1 //===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the SplitAnalysis class as well as mutator functions for 11 // live range splitting. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "regalloc" 16 #include "SplitKit.h" 17 #include "LiveRangeEdit.h" 18 #include "VirtRegMap.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 21 #include "llvm/CodeGen/MachineDominators.h" 22 #include "llvm/CodeGen/MachineInstrBuilder.h" 23 #include "llvm/CodeGen/MachineRegisterInfo.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/raw_ostream.h" 26 #include "llvm/Target/TargetInstrInfo.h" 27 #include "llvm/Target/TargetMachine.h" 28 29 using namespace llvm; 30 31 STATISTIC(NumFinished, "Number of splits finished"); 32 STATISTIC(NumSimple, "Number of splits that were simple"); 33 STATISTIC(NumCopies, "Number of copies inserted for splitting"); 34 STATISTIC(NumRemats, "Number of rematerialized defs for splitting"); 35 STATISTIC(NumRepairs, "Number of invalid live ranges repaired"); 36 37 //===----------------------------------------------------------------------===// 38 // Split Analysis 39 //===----------------------------------------------------------------------===// 40 41 SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm, 42 const LiveIntervals &lis, 43 const MachineLoopInfo &mli) 44 : MF(vrm.getMachineFunction()), 45 VRM(vrm), 46 LIS(lis), 47 Loops(mli), 48 TII(*MF.getTarget().getInstrInfo()), 49 CurLI(0), 50 LastSplitPoint(MF.getNumBlockIDs()) {} 51 52 void SplitAnalysis::clear() { 53 UseSlots.clear(); 54 UseBlocks.clear(); 55 ThroughBlocks.clear(); 56 CurLI = 0; 57 DidRepairRange = false; 58 } 59 60 SlotIndex SplitAnalysis::computeLastSplitPoint(unsigned Num) { 61 const MachineBasicBlock *MBB = MF.getBlockNumbered(Num); 62 const MachineBasicBlock *LPad = MBB->getLandingPadSuccessor(); 63 std::pair<SlotIndex, SlotIndex> &LSP = LastSplitPoint[Num]; 64 65 // Compute split points on the first call. The pair is independent of the 66 // current live interval. 67 if (!LSP.first.isValid()) { 68 MachineBasicBlock::const_iterator FirstTerm = MBB->getFirstTerminator(); 69 if (FirstTerm == MBB->end()) 70 LSP.first = LIS.getMBBEndIdx(MBB); 71 else 72 LSP.first = LIS.getInstructionIndex(FirstTerm); 73 74 // If there is a landing pad successor, also find the call instruction. 75 if (!LPad) 76 return LSP.first; 77 // There may not be a call instruction (?) in which case we ignore LPad. 78 LSP.second = LSP.first; 79 for (MachineBasicBlock::const_iterator I = FirstTerm, E = MBB->begin(); 80 I != E; --I) 81 if (I->getDesc().isCall()) { 82 LSP.second = LIS.getInstructionIndex(I); 83 break; 84 } 85 } 86 87 // If CurLI is live into a landing pad successor, move the last split point 88 // back to the call that may throw. 89 if (LPad && LSP.second.isValid() && LIS.isLiveInToMBB(*CurLI, LPad)) 90 return LSP.second; 91 else 92 return LSP.first; 93 } 94 95 /// analyzeUses - Count instructions, basic blocks, and loops using CurLI. 96 void SplitAnalysis::analyzeUses() { 97 assert(UseSlots.empty() && "Call clear first"); 98 99 // First get all the defs from the interval values. This provides the correct 100 // slots for early clobbers. 101 for (LiveInterval::const_vni_iterator I = CurLI->vni_begin(), 102 E = CurLI->vni_end(); I != E; ++I) 103 if (!(*I)->isPHIDef() && !(*I)->isUnused()) 104 UseSlots.push_back((*I)->def); 105 106 // Get use slots form the use-def chain. 107 const MachineRegisterInfo &MRI = MF.getRegInfo(); 108 for (MachineRegisterInfo::use_nodbg_iterator 109 I = MRI.use_nodbg_begin(CurLI->reg), E = MRI.use_nodbg_end(); I != E; 110 ++I) 111 if (!I.getOperand().isUndef()) 112 UseSlots.push_back(LIS.getInstructionIndex(&*I).getDefIndex()); 113 114 array_pod_sort(UseSlots.begin(), UseSlots.end()); 115 116 // Remove duplicates, keeping the smaller slot for each instruction. 117 // That is what we want for early clobbers. 118 UseSlots.erase(std::unique(UseSlots.begin(), UseSlots.end(), 119 SlotIndex::isSameInstr), 120 UseSlots.end()); 121 122 // Compute per-live block info. 123 if (!calcLiveBlockInfo()) { 124 // FIXME: calcLiveBlockInfo found inconsistencies in the live range. 125 // I am looking at you, SimpleRegisterCoalescing! 126 DidRepairRange = true; 127 ++NumRepairs; 128 DEBUG(dbgs() << "*** Fixing inconsistent live interval! ***\n"); 129 const_cast<LiveIntervals&>(LIS) 130 .shrinkToUses(const_cast<LiveInterval*>(CurLI)); 131 UseBlocks.clear(); 132 ThroughBlocks.clear(); 133 bool fixed = calcLiveBlockInfo(); 134 (void)fixed; 135 assert(fixed && "Couldn't fix broken live interval"); 136 } 137 138 DEBUG(dbgs() << "Analyze counted " 139 << UseSlots.size() << " instrs in " 140 << UseBlocks.size() << " blocks, through " 141 << NumThroughBlocks << " blocks.