1 //===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the SplitAnalysis class as well as mutator functions for 11 // live range splitting. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "regalloc" 16 #include "SplitKit.h" 17 #include "LiveRangeEdit.h" 18 #include "VirtRegMap.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 21 #include "llvm/CodeGen/MachineDominators.h" 22 #include "llvm/CodeGen/MachineInstrBuilder.h" 23 #include "llvm/CodeGen/MachineLoopInfo.h" 24 #include "llvm/CodeGen/MachineRegisterInfo.h" 25 #include "llvm/Support/Debug.h" 26 #include "llvm/Support/raw_ostream.h" 27 #include "llvm/Target/TargetInstrInfo.h" 28 #include "llvm/Target/TargetMachine.h" 29 30 using namespace llvm; 31 32 STATISTIC(NumFinished, "Number of splits finished"); 33 STATISTIC(NumSimple, "Number of splits that were simple"); 34 STATISTIC(NumCopies, "Number of copies inserted for splitting"); 35 STATISTIC(NumRemats, "Number of rematerialized defs for splitting"); 36 STATISTIC(NumRepairs, "Number of invalid live ranges repaired"); 37 38 //===----------------------------------------------------------------------===// 39 // Split Analysis 40 //===----------------------------------------------------------------------===// 41 42 SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm, 43 const LiveIntervals &lis, 44 const MachineLoopInfo &mli) 45 : MF(vrm.getMachineFunction()), 46 VRM(vrm), 47 LIS(lis), 48 Loops(mli), 49 TII(*MF.getTarget().getInstrInfo()), 50 CurLI(0), 51 LastSplitPoint(MF.getNumBlockIDs()) {} 52 53 void SplitAnalysis::clear() { 54 UseSlots.clear(); 55 UseBlocks.clear(); 56 ThroughBlocks.clear(); 57 CurLI = 0; 58 DidRepairRange = false; 59 } 60 61 SlotIndex SplitAnalysis::computeLastSplitPoint(unsigned Num) { 62 const MachineBasicBlock *MBB = MF.getBlockNumbered(Num); 63 const MachineBasicBlock *LPad = MBB->getLandingPadSuccessor(); 64 std::pair<SlotIndex, SlotIndex> &LSP = LastSplitPoint[Num]; 65 66 // Compute split points on the first call. The pair is independent of the 67 // current live interval. 68 if (!LSP.first.isValid()) { 69 MachineBasicBlock::const_iterator FirstTerm = MBB->getFirstTerminator(); 70 if (FirstTerm == MBB->end()) 71 LSP.first = LIS.getMBBEndIdx(MBB); 72 else 73 LSP.first = LIS.getInstructionIndex(FirstTerm); 74 75 // If there is a landing pad successor, also find the call instruction. 76 if (!LPad) 77 return LSP.first; 78 // There may not be a call instruction (?) in which case we ignore LPad. 79 LSP.second = LSP.first; 80 for (MachineBasicBlock::const_iterator I = MBB->end(), E = MBB->begin(); 81 I != E;) { 82 --I; 83 if (I->getDesc().isCall()) { 84 LSP.second = LIS.getInstructionIndex(I); 85 break; 86 } 87 } 88 } 89 90 // If CurLI is live into a landing pad successor, move the last split point 91 // back to the call that may throw. 92 if (LPad && LSP.second.isValid() && LIS.isLiveInToMBB(*CurLI, LPad)) 93 return LSP.second; 94 else 95 return LSP.first; 96 } 97 98 /// analyzeUses - Count instructions, basic blocks, and loops using CurLI. 99 void SplitAnalysis::analyzeUses() { 100 assert(UseSlots.empty() && "Call clear first"); 101 102 // First get all the defs from the interval values. This provides the correct 103 // slots for early clobbers. 104 for (LiveInterval::const_vni_iterator I = CurLI->vni_begin(), 105 E = CurLI->vni_end(); I != E; ++I) 106 if (!(*I)->isPHIDef() && !(*I)->isUnused()) 107 UseSlots.push_back((*I)->def); 108 109 // Get use slots form the use-def chain. 110 const MachineRegisterInfo &MRI = MF.getRegInfo(); 111 for (MachineRegisterInfo::use_nodbg_iterator 112 I = MRI.use_nodbg_begin(CurLI->reg), E = MRI.use_nodbg_end(); I != E; 113 ++I) 114 if (!I.getOperand().isUndef()) 115 UseSlots.push_back(LIS.getInstructionIndex(&*I).getDefIndex()); 116 117 array_pod_sort(UseSlots.begin(), UseSlots.end()); 118 119 // Remove duplicates, keeping the smaller slot for each instruction. 120 // That is what we want for early clobbers. 