1 //===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the SplitAnalysis class as well as mutator functions for 11 // live range splitting. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "SplitKit.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 18 #include "llvm/CodeGen/LiveRangeEdit.h" 19 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 20 #include "llvm/CodeGen/MachineDominators.h" 21 #include "llvm/CodeGen/MachineInstrBuilder.h" 22 #include "llvm/CodeGen/MachineLoopInfo.h" 23 #include "llvm/CodeGen/MachineRegisterInfo.h" 24 #include "llvm/CodeGen/VirtRegMap.h" 25 #include "llvm/Support/Debug.h" 26 #include "llvm/Support/raw_ostream.h" 27 #include "llvm/Target/TargetInstrInfo.h" 28 #include "llvm/Target/TargetMachine.h" 29 30 using namespace llvm; 31 32 #define DEBUG_TYPE "regalloc" 33 34 STATISTIC(NumFinished, "Number of splits finished"); 35 STATISTIC(NumSimple, "Number of splits that were simple"); 36 STATISTIC(NumCopies, "Number of copies inserted for splitting"); 37 STATISTIC(NumRemats, "Number of rematerialized defs for splitting"); 38 STATISTIC(NumRepairs, "Number of invalid live ranges repaired"); 39 40 //===----------------------------------------------------------------------===// 41 // Last Insert Point Analysis 42 //===----------------------------------------------------------------------===// 43 44 InsertPointAnalysis::InsertPointAnalysis(const LiveIntervals &lis, 45 unsigned BBNum) 46 : LIS(lis), LastInsertPoint(BBNum) {} 47 48 SlotIndex 49 InsertPointAnalysis::computeLastInsertPoint(const LiveInterval &CurLI, 50 const MachineBasicBlock &MBB) { 51 unsigned Num = MBB.getNumber(); 52 std::pair<SlotIndex, SlotIndex> &LIP = LastInsertPoint[Num]; 53 SlotIndex MBBEnd = LIS.getMBBEndIdx(&MBB); 54 55 SmallVector<const MachineBasicBlock *, 1> EHPadSucessors; 56 for (const MachineBasicBlock *SMBB : MBB.successors()) 57 if (SMBB->isEHPad()) 58 EHPadSucessors.push_back(SMBB); 59 60 // Compute insert points on the first call. The pair is independent of the 61 // current live interval. 62 if (!LIP.first.isValid()) { 63 MachineBasicBlock::const_iterator FirstTerm = MBB.getFirstTerminator(); 64 if (FirstTerm == MBB.end()) 65 LIP.first = MBBEnd; 66 else 67 LIP.first = LIS.getInstructionIndex(*FirstTerm); 68 69 // If there is a landing pad successor, also find the call instruction. 70 if (EHPadSucessors.empty()) 71 return LIP.first; 72 // There may not be a call instruction (?) in which case we ignore LPad. 73 LIP.second = LIP.first; 74 for (MachineBasicBlock::const_iterator I = MBB.end(), E = MBB.begin(); 75 I != E;) { 76 --I; 77 if (I->isCall()) { 78 LIP.second = LIS.getInstructionIndex(*I); 79 break; 80 } 81 } 82 } 83 84 // If CurLI is live into a landing pad successor, move the last insert point 85 // back to the call that may throw. 86 if (!LIP.second) 87 return LIP.first; 88 89 if (none_of(EHPadSucessors, [&](const MachineBasicBlock *EHPad) { 90 return LIS.isLiveInToMBB(CurLI, EHPad); 91 })) 92 return LIP.first; 93 94 // Find the value leaving MBB. 95 const VNInfo *VNI = CurLI.getVNInfoBefore(MBBEnd); 96 if (!VNI) 97 return LIP.first; 98 99 // If the value leaving MBB was defined after the call in MBB, it can't 100 // really be live-in to the landing pad. This can happen if the landing pad 101 // has a PHI, and this register is undef on the exceptional edge. 102 // <rdar://problem/10664933> 103 if (!SlotIndex::isEarlierInstr(VNI->def, LIP.second) && VNI->def < MBBEnd) 104 return LIP.first; 105 106 // Value is properly live-in to the landing pad. 107 // Only allow inserts before the call. 108 return LIP.second; 109 } 110 111 MachineBasicBlock::iterator 112 InsertPointAnalysis::getLastInsertPointIter(const LiveInterval &CurLI, 113 MachineBasicBlock &MBB) { 114 SlotIndex LIP = getLastInsertPoint(CurLI, MBB); 115 if (LIP == LIS.getMBBEndIdx(&MBB)) 116 return MBB.end(); 117 return LIS.getInstructionFromIndex(LIP); 118 } 119 120 //===----------------------------------------------------------------------===// 121 // Split Analysis 122 //===----------------------------------------------------------------------===// 123 124 SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm, const LiveIntervals &lis, 125 const MachineLoopInfo &mli) 126 : MF(vrm.getMachineFunction()), VRM(vrm), LIS(lis), Loops(mli), 127 TII(*MF.getSubtarget().getInstrInfo()), CurLI(nullptr), 128 IPA(lis, MF.getNumBlockIDs()) {} 129 130 void SplitAnalysis::clear() { 131 UseSlots.clear(); 132 UseBlocks.clear(); 133 ThroughBlocks.clear(); 134 CurLI = nullptr; 135 DidRepairRange = false; 136 } 137 138 /// analyzeUses - Count instructions, basic blocks, and loops using CurLI. 139 void SplitAnalysis::analyzeUses() { 140 assert(UseSlots.empty() && "Call clear first"); 141 142 // First get all the defs from the interval values. This provides the correct 143 // slots for early clobbers. 144 for (const VNInfo *VNI : CurLI->valnos) 145 if (!VNI->isPHIDef() && !VNI->isUnused()) 146 UseSlots.push_back(VNI->def); 147 148 // Get use slots form the use-def chain. 149 const MachineRegisterInfo &MRI = MF.getRegInfo(); 150 for (MachineOperand &MO : MRI.use_nodbg_operands(CurLI->reg)) 151 if (!MO.isUndef()) 152 UseSlots.push_back(LIS.getInstructionIndex(*MO.getParent()).getRegSlot()); 153 154 array_pod_sort(UseSlots.begin(), UseSlots.end()); 155 156 // Remove duplicates, keeping the smaller slot for each instruction. 157 // That is what we want for early clobbers. 158 UseSlots.erase(std::unique(UseSlots.begin(), UseSlots.end(), 159 SlotIndex::isSameInstr), 160 UseSlots.end()); 161 162 // Compute per-live block info. 163 if (!calcLiveBlockInfo()) { 164 // FIXME: calcLiveBlockInfo found inconsistencies in the live range. 165 // I am looking at you, RegisterCoalescer! 166 DidRepairRange = true; 167 ++NumRepairs; 168 DEBUG(dbgs() << "*** Fixing inconsistent live interval! ***\n"); 169 const_cast<LiveIntervals&>(LIS) 170 .shrinkToUses(const_cast<LiveInterval*>(CurLI)); 171 UseBlocks.clear(); 172 ThroughBlocks.clear(); 173 bool fixed = calcLiveBlockInfo(); 174 (void)fixed; 175 assert(fixed && "Couldn't fix broken live interval"); 176 } 177 178 DEBUG(dbgs() << "Analyze counted " 179 << UseSlots.size() << " instrs in " 180 << UseBlocks.size() << " blocks, through " 181 << NumThroughBlocks << " blocks.\n"); 182 } 183 184 /// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks 185 /// where CurLI is live. 186 bool SplitAnalysis::calcLiveBlockInfo() { 187 ThroughBlocks.resize(MF.getNumBlockIDs()); 188 NumThroughBlocks = NumGapBlocks = 0; 189 if (CurLI->empty()) 190 return true; 191 192 LiveInterval::const_iterator LVI = CurLI->begin(); 193 LiveInterval::const_iterator LVE = CurLI->end(); 194 195 SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE; 196 UseI = UseSlots.begin(); 197 UseE = UseSlots.end(); 198 199 // Loop over basic blocks where CurLI is live. 200 MachineFunction::iterator MFI = 201 LIS.getMBBFromIndex(LVI->start)->getIterator(); 202 for (;;) { 203 BlockInfo BI; 204 BI.MBB = &*MFI; 205 SlotIndex Start, Stop; 206 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); 207 208 // If the block contains no uses, the range must be live through. At one 209 // point, RegisterCoalescer could create dangling ranges that ended 210 // mid-block. 211 if (UseI == UseE || *UseI >= Stop) { 212 ++NumThroughBlocks; 213 ThroughBlocks.set(BI.MBB->getNumber()); 214 // The range shouldn't end mid-block if there are no uses. This shouldn't 215 // happen. 