &LIS.getVNInfoAllocator()); 1296 Undefs.clear(); 1297 LI.computeSubRangeUndefs(Undefs, PS.LaneMask, MRI, *LIS.getSlotIndexes()); 1298 extendPHIRange(B, SubLIC, S, PS.LaneMask, Undefs); 1299 } 1300 } 1301 } 1302 1303 /// rewriteAssigned - Rewrite all uses of Edit->getReg(). 1304 void SplitEditor::rewriteAssigned(bool ExtendRanges) { 1305 struct ExtPoint { 1306 ExtPoint(const MachineOperand &O, unsigned R, SlotIndex N) 1307 : MO(O), RegIdx(R), Next(N) {} 1308 1309 MachineOperand MO; 1310 unsigned RegIdx; 1311 SlotIndex Next; 1312 }; 1313 1314 SmallVector<ExtPoint,4> ExtPoints; 1315 1316 for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Edit->getReg()), 1317 RE = MRI.reg_end(); RI != RE;) { 1318 MachineOperand &MO = *RI; 1319 MachineInstr *MI = MO.getParent(); 1320 ++RI; 1321 // LiveDebugVariables should have handled all DBG_VALUE instructions. 1322 if (MI->isDebugValue()) { 1323 LLVM_DEBUG(dbgs() << "Zapping " << *MI); 1324 MO.setReg(0); 1325 continue; 1326 } 1327 1328 // <undef> operands don't really read the register, so it doesn't matter 1329 // which register we choose. When the use operand is tied to a def, we must 1330 // use the same register as the def, so just do that always. 1331 SlotIndex Idx = LIS.getInstructionIndex(*MI); 1332 if (MO.isDef() || MO.isUndef()) 1333 Idx = Idx.getRegSlot(MO.isEarlyClobber()); 1334 1335 // Rewrite to the mapped register at Idx. 1336 unsigned RegIdx = RegAssign.lookup(Idx); 1337 LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx)); 1338 MO.setReg(LI.reg); 1339 LLVM_DEBUG(dbgs() << " rewr " << printMBBReference(*MI->getParent()) 1340 << '\t' << Idx << ':' << RegIdx << '\t' << *MI); 1341 1342 // Extend liveness to Idx if the instruction reads reg. 1343 if (!ExtendRanges || MO.isUndef()) 1344 continue; 1345 1346 // Skip instructions that don't read Reg. 1347 if (MO.isDef()) { 1348 if (!MO.getSubReg() && !MO.isEarlyClobber()) 1349 continue; 1350 // We may want to extend a live range for a partial redef, or for a use 1351 // tied to an early clobber. 1352 Idx = Idx.getPrevSlot(); 1353 if (!Edit->getParent().liveAt(Idx)) 1354 continue; 1355 } else 1356 Idx = Idx.getRegSlot(true); 1357 1358 SlotIndex Next = Idx.getNextSlot(); 1359 if (LI.hasSubRanges()) { 1360 // We have to delay extending subranges until we have seen all operands 1361 // defining the register. This is because a <def,read-undef> operand 1362 // will create an "undef" point, and we cannot extend any subranges 1363 // until all of them have been accounted for. 1364 if (MO.isUse()) 1365 ExtPoints.push_back(ExtPoint(MO, RegIdx, Next)); 1366 } else { 1367 LiveIntervalCalc &LIC = getLICalc(RegIdx); 1368 LIC.extend(LI, Next, 0, ArrayRef<SlotIndex>()); 1369 } 1370 } 1371 1372 for (ExtPoint &EP : ExtPoints) { 1373 LiveInterval &LI = LIS.getInterval(Edit->get(EP.RegIdx)); 1374 assert(LI.hasSubRanges()); 1375 1376 LiveIntervalCalc SubLIC; 1377 Register Reg = EP.MO.getReg(), Sub = EP.MO.getSubReg(); 1378 LaneBitmask LM = Sub != 0 ? TRI.getSubRegIndexLaneMask(Sub) 1379 : MRI.getMaxLaneMaskForVReg(Reg); 1380 for (LiveInterval::SubRange &S : LI.subranges()) { 1381 if ((S.LaneMask & LM).none()) 1382 continue; 1383 // The problem here can be that the new register may have been created 1384 // for a partially defined original register. For example: 1385 // %0:subreg_hireg<def,read-undef> = ... 