121 UseSlots.erase(std::unique(UseSlots.begin(), UseSlots.end(), 122 SlotIndex::isSameInstr), 123 UseSlots.end()); 124 125 // Compute per-live block info. 126 if (!calcLiveBlockInfo()) { 127 // FIXME: calcLiveBlockInfo found inconsistencies in the live range. 128 // I am looking at you, RegisterCoalescer! 129 DidRepairRange = true; 130 ++NumRepairs; 131 DEBUG(dbgs() << "*** Fixing inconsistent live interval! ***\n"); 132 const_cast<LiveIntervals&>(LIS) 133 .shrinkToUses(const_cast<LiveInterval*>(CurLI)); 134 UseBlocks.clear(); 135 ThroughBlocks.clear(); 136 bool fixed = calcLiveBlockInfo(); 137 (void)fixed; 138 assert(fixed && "Couldn't fix broken live interval"); 139 } 140 141 DEBUG(dbgs() << "Analyze counted " 142 << UseSlots.size() << " instrs in " 143 << UseBlocks.size() << " blocks, through " 144 << NumThroughBlocks << " blocks.\n"); 145 } 146 147 /// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks 148 /// where CurLI is live. 149 bool SplitAnalysis::calcLiveBlockInfo() { 150 ThroughBlocks.resize(MF.getNumBlockIDs()); 151 NumThroughBlocks = NumGapBlocks = 0; 152 if (CurLI->empty()) 153 return true; 154 155 LiveInterval::const_iterator LVI = CurLI->begin(); 156 LiveInterval::const_iterator LVE = CurLI->end(); 157 158 SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE; 159 UseI = UseSlots.begin(); 160 UseE = UseSlots.end(); 161 162 // Loop over basic blocks where CurLI is live. 163 MachineFunction::iterator MFI = LIS.getMBBFromIndex(LVI->start); 164 for (;;) { 165 BlockInfo BI; 166 BI.MBB = MFI; 167 SlotIndex Start, Stop; 168 tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); 169 170 // If the block contains no uses, the range must be live through. At one 171 // point, RegisterCoalescer could create dangling ranges that ended 172 // mid-block. 173 if (UseI == UseE || *UseI >= Stop) { 174 ++NumThroughBlocks; 175 ThroughBlocks.set(BI.MBB->getNumber()); 176 // The range shouldn't end mid-block if there are no uses. This shouldn't 177 // happen. 178 if (LVI->end < Stop) 179 return false; 180 } else { 181 // This block has uses. Find the first and last uses in the block. 182 BI.FirstInstr = *UseI; 183 assert(BI.FirstInstr >= Start); 184 do ++UseI; 185 while (UseI != UseE && *UseI < Stop); 186 BI.LastInstr = UseI[-1]; 187 assert(BI.LastInstr < Stop); 188 189 // LVI is the first live segment overlapping MBB. 190 BI.LiveIn = LVI->start <= Start; 191 192 // When not live in, the first use should be a def. 193 if (!BI.LiveIn) { 194 assert(LVI->start == LVI->valno->def && "Dangling LiveRange start"); 195 assert(LVI->start == BI.FirstInstr && "First instr should be a def"); 196 BI.FirstDef = BI.FirstInstr; 197 } 198 199 // Look for gaps in the live range. 200 BI.LiveOut = true; 201 while (LVI->end < Stop) { 202 SlotIndex LastStop = LVI->end; 203 if (++LVI == LVE || LVI->start >= Stop) { 204 BI.LiveOut = false; 205 BI.LastInstr = LastStop; 206 break; 207 } 208 209 if (LastStop < LVI->start) { 210 // There is a gap in the live range. Create duplicate entries for the 211 // live-in snippet and the live-out snippet. 212 ++NumGapBlocks; 213 214 // Push the Live-in part. 215 BI.LiveOut = false; 216 UseBlocks.push_back(BI); 217 UseBlocks.back().LastInstr = LastStop; 218 219 // Set up BI for the live-out part. 220 BI.LiveIn = false; 221 BI.LiveOut = true; 222 BI.FirstInstr = BI.FirstDef = LVI->start; 223 } 224 225 // A LiveRange that starts in the middle of the block must be a def. 226 assert(LVI->start == LVI->valno->def && "Dangling LiveRange start"); 227 if (!BI.FirstDef) 228 BI.FirstDef = LVI->start; 229 } 230 231 UseBlocks.push_back(BI); 232 233 // LVI is now at LVE or LVI->end >= Stop. 234 if (LVI == LVE) 235 break; 236 } 237 238 // Live segment ends exactly at Stop. Move to the next segment. 239 if (LVI->end == Stop && ++LVI == LVE) 240 break; 241 242 // Pick the next basic block. 