216 if (LVI->end < Stop) 217 return false; 218 } else { 219 // This block has uses. Find the first and last uses in the block. 220 BI.FirstInstr = *UseI; 221 assert(BI.FirstInstr >= Start); 222 do ++UseI; 223 while (UseI != UseE && *UseI < Stop); 224 BI.LastInstr = UseI[-1]; 225 assert(BI.LastInstr < Stop); 226 227 // LVI is the first live segment overlapping MBB. 228 BI.LiveIn = LVI->start <= Start; 229 230 // When not live in, the first use should be a def. 231 if (!BI.LiveIn) { 232 assert(LVI->start == LVI->valno->def && "Dangling Segment start"); 233 assert(LVI->start == BI.FirstInstr && "First instr should be a def"); 234 BI.FirstDef = BI.FirstInstr; 235 } 236 237 // Look for gaps in the live range. 238 BI.LiveOut = true; 239 while (LVI->end < Stop) { 240 SlotIndex LastStop = LVI->end; 241 if (++LVI == LVE || LVI->start >= Stop) { 242 BI.LiveOut = false; 243 BI.LastInstr = LastStop; 244 break; 245 } 246 247 if (LastStop < LVI->start) { 248 // There is a gap in the live range. Create duplicate entries for the 249 // live-in snippet and the live-out snippet. 250 ++NumGapBlocks; 251 252 // Push the Live-in part. 253 BI.LiveOut = false; 254 UseBlocks.push_back(BI); 255 UseBlocks.back().LastInstr = LastStop; 256 257 // Set up BI for the live-out part. 258 BI.LiveIn = false; 259 BI.LiveOut = true; 260 BI.FirstInstr = BI.FirstDef = LVI->start; 261 } 262 263 // A Segment that starts in the middle of the block must be a def. 264 assert(LVI->start == LVI->valno->def && "Dangling Segment start"); 265 if (!BI.FirstDef) 266 BI.FirstDef = LVI->start; 267 } 268 269 UseBlocks.push_back(BI); 270 271 // LVI is now at LVE or LVI->end >= Stop. 272 if (LVI == LVE) 273 break; 274 } 275 276 // Live segment ends exactly at Stop. Move to the next segment. 277 if (LVI->end == Stop && ++LVI == LVE) 278 break; 279 280 // Pick the next basic block. 281 if (LVI->start < Stop) 282 ++MFI; 283 else 284 MFI = LIS.getMBBFromIndex(LVI->start)->getIterator(); 285 } 286 287 assert(getNumLiveBlocks() == countLiveBlocks(CurLI) && "Bad block count"); 288 return true; 289 } 290 291 unsigned SplitAnalysis::countLiveBlocks(const LiveInterval *cli) const { 292 if (cli->empty()) 293 return 0; 294 LiveInterval *li = const_cast<LiveInterval*>(cli); 295 LiveInterval::iterator LVI = li->begin(); 296 LiveInterval::iterator LVE = li->end(); 297 unsigned Count = 0; 298 299 // Loop over basic blocks where li is live. 300 MachineFunction::const_iterator MFI = 301 LIS.getMBBFromIndex(LVI->start)->getIterator(); 302 SlotIndex Stop = LIS.getMBBEndIdx(&*MFI); 303 for (;;) { 304 ++Count; 305 LVI = li->advanceTo(LVI, Stop); 306 if (LVI == LVE) 307 return Count; 308 do { 309 ++MFI; 310 Stop = LIS.getMBBEndIdx(&*MFI); 311 } while (Stop <= LVI->start); 312 } 313 } 314 315 bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const { 316 unsigned OrigReg = VRM.getOriginal(CurLI->reg); 317 const LiveInterval &Orig = LIS.getInterval(OrigReg); 318 assert(!Orig.empty() && "Splitting empty interval?"); 319 LiveInterval::const_iterator I = Orig.find(Idx); 320 321 // Range containing Idx should begin at Idx. 322 if (I != Orig.end() && I->start <= Idx) 323 return I->start == Idx; 324 325 // Range does not contain Idx, previous must end at Idx. 326 return I != Orig.begin() && (--I)->end == Idx; 327 } 328 329 void SplitAnalysis::analyze(const LiveInterval *li) { 330 clear(); 331 CurLI = li; 332 analyzeUses(); 333 } 334 335 336 //===----------------------------------------------------------------------===// 337 // Split Editor 338 //===----------------------------------------------------------------------===// 339 340 /// Create a new SplitEditor for editing the LiveInterval analyzed by SA. 341 SplitEditor::SplitEditor(SplitAnalysis &sa, AliasAnalysis &aa, 342 LiveIntervals &lis, VirtRegMap &vrm, 343 MachineDominatorTree &mdt, 344 MachineBlockFrequencyInfo &mbfi) 345 : SA(sa), AA(aa), LIS(lis), VRM(vrm), 346 MRI(vrm.getMachineFunction().getRegInfo()), MDT(mdt), 347 TII(*vrm.getMachineFunction().getSubtarget().getInstrInfo()), 348 TRI(*vrm.getMachineFunction().getSubtarget().getRegisterInfo()), 349 MBFI(mbfi), Edit(nullptr), OpenIdx(0), SpillMode(SM_Partition), 350 RegAssign(Allocator) {} 351 352 void SplitEditor::reset(LiveRangeEdit &LRE, ComplementSpillMode SM) { 353 Edit = &LRE; 354 SpillMode = SM; 355 OpenIdx = 0; 356 RegAssign.clear(); 357 Values.clear(); 358 359 // Reset the LiveRangeCalc instances needed for this spill mode. 360 LRCalc[0].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT, 361 &LIS.getVNInfoAllocator()); 362 if (SpillMode) 363 LRCalc[1].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT, 364 &LIS.getVNInfoAllocator()); 365 366 // We don't need an AliasAnalysis since we will only be performing 367 // cheap-as-a-copy remats anyway. 368 Edit->anyRematerializable(nullptr); 369 } 370 371 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 372 LLVM_DUMP_METHOD void SplitEditor::dump() const { 373 if (RegAssign.empty()) { 374 dbgs() << " empty\n"; 375 return; 376 } 377 378 for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I) 379 dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value(); 380 dbgs() << '\n'; 381 } 382 #endif 383 384 LiveInterval::SubRange &SplitEditor::getSubRangeForMask(LaneBitmask LM, 385 LiveInterval &LI) { 386 for (LiveInterval::SubRange &S : LI.subranges()) 387 if (S.LaneMask == LM) 388 return S; 389 llvm_unreachable("SubRange for this mask not found"); 390 } 391 392 void SplitEditor::addDeadDef(LiveInterval &LI, VNInfo *VNI, bool Original) { 393 if (!LI.hasSubRanges()) { 394 LI.createDeadDef(VNI); 395 return; 396 } 397 398 SlotIndex Def = VNI->def; 399 if (Original) { 400 // If we are transferring a def from the original interval, make sure 401 // to only update the subranges for which the original subranges had 402 // a def at this location. 403 for (LiveInterval::SubRange &S : LI.subranges()) { 404 auto &PS = getSubRangeForMask(S.LaneMask, Edit->getParent()); 405 VNInfo *PV = PS.getVNInfoAt(Def); 406 if (PV != nullptr && PV->def == Def) 407 S.createDeadDef(Def, LIS.getVNInfoAllocator()); 408 } 409 } else { 410 // This is a new def: either from rematerialization, or from an inserted 411 // copy. Since rematerialization can regenerate a definition of a sub- 412 // register, we need to check which subranges need to be updated. 413 const MachineInstr *DefMI = LIS.getInstructionFromIndex(Def); 414 assert(DefMI != nullptr); 415 LaneBitmask LM; 416 for (const MachineOperand &DefOp : DefMI->defs()) { 417 unsigned R = DefOp.getReg(); 418 if (R != LI.reg) 419 continue; 420 if (unsigned SR = DefOp.getSubReg()) 421 LM |= TRI.getSubRegIndexLaneMask(SR); 422 else { 423 LM = MRI.getMaxLaneMaskForVReg(R); 424 break; 425 } 426 } 427 for (LiveInterval::SubRange &S : LI.subranges()) 428 if ((S.LaneMask & LM).any()) 429 S.createDeadDef(Def, LIS.getVNInfoAllocator()); 430 } 431 } 432 433 VNInfo *SplitEditor::defValue(unsigned RegIdx, 434 const VNInfo *ParentVNI, 435 SlotIndex Idx, 436 bool Original) { 437 assert(ParentVNI && "Mapping NULL value"); 438 assert(Idx.isValid() && "Invalid SlotIndex"); 439 assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI"); 440 LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx)); 441 442 // Create a new value. 443 VNInfo *VNI = LI->getNextValue(Idx, LIS.getVNInfoAllocator()); 444 445 bool Force = LI->hasSubRanges(); 446 ValueForcePair FP(Force ? nullptr : VNI, Force); 447 // Use insert for lookup, so we can add missing values with a second lookup. 