1386 // ... 1387 // %1 = COPY %0 1388 if (S.empty()) 1389 continue; 1390 SubLIC.reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT, 1391 &LIS.getVNInfoAllocator()); 1392 SmallVector<SlotIndex, 4> Undefs; 1393 LI.computeSubRangeUndefs(Undefs, S.LaneMask, MRI, *LIS.getSlotIndexes()); 1394 SubLIC.extend(S, EP.Next, 0, Undefs); 1395 } 1396 } 1397 1398 for (unsigned R : *Edit) { 1399 LiveInterval &LI = LIS.getInterval(R); 1400 if (!LI.hasSubRanges()) 1401 continue; 1402 LI.clear(); 1403 LI.removeEmptySubRanges(); 1404 LIS.constructMainRangeFromSubranges(LI); 1405 } 1406 } 1407 1408 void SplitEditor::deleteRematVictims() { 1409 SmallVector<MachineInstr*, 8> Dead; 1410 for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I){ 1411 LiveInterval *LI = &LIS.getInterval(*I); 1412 for (const LiveRange::Segment &S : LI->segments) { 1413 // Dead defs end at the dead slot. 1414 if (S.end != S.valno->def.getDeadSlot()) 1415 continue; 1416 if (S.valno->isPHIDef()) 1417 continue; 1418 MachineInstr *MI = LIS.getInstructionFromIndex(S.valno->def); 1419 assert(MI && "Missing instruction for dead def"); 1420 MI->addRegisterDead(LI->reg, &TRI); 1421 1422 if (!MI->allDefsAreDead()) 1423 continue; 1424 1425 LLVM_DEBUG(dbgs() << "All defs dead: " << *MI); 1426 Dead.push_back(MI); 1427 } 1428 } 1429 1430 if (Dead.empty()) 1431 return; 1432 1433 Edit->eliminateDeadDefs(Dead, None, &AA); 1434 } 1435 1436 void SplitEditor::forceRecomputeVNI(const VNInfo &ParentVNI) { 1437 // Fast-path for common case. 1438 if (!ParentVNI.isPHIDef()) { 1439 for (unsigned I = 0, E = Edit->size(); I != E; ++I) 1440 forceRecompute(I, ParentVNI); 1441 return; 1442 } 1443 1444 // Trace value through phis. 1445 SmallPtrSet<const VNInfo *, 8> Visited; ///< whether VNI was/is in worklist. 1446 SmallVector<const VNInfo *, 4> WorkList; 1447 Visited.insert(&ParentVNI); 1448 WorkList.push_back(&ParentVNI); 1449 1450 const LiveInterval &ParentLI = Edit->getParent(); 1451 const SlotIndexes &Indexes = *LIS.getSlotIndexes(); 1452 do { 1453 const VNInfo &VNI = *WorkList.back(); 1454 WorkList.pop_back(); 1455 for (unsigned I = 0, E = Edit->size(); I != E; ++I) 1456 forceRecompute(I, VNI); 1457 if (!VNI.isPHIDef()) 1458 continue; 1459 1460 MachineBasicBlock &MBB = *Indexes.getMBBFromIndex(VNI.def); 1461 for (const MachineBasicBlock *Pred : MBB.predecessors()) { 1462 SlotIndex PredEnd = Indexes.getMBBEndIdx(Pred); 1463 VNInfo *PredVNI = ParentLI.getVNInfoBefore(PredEnd); 1464 assert(PredVNI && "Value available in PhiVNI predecessor"); 1465 if (Visited.insert(PredVNI).second) 1466 WorkList.push_back(PredVNI); 1467 } 1468 } while(!WorkList.empty()); 1469 } 1470 1471 void SplitEditor::finish(SmallVectorImpl<unsigned> *LRMap) { 1472 ++NumFinished; 1473 1474 // At this point, the live intervals in Edit contain VNInfos corresponding to 1475 // the inserted copies. 1476 1477 // Add the original defs from the parent interval. 1478 for (const VNInfo *ParentVNI : Edit->getParent().valnos) { 1479 if (ParentVNI->isUnused()) 1480 continue; 1481 unsigned RegIdx = RegAssign.lookup(ParentVNI->def); 1482 defValue(RegIdx, ParentVNI, ParentVNI->def, true); 1483 1484 // Force rematted values to be recomputed everywhere. 1485 // The new live ranges may be truncated. 