243 if (LVI->start < Stop) 244 ++MFI; 245 else 246 MFI = LIS.getMBBFromIndex(LVI->start); 247 } 248 249 assert(getNumLiveBlocks() == countLiveBlocks(CurLI) && "Bad block count"); 250 return true; 251 } 252 253 unsigned SplitAnalysis::countLiveBlocks(const LiveInterval *cli) const { 254 if (cli->empty()) 255 return 0; 256 LiveInterval *li = const_cast<LiveInterval*>(cli); 257 LiveInterval::iterator LVI = li->begin(); 258 LiveInterval::iterator LVE = li->end(); 259 unsigned Count = 0; 260 261 // Loop over basic blocks where li is live. 262 MachineFunction::const_iterator MFI = LIS.getMBBFromIndex(LVI->start); 263 SlotIndex Stop = LIS.getMBBEndIdx(MFI); 264 for (;;) { 265 ++Count; 266 LVI = li->advanceTo(LVI, Stop); 267 if (LVI == LVE) 268 return Count; 269 do { 270 ++MFI; 271 Stop = LIS.getMBBEndIdx(MFI); 272 } while (Stop <= LVI->start); 273 } 274 } 275 276 bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const { 277 unsigned OrigReg = VRM.getOriginal(CurLI->reg); 278 const LiveInterval &Orig = LIS.getInterval(OrigReg); 279 assert(!Orig.empty() && "Splitting empty interval?"); 280 LiveInterval::const_iterator I = Orig.find(Idx); 281 282 // Range containing Idx should begin at Idx. 283 if (I != Orig.end() && I->start <= Idx) 284 return I->start == Idx; 285 286 // Range does not contain Idx, previous must end at Idx. 287 return I != Orig.begin() && (--I)->end == Idx; 288 } 289 290 void SplitAnalysis::analyze(const LiveInterval *li) { 291 clear(); 292 CurLI = li; 293 analyzeUses(); 294 } 295 296 297 //===----------------------------------------------------------------------===// 298 // Split Editor 299 //===----------------------------------------------------------------------===// 300 301 /// Create a new SplitEditor for editing the LiveInterval analyzed by SA. 302 SplitEditor::SplitEditor(SplitAnalysis &sa, 303 LiveIntervals &lis, 304 VirtRegMap &vrm, 305 MachineDominatorTree &mdt) 306 : SA(sa), LIS(lis), VRM(vrm), 307 MRI(vrm.getMachineFunction().getRegInfo()), 308 MDT(mdt), 309 TII(*vrm.getMachineFunction().getTarget().getInstrInfo()), 310 TRI(*vrm.getMachineFunction().getTarget().getRegisterInfo()), 311 Edit(0), 312 OpenIdx(0), 313 SpillMode(SM_Partition), 314 RegAssign(Allocator) 315 {} 316 317 void SplitEditor::reset(LiveRangeEdit &LRE, ComplementSpillMode SM) { 318 Edit = &LRE; 319 SpillMode = SM; 320 OpenIdx = 0; 321 RegAssign.clear(); 322 Values.clear(); 323 324 // Reset the LiveRangeCalc instances needed for this spill mode. 325 LRCalc[0].reset(&VRM.getMachineFunction()); 326 if (SpillMode) 327 LRCalc[1].reset(&VRM.getMachineFunction()); 328 329 // We don't need an AliasAnalysis since we will only be performing 330 // cheap-as-a-copy remats anyway. 331 Edit->anyRematerializable(LIS, TII, 0); 332 } 333 334 void SplitEditor::dump() const { 335 if (RegAssign.empty()) { 336 dbgs() << " empty\n"; 337 return; 338 } 339 340 for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I) 341 dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value(); 342 dbgs() << '\n'; 343 } 344 345 VNInfo *SplitEditor::defValue(unsigned RegIdx, 346 const VNInfo *ParentVNI, 347 SlotIndex Idx) { 348 assert(ParentVNI && "Mapping NULL value"); 349 assert(Idx.isValid() && "Invalid SlotIndex"); 350 assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI"); 351 LiveInterval *LI = Edit->get(RegIdx); 352 353 // Create a new value. 354 VNInfo *VNI = LI->getNextValue(Idx, 0, LIS.getVNInfoAllocator()); 355 356 // Use insert for lookup, so we can add missing values with a second lookup. 357 std::pair<ValueMap::iterator, bool> InsP = 358 Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id), 359 ValueForcePair(VNI, false))); 360 361 // This was the first time (RegIdx, ParentVNI) was mapped. 362 // Keep it as a simple def without any liveness. 363 if (InsP.second) 364 return VNI; 365 366 // If the previous value was a simple mapping, add liveness for it now. 367 if (VNInfo *OldVNI = InsP.first->second.getPointer()) { 368 SlotIndex Def = OldVNI->def; 369 LI->addRange(LiveRange(Def, Def.getNextSlot(), OldVNI)); 370 // No longer a simple mapping. Switch to a complex, non-forced mapping. 