448 std::pair<ValueMap::iterator, bool> InsP = 449 Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id), FP)); 450 451 // This was the first time (RegIdx, ParentVNI) was mapped, and it is not 452 // forced. Keep it as a simple def without any liveness. 453 if (!Force && InsP.second) 454 return VNI; 455 456 // If the previous value was a simple mapping, add liveness for it now. 457 if (VNInfo *OldVNI = InsP.first->second.getPointer()) { 458 addDeadDef(*LI, OldVNI, Original); 459 460 // No longer a simple mapping. Switch to a complex mapping. If the 461 // interval has subranges, make it a forced mapping. 462 InsP.first->second = ValueForcePair(nullptr, Force); 463 } 464 465 // This is a complex mapping, add liveness for VNI 466 addDeadDef(*LI, VNI, Original); 467 return VNI; 468 } 469 470 void SplitEditor::forceRecompute(unsigned RegIdx, const VNInfo *ParentVNI) { 471 assert(ParentVNI && "Mapping NULL value"); 472 ValueForcePair &VFP = Values[std::make_pair(RegIdx, ParentVNI->id)]; 473 VNInfo *VNI = VFP.getPointer(); 474 475 // ParentVNI was either unmapped or already complex mapped. Either way, just 476 // set the force bit. 477 if (!VNI) { 478 VFP.setInt(true); 479 return; 480 } 481 482 // This was previously a single mapping. Make sure the old def is represented 483 // by a trivial live range. 484 addDeadDef(LIS.getInterval(Edit->get(RegIdx)), VNI, false); 485 486 // Mark as complex mapped, forced. 487 VFP = ValueForcePair(nullptr, true); 488 } 489 490 VNInfo *SplitEditor::defFromParent(unsigned RegIdx, 491 VNInfo *ParentVNI, 492 SlotIndex UseIdx, 493 MachineBasicBlock &MBB, 494 MachineBasicBlock::iterator I) { 495 MachineInstr *CopyMI = nullptr; 496 SlotIndex Def; 497 LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx)); 498 499 // We may be trying to avoid interference that ends at a deleted instruction, 500 // so always begin RegIdx 0 early and all others late. 501 bool Late = RegIdx != 0; 502 503 // Attempt cheap-as-a-copy rematerialization. 504 unsigned Original = VRM.getOriginal(Edit->get(RegIdx)); 505 LiveInterval &OrigLI = LIS.getInterval(Original); 506 VNInfo *OrigVNI = OrigLI.getVNInfoAt(UseIdx); 507 508 bool DidRemat = false; 509 if (OrigVNI) { 510 LiveRangeEdit::Remat RM(ParentVNI); 511 RM.OrigMI = LIS.getInstructionFromIndex(OrigVNI->def); 512 if (Edit->canRematerializeAt(RM, OrigVNI, UseIdx, true)) { 513 Def = Edit->rematerializeAt(MBB, I, LI->reg, RM, TRI, Late); 514 ++NumRemats; 515 DidRemat = true; 516 } 517 } 518 if (!DidRemat) { 519 // Can't remat, just insert a copy from parent. 520 CopyMI = BuildMI(MBB, I, DebugLoc(), TII.get(TargetOpcode::COPY), LI->reg) 521 .addReg(Edit->getReg()); 522 Def = LIS.getSlotIndexes() 523 ->insertMachineInstrInMaps(*CopyMI, Late) 524 .getRegSlot(); 525 ++NumCopies; 526 } 527 528 // Define the value in Reg. 529 return defValue(RegIdx, ParentVNI, Def, false); 530 } 531 532 /// Create a new virtual register and live interval. 533 unsigned SplitEditor::openIntv() { 534 // Create the complement as index 0. 535 if (Edit->empty()) 536 Edit->createEmptyInterval(); 537 538 // Create the open interval. 539 OpenIdx = Edit->size(); 540 Edit->createEmptyInterval(); 541 return OpenIdx; 542 } 543 544 void SplitEditor::selectIntv(unsigned Idx) { 545 assert(Idx != 0 && "Cannot select the complement interval"); 546 assert(Idx < Edit->size() && "Can only select previously opened interval"); 547 DEBUG(dbgs() << " selectIntv " << OpenIdx << " -> " << Idx << '\n'); 548 OpenIdx = Idx; 549 } 550 551 SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) { 552 assert(OpenIdx && "openIntv not called before enterIntvBefore"); 553 DEBUG(dbgs() << " enterIntvBefore " << Idx); 554 Idx = Idx.getBaseIndex(); 555 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 556 if (!ParentVNI) { 557 DEBUG(dbgs() << ": not live\n"); 558 return Idx; 559 } 560 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 561 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 562 assert(MI && "enterIntvBefore called with invalid index"); 563 564 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI); 565 return VNI->def; 566 } 567 568 SlotIndex SplitEditor::enterIntvAfter(SlotIndex Idx) { 569 assert(OpenIdx && "openIntv not called before enterIntvAfter"); 570 DEBUG(dbgs() << " enterIntvAfter " << Idx); 571 Idx = Idx.getBoundaryIndex(); 572 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 573 if (!ParentVNI) { 574 DEBUG(dbgs() << ": not live\n"); 575 return Idx; 576 } 577 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 578 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 579 assert(MI && "enterIntvAfter called with invalid index"); 580 581 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), 582 std::next(MachineBasicBlock::iterator(MI))); 583 return VNI->def; 584 } 585 586 SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) { 587 assert(OpenIdx && "openIntv not called before enterIntvAtEnd"); 588 SlotIndex End = LIS.getMBBEndIdx(&MBB); 589 SlotIndex Last = End.getPrevSlot(); 590 DEBUG(dbgs() << " enterIntvAtEnd BB#" << MBB.getNumber() << ", " << Last); 591 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last); 592 if (!ParentVNI) { 593 DEBUG(dbgs() << ": not live\n"); 594 return End; 595 } 596 DEBUG(dbgs() << ": valno " << ParentVNI->id); 597 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB, 598 SA.getLastSplitPointIter(&MBB)); 599 RegAssign.insert(VNI->def, End, OpenIdx); 600 DEBUG(dump()); 601 return VNI->def; 602 } 603 604 /// useIntv - indicate that all instructions in MBB should use OpenLI. 605 void SplitEditor::useIntv(const MachineBasicBlock &MBB) { 606 useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB)); 607 } 608 609 void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) { 610 assert(OpenIdx && "openIntv not called before useIntv"); 611 DEBUG(dbgs() << " useIntv [" << Start << ';' << End << "):"); 612 RegAssign.insert(Start, End, OpenIdx); 613 DEBUG(dump()); 614 } 615 616 SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) { 617 assert(OpenIdx && "openIntv not called before leaveIntvAfter"); 618 DEBUG(dbgs() << " leaveIntvAfter " << Idx); 619 620 // The interval must be live beyond the instruction at Idx. 621 SlotIndex Boundary = Idx.getBoundaryIndex(); 622 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Boundary); 623 if (!ParentVNI) { 624 DEBUG(dbgs() << ": not live\n"); 625 return Boundary.getNextSlot(); 626 } 627 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 628 MachineInstr *MI = LIS.getInstructionFromIndex(Boundary); 629 assert(MI && "No instruction at index"); 630 631 // In spill mode, make live ranges as short as possible by inserting the copy 632 // before MI. This is only possible if that instruction doesn't redefine the 633 // value. The inserted COPY is not a kill, and we don't need to recompute 634 // the source live range. The spiller also won't try to hoist this copy. 635 if (SpillMode && !SlotIndex::isSameInstr(ParentVNI->def, Idx) && 636 MI->readsVirtualRegister(Edit->getReg())) { 637 forceRecompute(0, ParentVNI); 638 defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI); 639 return Idx; 640 } 641 642 VNInfo *VNI = defFromParent(0, ParentVNI, Boundary, *MI->getParent(), 643 std::next(MachineBasicBlock::iterator(MI))); 644 return VNI->def; 645 } 646 647 SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) { 648 assert(OpenIdx && "openIntv not called before leaveIntvBefore"); 649 