1486 if (Edit->didRematerialize(ParentVNI)) 1487 forceRecomputeVNI(*ParentVNI); 1488 } 1489 1490 // Hoist back-copies to the complement interval when in spill mode. 1491 switch (SpillMode) { 1492 case SM_Partition: 1493 // Leave all back-copies as is. 1494 break; 1495 case SM_Size: 1496 case SM_Speed: 1497 // hoistCopies will behave differently between size and speed. 1498 hoistCopies(); 1499 } 1500 1501 // Transfer the simply mapped values, check if any are skipped. 1502 bool Skipped = transferValues(); 1503 1504 // Rewrite virtual registers, possibly extending ranges. 1505 rewriteAssigned(Skipped); 1506 1507 if (Skipped) 1508 extendPHIKillRanges(); 1509 else 1510 ++NumSimple; 1511 1512 // Delete defs that were rematted everywhere. 1513 if (Skipped) 1514 deleteRematVictims(); 1515 1516 // Get rid of unused values and set phi-kill flags. 1517 for (unsigned Reg : *Edit) { 1518 LiveInterval &LI = LIS.getInterval(Reg); 1519 LI.removeEmptySubRanges(); 1520 LI.RenumberValues(); 1521 } 1522 1523 // Provide a reverse mapping from original indices to Edit ranges. 1524 if (LRMap) { 1525 LRMap->clear(); 1526 for (unsigned i = 0, e = Edit->size(); i != e; ++i) 1527 LRMap->push_back(i); 1528 } 1529 1530 // Now check if any registers were separated into multiple components. 1531 ConnectedVNInfoEqClasses ConEQ(LIS); 1532 for (unsigned i = 0, e = Edit->size(); i != e; ++i) { 1533 // Don't use iterators, they are invalidated by create() below. 1534 unsigned VReg = Edit->get(i); 1535 LiveInterval &LI = LIS.getInterval(VReg); 1536 SmallVector<LiveInterval*, 8> SplitLIs; 1537 LIS.splitSeparateComponents(LI, SplitLIs); 1538 unsigned Original = VRM.getOriginal(VReg); 1539 for (LiveInterval *SplitLI : SplitLIs) 1540 VRM.setIsSplitFromReg(SplitLI->reg, Original); 1541 1542 // The new intervals all map back to i. 1543 if (LRMap) 1544 LRMap->resize(Edit->size(), i); 1545 } 1546 1547 // Calculate spill weight and allocation hints for new intervals. 1548 Edit->calculateRegClassAndHint(VRM.getMachineFunction(), SA.Loops, MBFI); 1549 1550 assert(!LRMap || LRMap->size() == Edit->size()); 1551 } 1552 1553 //===----------------------------------------------------------------------===// 1554 // Single Block Splitting 1555 //===----------------------------------------------------------------------===// 1556 1557 bool SplitAnalysis::shouldSplitSingleBlock(const BlockInfo &BI, 1558 bool SingleInstrs) const { 1559 // Always split for multiple instructions. 1560 if (!BI.isOneInstr()) 1561 return true; 1562 // Don't split for single instructions unless explicitly requested. 1563 if (!SingleInstrs) 1564 return false; 1565 // Splitting a live-through range always makes progress. 1566 if (BI.LiveIn && BI.LiveOut) 1567 return true; 1568 // No point in isolating a copy. It has no register class constraints. 1569 if (LIS.getInstructionFromIndex(BI.FirstInstr)->isCopyLike()) 1570 return false; 1571 // Finally, don't isolate an end point that was created by earlier splits. 1572 return isOriginalEndpoint(BI.FirstInstr); 1573 } 1574 1575 void SplitEditor::splitSingleBlock(const SplitAnalysis::BlockInfo &BI) { 1576 openIntv(); 1577 SlotIndex LastSplitPoint = SA.getLastSplitPoint(BI.MBB->getNumber()); 1578 SlotIndex SegStart = enterIntvBefore(std::min(BI.FirstInstr, 1579 LastSplitPoint)); 1580 if (!BI.LiveOut || BI.LastInstr < LastSplitPoint) { 1581 useIntv(SegStart, leaveIntvAfter(BI.LastInstr)); 1582 } else { 1583 // The last use is after the last valid split point. 