\n"); 142 } 143 144 /// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks 145 /// where CurLI is live. 146 bool SplitAnalysis::calcLiveBlockInfo() { 147 ThroughBlocks.resize(MF.getNumBlockIDs()); 148 NumThroughBlocks = NumGapBlocks = 0; 149 if (CurLI->empty()) 150 return true; 151 152 LiveInterval::const_iterator LVI = CurLI->begin(); 153 LiveInterval::const_iterator LVE = CurLI->end(); 154 155 SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE; 156 UseI = UseSlots.begin(); 157 UseE = UseSlots.end(); 158 159 // Loop over basic blocks where CurLI is live. 160 MachineFunction::iterator MFI = LIS.getMBBFromIndex(LVI->start); 161 for (;;) { 162 BlockInfo BI; 163 BI.MBB = MFI; 164 SlotIndex Start, Stop; 165 tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); 166 167 // If the block contains no uses, the range must be live through. At one 168 // point, SimpleRegisterCoalescing could create dangling ranges that ended 169 // mid-block. 170 if (UseI == UseE || *UseI >= Stop) { 171 ++NumThroughBlocks; 172 ThroughBlocks.set(BI.MBB->getNumber()); 173 // The range shouldn't end mid-block if there are no uses. This shouldn't 174 // happen. 175 if (LVI->end < Stop) 176 return false; 177 } else { 178 // This block has uses. Find the first and last uses in the block. 179 BI.FirstUse = *UseI; 180 assert(BI.FirstUse >= Start); 181 do ++UseI; 182 while (UseI != UseE && *UseI < Stop); 183 BI.LastUse = UseI[-1]; 184 assert(BI.LastUse < Stop); 185 186 // LVI is the first live segment overlapping MBB. 187 BI.LiveIn = LVI->start <= Start; 188 189 // Look for gaps in the live range. 190 BI.LiveOut = true; 191 while (LVI->end < Stop) { 192 SlotIndex LastStop = LVI->end; 193 if (++LVI == LVE || LVI->start >= Stop) { 194 BI.LiveOut = false; 195 break; 196 } 197 if (LastStop < LVI->start) { 198 // There is a gap in the live range. Create duplicate entries for the 199 // live-in snippet and the live-out snippet. 200 ++NumGapBlocks; 201 202 // Push the Live-in part. 203 BI.LiveThrough = false; 204 BI.LiveOut = false; 205 UseBlocks.push_back(BI); 206 UseBlocks.back().LastUse = LastStop; 207 208 // Set up BI for the live-out part. 209 BI.LiveIn = false; 210 BI.LiveOut = true; 211 BI.FirstUse = LVI->start; 212 } 213 } 214 215 // Don't set LiveThrough when the block has a gap. 216 BI.LiveThrough = BI.LiveIn && BI.LiveOut; 217 UseBlocks.push_back(BI); 218 219 // LVI is now at LVE or LVI->end >= Stop. 220 if (LVI == LVE) 221 break; 222 } 223 224 // Live segment ends exactly at Stop. Move to the next segment. 225 if (LVI->end == Stop && ++LVI == LVE) 226 break; 227 228 // Pick the next basic block. 229 if (LVI->start < Stop) 230 ++MFI; 231 else 232 MFI = LIS.getMBBFromIndex(LVI->start); 233 } 234 235 assert(getNumLiveBlocks() == countLiveBlocks(CurLI) && "Bad block count"); 236 return true; 237 } 238 239 unsigned SplitAnalysis::countLiveBlocks(const LiveInterval *cli) const { 240 if (cli->empty()) 241 return 0; 242 LiveInterval *li = const_cast<LiveInterval*>(cli); 243 LiveInterval::iterator LVI = li->begin(); 244 LiveInterval::iterator LVE = li->end(); 245 unsigned Count = 0; 246 247 // Loop over basic blocks where li is live. 248 MachineFunction::const_iterator MFI = LIS.getMBBFromIndex(LVI->start); 249 SlotIndex Stop = LIS.getMBBEndIdx(MFI); 250 for (;;) { 251 ++Count; 252 LVI = li->advanceTo(LVI, Stop); 253 if (LVI == LVE) 254 return Count; 255 do { 256 ++MFI; 257 Stop = LIS.getMBBEndIdx(MFI); 258 } while (Stop <= LVI->start); 259 } 260 } 261 262 bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const { 263 unsigned OrigReg = VRM.getOriginal(CurLI->reg); 264 const LiveInterval &Orig = LIS.getInterval(OrigReg); 265 assert(!Orig.empty() && "Splitting empty interval?"); 266 LiveInterval::const_iterator I = Orig.find(Idx); 267 268 // Range containing Idx should begin at Idx. 269 if (I != Orig.end() && I->start <= Idx) 270 return I->start == Idx; 271 272 // Range does not contain Idx, previous must end at Idx. 273 return I != Orig.begin() && (--I)->end == Idx; 274 } 275 276 void SplitAnalysis::analyze(const LiveInterval *li) { 277 clear(); 278 CurLI = li; 279 analyzeUses(); 280 } 281 282 283 //===----------------------------------------------------------------------===// 284 // Split Editor 285 //===----------------------------------------------------------------------===// 286 287 /// Create a new SplitEditor for editing the LiveInterval analyzed by SA. 288 SplitEditor::SplitEditor(SplitAnalysis &sa, 289 LiveIntervals &lis, 290 VirtRegMap &vrm, 291 MachineDominatorTree &mdt) 292 : SA(sa), LIS(lis), VRM(vrm), 293 MRI(vrm.getMachineFunction().getRegInfo()), 294 MDT(mdt), 295 TII(*vrm.getMachineFunction().getTarget().getInstrInfo()), 296 TRI(*vrm.getMachineFunction().getTarget().getRegisterInfo()), 297 Edit(0), 298 OpenIdx(0), 299 RegAssign(Allocator) 300 {} 301 302 void SplitEditor::reset(LiveRangeEdit &lre) { 303 Edit = &lre; 304 OpenIdx = 0; 305 RegAssign.clear(); 306 Values.clear(); 307 308 // We don't need to clear LiveOutCache, only LiveOutSeen entries are read. 309 LiveOutSeen.clear(); 310 311 // We don't need an AliasAnalysis since we will only be performing 312 // cheap-as-a-copy remats anyway. 