371 InsP.first->second = ValueForcePair(); 372 } 373 374 // This is a complex mapping, add liveness for VNI 375 SlotIndex Def = VNI->def; 376 LI->addRange(LiveRange(Def, Def.getNextSlot(), VNI)); 377 378 return VNI; 379 } 380 381 void SplitEditor::forceRecompute(unsigned RegIdx, const VNInfo *ParentVNI) { 382 assert(ParentVNI && "Mapping NULL value"); 383 ValueForcePair &VFP = Values[std::make_pair(RegIdx, ParentVNI->id)]; 384 VNInfo *VNI = VFP.getPointer(); 385 386 // ParentVNI was either unmapped or already complex mapped. Either way, just 387 // set the force bit. 388 if (!VNI) { 389 VFP.setInt(true); 390 return; 391 } 392 393 // This was previously a single mapping. Make sure the old def is represented 394 // by a trivial live range. 395 SlotIndex Def = VNI->def; 396 Edit->get(RegIdx)->addRange(LiveRange(Def, Def.getNextSlot(), VNI)); 397 // Mark as complex mapped, forced. 398 VFP = ValueForcePair(0, true); 399 } 400 401 VNInfo *SplitEditor::defFromParent(unsigned RegIdx, 402 VNInfo *ParentVNI, 403 SlotIndex UseIdx, 404 MachineBasicBlock &MBB, 405 MachineBasicBlock::iterator I) { 406 MachineInstr *CopyMI = 0; 407 SlotIndex Def; 408 LiveInterval *LI = Edit->get(RegIdx); 409 410 // We may be trying to avoid interference that ends at a deleted instruction, 411 // so always begin RegIdx 0 early and all others late. 412 bool Late = RegIdx != 0; 413 414 // Attempt cheap-as-a-copy rematerialization. 415 LiveRangeEdit::Remat RM(ParentVNI); 416 if (Edit->canRematerializeAt(RM, UseIdx, true, LIS)) { 417 Def = Edit->rematerializeAt(MBB, I, LI->reg, RM, LIS, TII, TRI, Late); 418 ++NumRemats; 419 } else { 420 // Can't remat, just insert a copy from parent. 421 CopyMI = BuildMI(MBB, I, DebugLoc(), TII.get(TargetOpcode::COPY), LI->reg) 422 .addReg(Edit->getReg()); 423 Def = LIS.getSlotIndexes()->insertMachineInstrInMaps(CopyMI, Late) 424 .getDefIndex(); 425 ++NumCopies; 426 } 427 428 // Define the value in Reg. 429 VNInfo *VNI = defValue(RegIdx, ParentVNI, Def); 430 VNI->setCopy(CopyMI); 431 return VNI; 432 } 433 434 /// Create a new virtual register and live interval. 435 unsigned SplitEditor::openIntv() { 436 // Create the complement as index 0. 437 if (Edit->empty()) 438 Edit->create(LIS, VRM); 439 440 // Create the open interval. 441 OpenIdx = Edit->size(); 442 Edit->create(LIS, VRM); 443 return OpenIdx; 444 } 445 446 void SplitEditor::selectIntv(unsigned Idx) { 447 assert(Idx != 0 && "Cannot select the complement interval"); 448 assert(Idx < Edit->size() && "Can only select previously opened interval"); 449 DEBUG(dbgs() << " selectIntv " << OpenIdx << " -> " << Idx << '\n'); 450 OpenIdx = Idx; 451 } 452 453 SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) { 454 assert(OpenIdx && "openIntv not called before enterIntvBefore"); 455 DEBUG(dbgs() << " enterIntvBefore " << Idx); 456 Idx = Idx.getBaseIndex(); 457 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 458 if (!ParentVNI) { 459 DEBUG(dbgs() << ": not live\n"); 460 return Idx; 461 } 462 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 463 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 464 assert(MI && "enterIntvBefore called with invalid index"); 465 466 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI); 467 return VNI->def; 468 } 469 470 SlotIndex SplitEditor::enterIntvAfter(SlotIndex Idx) { 471 assert(OpenIdx && "openIntv not called before enterIntvAfter"); 472 DEBUG(dbgs() << " enterIntvAfter " << Idx); 473 Idx = Idx.getBoundaryIndex(); 474 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 475 if (!ParentVNI) { 476 DEBUG(dbgs() << ": not live\n"); 477 return Idx; 478 } 479 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 480 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 481 assert(MI && "enterIntvAfter called with invalid index"); 482 483 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), 484 llvm::next(MachineBasicBlock::iterator(MI))); 485 return VNI->def; 486 } 487 488 SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) { 489 assert(OpenIdx && "openIntv not called before enterIntvAtEnd"); 490 SlotIndex End = LIS.getMBBEndIdx(&MBB); 491 SlotIndex Last = End.getPrevSlot(); 492 DEBUG(dbgs() << " enterIntvAtEnd BB#" << MBB.getNumber() << ", " << Last); 493 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last); 494 if (!ParentVNI) { 495 DEBUG(dbgs() << ": not live\n"); 496 return End; 497 } 498 DEBUG(dbgs() << ": valno " << ParentVNI->id); 499 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB, 500 LIS.getLastSplitPoint(Edit->getParent(), &MBB)); 501 RegAssign.insert(VNI->def, End, OpenIdx); 502 DEBUG(dump()); 503 return VNI->def; 504 } 505 506 /// useIntv - indicate that all instructions in MBB should use OpenLI. 