1584 SlotIndex SegStop = leaveIntvBefore(LastSplitPoint); 1585 useIntv(SegStart, SegStop); 1586 overlapIntv(SegStop, BI.LastInstr); 1587 } 1588 } 1589 1590 //===----------------------------------------------------------------------===// 1591 // Global Live Range Splitting Support 1592 //===----------------------------------------------------------------------===// 1593 1594 // These methods support a method of global live range splitting that uses a 1595 // global algorithm to decide intervals for CFG edges. They will insert split 1596 // points and color intervals in basic blocks while avoiding interference. 1597 // 1598 // Note that splitSingleBlock is also useful for blocks where both CFG edges 1599 // are on the stack. 1600 1601 void SplitEditor::splitLiveThroughBlock(unsigned MBBNum, 1602 unsigned IntvIn, SlotIndex LeaveBefore, 1603 unsigned IntvOut, SlotIndex EnterAfter){ 1604 SlotIndex Start, Stop; 1605 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(MBBNum); 1606 1607 LLVM_DEBUG(dbgs() << "%bb." << MBBNum << " [" << Start << ';' << Stop 1608 << ") intf " << LeaveBefore << '-' << EnterAfter 1609 << ", live-through " << IntvIn << " -> " << IntvOut); 1610 1611 assert((IntvIn || IntvOut) && "Use splitSingleBlock for isolated blocks"); 1612 1613 assert((!LeaveBefore || LeaveBefore < Stop) && "Interference after block"); 1614 assert((!IntvIn || !LeaveBefore || LeaveBefore > Start) && "Impossible intf"); 1615 assert((!EnterAfter || EnterAfter >= Start) && "Interference before block"); 1616 1617 MachineBasicBlock *MBB = VRM.getMachineFunction().getBlockNumbered(MBBNum); 1618 1619 if (!IntvOut) { 1620 LLVM_DEBUG(dbgs() << ", spill on entry.\n"); 1621 // 1622 // <<<<<<<<< Possible LeaveBefore interference. 1623 // |-----------| Live through. 1624 // -____________ Spill on entry. 1625 // 1626 selectIntv(IntvIn); 1627 SlotIndex Idx = leaveIntvAtTop(*MBB); 1628 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1629 (void)Idx; 1630 return; 1631 } 1632 1633 if (!IntvIn) { 1634 LLVM_DEBUG(dbgs() << ", reload on exit.\n"); 1635 // 1636 // >>>>>>> Possible EnterAfter interference. 1637 // |-----------| Live through. 1638 // ___________-- Reload on exit. 1639 // 1640 selectIntv(IntvOut); 1641 SlotIndex Idx = enterIntvAtEnd(*MBB); 1642 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1643 (void)Idx; 1644 return; 1645 } 1646 1647 if (IntvIn == IntvOut && !LeaveBefore && !EnterAfter) { 1648 LLVM_DEBUG(dbgs() << ", straight through.\n"); 1649 // 1650 // |-----------| Live through. 1651 // ------------- Straight through, same intv, no interference. 1652 // 1653 selectIntv(IntvOut); 1654 useIntv(Start, Stop); 1655 return; 1656 } 1657 1658 // We cannot legally insert splits after LSP. 1659 SlotIndex LSP = SA.getLastSplitPoint(MBBNum); 1660 assert((!IntvOut || !EnterAfter || EnterAfter < LSP) && "Impossible intf"); 1661 1662 if (IntvIn != IntvOut && (!LeaveBefore || !EnterAfter || 1663 LeaveBefore.getBaseIndex() > EnterAfter.getBoundaryIndex())) { 1664 LLVM_DEBUG(dbgs() << ", switch avoiding interference.\n"); 1665 // 1666 // >>>> <<<< Non-overlapping EnterAfter/LeaveBefore interference. 1667 // |-----------| Live through. 1668 // ------======= Switch intervals between interference. 