313 Edit->anyRematerializable(LIS, TII, 0); 314 } 315 316 void SplitEditor::dump() const { 317 if (RegAssign.empty()) { 318 dbgs() << " empty\n"; 319 return; 320 } 321 322 for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I) 323 dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value(); 324 dbgs() << '\n'; 325 } 326 327 VNInfo *SplitEditor::defValue(unsigned RegIdx, 328 const VNInfo *ParentVNI, 329 SlotIndex Idx) { 330 assert(ParentVNI && "Mapping NULL value"); 331 assert(Idx.isValid() && "Invalid SlotIndex"); 332 assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI"); 333 LiveInterval *LI = Edit->get(RegIdx); 334 335 // Create a new value. 336 VNInfo *VNI = LI->getNextValue(Idx, 0, LIS.getVNInfoAllocator()); 337 338 // Use insert for lookup, so we can add missing values with a second lookup. 339 std::pair<ValueMap::iterator, bool> InsP = 340 Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id), VNI)); 341 342 // This was the first time (RegIdx, ParentVNI) was mapped. 343 // Keep it as a simple def without any liveness. 344 if (InsP.second) 345 return VNI; 346 347 // If the previous value was a simple mapping, add liveness for it now. 348 if (VNInfo *OldVNI = InsP.first->second) { 349 SlotIndex Def = OldVNI->def; 350 LI->addRange(LiveRange(Def, Def.getNextSlot(), OldVNI)); 351 // No longer a simple mapping. 352 InsP.first->second = 0; 353 } 354 355 // This is a complex mapping, add liveness for VNI 356 SlotIndex Def = VNI->def; 357 LI->addRange(LiveRange(Def, Def.getNextSlot(), VNI)); 358 359 return VNI; 360 } 361 362 void SplitEditor::markComplexMapped(unsigned RegIdx, const VNInfo *ParentVNI) { 363 assert(ParentVNI && "Mapping NULL value"); 364 VNInfo *&VNI = Values[std::make_pair(RegIdx, ParentVNI->id)]; 365 366 // ParentVNI was either unmapped or already complex mapped. Either way. 367 if (!VNI) 368 return; 369 370 // This was previously a single mapping. Make sure the old def is represented 371 // by a trivial live range. 372 SlotIndex Def = VNI->def; 373 Edit->get(RegIdx)->addRange(LiveRange(Def, Def.getNextSlot(), VNI)); 374 VNI = 0; 375 } 376 377 // extendRange - Extend the live range to reach Idx. 378 // Potentially create phi-def values. 379 void SplitEditor::extendRange(unsigned RegIdx, SlotIndex Idx) { 380 assert(Idx.isValid() && "Invalid SlotIndex"); 381 MachineBasicBlock *IdxMBB = LIS.getMBBFromIndex(Idx); 382 assert(IdxMBB && "No MBB at Idx"); 383 LiveInterval *LI = Edit->get(RegIdx); 384 385 // Is there a def in the same MBB we can extend? 386 if (LI->extendInBlock(LIS.getMBBStartIdx(IdxMBB), Idx)) 387 return; 388 389 // Now for the fun part. We know that ParentVNI potentially has multiple defs, 390 // and we may need to create even more phi-defs to preserve VNInfo SSA form. 391 // Perform a search for all predecessor blocks where we know the dominating 392 // VNInfo. 393 VNInfo *VNI = findReachingDefs(LI, IdxMBB, Idx.getNextSlot()); 394 395 // When there were multiple different values, we may need new PHIs. 396 if (!VNI) 397 return updateSSA(); 398 399 // Poor man's SSA update for the single-value case. 400 LiveOutPair LOP(VNI, MDT[LIS.getMBBFromIndex(VNI->def)]); 401 for (SmallVectorImpl<LiveInBlock>::iterator I = LiveInBlocks.begin(), 402 E = LiveInBlocks.end(); I != E; ++I) { 403 MachineBasicBlock *MBB = I->DomNode->getBlock(); 404 SlotIndex Start = LIS.getMBBStartIdx(MBB); 405 if (I->Kill.isValid()) 406 LI->addRange(LiveRange(Start, I->Kill, VNI)); 407 else { 408 LiveOutCache[MBB] = LOP; 409 LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), VNI)); 410 } 411 } 412 } 413 414 /// findReachingDefs - Search the CFG for known live-out values. 415 /// Add required live-in blocks to LiveInBlocks. 416 VNInfo *SplitEditor::findReachingDefs(LiveInterval *LI, 417 MachineBasicBlock *KillMBB, 418 SlotIndex Kill) { 419 // Initialize the live-out cache the first time it is needed. 420 if (LiveOutSeen.empty()) { 421 unsigned N = VRM.getMachineFunction().getNumBlockIDs(); 422 LiveOutSeen.resize(N); 423 LiveOutCache.resize(N); 424 } 425 426 // Blocks where LI should be live-in. 427 SmallVector<MachineBasicBlock*, 16> WorkList(1, KillMBB); 428 429 // Remember if we have seen more than one value. 