DEBUG(dbgs() << " leaveIntvBefore " << Idx); 650 651 // The interval must be live into the instruction at Idx. 652 Idx = Idx.getBaseIndex(); 653 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 654 if (!ParentVNI) { 655 DEBUG(dbgs() << ": not live\n"); 656 return Idx.getNextSlot(); 657 } 658 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 659 660 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 661 assert(MI && "No instruction at index"); 662 VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI); 663 return VNI->def; 664 } 665 666 SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) { 667 assert(OpenIdx && "openIntv not called before leaveIntvAtTop"); 668 SlotIndex Start = LIS.getMBBStartIdx(&MBB); 669 DEBUG(dbgs() << " leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start); 670 671 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start); 672 if (!ParentVNI) { 673 DEBUG(dbgs() << ": not live\n"); 674 return Start; 675 } 676 677 VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB, 678 MBB.SkipPHIsLabelsAndDebug(MBB.begin())); 679 RegAssign.insert(Start, VNI->def, OpenIdx); 680 DEBUG(dump()); 681 return VNI->def; 682 } 683 684 void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) { 685 assert(OpenIdx && "openIntv not called before overlapIntv"); 686 const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start); 687 assert(ParentVNI == Edit->getParent().getVNInfoBefore(End) && 688 "Parent changes value in extended range"); 689 assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) && 690 "Range cannot span basic blocks"); 691 692 // The complement interval will be extended as needed by LRCalc.extend(). 693 if (ParentVNI) 694 forceRecompute(0, ParentVNI); 695 DEBUG(dbgs() << " overlapIntv [" << Start << ';' << End << "):"); 696 RegAssign.insert(Start, End, OpenIdx); 697 DEBUG(dump()); 698 } 699 700 //===----------------------------------------------------------------------===// 701 // Spill modes 702 //===----------------------------------------------------------------------===// 703 704 void SplitEditor::removeBackCopies(SmallVectorImpl<VNInfo*> &Copies) { 705 LiveInterval *LI = &LIS.getInterval(Edit->get(0)); 706 DEBUG(dbgs() << "Removing " << Copies.size() << " back-copies.\n"); 707 RegAssignMap::iterator AssignI; 708 AssignI.setMap(RegAssign); 709 710 for (unsigned i = 0, e = Copies.size(); i != e; ++i) { 711 SlotIndex Def = Copies[i]->def; 712 MachineInstr *MI = LIS.getInstructionFromIndex(Def); 713 assert(MI && "No instruction for back-copy"); 714 715 MachineBasicBlock *MBB = MI->getParent(); 716 MachineBasicBlock::iterator MBBI(MI); 717 bool AtBegin; 718 do AtBegin = MBBI == MBB->begin(); 719 while (!AtBegin && (--MBBI)->isDebugValue()); 720 721 DEBUG(dbgs() << "Removing " << Def << '\t' << *MI); 722 LIS.removeVRegDefAt(*LI, Def); 723 LIS.RemoveMachineInstrFromMaps(*MI); 724 MI->eraseFromParent(); 725 726 // Adjust RegAssign if a register assignment is killed at Def. We want to 727 // avoid calculating the live range of the source register if possible. 728 AssignI.find(Def.getPrevSlot()); 729 if (!AssignI.valid() || AssignI.start() >= Def) 730 continue; 731 // If MI doesn't kill the assigned register, just leave it. 732 if (AssignI.stop() != Def) 733 continue; 734 unsigned RegIdx = AssignI.value(); 735 if (AtBegin || !MBBI->readsVirtualRegister(Edit->getReg())) { 736 DEBUG(dbgs() << " cannot find simple kill of RegIdx " << RegIdx << '\n'); 737 forceRecompute(RegIdx, Edit->getParent().getVNInfoAt(Def)); 738 } else { 739 SlotIndex Kill = LIS.getInstructionIndex(*MBBI).getRegSlot(); 740 DEBUG(dbgs() << " move kill to " << Kill << '\t' << *MBBI); 741 AssignI.setStop(Kill); 742 } 743 } 744 } 745 746 MachineBasicBlock* 747 SplitEditor::findShallowDominator(MachineBasicBlock *MBB, 748 MachineBasicBlock *DefMBB) { 749 if (MBB == DefMBB) 750 return MBB; 751 assert(MDT.dominates(DefMBB, MBB) && "MBB must be dominated by the def."); 752 753 const MachineLoopInfo &Loops = SA.Loops; 754 const MachineLoop *DefLoop = Loops.getLoopFor(DefMBB); 755 MachineDomTreeNode *DefDomNode = MDT[DefMBB]; 756 757 // Best candidate so far. 758 MachineBasicBlock *BestMBB = MBB; 759 unsigned BestDepth = UINT_MAX; 760 761 for (;;) { 762 const MachineLoop *Loop = Loops.getLoopFor(MBB); 763 764 // MBB isn't in a loop, it doesn't get any better. All dominators have a 765 // higher frequency by definition. 766 if (!Loop) { 767 DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#" 768 << MBB->getNumber() << " at depth 0\n"); 769 return MBB; 770 } 771 772 // We'll never be able to exit the DefLoop. 773 if (Loop == DefLoop) { 774 DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#" 775 << MBB->getNumber() << " in the same loop\n"); 776 return MBB; 777 } 778 779 // Least busy dominator seen so far. 780 unsigned Depth = Loop->getLoopDepth(); 781 if (Depth < BestDepth) { 782 BestMBB = MBB; 783 BestDepth = Depth; 784 DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#" 785 << MBB->getNumber() << " at depth " << Depth << '\n'); 786 } 787 788 // Leave loop by going to the immediate dominator of the loop header. 789 // This is a bigger stride than simply walking up the dominator tree. 790 MachineDomTreeNode *IDom = MDT[Loop->getHeader()]->getIDom(); 791 792 // Too far up the dominator tree? 793 if (!IDom || !MDT.dominates(DefDomNode, IDom)) 794 return BestMBB; 795 796 MBB = IDom->getBlock(); 797 } 798 } 799 800 void SplitEditor::computeRedundantBackCopies( 801 DenseSet<unsigned> &NotToHoistSet, SmallVectorImpl<VNInfo *> &BackCopies) { 802 LiveInterval *LI = &LIS.getInterval(Edit->get(0)); 803 LiveInterval *Parent = &Edit->getParent(); 804 SmallVector<SmallPtrSet<VNInfo *, 8>, 8> EqualVNs(Parent->getNumValNums()); 805 SmallPtrSet<VNInfo *, 8> DominatedVNIs; 806 807 // Aggregate VNIs having the same value as ParentVNI. 808 for (VNInfo *VNI : LI->valnos) { 809 if (VNI->isUnused()) 810 continue; 811 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def); 812 EqualVNs[ParentVNI->id].insert(VNI); 813 } 814 815 // For VNI aggregation of each ParentVNI, collect dominated, i.e., 816 // redundant VNIs to BackCopies. 817 for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) { 818 VNInfo *ParentVNI = Parent->getValNumInfo(i); 819 if (!NotToHoistSet.count(ParentVNI->id)) 820 continue; 821 SmallPtrSetIterator<VNInfo *> It1 = EqualVNs[ParentVNI->id].begin(); 822 SmallPtrSetIterator<VNInfo *> It2 = It1; 823 for (; It1 != EqualVNs[ParentVNI->id].end(); ++It1) { 824 It2 = It1; 825 for (++It2; It2 != EqualVNs[ParentVNI->id].end(); ++It2) { 826 if (DominatedVNIs.count(*It1) || DominatedVNIs.count(*It2)) 827 continue; 828 829 MachineBasicBlock *MBB1 = LIS.getMBBFromIndex((*It1)->def); 830 MachineBasicBlock *MBB2 = LIS.getMBBFromIndex((*It2)->def); 831 if (MBB1 == MBB2) { 832 DominatedVNIs.insert((*It1)->def < (*It2)->def ? (*It2) : (*It1)); 833 } else if (MDT.dominates(MBB1, MBB2)) { 834 DominatedVNIs.insert(*It2); 835 } else if (MDT.dominates(MBB2, MBB1)) { 836 DominatedVNIs.insert(*It1); 837 } 838 } 839 } 840 if (!DominatedVNIs.empty()) { 841 forceRecompute(0, ParentVNI); 842 for (auto VNI : DominatedVNIs) { 843 BackCopies.push_back(VNI); 844 } 845 DominatedVNIs.clear(); 846 } 847 } 848 } 849 850 /// For SM_Size mode, find a common dominator for all the back-copies for 851 /// the same ParentVNI and hoist the backcopies to the dominator BB. 852 /// For SM_Speed mode, if the common dominator is hot and it is not beneficial 853 /// to do the hoisting, simply remove the dominated backcopies for the same 854 /// ParentVNI. 