1669 // 1670 selectIntv(IntvOut); 1671 SlotIndex Idx; 1672 if (LeaveBefore && LeaveBefore < LSP) { 1673 Idx = enterIntvBefore(LeaveBefore); 1674 useIntv(Idx, Stop); 1675 } else { 1676 Idx = enterIntvAtEnd(*MBB); 1677 } 1678 selectIntv(IntvIn); 1679 useIntv(Start, Idx); 1680 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1681 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1682 return; 1683 } 1684 1685 LLVM_DEBUG(dbgs() << ", create local intv for interference.\n"); 1686 // 1687 // >>><><><><<<< Overlapping EnterAfter/LeaveBefore interference. 1688 // |-----------| Live through. 1689 // ==---------== Switch intervals before/after interference. 1690 // 1691 assert(LeaveBefore <= EnterAfter && "Missed case"); 1692 1693 selectIntv(IntvOut); 1694 SlotIndex Idx = enterIntvAfter(EnterAfter); 1695 useIntv(Idx, Stop); 1696 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1697 1698 selectIntv(IntvIn); 1699 Idx = leaveIntvBefore(LeaveBefore); 1700 useIntv(Start, Idx); 1701 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1702 } 1703 1704 void SplitEditor::splitRegInBlock(const SplitAnalysis::BlockInfo &BI, 1705 unsigned IntvIn, SlotIndex LeaveBefore) { 1706 SlotIndex Start, Stop; 1707 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); 1708 1709 LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " [" << Start << ';' 1710 << Stop << "), uses " << BI.FirstInstr << '-' 1711 << BI.LastInstr << ", reg-in " << IntvIn 1712 << ", leave before " << LeaveBefore 1713 << (BI.LiveOut ? ", stack-out" : ", killed in block")); 1714 1715 assert(IntvIn && "Must have register in"); 1716 assert(BI.LiveIn && "Must be live-in"); 1717 assert((!LeaveBefore || LeaveBefore > Start) && "Bad interference"); 1718 1719 if (!BI.LiveOut && (!LeaveBefore || LeaveBefore >= BI.LastInstr)) { 1720 LLVM_DEBUG(dbgs() << " before interference.\n"); 1721 // 1722 // <<< Interference after kill. 1723 // |---o---x | Killed in block. 1724 // ========= Use IntvIn everywhere. 1725 // 1726 selectIntv(IntvIn); 1727 useIntv(Start, BI.LastInstr); 1728 return; 1729 } 1730 1731 SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber()); 1732 1733 if (!LeaveBefore || LeaveBefore > BI.LastInstr.getBoundaryIndex()) { 1734 // 1735 // <<< Possible interference after last use. 1736 // |---o---o---| Live-out on stack. 1737 // =========____ Leave IntvIn after last use. 1738 // 1739 // < Interference after last use. 1740 // |---o---o--o| Live-out on stack, late last use. 1741 // ============ Copy to stack after LSP, overlap IntvIn. 1742 // \_____ Stack interval is live-out. 1743 // 1744 if (BI.LastInstr < LSP) { 1745 LLVM_DEBUG(dbgs() << ", spill after last use before interference.\n"); 1746 selectIntv(IntvIn); 1747 SlotIndex Idx = leaveIntvAfter(BI.LastInstr); 1748 useIntv(Start, Idx); 1749 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1750 } else { 1751 LLVM_DEBUG(dbgs() << ", spill before last split point.\n"); 1752 selectIntv(IntvIn); 1753 SlotIndex Idx = leaveIntvBefore(LSP); 1754 overlapIntv(Idx, BI.LastInstr); 1755 useIntv(Start, Idx); 1756 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1757 } 1758 return; 1759 } 1760 1761 // The interference is overlapping somewhere we wanted to use IntvIn. That 1762 // means we need to create a local interval that can be allocated a 1763 // different register. 1764 unsigned LocalIntv = openIntv(); 1765 (void)LocalIntv; 1766 LLVM_DEBUG(dbgs() << ", creating local interval " << LocalIntv << ".