430 bool UniqueVNI = true; 431 VNInfo *TheVNI = 0; 432 433 // Using LiveOutCache as a visited set, perform a BFS for all reaching defs. 434 for (unsigned i = 0; i != WorkList.size(); ++i) { 435 MachineBasicBlock *MBB = WorkList[i]; 436 assert(!MBB->pred_empty() && "Value live-in to entry block?"); 437 for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), 438 PE = MBB->pred_end(); PI != PE; ++PI) { 439 MachineBasicBlock *Pred = *PI; 440 LiveOutPair &LOP = LiveOutCache[Pred]; 441 442 // Is this a known live-out block? 443 if (LiveOutSeen.test(Pred->getNumber())) { 444 if (VNInfo *VNI = LOP.first) { 445 if (TheVNI && TheVNI != VNI) 446 UniqueVNI = false; 447 TheVNI = VNI; 448 } 449 continue; 450 } 451 452 // First time. LOP is garbage and must be cleared below. 453 LiveOutSeen.set(Pred->getNumber()); 454 455 // Does Pred provide a live-out value? 456 SlotIndex Start, Last; 457 tie(Start, Last) = LIS.getSlotIndexes()->getMBBRange(Pred); 458 Last = Last.getPrevSlot(); 459 VNInfo *VNI = LI->extendInBlock(Start, Last); 460 LOP.first = VNI; 461 if (VNI) { 462 LOP.second = MDT[LIS.getMBBFromIndex(VNI->def)]; 463 if (TheVNI && TheVNI != VNI) 464 UniqueVNI = false; 465 TheVNI = VNI; 466 continue; 467 } 468 LOP.second = 0; 469 470 // No, we need a live-in value for Pred as well 471 if (Pred != KillMBB) 472 WorkList.push_back(Pred); 473 else 474 // Loopback to KillMBB, so value is really live through. 475 Kill = SlotIndex(); 476 } 477 } 478 479 // Transfer WorkList to LiveInBlocks in reverse order. 480 // This ordering works best with updateSSA(). 481 LiveInBlocks.clear(); 482 LiveInBlocks.reserve(WorkList.size()); 483 while(!WorkList.empty()) 484 LiveInBlocks.push_back(MDT[WorkList.pop_back_val()]); 485 486 // The kill block may not be live-through. 487 assert(LiveInBlocks.back().DomNode->getBlock() == KillMBB); 488 LiveInBlocks.back().Kill = Kill; 489 490 return UniqueVNI ? TheVNI : 0; 491 } 492 493 void SplitEditor::updateSSA() { 494 // This is essentially the same iterative algorithm that SSAUpdater uses, 495 // except we already have a dominator tree, so we don't have to recompute it. 496 unsigned Changes; 497 do { 498 Changes = 0; 499 // Propagate live-out values down the dominator tree, inserting phi-defs 500 // when necessary. 501 for (SmallVectorImpl<LiveInBlock>::iterator I = LiveInBlocks.begin(), 502 E = LiveInBlocks.end(); I != E; ++I) { 503 MachineDomTreeNode *Node = I->DomNode; 504 // Skip block if the live-in value has already been determined. 505 if (!Node) 506 continue; 507 MachineBasicBlock *MBB = Node->getBlock(); 508 MachineDomTreeNode *IDom = Node->getIDom(); 509 LiveOutPair IDomValue; 510 511 // We need a live-in value to a block with no immediate dominator? 512 // This is probably an unreachable block that has survived somehow. 513 bool needPHI = !IDom || !LiveOutSeen.test(IDom->getBlock()->getNumber()); 514 515 // IDom dominates all of our predecessors, but it may not be their 516 // immediate dominator. Check if any of them have live-out values that are 517 // properly dominated by IDom. If so, we need a phi-def here. 518 if (!needPHI) { 519 IDomValue = LiveOutCache[IDom->getBlock()]; 520 for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), 521 PE = MBB->pred_end(); PI != PE; ++PI) { 522 LiveOutPair Value = LiveOutCache[*PI]; 523 if (!Value.first || Value.first == IDomValue.first) 524 continue; 525 // This predecessor is carrying something other than IDomValue. 526 // It could be because IDomValue hasn't propagated yet, or it could be 527 // because MBB is in the dominance frontier of that value. 528 if (MDT.dominates(IDom, Value.second)) { 529 needPHI = true; 530 break; 531 } 532 } 533 } 534 535 // The value may be live-through even if Kill is set, as can happen when 536 // we are called from extendRange. In that case LiveOutSeen is true, and 537 // LiveOutCache indicates a foreign or missing value. 538 LiveOutPair &LOP = LiveOutCache[MBB]; 539 540 // Create a phi-def if required. 541 if (needPHI) { 542 ++Changes; 543 SlotIndex Start = LIS.getMBBStartIdx(MBB); 544 unsigned RegIdx = RegAssign.lookup(Start); 545 LiveInterval *LI = Edit->get(RegIdx); 546 VNInfo *VNI = LI->getNextValue(Start, 0, LIS.getVNInfoAllocator()); 547 VNI->setIsPHIDef(true); 548 I->Value = VNI; 549 // This block is done, we know the final value. 550 I->DomNode = 0; 551 if (I->Kill.isValid()) 552 LI->addRange(LiveRange(Start, I->Kill, VNI)); 553 else { 554 LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), VNI)); 555 LOP = LiveOutPair(VNI, Node); 556 } 557 } else if (IDomValue.first) { 558 // No phi-def here. Remember incoming value. 559 I->Value = IDomValue.first; 560 if (I->Kill.isValid()) 561 continue; 562 // Propagate IDomValue if needed: 563 // MBB is live-out and doesn't define its own value. 564 if (LOP.second != Node && LOP.first != IDomValue.first) { 565 ++Changes; 566 LOP = IDomValue; 567 } 568 } 569 } 570 } while (Changes); 571 572 // The values in LiveInBlocks are now accurate. No more phi-defs are needed 573 // for these blocks, so we can color the live ranges. 