507 void SplitEditor::useIntv(const MachineBasicBlock &MBB) { 508 useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB)); 509 } 510 511 void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) { 512 assert(OpenIdx && "openIntv not called before useIntv"); 513 DEBUG(dbgs() << " useIntv [" << Start << ';' << End << "):"); 514 RegAssign.insert(Start, End, OpenIdx); 515 DEBUG(dump()); 516 } 517 518 SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) { 519 assert(OpenIdx && "openIntv not called before leaveIntvAfter"); 520 DEBUG(dbgs() << " leaveIntvAfter " << Idx); 521 522 // The interval must be live beyond the instruction at Idx. 523 Idx = Idx.getBoundaryIndex(); 524 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 525 if (!ParentVNI) { 526 DEBUG(dbgs() << ": not live\n"); 527 return Idx.getNextSlot(); 528 } 529 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 530 531 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 532 assert(MI && "No instruction at index"); 533 VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), 534 llvm::next(MachineBasicBlock::iterator(MI))); 535 return VNI->def; 536 } 537 538 SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) { 539 assert(OpenIdx && "openIntv not called before leaveIntvBefore"); 540 DEBUG(dbgs() << " leaveIntvBefore " << Idx); 541 542 // The interval must be live into the instruction at Idx. 543 Idx = Idx.getBaseIndex(); 544 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 545 if (!ParentVNI) { 546 DEBUG(dbgs() << ": not live\n"); 547 return Idx.getNextSlot(); 548 } 549 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 550 551 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 552 assert(MI && "No instruction at index"); 553 VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI); 554 return VNI->def; 555 } 556 557 SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) { 558 assert(OpenIdx && "openIntv not called before leaveIntvAtTop"); 559 SlotIndex Start = LIS.getMBBStartIdx(&MBB); 560 DEBUG(dbgs() << " leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start); 561 562 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start); 563 if (!ParentVNI) { 564 DEBUG(dbgs() << ": not live\n"); 565 return Start; 566 } 567 568 VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB, 569 MBB.SkipPHIsAndLabels(MBB.begin())); 570 RegAssign.insert(Start, VNI->def, OpenIdx); 571 DEBUG(dump()); 572 return VNI->def; 573 } 574 575 void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) { 576 assert(OpenIdx && "openIntv not called before overlapIntv"); 577 const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start); 578 assert(ParentVNI == Edit->getParent().getVNInfoAt(End.getPrevSlot()) && 579 "Parent changes value in extended range"); 580 assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) && 581 "Range cannot span basic blocks"); 582 583 // The complement interval will be extended as needed by LRCalc.extend(). 584 if (ParentVNI) 585 forceRecompute(0, ParentVNI); 586 DEBUG(dbgs() << " overlapIntv [" << Start << ';' << End << "):"); 587 RegAssign.insert(Start, End, OpenIdx); 588 DEBUG(dump()); 589 } 590 591 //===----------------------------------------------------------------------===// 592 // Spill modes 593 //===----------------------------------------------------------------------===// 594 595 void SplitEditor::removeBackCopies(SmallVectorImpl<VNInfo*> &Copies) { 596 LiveInterval *LI = Edit->get(0); 597 DEBUG(dbgs() << "Removing " << Copies.size() << " back-copies.