855 void SplitEditor::hoistCopies() { 856 // Get the complement interval, always RegIdx 0. 857 LiveInterval *LI = &LIS.getInterval(Edit->get(0)); 858 LiveInterval *Parent = &Edit->getParent(); 859 860 // Track the nearest common dominator for all back-copies for each ParentVNI, 861 // indexed by ParentVNI->id. 862 typedef std::pair<MachineBasicBlock*, SlotIndex> DomPair; 863 SmallVector<DomPair, 8> NearestDom(Parent->getNumValNums()); 864 // The total cost of all the back-copies for each ParentVNI. 865 SmallVector<BlockFrequency, 8> Costs(Parent->getNumValNums()); 866 // The ParentVNI->id set for which hoisting back-copies are not beneficial 867 // for Speed. 868 DenseSet<unsigned> NotToHoistSet; 869 870 // Find the nearest common dominator for parent values with multiple 871 // back-copies. If a single back-copy dominates, put it in DomPair.second. 872 for (VNInfo *VNI : LI->valnos) { 873 if (VNI->isUnused()) 874 continue; 875 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def); 876 assert(ParentVNI && "Parent not live at complement def"); 877 878 // Don't hoist remats. The complement is probably going to disappear 879 // completely anyway. 880 if (Edit->didRematerialize(ParentVNI)) 881 continue; 882 883 MachineBasicBlock *ValMBB = LIS.getMBBFromIndex(VNI->def); 884 885 DomPair &Dom = NearestDom[ParentVNI->id]; 886 887 // Keep directly defined parent values. This is either a PHI or an 888 // instruction in the complement range. All other copies of ParentVNI 889 // should be eliminated. 890 if (VNI->def == ParentVNI->def) { 891 DEBUG(dbgs() << "Direct complement def at " << VNI->def << '\n'); 892 Dom = DomPair(ValMBB, VNI->def); 893 continue; 894 } 895 // Skip the singly mapped values. There is nothing to gain from hoisting a 896 // single back-copy. 897 if (Values.lookup(std::make_pair(0, ParentVNI->id)).getPointer()) { 898 DEBUG(dbgs() << "Single complement def at " << VNI->def << '\n'); 899 continue; 900 } 901 902 if (!Dom.first) { 903 // First time we see ParentVNI. VNI dominates itself. 904 Dom = DomPair(ValMBB, VNI->def); 905 } else if (Dom.first == ValMBB) { 906 // Two defs in the same block. Pick the earlier def. 907 if (!Dom.second.isValid() || VNI->def < Dom.second) 908 Dom.second = VNI->def; 909 } else { 910 // Different basic blocks. Check if one dominates. 911 MachineBasicBlock *Near = 912 MDT.findNearestCommonDominator(Dom.first, ValMBB); 913 if (Near == ValMBB) 914 // Def ValMBB dominates. 915 Dom = DomPair(ValMBB, VNI->def); 916 else if (Near != Dom.first) 917 // None dominate. Hoist to common dominator, need new def. 918 Dom = DomPair(Near, SlotIndex()); 919 Costs[ParentVNI->id] += MBFI.getBlockFreq(ValMBB); 920 } 921 922 DEBUG(dbgs() << "Multi-mapped complement " << VNI->id << '@' << VNI->def 923 << " for parent " << ParentVNI->id << '@' << ParentVNI->def 924 << " hoist to BB#" << Dom.first->getNumber() << ' ' 925 << Dom.second << '\n'); 926 } 927 928 // Insert the hoisted copies. 929 for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) { 930 DomPair &Dom = NearestDom[i]; 931 if (!Dom.first || Dom.second.isValid()) 932 continue; 933 // This value needs a hoisted copy inserted at the end of Dom.first. 934 VNInfo *ParentVNI = Parent->getValNumInfo(i); 935 MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(ParentVNI->def); 936 // Get a less loopy dominator than Dom.first. 937 Dom.first = findShallowDominator(Dom.first, DefMBB); 938 if (SpillMode == SM_Speed && 939 MBFI.getBlockFreq(Dom.first) > Costs[ParentVNI->id]) { 940 NotToHoistSet.insert(ParentVNI->id); 941 continue; 942 } 943 SlotIndex Last = LIS.getMBBEndIdx(Dom.first).getPrevSlot(); 944 Dom.second = 945 defFromParent(0, ParentVNI, Last, *Dom.first, 946 SA.getLastSplitPointIter(Dom.first))->def; 947 } 948 949 // Remove redundant back-copies that are now known to be dominated by another 950 // def with the same value. 951 SmallVector<VNInfo*, 8> BackCopies; 952 for (VNInfo *VNI : LI->valnos) { 953 if (VNI->isUnused()) 954 continue; 955 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def); 956 const DomPair &Dom = NearestDom[ParentVNI->id]; 957 if (!Dom.first || Dom.second == VNI->def || 958 NotToHoistSet.count(ParentVNI->id)) 959 continue; 960 BackCopies.push_back(VNI); 961 forceRecompute(0, ParentVNI); 962 } 963 964 // If it is not beneficial to hoist all the BackCopies, simply remove 965 // redundant BackCopies in speed mode. 966 if (SpillMode == SM_Speed && !NotToHoistSet.empty()) 967 computeRedundantBackCopies(NotToHoistSet, BackCopies); 968 969 removeBackCopies(BackCopies); 970 } 971 972 973 /// transferValues - Transfer all possible values to the new live ranges. 974 /// Values that were rematerialized are left alone, they need LRCalc.extend(). 975 bool SplitEditor::transferValues() { 976 bool Skipped = false; 977 RegAssignMap::const_iterator AssignI = RegAssign.begin(); 978 for (const LiveRange::Segment &S : Edit->getParent()) { 979 DEBUG(dbgs() << " blit " << S << ':'); 980 VNInfo *ParentVNI = S.valno; 981 // RegAssign has holes where RegIdx 0 should be used. 982 SlotIndex Start = S.start; 983 AssignI.advanceTo(Start); 984 do { 985 unsigned RegIdx; 986 SlotIndex End = S.end; 987 if (!AssignI.valid()) { 988 RegIdx = 0; 989 } else if (AssignI.start() <= Start) { 990 RegIdx = AssignI.value(); 991 if (AssignI.stop() < End) { 992 End = AssignI.stop(); 993 ++AssignI; 994 } 995 } else { 996 RegIdx = 0; 997 End = std::min(End, AssignI.start()); 998 } 999 1000 // The interval [Start;End) is continuously mapped to RegIdx, ParentVNI. 1001 DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx 1002 << '(' << PrintReg(Edit->get(RegIdx)) << ')'); 1003 LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx)); 1004 1005 // Check for a simply defined value that can be blitted directly. 1006 ValueForcePair VFP = Values.lookup(std::make_pair(RegIdx, ParentVNI->id)); 1007 if (VNInfo *VNI = VFP.getPointer()) { 1008 DEBUG(dbgs() << ':' << VNI->id); 1009 LI.addSegment(LiveInterval::Segment(Start, End, VNI)); 1010 Start = End; 1011 continue; 1012 } 1013 1014 // Skip values with forced recomputation. 1015 if (VFP.getInt()) { 1016 DEBUG(dbgs() << "(recalc)"); 1017 Skipped = true; 1018 Start = End; 1019 continue; 1020 } 1021 1022 LiveRangeCalc &LRC = getLRCalc(RegIdx); 1023 1024 // This value has multiple defs in RegIdx, but it wasn't rematerialized, 1025 // so the live range is accurate. Add live-in blocks in [Start;End) to the 1026 // LiveInBlocks. 1027 MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start)->getIterator(); 1028 SlotIndex BlockStart, BlockEnd; 1029 std::tie(BlockStart, BlockEnd) = LIS.getSlotIndexes()->getMBBRange(&*MBB); 1030 1031 // The first block may be live-in, or it may have its own def. 1032 if (Start != BlockStart) { 1033 VNInfo *VNI = LI.extendInBlock(BlockStart, std::min(BlockEnd, End)); 1034 assert(VNI && "Missing def for complex mapped value"); 1035 DEBUG(dbgs() << ':' << VNI->id << "*BB#" << MBB->getNumber()); 1036 // MBB has its own def. Is it also live-out? 1037 if (BlockEnd <= End) 1038 LRC.setLiveOutValue(&*MBB, VNI); 1039 1040 // Skip to the next block for live-in. 1041 ++MBB; 1042 BlockStart = BlockEnd; 1043 } 1044 1045 // Handle the live-in blocks covered by [Start;End). 