574 for (SmallVectorImpl<LiveInBlock>::iterator I = LiveInBlocks.begin(), 575 E = LiveInBlocks.end(); I != E; ++I) { 576 if (!I->DomNode) 577 continue; 578 assert(I->Value && "No live-in value found"); 579 MachineBasicBlock *MBB = I->DomNode->getBlock(); 580 SlotIndex Start = LIS.getMBBStartIdx(MBB); 581 unsigned RegIdx = RegAssign.lookup(Start); 582 LiveInterval *LI = Edit->get(RegIdx); 583 LI->addRange(LiveRange(Start, I->Kill.isValid() ? 584 I->Kill : LIS.getMBBEndIdx(MBB), I->Value)); 585 } 586 } 587 588 VNInfo *SplitEditor::defFromParent(unsigned RegIdx, 589 VNInfo *ParentVNI, 590 SlotIndex UseIdx, 591 MachineBasicBlock &MBB, 592 MachineBasicBlock::iterator I) { 593 MachineInstr *CopyMI = 0; 594 SlotIndex Def; 595 LiveInterval *LI = Edit->get(RegIdx); 596 597 // We may be trying to avoid interference that ends at a deleted instruction, 598 // so always begin RegIdx 0 early and all others late. 599 bool Late = RegIdx != 0; 600 601 // Attempt cheap-as-a-copy rematerialization. 602 LiveRangeEdit::Remat RM(ParentVNI); 603 if (Edit->canRematerializeAt(RM, UseIdx, true, LIS)) { 604 Def = Edit->rematerializeAt(MBB, I, LI->reg, RM, LIS, TII, TRI, Late); 605 ++NumRemats; 606 } else { 607 // Can't remat, just insert a copy from parent. 608 CopyMI = BuildMI(MBB, I, DebugLoc(), TII.get(TargetOpcode::COPY), LI->reg) 609 .addReg(Edit->getReg()); 610 Def = LIS.getSlotIndexes()->insertMachineInstrInMaps(CopyMI, Late) 611 .getDefIndex(); 612 ++NumCopies; 613 } 614 615 // Define the value in Reg. 616 VNInfo *VNI = defValue(RegIdx, ParentVNI, Def); 617 VNI->setCopy(CopyMI); 618 return VNI; 619 } 620 621 /// Create a new virtual register and live interval. 622 unsigned SplitEditor::openIntv() { 623 // Create the complement as index 0. 624 if (Edit->empty()) 625 Edit->create(LIS, VRM); 626 627 // Create the open interval. 628 OpenIdx = Edit->size(); 629 Edit->create(LIS, VRM); 630 return OpenIdx; 631 } 632 633 void SplitEditor::selectIntv(unsigned Idx) { 634 assert(Idx != 0 && "Cannot select the complement interval"); 635 assert(Idx < Edit->size() && "Can only select previously opened interval"); 636 OpenIdx = Idx; 637 } 638 639 SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) { 640 assert(OpenIdx && "openIntv not called before enterIntvBefore"); 641 DEBUG(dbgs() << " enterIntvBefore " << Idx); 642 Idx = Idx.getBaseIndex(); 643 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 644 if (!ParentVNI) { 645 DEBUG(dbgs() << ": not live\n"); 646 return Idx; 647 } 648 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 649 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 650 assert(MI && "enterIntvBefore called with invalid index"); 651 652 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI); 653 return VNI->def; 654 } 655 656 SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) { 657 assert(OpenIdx && "openIntv not called before enterIntvAtEnd"); 658 SlotIndex End = LIS.getMBBEndIdx(&MBB); 659 SlotIndex Last = End.getPrevSlot(); 660 DEBUG(dbgs() << " enterIntvAtEnd BB#" << MBB.getNumber() << ", " << Last); 661 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last); 662 if (!ParentVNI) { 663 DEBUG(dbgs() << ": not live\n"); 664 return End; 665 } 666 DEBUG(dbgs() << ": valno " << ParentVNI->id); 667 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB, 668 LIS.getLastSplitPoint(Edit->getParent(), &MBB)); 669 RegAssign.insert(VNI->def, End, OpenIdx); 670 DEBUG(dump()); 671 return VNI->def; 672 } 673 674 /// useIntv - indicate that all instructions in MBB should use OpenLI. 675 void SplitEditor::useIntv(const MachineBasicBlock &MBB) { 676 useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB)); 677 } 678 679 void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) { 680 assert(OpenIdx && "openIntv not called before useIntv"); 681 DEBUG(dbgs() << " useIntv [" << Start << ';' << End << "):"); 682 RegAssign.insert(Start, End, OpenIdx); 683 DEBUG(dump()); 684 } 685 686 SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) { 687 assert(OpenIdx && "openIntv not called before leaveIntvAfter"); 688 DEBUG(dbgs() << " leaveIntvAfter " << Idx); 689 690 // The interval must be live beyond the instruction at Idx. 691 Idx = Idx.getBoundaryIndex(); 692 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 693 if (!ParentVNI) { 694 DEBUG(dbgs() << ": not live\n"); 695 return Idx.getNextSlot(); 696 } 697 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 698 699 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 700 assert(MI && "No instruction at index"); 701 VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), 702 llvm::next(MachineBasicBlock::iterator(MI))); 703 return VNI->def; 704 } 705 706 SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) { 707 assert(OpenIdx && "openIntv