\n"); 598 RegAssignMap::iterator AssignI; 599 AssignI.setMap(RegAssign); 600 601 for (unsigned i = 0, e = Copies.size(); i != e; ++i) { 602 VNInfo *VNI = Copies[i]; 603 SlotIndex Def = VNI->def; 604 MachineInstr *MI = LIS.getInstructionFromIndex(Def); 605 assert(MI && "No instruction for back-copy"); 606 607 MachineBasicBlock *MBB = MI->getParent(); 608 MachineBasicBlock::iterator MBBI(MI); 609 bool AtBegin; 610 do AtBegin = MBBI == MBB->begin(); 611 while (!AtBegin && (--MBBI)->isDebugValue()); 612 613 DEBUG(dbgs() << "Removing " << Def << '\t' << *MI); 614 LI->removeValNo(VNI); 615 LIS.RemoveMachineInstrFromMaps(MI); 616 MI->eraseFromParent(); 617 618 // Adjust RegAssign if a register assignment is killed at VNI->def. We 619 // want to avoid calculating the live range of the source register if 620 // possible. 621 AssignI.find(VNI->def.getPrevSlot()); 622 if (!AssignI.valid() || AssignI.start() >= Def) 623 continue; 624 // If MI doesn't kill the assigned register, just leave it. 625 if (AssignI.stop() != Def) 626 continue; 627 unsigned RegIdx = AssignI.value(); 628 if (AtBegin || !MBBI->readsVirtualRegister(Edit->getReg())) { 629 DEBUG(dbgs() << " cannot find simple kill of RegIdx " << RegIdx << '\n'); 630 forceRecompute(RegIdx, Edit->getParent().getVNInfoAt(Def)); 631 } else { 632 SlotIndex Kill = LIS.getInstructionIndex(MBBI).getDefIndex(); 633 DEBUG(dbgs() << " move kill to " << Kill << '\t' << *MBBI); 634 AssignI.setStop(Kill); 635 } 636 } 637 } 638 639 MachineBasicBlock* 640 SplitEditor::findShallowDominator(MachineBasicBlock *MBB, 641 MachineBasicBlock *DefMBB) { 642 if (MBB == DefMBB) 643 return MBB; 644 assert(MDT.dominates(DefMBB, MBB) && "MBB must be dominated by the def."); 645 646 const MachineLoopInfo &Loops = SA.Loops; 647 const MachineLoop *DefLoop = Loops.getLoopFor(DefMBB); 648 MachineDomTreeNode *DefDomNode = MDT[DefMBB]; 649 650 // Best candidate so far. 651 MachineBasicBlock *BestMBB = MBB; 652 unsigned BestDepth = UINT_MAX; 653 654 for (;;) { 655 const MachineLoop *Loop = Loops.getLoopFor(MBB); 656 657 // MBB isn't in a loop, it doesn't get any better. All dominators have a 658 // higher frequency by definition. 659 if (!Loop) { 660 DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#" 661 << MBB->getNumber() << " at depth 0\n"); 662 return MBB; 663 } 664 665 // We'll never be able to exit the DefLoop. 666 if (Loop == DefLoop) { 667 DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#" 668 << MBB->getNumber() << " in the same loop\n"); 669 return MBB; 670 } 671 672 // Least busy dominator seen so far. 673 unsigned Depth = Loop->getLoopDepth(); 674 if (Depth < BestDepth) { 675 BestMBB = MBB; 676 BestDepth = Depth; 677 DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#" 678 << MBB->getNumber() << " at depth " << Depth << '\n'); 679 } 680 681 // Leave loop by going to the immediate dominator of the loop header. 682 // This is a bigger stride than simply walking up the dominator tree. 683 MachineDomTreeNode *IDom = MDT[Loop->getHeader()]->getIDom(); 684 685 // Too far up the dominator tree? 686 if (!IDom || !MDT.dominates(DefDomNode, IDom)) 687 return BestMBB; 688 689 MBB = IDom->getBlock(); 690 } 691 } 692 693 void SplitEditor::hoistCopiesForSize() { 694 // Get the complement interval, always RegIdx 0. 695 LiveInterval *LI = Edit->get(0); 696 LiveInterval *Parent = &Edit->getParent(); 697 698 // Track the nearest common dominator for all back-copies for each ParentVNI, 699 // indexed by ParentVNI->id. 700 typedef std::pair<MachineBasicBlock*, SlotIndex> DomPair; 701 SmallVector<DomPair, 8> NearestDom(Parent->getNumValNums()); 702 703 // Find the nearest common dominator for parent values with multiple 704 // back-copies. If a single back-copy dominates, put it in DomPair.second. 705 for (LiveInterval::vni_iterator VI = LI->vni_begin(), VE = LI->vni_end(); 706 VI != VE; ++VI) { 707 VNInfo *VNI = *VI; 708 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def); 709 assert(ParentVNI && "Parent not live at complement def"); 710 711 // Don't hoist remats. The complement is probably going to disappear 712 // completely anyway. 