\n"); 1767 1768 if (!BI.LiveOut || BI.LastInstr < LSP) { 1769 // 1770 // <<<<<<< Interference overlapping uses. 1771 // |---o---o---| Live-out on stack. 1772 // =====----____ Leave IntvIn before interference, then spill. 1773 // 1774 SlotIndex To = leaveIntvAfter(BI.LastInstr); 1775 SlotIndex From = enterIntvBefore(LeaveBefore); 1776 useIntv(From, To); 1777 selectIntv(IntvIn); 1778 useIntv(Start, From); 1779 assert((!LeaveBefore || From <= LeaveBefore) && "Interference"); 1780 return; 1781 } 1782 1783 // <<<<<<< Interference overlapping uses. 1784 // |---o---o--o| Live-out on stack, late last use. 1785 // =====------- Copy to stack before LSP, overlap LocalIntv. 1786 // \_____ Stack interval is live-out. 1787 // 1788 SlotIndex To = leaveIntvBefore(LSP); 1789 overlapIntv(To, BI.LastInstr); 1790 SlotIndex From = enterIntvBefore(std::min(To, LeaveBefore)); 1791 useIntv(From, To); 1792 selectIntv(IntvIn); 1793 useIntv(Start, From); 1794 assert((!LeaveBefore || From <= LeaveBefore) && "Interference"); 1795 } 1796 1797 void SplitEditor::splitRegOutBlock(const SplitAnalysis::BlockInfo &BI, 1798 unsigned IntvOut, SlotIndex EnterAfter) { 1799 SlotIndex Start, Stop; 1800 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); 1801 1802 LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " [" << Start << ';' 1803 << Stop << "), uses " << BI.FirstInstr << '-' 1804 << BI.LastInstr << ", reg-out " << IntvOut 1805 << ", enter after " << EnterAfter 1806 << (BI.LiveIn ? ", stack-in" : ", defined in block")); 1807 1808 SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber()); 1809 1810 assert(IntvOut && "Must have register out"); 1811 assert(BI.LiveOut && "Must be live-out"); 1812 assert((!EnterAfter || EnterAfter < LSP) && "Bad interference"); 1813 1814 if (!BI.LiveIn && (!EnterAfter || EnterAfter <= BI.FirstInstr)) { 1815 LLVM_DEBUG(dbgs() << " after interference.\n"); 1816 // 1817 // >>>> Interference before def. 1818 // | o---o---| Defined in block. 1819 // ========= Use IntvOut everywhere. 1820 // 1821 selectIntv(IntvOut); 1822 useIntv(BI.FirstInstr, Stop); 1823 return; 1824 } 1825 1826 if (!EnterAfter || EnterAfter < BI.FirstInstr.getBaseIndex()) { 1827 LLVM_DEBUG(dbgs() << ", reload after interference.\n"); 1828 // 1829 // >>>> Interference before def. 1830 // |---o---o---| Live-through, stack-in. 1831 // ____========= Enter IntvOut before first use. 1832 // 1833 selectIntv(IntvOut); 1834 SlotIndex Idx = enterIntvBefore(std::min(LSP, BI.FirstInstr)); 1835 useIntv(Idx, Stop); 1836 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1837 return; 1838 } 1839 1840 // The interference is overlapping somewhere we wanted to use IntvOut. That 1841 // means we need to create a local interval that can be allocated a 1842 // different register. 1843 LLVM_DEBUG(dbgs() << ", interference overlaps uses.\n"); 1844 // 1845 // >>>>>>> Interference overlapping uses. 1846 // |---o---o---| Live-through, stack-in. 1847 // ____---====== Create local interval for interference range. 1848 // 1849 selectIntv(IntvOut); 1850 SlotIndex Idx = enterIntvAfter(EnterAfter); 1851 useIntv(Idx, Stop); 1852 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1853 1854 openIntv(); 1855 SlotIndex From = enterIntvBefore(std::min(Idx, BI.FirstInstr)); 1856 useIntv(From, Idx); 1857 } 1858