not called before leaveIntvBefore"); 708 DEBUG(dbgs() << " leaveIntvBefore " << Idx); 709 710 // The interval must be live into the instruction at Idx. 711 Idx = Idx.getBoundaryIndex(); 712 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 713 if (!ParentVNI) { 714 DEBUG(dbgs() << ": not live\n"); 715 return Idx.getNextSlot(); 716 } 717 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 718 719 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 720 assert(MI && "No instruction at index"); 721 VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI); 722 return VNI->def; 723 } 724 725 SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) { 726 assert(OpenIdx && "openIntv not called before leaveIntvAtTop"); 727 SlotIndex Start = LIS.getMBBStartIdx(&MBB); 728 DEBUG(dbgs() << " leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start); 729 730 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start); 731 if (!ParentVNI) { 732 DEBUG(dbgs() << ": not live\n"); 733 return Start; 734 } 735 736 VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB, 737 MBB.SkipPHIsAndLabels(MBB.begin())); 738 RegAssign.insert(Start, VNI->def, OpenIdx); 739 DEBUG(dump()); 740 return VNI->def; 741 } 742 743 void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) { 744 assert(OpenIdx && "openIntv not called before overlapIntv"); 745 const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start); 746 assert(ParentVNI == Edit->getParent().getVNInfoAt(End.getPrevSlot()) && 747 "Parent changes value in extended range"); 748 assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) && 749 "Range cannot span basic blocks"); 750 751 // The complement interval will be extended as needed by extendRange(). 752 if (ParentVNI) 753 markComplexMapped(0, ParentVNI); 754 DEBUG(dbgs() << " overlapIntv [" << Start << ';' << End << "):"); 755 RegAssign.insert(Start, End, OpenIdx); 756 DEBUG(dump()); 757 } 758 759 /// transferValues - Transfer all possible values to the new live ranges. 760 /// Values that were rematerialized are left alone, they need extendRange(). 761 bool SplitEditor::transferValues() { 762 bool Skipped = false; 763 LiveInBlocks.clear(); 764 RegAssignMap::const_iterator AssignI = RegAssign.begin(); 765 for (LiveInterval::const_iterator ParentI = Edit->getParent().begin(), 766 ParentE = Edit->getParent().end(); ParentI != ParentE; ++ParentI) { 767 DEBUG(dbgs() << " blit " << *ParentI << ':'); 768 VNInfo *ParentVNI = ParentI->valno; 769 // RegAssign has holes where RegIdx 0 should be used. 770 SlotIndex Start = ParentI->start; 771 AssignI.advanceTo(Start); 772 do { 773 unsigned RegIdx; 774 SlotIndex End = ParentI->end; 775 if (!AssignI.valid()) { 776 RegIdx = 0; 777 } else if (AssignI.start() <= Start) { 778 RegIdx = AssignI.value(); 779 if (AssignI.stop() < End) { 780 End = AssignI.stop(); 781 ++AssignI; 782 } 783 } else { 784 RegIdx = 0; 785 End = std::min(End, AssignI.start()); 786 } 787 788 // The interval [Start;End) is continuously mapped to RegIdx, ParentVNI. 789 DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx); 790 LiveInterval *LI = Edit->get(RegIdx); 791 792 // Check for a simply defined value that can be blitted directly. 793 if (VNInfo *VNI = Values.lookup(std::make_pair(RegIdx, ParentVNI->id))) { 794 DEBUG(dbgs() << ':' << VNI->id); 795 LI->addRange(LiveRange(Start, End, VNI)); 796 Start = End; 797 continue; 798 } 799 800 // Skip rematerialized values, we need to use extendRange() and 801 // extendPHIKillRanges() to completely recompute the live ranges. 802 if (Edit->didRematerialize(ParentVNI)) { 803 DEBUG(dbgs() << "(remat)"); 804 Skipped = true; 805 Start = End; 806 continue; 807 } 808 809 // Initialize the live-out cache the first time it is needed. 810 if (LiveOutSeen.empty()) { 811 unsigned N = VRM.getMachineFunction().getNumBlockIDs(); 812 LiveOutSeen.resize(N); 813 LiveOutCache.resize(N); 814 } 815 816 // This value has multiple defs in RegIdx, but it wasn't rematerialized, 817 // so the live range is accurate. Add live-in blocks in [Start;End) to the 818 // LiveInBlocks. 819 MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start); 820 SlotIndex BlockStart, BlockEnd; 821 tie(BlockStart, BlockEnd) = LIS.getSlotIndexes()->getMBBRange(MBB); 822 823 // The first block may be live-in, or it may have its own def. 824 if (Start != BlockStart) { 825 VNInfo *VNI = LI->extendInBlock(BlockStart, 826 std::min(BlockEnd, End).getPrevSlot()); 827 assert(VNI && "Missing def for complex mapped value"); 828 DEBUG(dbgs() << ':' << VNI->id << "*BB#" << MBB->getNumber()); 829 // MBB has its own def. Is it also live-out? 830 if (BlockEnd <= End) { 831 LiveOutSeen.set(MBB->getNumber()); 832 LiveOutCache[MBB] = LiveOutPair(VNI, MDT[MBB]); 833 } 834 // Skip to the next block for live-in. 835 ++MBB; 836 BlockStart = BlockEnd; 837 } 838 839 // Handle the live-in blocks covered by [Start;End). 