1046 assert(Start <= BlockStart && "Expected live-in block"); 1047 while (BlockStart < End) { 1048 DEBUG(dbgs() << ">BB#" << MBB->getNumber()); 1049 BlockEnd = LIS.getMBBEndIdx(&*MBB); 1050 if (BlockStart == ParentVNI->def) { 1051 // This block has the def of a parent PHI, so it isn't live-in. 1052 assert(ParentVNI->isPHIDef() && "Non-phi defined at block start?"); 1053 VNInfo *VNI = LI.extendInBlock(BlockStart, std::min(BlockEnd, End)); 1054 assert(VNI && "Missing def for complex mapped parent PHI"); 1055 if (End >= BlockEnd) 1056 LRC.setLiveOutValue(&*MBB, VNI); // Live-out as well. 1057 } else { 1058 // This block needs a live-in value. The last block covered may not 1059 // be live-out. 1060 if (End < BlockEnd) 1061 LRC.addLiveInBlock(LI, MDT[&*MBB], End); 1062 else { 1063 // Live-through, and we don't know the value. 1064 LRC.addLiveInBlock(LI, MDT[&*MBB]); 1065 LRC.setLiveOutValue(&*MBB, nullptr); 1066 } 1067 } 1068 BlockStart = BlockEnd; 1069 ++MBB; 1070 } 1071 Start = End; 1072 } while (Start != S.end); 1073 DEBUG(dbgs() << '\n'); 1074 } 1075 1076 LRCalc[0].calculateValues(); 1077 if (SpillMode) 1078 LRCalc[1].calculateValues(); 1079 1080 return Skipped; 1081 } 1082 1083 static bool removeDeadSegment(SlotIndex Def, LiveRange &LR) { 1084 const LiveRange::Segment *Seg = LR.getSegmentContaining(Def); 1085 if (Seg == nullptr) 1086 return true; 1087 if (Seg->end != Def.getDeadSlot()) 1088 return false; 1089 // This is a dead PHI. Remove it. 1090 LR.removeSegment(*Seg, true); 1091 return true; 1092 } 1093 1094 void SplitEditor::extendPHIRange(MachineBasicBlock &B, LiveRangeCalc &LRC, 1095 LiveRange &LR, LaneBitmask LM, 1096 ArrayRef<SlotIndex> Undefs) { 1097 for (MachineBasicBlock *P : B.predecessors()) { 1098 SlotIndex End = LIS.getMBBEndIdx(P); 1099 SlotIndex LastUse = End.getPrevSlot(); 1100 // The predecessor may not have a live-out value. That is OK, like an 1101 // undef PHI operand. 1102 LiveInterval &PLI = Edit->getParent(); 1103 // Need the cast because the inputs to ?: would otherwise be deemed 1104 // "incompatible": SubRange vs LiveInterval. 1105 LiveRange &PSR = !LM.all() ? getSubRangeForMask(LM, PLI) 1106 : static_cast<LiveRange&>(PLI); 1107 if (PSR.liveAt(LastUse)) 1108 LRC.extend(LR, End, /*PhysReg=*/0, Undefs); 1109 } 1110 } 1111 1112 void SplitEditor::extendPHIKillRanges() { 1113 // Extend live ranges to be live-out for successor PHI values. 1114 1115 // Visit each PHI def slot in the parent live interval. If the def is dead, 1116 // remove it. Otherwise, extend the live interval to reach the end indexes 1117 // of all predecessor blocks. 1118 1119 LiveInterval &ParentLI = Edit->getParent(); 1120 for (const VNInfo *V : ParentLI.valnos) { 1121 if (V->isUnused() || !V->isPHIDef()) 1122 continue; 1123 1124 unsigned RegIdx = RegAssign.lookup(V->def); 1125 LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx)); 1126 LiveRangeCalc &LRC = getLRCalc(RegIdx); 1127 MachineBasicBlock &B = *LIS.getMBBFromIndex(V->def); 1128 if (!removeDeadSegment(V->def, LI)) 1129 extendPHIRange(B, LRC, LI, LaneBitmask::getAll(), /*Undefs=*/{}); 1130 } 1131 1132 SmallVector<SlotIndex, 4> Undefs; 1133 LiveRangeCalc SubLRC; 1134 1135 for (LiveInterval::SubRange &PS : ParentLI.subranges()) { 1136 for (const VNInfo *V : PS.valnos) { 1137 if (V->isUnused() || !V->isPHIDef()) 1138 continue; 1139 unsigned RegIdx = RegAssign.lookup(V->def); 1140 LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx)); 1141 LiveInterval::SubRange &S = getSubRangeForMask(PS.LaneMask, LI); 1142 if (removeDeadSegment(V->def, S)) 1143 continue; 1144 1145 MachineBasicBlock &B = *LIS.getMBBFromIndex(V->def); 1146 SubLRC.reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT, 1147 &LIS.getVNInfoAllocator()); 1148 Undefs.clear(); 1149 LI.computeSubRangeUndefs(Undefs, PS.LaneMask, MRI, *LIS.getSlotIndexes()); 1150 extendPHIRange(B, SubLRC, S, PS.LaneMask, Undefs); 1151 } 1152 } 1153 } 1154 1155 /// rewriteAssigned - Rewrite all uses of Edit->getReg(). 1156 void SplitEditor::rewriteAssigned(bool ExtendRanges) { 1157 struct ExtPoint { 1158 ExtPoint(const MachineOperand &O, unsigned R, SlotIndex N) 1159 : MO(O), RegIdx(R), Next(N) {} 1160 MachineOperand MO; 1161 unsigned RegIdx; 1162 SlotIndex Next; 1163 }; 1164 1165 SmallVector<ExtPoint,4> ExtPoints; 1166 1167 for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Edit->getReg()), 1168 RE = MRI.reg_end(); RI != RE;) { 1169 MachineOperand &MO = *RI; 1170 MachineInstr *MI = MO.getParent(); 1171 ++RI; 1172 // LiveDebugVariables should have handled all DBG_VALUE instructions. 1173 if (MI->isDebugValue()) { 1174 DEBUG(dbgs() << "Zapping " << *MI); 1175 MO.setReg(0); 1176 continue; 1177 } 1178 1179 // <undef> operands don't really read the register, so it doesn't matter 1180 // which register we choose. When the use operand is tied to a def, we must 1181 // use the same register as the def, so just do that always. 1182 SlotIndex Idx = LIS.getInstructionIndex(*MI); 1183 if (MO.isDef() || MO.isUndef()) 1184 Idx = Idx.getRegSlot(MO.isEarlyClobber()); 1185 1186 // Rewrite to the mapped register at Idx. 1187 unsigned RegIdx = RegAssign.lookup(Idx); 1188 LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx)); 1189 MO.setReg(LI.reg); 1190 DEBUG(dbgs() << " rewr BB#" << MI->getParent()->getNumber() << '\t' 1191 << Idx << ':' << RegIdx << '\t' << *MI); 1192 1193 // Extend liveness to Idx if the instruction reads reg. 1194 if (!ExtendRanges || MO.isUndef()) 1195 continue; 1196 1197 // Skip instructions that don't read Reg. 1198 if (MO.isDef()) { 1199 if (!MO.getSubReg() && !MO.isEarlyClobber()) 1200 continue; 1201 // We may want to extend a live range for a partial redef, or for a use 1202 // tied to an early clobber. 1203 Idx = Idx.getPrevSlot(); 1204 if (!Edit->getParent().liveAt(Idx)) 1205 continue; 1206 } else 1207 Idx = Idx.getRegSlot(true); 1208 1209 SlotIndex Next = Idx.getNextSlot(); 1210 if (LI.hasSubRanges()) { 1211 // We have to delay extending subranges until we have seen all operands 1212 // defining the register. This is because a <def,read-undef> operand 1213 // will create an "undef" point, and we cannot extend any subranges 1214 // until all of them have been accounted for. 1215 if (MO.isUse()) 1216 ExtPoints.push_back(ExtPoint(MO, RegIdx, Next)); 1217 } else { 1218 LiveRangeCalc &LRC = getLRCalc(RegIdx); 1219 LRC.extend(LI, Next, 0, ArrayRef<SlotIndex>()); 1220 } 1221 } 1222 1223 for (ExtPoint &EP : ExtPoints) { 1224 LiveInterval &LI = LIS.getInterval(Edit->get(EP.RegIdx)); 1225 assert(LI.hasSubRanges()); 1226 1227 LiveRangeCalc SubLRC; 1228 unsigned Reg = EP.MO.getReg(), Sub = EP.MO.getSubReg(); 1229 LaneBitmask LM = Sub != 0 ? TRI.getSubRegIndexLaneMask(Sub) 1230 : MRI.getMaxLaneMaskForVReg(Reg); 1231 for (LiveInterval::SubRange &S : LI.subranges()) { 1232 if ((S.LaneMask & LM).none()) 1233 continue; 1234 // The problem here can be that the new register may have been created 1235 // for a partially defined original register. For example: 1236 // %vreg827:subreg_hireg<def,read-undef> = ... 1237 // ... 