713 if (Edit->didRematerialize(ParentVNI)) 714 continue; 715 716 MachineBasicBlock *ValMBB = LIS.getMBBFromIndex(VNI->def); 717 DomPair &Dom = NearestDom[ParentVNI->id]; 718 719 // Keep directly defined parent values. This is either a PHI or an 720 // instruction in the complement range. All other copies of ParentVNI 721 // should be eliminated. 722 if (VNI->def == ParentVNI->def) { 723 DEBUG(dbgs() << "Direct complement def at " << VNI->def << '\n'); 724 Dom = DomPair(ValMBB, VNI->def); 725 continue; 726 } 727 // Skip the singly mapped values. There is nothing to gain from hoisting a 728 // single back-copy. 729 if (Values.lookup(std::make_pair(0, ParentVNI->id)).getPointer()) { 730 DEBUG(dbgs() << "Single complement def at " << VNI->def << '\n'); 731 continue; 732 } 733 734 if (!Dom.first) { 735 // First time we see ParentVNI. VNI dominates itself. 736 Dom = DomPair(ValMBB, VNI->def); 737 } else if (Dom.first == ValMBB) { 738 // Two defs in the same block. Pick the earlier def. 739 if (!Dom.second.isValid() || VNI->def < Dom.second) 740 Dom.second = VNI->def; 741 } else { 742 // Different basic blocks. Check if one dominates. 743 MachineBasicBlock *Near = 744 MDT.findNearestCommonDominator(Dom.first, ValMBB); 745 if (Near == ValMBB) 746 // Def ValMBB dominates. 747 Dom = DomPair(ValMBB, VNI->def); 748 else if (Near != Dom.first) 749 // None dominate. Hoist to common dominator, need new def. 750 Dom = DomPair(Near, SlotIndex()); 751 } 752 753 DEBUG(dbgs() << "Multi-mapped complement " << VNI->id << '@' << VNI->def 754 << " for parent " << ParentVNI->id << '@' << ParentVNI->def 755 << " hoist to BB#" << Dom.first->getNumber() << ' ' 756 << Dom.second << '\n'); 757 } 758 759 // Insert the hoisted copies. 760 for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) { 761 DomPair &Dom = NearestDom[i]; 762 if (!Dom.first || Dom.second.isValid()) 763 continue; 764 // This value needs a hoisted copy inserted at the end of Dom.first. 765 VNInfo *ParentVNI = Parent->getValNumInfo(i); 766 MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(ParentVNI->def); 767 // Get a less loopy dominator than Dom.first. 768 Dom.first = findShallowDominator(Dom.first, DefMBB); 769 SlotIndex Last = LIS.getMBBEndIdx(Dom.first).getPrevSlot(); 770 Dom.second = 771 defFromParent(0, ParentVNI, Last, *Dom.first, 772 LIS.getLastSplitPoint(Edit->getParent(), Dom.first))->def; 773 } 774 775 // Remove redundant back-copies that are now known to be dominated by another 776 // def with the same value. 777 SmallVector<VNInfo*, 8> BackCopies; 778 for (LiveInterval::vni_iterator VI = LI->vni_begin(), VE = LI->vni_end(); 779 VI != VE; ++VI) { 780 VNInfo *VNI = *VI; 781 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def); 782 const DomPair &Dom = NearestDom[ParentVNI->id]; 783 if (!Dom.first || Dom.second == VNI->def) 784 continue; 785 BackCopies.push_back(VNI); 786 forceRecompute(0, ParentVNI); 787 } 788 removeBackCopies(BackCopies); 789 } 790 791 792 /// transferValues - Transfer all possible values to the new live ranges. 793 /// Values that were rematerialized are left alone, they need LRCalc.extend(). 794 bool SplitEditor::transferValues() { 795 bool Skipped = false; 796 RegAssignMap::const_iterator AssignI = RegAssign.begin(); 797 for (LiveInterval::const_iterator ParentI = Edit->getParent().begin(), 798 ParentE = Edit->getParent().end(); ParentI != ParentE; ++ParentI) { 799 DEBUG(dbgs() << " blit " << *ParentI << ':'); 800 VNInfo *ParentVNI = ParentI->valno; 801 // RegAssign has holes where RegIdx 0 should be used. 802 SlotIndex Start = ParentI->start; 803 AssignI.advanceTo(Start); 804 do { 805 unsigned RegIdx; 806 SlotIndex End = ParentI->end; 807 if (!AssignI.valid()) { 808 RegIdx = 0; 809 } else if (AssignI.start() <= Start) { 810 RegIdx = AssignI.value(); 811 if (AssignI.stop() < End) { 812 End = AssignI.stop(); 813 ++AssignI; 814 } 815 } else { 816 RegIdx = 0; 817 End = std::min(End, AssignI.start()); 818 } 819 820 // The interval [Start;End) is continuously mapped to RegIdx, ParentVNI. 