840 assert(Start <= BlockStart && "Expected live-in block"); 841 while (BlockStart < End) { 842 DEBUG(dbgs() << ">BB#" << MBB->getNumber()); 843 BlockEnd = LIS.getMBBEndIdx(MBB); 844 if (BlockStart == ParentVNI->def) { 845 // This block has the def of a parent PHI, so it isn't live-in. 846 assert(ParentVNI->isPHIDef() && "Non-phi defined at block start?"); 847 VNInfo *VNI = LI->extendInBlock(BlockStart, 848 std::min(BlockEnd, End).getPrevSlot()); 849 assert(VNI && "Missing def for complex mapped parent PHI"); 850 if (End >= BlockEnd) { 851 // Live-out as well. 852 LiveOutSeen.set(MBB->getNumber()); 853 LiveOutCache[MBB] = LiveOutPair(VNI, MDT[MBB]); 854 } 855 } else { 856 // This block needs a live-in value. 857 LiveInBlocks.push_back(MDT[MBB]); 858 // The last block covered may not be live-out. 859 if (End < BlockEnd) 860 LiveInBlocks.back().Kill = End; 861 else { 862 // Live-out, but we need updateSSA to tell us the value. 863 LiveOutSeen.set(MBB->getNumber()); 864 LiveOutCache[MBB] = LiveOutPair((VNInfo*)0, 865 (MachineDomTreeNode*)0); 866 } 867 } 868 BlockStart = BlockEnd; 869 ++MBB; 870 } 871 Start = End; 872 } while (Start != ParentI->end); 873 DEBUG(dbgs() << '\n'); 874 } 875 876 if (!LiveInBlocks.empty()) 877 updateSSA(); 878 879 return Skipped; 880 } 881 882 void SplitEditor::extendPHIKillRanges() { 883 // Extend live ranges to be live-out for successor PHI values. 884 for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(), 885 E = Edit->getParent().vni_end(); I != E; ++I) { 886 const VNInfo *PHIVNI = *I; 887 if (PHIVNI->isUnused() || !PHIVNI->isPHIDef()) 888 continue; 889 unsigned RegIdx = RegAssign.lookup(PHIVNI->def); 890 MachineBasicBlock *MBB = LIS.getMBBFromIndex(PHIVNI->def); 891 for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), 892 PE = MBB->pred_end(); PI != PE; ++PI) { 893 SlotIndex End = LIS.getMBBEndIdx(*PI).getPrevSlot(); 894 // The predecessor may not have a live-out value. That is OK, like an 895 // undef PHI operand. 896 if (Edit->getParent().liveAt(End)) { 897 assert(RegAssign.lookup(End) == RegIdx && 898 "Different register assignment in phi predecessor"); 899 extendRange(RegIdx, End); 900 } 901 } 902 } 903 } 904 905 /// rewriteAssigned - Rewrite all uses of Edit->getReg(). 906 void SplitEditor::rewriteAssigned(bool ExtendRanges) { 907 for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Edit->getReg()), 908 RE = MRI.reg_end(); RI != RE;) { 909 MachineOperand &MO = RI.getOperand(); 910 MachineInstr *MI = MO.getParent(); 911 ++RI; 912 // LiveDebugVariables should have handled all DBG_VALUE instructions. 913 if (MI->isDebugValue()) { 914 DEBUG(dbgs() << "Zapping " << *MI); 915 MO.setReg(0); 916 continue; 917 } 918 919 // <undef> operands don't really read the register, so just assign them to 920 // the complement. 921 if (MO.isUse() && MO.isUndef()) { 922 MO.setReg(Edit->get(0)->reg); 923 continue; 924 } 925 926 SlotIndex Idx = LIS.getInstructionIndex(MI); 927 if (MO.isDef()) 928 Idx = MO.isEarlyClobber() ? Idx.getUseIndex() : Idx.getDefIndex(); 929 930 // Rewrite to the mapped register at Idx. 931 unsigned RegIdx = RegAssign.lookup(Idx); 932 MO.setReg(Edit->get(RegIdx)->reg); 933 DEBUG(dbgs() << " rewr BB#" << MI->getParent()->getNumber() << '\t' 934 << Idx << ':' << RegIdx << '\t' << *MI); 935 936 // Extend liveness to Idx if the instruction reads reg. 937 if (!ExtendRanges) 938 continue; 939 940 // Skip instructions that don't read Reg. 941 if (MO.isDef()) { 942 if (!MO.getSubReg() && !MO.isEarlyClobber()) 943 continue; 944 // We may wan't to extend a live range for a partial redef, or for a use 945 // tied to an early clobber. 946 Idx = Idx.getPrevSlot(); 947 if (!Edit->getParent().liveAt(Idx)) 948 continue; 949 } else 950 Idx = Idx.getUseIndex(); 951 952 extendRange(RegIdx, Idx); 953 } 954 } 955 956 void SplitEditor::deleteRematVictims() { 957 SmallVector<MachineInstr*, 8> Dead; 958 for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I){ 959 LiveInterval *LI = *I; 960 for (LiveInterval::const_iterator LII = LI->begin(), LIE = LI->end(); 961 LII != LIE; ++LII) { 962 // Dead defs end at the store slot. 963 if (LII->end != LII->valno->def.getNextSlot()) 964 continue; 965 MachineInstr *MI = LIS.getInstructionFromIndex(LII->valno->def); 966 assert(MI && "Missing instruction for dead def"); 967 MI->addRegisterDead(LI->reg, &TRI); 968 969 if (!MI->allDefsAreDead()) 970 continue; 971 972 DEBUG(dbgs() << "All defs dead: " << *MI); 973 Dead.push_back(MI); 974 } 975 } 976 977 if (Dead.empty()) 978 return; 979 980 Edit->eliminateDeadDefs(Dead, LIS, VRM, TII); 981 } 982 983 void SplitEditor::finish(SmallVectorImpl<unsigned> *LRMap) { 984 ++NumFinished; 985 986 // At this point, the live intervals in Edit contain VNInfos corresponding to 987 // the inserted copies. 