1238 // %vreg828<def> = COPY %vreg827 1239 if (S.empty()) 1240 continue; 1241 SubLRC.reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT, 1242 &LIS.getVNInfoAllocator()); 1243 SmallVector<SlotIndex, 4> Undefs; 1244 LI.computeSubRangeUndefs(Undefs, S.LaneMask, MRI, *LIS.getSlotIndexes()); 1245 SubLRC.extend(S, EP.Next, 0, Undefs); 1246 } 1247 } 1248 1249 for (unsigned R : *Edit) { 1250 LiveInterval &LI = LIS.getInterval(R); 1251 if (!LI.hasSubRanges()) 1252 continue; 1253 LI.clear(); 1254 LI.removeEmptySubRanges(); 1255 LIS.constructMainRangeFromSubranges(LI); 1256 } 1257 } 1258 1259 void SplitEditor::deleteRematVictims() { 1260 SmallVector<MachineInstr*, 8> Dead; 1261 for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I){ 1262 LiveInterval *LI = &LIS.getInterval(*I); 1263 for (const LiveRange::Segment &S : LI->segments) { 1264 // Dead defs end at the dead slot. 1265 if (S.end != S.valno->def.getDeadSlot()) 1266 continue; 1267 if (S.valno->isPHIDef()) 1268 continue; 1269 MachineInstr *MI = LIS.getInstructionFromIndex(S.valno->def); 1270 assert(MI && "Missing instruction for dead def"); 1271 MI->addRegisterDead(LI->reg, &TRI); 1272 1273 if (!MI->allDefsAreDead()) 1274 continue; 1275 1276 DEBUG(dbgs() << "All defs dead: " << *MI); 1277 Dead.push_back(MI); 1278 } 1279 } 1280 1281 if (Dead.empty()) 1282 return; 1283 1284 Edit->eliminateDeadDefs(Dead, None, &AA); 1285 } 1286 1287 void SplitEditor::finish(SmallVectorImpl<unsigned> *LRMap) { 1288 ++NumFinished; 1289 1290 // At this point, the live intervals in Edit contain VNInfos corresponding to 1291 // the inserted copies. 1292 1293 // Add the original defs from the parent interval. 1294 for (const VNInfo *ParentVNI : Edit->getParent().valnos) { 1295 if (ParentVNI->isUnused()) 1296 continue; 1297 unsigned RegIdx = RegAssign.lookup(ParentVNI->def); 1298 defValue(RegIdx, ParentVNI, ParentVNI->def, true); 1299 1300 // Force rematted values to be recomputed everywhere. 1301 // The new live ranges may be truncated. 1302 if (Edit->didRematerialize(ParentVNI)) 1303 for (unsigned i = 0, e = Edit->size(); i != e; ++i) 1304 forceRecompute(i, ParentVNI); 1305 } 1306 1307 // Hoist back-copies to the complement interval when in spill mode. 1308 switch (SpillMode) { 1309 case SM_Partition: 1310 // Leave all back-copies as is. 1311 break; 1312 case SM_Size: 1313 case SM_Speed: 1314 // hoistCopies will behave differently between size and speed. 1315 hoistCopies(); 1316 } 1317 1318 // Transfer the simply mapped values, check if any are skipped. 1319 bool Skipped = transferValues(); 1320 1321 // Rewrite virtual registers, possibly extending ranges. 1322 rewriteAssigned(Skipped); 1323 1324 if (Skipped) 1325 extendPHIKillRanges(); 1326 else 1327 ++NumSimple; 1328 1329 // Delete defs that were rematted everywhere. 1330 if (Skipped) 1331 deleteRematVictims(); 1332 1333 // Get rid of unused values and set phi-kill flags. 1334 for (unsigned Reg : *Edit) { 1335 LiveInterval &LI = LIS.getInterval(Reg); 1336 LI.removeEmptySubRanges(); 1337 LI.RenumberValues(); 1338 } 1339 1340 // Provide a reverse mapping from original indices to Edit ranges. 1341 if (LRMap) { 1342 LRMap->clear(); 1343 for (unsigned i = 0, e = Edit->size(); i != e; ++i) 1344 LRMap->push_back(i); 1345 } 1346 1347 // Now check if any registers were separated into multiple components. 1348 ConnectedVNInfoEqClasses ConEQ(LIS); 1349 for (unsigned i = 0, e = Edit->size(); i != e; ++i) { 1350 // Don't use iterators, they are invalidated by create() below. 1351 unsigned VReg = Edit->get(i); 1352 LiveInterval &LI = LIS.getInterval(VReg); 1353 SmallVector<LiveInterval*, 8> SplitLIs; 1354 LIS.splitSeparateComponents(LI, SplitLIs); 1355 unsigned Original = VRM.getOriginal(VReg); 1356 for (LiveInterval *SplitLI : SplitLIs) 1357 VRM.setIsSplitFromReg(SplitLI->reg, Original); 1358 1359 // The new intervals all map back to i. 1360 if (LRMap) 1361 LRMap->resize(Edit->size(), i); 1362 } 1363 1364 // Calculate spill weight and allocation hints for new intervals. 1365 Edit->calculateRegClassAndHint(VRM.getMachineFunction(), SA.Loops, MBFI); 1366 1367 assert(!LRMap || LRMap->size() == Edit->size()); 1368 } 1369 1370 1371 //===----------------------------------------------------------------------===// 1372 // Single Block Splitting 1373 //===----------------------------------------------------------------------===// 1374 1375 bool SplitAnalysis::shouldSplitSingleBlock(const BlockInfo &BI, 1376 bool SingleInstrs) const { 1377 // Always split for multiple instructions. 1378 if (!BI.isOneInstr()) 1379 return true; 1380 // Don't split for single instructions unless explicitly requested. 1381 if (!SingleInstrs) 1382 return false; 1383 // Splitting a live-through range always makes progress. 1384 if (BI.LiveIn && BI.LiveOut) 1385 return true; 1386 // No point in isolating a copy. It has no register class constraints. 1387 if (LIS.getInstructionFromIndex(BI.FirstInstr)->isCopyLike()) 1388 return false; 1389 // Finally, don't isolate an end point that was created by earlier splits. 1390 return isOriginalEndpoint(BI.FirstInstr); 1391 } 1392 1393 void SplitEditor::splitSingleBlock(const SplitAnalysis::BlockInfo &BI) { 1394 openIntv(); 1395 SlotIndex LastSplitPoint = SA.getLastSplitPoint(BI.MBB->getNumber()); 1396 SlotIndex SegStart = enterIntvBefore(std::min(BI.FirstInstr, 1397 LastSplitPoint)); 1398 if (!BI.LiveOut || BI.LastInstr < LastSplitPoint) { 1399 useIntv(SegStart, leaveIntvAfter(BI.LastInstr)); 1400 } else { 1401 // The last use is after the last valid split point. 1402 SlotIndex SegStop = leaveIntvBefore(LastSplitPoint); 1403 useIntv(SegStart, SegStop); 1404 overlapIntv(SegStop, BI.LastInstr); 1405 } 1406 } 1407 1408 1409 //===----------------------------------------------------------------------===// 1410 // Global Live Range Splitting Support 1411 //===----------------------------------------------------------------------===// 1412 1413 // These methods support a method of global live range splitting that uses a 1414 // global algorithm to decide intervals for CFG edges. They will insert split 1415 // points and color intervals in basic blocks while avoiding interference. 1416 // 1417 // Note that splitSingleBlock is also useful for blocks where both CFG edges 1418 // are on the stack. 1419 1420 void SplitEditor::splitLiveThroughBlock(unsigned MBBNum, 1421 unsigned IntvIn, SlotIndex LeaveBefore, 1422 unsigned IntvOut, SlotIndex EnterAfter){ 1423 SlotIndex Start, Stop; 1424 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(MBBNum); 1425 1426 DEBUG(dbgs() << "BB#" << MBBNum << " [" << Start << ';' << Stop 1427 << ") intf " << LeaveBefore << '-' << EnterAfter 1428 << ", live-through " << IntvIn << " -> " << IntvOut); 1429 1430 assert((IntvIn || IntvOut) && "Use splitSingleBlock for isolated blocks"); 1431 1432 assert((!LeaveBefore || LeaveBefore < Stop) && "Interference after block"); 1433 assert((!IntvIn || !LeaveBefore || LeaveBefore > Start) && "Impossible intf"); 1434 assert((!EnterAfter || EnterAfter >= Start) && "Interference before block"); 1435 1436 MachineBasicBlock *MBB = VRM.getMachineFunction().getBlockNumbered(MBBNum); 1437 1438 if (!IntvOut) { 1439 DEBUG(dbgs() << ", spill on entry.\n"); 1440 // 1441 // <<<<<<<<< Possible LeaveBefore interference. 1442 // |-----------| Live through. 1443 // -____________ Spill on entry. 1444 // 1445 selectIntv(IntvIn); 1446 SlotIndex Idx = leaveIntvAtTop(*MBB); 1447 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1448 (void)Idx; 1449 return; 1450 } 1451 1452 if (!IntvIn) { 1453 DEBUG(dbgs() << ", reload on exit.\n"); 1454 // 1455 // >>>>>>> Possible EnterAfter interference. 1456 // |-----------| Live through. 1457 // ___________-- Reload on exit. 1458 // 1459 selectIntv(IntvOut); 1460 SlotIndex Idx = enterIntvAtEnd(*MBB); 1461 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1462 (void)Idx; 1463 return; 1464 } 1465 1466 if (IntvIn == IntvOut && !LeaveBefore && !EnterAfter) { 1467 DEBUG(dbgs() << ", straight through.\n"); 1468 // 1469 // |-----------| Live through. 1470 // ------------- Straight through, same intv, no interference. 1471 // 1472 selectIntv(IntvOut); 1473 useIntv(Start, Stop); 1474 return; 1475 } 1476 1477 // We cannot legally insert splits after LSP. 1478 SlotIndex LSP = SA.getLastSplitPoint(MBBNum); 1479 assert((!IntvOut || !EnterAfter || EnterAfter < LSP) && "Impossible intf"); 1480 1481 if (IntvIn != IntvOut && (!LeaveBefore || !EnterAfter || 1482 LeaveBefore.getBaseIndex() > EnterAfter.getBoundaryIndex())) { 1483 DEBUG(dbgs() << ", switch avoiding interference.\n"); 1484 // 1485 // >>>> <<<< Non-overlapping EnterAfter/LeaveBefore interference. 1486 // |-----------| Live through. 1487 // ------======= Switch intervals between interference. 1488 // 1489 selectIntv(IntvOut); 1490 SlotIndex Idx; 1491 if (LeaveBefore && LeaveBefore < LSP) { 1492 Idx = enterIntvBefore(LeaveBefore); 1493 useIntv(Idx, Stop); 1494 } else { 1495 Idx = enterIntvAtEnd(*MBB); 1496 } 1497 selectIntv(IntvIn); 1498 useIntv(Start, Idx); 1499 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1500 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1501 return; 1502 } 1503 1504 DEBUG(dbgs() << ", create local intv for interference.\n"); 1505 // 1506 // >>><><><><<<< Overlapping EnterAfter/LeaveBefore interference. 1507 // |-----------| Live through. 1508 // ==---------== Switch intervals before/after interference. 1509 // 1510 assert(LeaveBefore <= EnterAfter && "Missed case"); 1511 1512 selectIntv(IntvOut); 1513 SlotIndex Idx = enterIntvAfter(EnterAfter); 1514 useIntv(Idx, Stop); 1515 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1516 1517 selectIntv(IntvIn); 1518 Idx = leaveIntvBefore(LeaveBefore); 1519 useIntv(Start, Idx); 1520 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1521 } 1522 1523 1524 void SplitEditor::splitRegInBlock(const SplitAnalysis::BlockInfo &BI, 1525 unsigned IntvIn, SlotIndex LeaveBefore) { 1526 SlotIndex Start, Stop; 1527 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); 1528 1529 DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " [" << Start << ';' << Stop 1530 << "), uses " << BI.FirstInstr << '-' << BI.LastInstr 1531 << ", reg-in " << IntvIn << ", leave before " << LeaveBefore 1532 << (BI.LiveOut ? ", stack-out" : ", killed in block")); 1533 1534 assert(IntvIn && "Must have register in"); 1535 assert(BI.LiveIn && "Must be live-in"); 1536 assert((!LeaveBefore || LeaveBefore > Start) && "Bad interference"); 1537 1538 if (!BI.LiveOut && (!LeaveBefore || LeaveBefore >= BI.LastInstr)) { 1539 DEBUG(dbgs() << " before interference.\n"); 1540 // 1541 // <<< Interference after kill. 1542 // |---o---x | Killed in block. 1543 // ========= Use IntvIn everywhere. 1544 // 1545 selectIntv(IntvIn); 1546 useIntv(Start, BI.LastInstr); 1547 return; 1548 } 1549 1550 SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber()); 1551 1552 if (!LeaveBefore || LeaveBefore > BI.LastInstr.getBoundaryIndex()) { 1553 // 1554 // <<< Possible interference after last use. 1555 // |---o---o---| Live-out on stack. 1556 // =========____ Leave IntvIn after last use. 1557 // 1558 // < Interference after last use. 1559 // |---o---o--o| Live-out on stack, late last use. 1560 // ============ Copy to stack after LSP, overlap IntvIn. 1561 // \_____ Stack interval is live-out. 1562 // 1563 if (BI.LastInstr < LSP) { 1564 DEBUG(dbgs() << ", spill after last use before interference.\n"); 1565 selectIntv(IntvIn); 1566 SlotIndex Idx = leaveIntvAfter(BI.LastInstr); 1567 useIntv(Start, Idx); 1568 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1569 } else { 1570 DEBUG(dbgs() << ", spill before last split point.\n"); 1571 selectIntv(IntvIn); 1572 SlotIndex Idx = leaveIntvBefore(LSP); 1573 overlapIntv(Idx, BI.LastInstr); 1574 useIntv(Start, Idx); 1575 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1576 } 1577 return; 1578 } 1579 1580 // The interference is overlapping somewhere we wanted to use IntvIn. That 1581 // means we need to create a local interval that can be allocated a 1582 // different register. 1583 unsigned LocalIntv = openIntv(); 1584 (void)LocalIntv; 1585 DEBUG(dbgs() << ", creating local interval " << LocalIntv << ".\n"); 1586 1587 if (!BI.LiveOut || BI.LastInstr < LSP) { 1588 // 1589 // <<<<<<< Interference overlapping uses. 1590 // |---o---o---| Live-out on stack. 1591 // =====----____ Leave IntvIn before interference, then spill. 1592 // 1593 SlotIndex To = leaveIntvAfter(BI.LastInstr); 1594 SlotIndex From = enterIntvBefore(LeaveBefore); 1595 useIntv(From, To); 1596 selectIntv(IntvIn); 1597 useIntv(Start, From); 1598 assert((!LeaveBefore || From <= LeaveBefore) && "Interference"); 1599 return; 1600 } 1601 1602 // <<<<<<< Interference overlapping uses. 1603 // |---o---o--o| Live-out on stack, late last use. 1604 // =====------- Copy to stack before LSP, overlap LocalIntv. 1605 // \_____ Stack interval is live-out. 1606 // 1607 SlotIndex To = leaveIntvBefore(LSP); 1608 overlapIntv(To, BI.LastInstr); 1609 SlotIndex From = enterIntvBefore(std::min(To, LeaveBefore)); 1610 useIntv(From, To); 1611 selectIntv(IntvIn); 1612 useIntv(Start, From); 1613 assert((!LeaveBefore || From <= LeaveBefore) && "Interference"); 1614 } 1615 1616 void SplitEditor::splitRegOutBlock(const SplitAnalysis::BlockInfo &BI, 1617 unsigned IntvOut, SlotIndex EnterAfter) { 1618 SlotIndex Start, Stop; 1619 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); 1620 1621 DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " [" << Start << ';' << Stop 1622 << "), uses " << BI.FirstInstr << '-' << BI.LastInstr 1623 << ", reg-out " << IntvOut << ", enter after " << EnterAfter 1624 << (BI.LiveIn ? ", stack-in" : ", defined in block")); 1625 1626 SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber()); 1627 1628 assert(IntvOut && "Must have register out"); 1629 assert(BI.LiveOut && "Must be live-out"); 1630 assert((!EnterAfter || EnterAfter < LSP) && "Bad interference"); 1631 1632 if (!BI.LiveIn && (!EnterAfter || EnterAfter <= BI.FirstInstr)) { 1633 DEBUG(dbgs() << " after interference.\n"); 1634 // 1635 // >>>> Interference before def. 1636 // | o---o---| Defined in block. 1637 // ========= Use IntvOut everywhere. 1638 // 1639 selectIntv(IntvOut); 1640 useIntv(BI.FirstInstr, Stop); 1641 return; 1642 } 1643 1644 if (!EnterAfter || EnterAfter < BI.FirstInstr.getBaseIndex()) { 1645 DEBUG(dbgs() << ", reload after interference.\n"); 1646 // 1647 // >>>> Interference before def. 1648 // |---o---o---| Live-through, stack-in. 1649 // ____========= Enter IntvOut before first use. 1650 // 1651 selectIntv(IntvOut); 1652 SlotIndex Idx = enterIntvBefore(std::min(LSP, BI.FirstInstr)); 1653 useIntv(Idx, Stop); 1654 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1655 return; 1656 } 1657 1658 // The interference is overlapping somewhere we wanted to use IntvOut. That 1659 // means we need to create a local interval that can be allocated a 1660 // different register. 1661 DEBUG(dbgs() << ", interference overlaps uses.\n"); 1662 // 1663 // >>>>>>> Interference overlapping uses. 1664 // |---o---o---| Live-through, stack-in. 1665 // ____---====== Create local interval for interference range. 1666 // 1667 selectIntv(IntvOut); 1668 SlotIndex Idx = enterIntvAfter(EnterAfter); 1669 useIntv(Idx, Stop); 1670 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1671 1672 openIntv(); 1673 SlotIndex From = enterIntvBefore(std::min(Idx, BI.FirstInstr)); 1674 useIntv(From, Idx); 1675 } 1676