988 989 // Add the original defs from the parent interval. 990 for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(), 991 E = Edit->getParent().vni_end(); I != E; ++I) { 992 const VNInfo *ParentVNI = *I; 993 if (ParentVNI->isUnused()) 994 continue; 995 unsigned RegIdx = RegAssign.lookup(ParentVNI->def); 996 VNInfo *VNI = defValue(RegIdx, ParentVNI, ParentVNI->def); 997 VNI->setIsPHIDef(ParentVNI->isPHIDef()); 998 VNI->setCopy(ParentVNI->getCopy()); 999 1000 // Mark rematted values as complex everywhere to force liveness computation. 1001 // The new live ranges may be truncated. 1002 if (Edit->didRematerialize(ParentVNI)) 1003 for (unsigned i = 0, e = Edit->size(); i != e; ++i) 1004 markComplexMapped(i, ParentVNI); 1005 } 1006 1007 #ifndef NDEBUG 1008 // Every new interval must have a def by now, otherwise the split is bogus. 1009 for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I) 1010 assert((*I)->hasAtLeastOneValue() && "Split interval has no value"); 1011 #endif 1012 1013 // Transfer the simply mapped values, check if any are skipped. 1014 bool Skipped = transferValues(); 1015 if (Skipped) 1016 extendPHIKillRanges(); 1017 else 1018 ++NumSimple; 1019 1020 // Rewrite virtual registers, possibly extending ranges. 1021 rewriteAssigned(Skipped); 1022 1023 // Delete defs that were rematted everywhere. 1024 if (Skipped) 1025 deleteRematVictims(); 1026 1027 // Get rid of unused values and set phi-kill flags. 1028 for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I) 1029 (*I)->RenumberValues(LIS); 1030 1031 // Provide a reverse mapping from original indices to Edit ranges. 1032 if (LRMap) { 1033 LRMap->clear(); 1034 for (unsigned i = 0, e = Edit->size(); i != e; ++i) 1035 LRMap->push_back(i); 1036 } 1037 1038 // Now check if any registers were separated into multiple components. 1039 ConnectedVNInfoEqClasses ConEQ(LIS); 1040 for (unsigned i = 0, e = Edit->size(); i != e; ++i) { 1041 // Don't use iterators, they are invalidated by create() below. 1042 LiveInterval *li = Edit->get(i); 1043 unsigned NumComp = ConEQ.Classify(li); 1044 if (NumComp <= 1) 1045 continue; 1046 DEBUG(dbgs() << " " << NumComp << " components: " << *li << '\n'); 1047 SmallVector<LiveInterval*, 8> dups; 1048 dups.push_back(li); 1049 for (unsigned j = 1; j != NumComp; ++j) 1050 dups.push_back(&Edit->create(LIS, VRM)); 1051 ConEQ.Distribute(&dups[0], MRI); 1052 // The new intervals all map back to i. 1053 if (LRMap) 1054 LRMap->resize(Edit->size(), i); 1055 } 1056 1057 // Calculate spill weight and allocation hints for new intervals. 1058 Edit->calculateRegClassAndHint(VRM.getMachineFunction(), LIS, SA.Loops); 1059 1060 assert(!LRMap || LRMap->size() == Edit->size()); 1061 } 1062 1063 1064 //===----------------------------------------------------------------------===// 1065 // Single Block Splitting 1066 //===----------------------------------------------------------------------===// 1067 1068 /// getMultiUseBlocks - if CurLI has more than one use in a basic block, it 1069 /// may be an advantage to split CurLI for the duration of the block. 1070 bool SplitAnalysis::getMultiUseBlocks(BlockPtrSet &Blocks) { 1071 // If CurLI is local to one block, there is no point to splitting it. 1072 if (UseBlocks.size() <= 1) 1073 return false; 1074 // Add blocks with multiple uses. 1075 for (unsigned i = 0, e = UseBlocks.size(); i != e; ++i) { 1076 const BlockInfo &BI = UseBlocks[i]; 1077 if (BI.FirstUse == BI.LastUse) 1078 continue; 1079 Blocks.insert(BI.MBB); 1080 } 1081 return !Blocks.empty(); 1082 } 1083 1084 void SplitEditor::splitSingleBlock(const SplitAnalysis::BlockInfo &BI) { 1085 openIntv(); 1086 SlotIndex LastSplitPoint = SA.getLastSplitPoint(BI.MBB->getNumber()); 1087 SlotIndex SegStart = enterIntvBefore(std::min(BI.FirstUse, 1088 LastSplitPoint)); 1089 if (!BI.LiveOut || BI.LastUse < LastSplitPoint) { 1090 useIntv(SegStart, leaveIntvAfter(BI.LastUse)); 1091 } else { 1092 // The last use is after the last valid split point. 1093 SlotIndex SegStop = leaveIntvBefore(LastSplitPoint); 1094 useIntv(SegStart, SegStop); 1095 overlapIntv(SegStop, BI.LastUse); 1096 } 1097 } 1098 1099 /// splitSingleBlocks - Split CurLI into a separate live interval inside each 1100 /// basic block in Blocks. 1101 void SplitEditor::splitSingleBlocks(const SplitAnalysis::BlockPtrSet &Blocks) { 1102 DEBUG(dbgs() << " splitSingleBlocks for " << Blocks.size() << " blocks.\n"); 1103 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA.getUseBlocks(); 1104 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 1105 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 1106 if (Blocks.count(BI.MBB)) 1107 splitSingleBlock(BI); 1108 } 1109 finish(); 1110 } 1111