821 DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx); 822 LiveInterval *LI = Edit->get(RegIdx); 823 824 // Check for a simply defined value that can be blitted directly. 825 ValueForcePair VFP = Values.lookup(std::make_pair(RegIdx, ParentVNI->id)); 826 if (VNInfo *VNI = VFP.getPointer()) { 827 DEBUG(dbgs() << ':' << VNI->id); 828 LI->addRange(LiveRange(Start, End, VNI)); 829 Start = End; 830 continue; 831 } 832 833 // Skip values with forced recomputation. 834 if (VFP.getInt()) { 835 DEBUG(dbgs() << "(recalc)"); 836 Skipped = true; 837 Start = End; 838 continue; 839 } 840 841 LiveRangeCalc &LRC = getLRCalc(RegIdx); 842 843 // This value has multiple defs in RegIdx, but it wasn't rematerialized, 844 // so the live range is accurate. Add live-in blocks in [Start;End) to the 845 // LiveInBlocks. 846 MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start); 847 SlotIndex BlockStart, BlockEnd; 848 tie(BlockStart, BlockEnd) = LIS.getSlotIndexes()->getMBBRange(MBB); 849 850 // The first block may be live-in, or it may have its own def. 851 if (Start != BlockStart) { 852 VNInfo *VNI = LI->extendInBlock(BlockStart, std::min(BlockEnd, End)); 853 assert(VNI && "Missing def for complex mapped value"); 854 DEBUG(dbgs() << ':' << VNI->id << "*BB#" << MBB->getNumber()); 855 // MBB has its own def. Is it also live-out? 856 if (BlockEnd <= End) 857 LRC.setLiveOutValue(MBB, VNI); 858 859 // Skip to the next block for live-in. 860 ++MBB; 861 BlockStart = BlockEnd; 862 } 863 864 // Handle the live-in blocks covered by [Start;End). 865 assert(Start <= BlockStart && "Expected live-in block"); 866 while (BlockStart < End) { 867 DEBUG(dbgs() << ">BB#" << MBB->getNumber()); 868 BlockEnd = LIS.getMBBEndIdx(MBB); 869 if (BlockStart == ParentVNI->def) { 870 // This block has the def of a parent PHI, so it isn't live-in. 871 assert(ParentVNI->isPHIDef() && "Non-phi defined at block start?"); 872 VNInfo *VNI = LI->extendInBlock(BlockStart, std::min(BlockEnd, End)); 873 assert(VNI && "Missing def for complex mapped parent PHI"); 874 if (End >= BlockEnd) 875 LRC.setLiveOutValue(MBB, VNI); // Live-out as well. 876 } else { 877 // This block needs a live-in value. The last block covered may not 878 // be live-out. 879 if (End < BlockEnd) 880 LRC.addLiveInBlock(LI, MDT[MBB], End); 881 else { 882 // Live-through, and we don't know the value. 883 LRC.addLiveInBlock(LI, MDT[MBB]); 884 LRC.setLiveOutValue(MBB, 0); 885 } 886 } 887 BlockStart = BlockEnd; 888 ++MBB; 889 } 890 Start = End; 891 } while (Start != ParentI->end); 892 DEBUG(dbgs() << '\n'); 893 } 894 895 LRCalc[0].calculateValues(LIS.getSlotIndexes(), &MDT, 896 &LIS.getVNInfoAllocator()); 897 if (SpillMode) 898 LRCalc[1].calculateValues(LIS.getSlotIndexes(), &MDT, 899 &LIS.getVNInfoAllocator()); 900 901 return Skipped; 902 } 903 904 void SplitEditor::extendPHIKillRanges() { 905 // Extend live ranges to be live-out for successor PHI values. 906 for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(), 907 E = Edit->getParent().vni_end(); I != E; ++I) { 908 const VNInfo *PHIVNI = *I; 909 if (PHIVNI->isUnused() || !PHIVNI->isPHIDef()) 910 continue; 911 unsigned RegIdx = RegAssign.lookup(PHIVNI->def); 912 LiveInterval *LI = Edit->get(RegIdx); 913 LiveRangeCalc &LRC = getLRCalc(RegIdx); 914 MachineBasicBlock *MBB = LIS.getMBBFromIndex(PHIVNI->def); 915 for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), 916 PE = MBB->pred_end(); PI != PE; ++PI) { 917 SlotIndex End = LIS.getMBBEndIdx(*PI); 918 SlotIndex LastUse = End.getPrevSlot(); 919 // The predecessor may not have a live-out value. That is OK, like an 920 // undef PHI operand. 921 if (Edit->getParent().liveAt(LastUse)) { 922 assert(RegAssign.lookup(LastUse) == RegIdx && 923 "Different register assignment in phi predecessor"); 924 LRC.extend(LI, End, 925 LIS.getSlotIndexes(), &MDT, &LIS.getVNInfoAllocator()); 926 } 927 } 928 } 929 } 930 931 /// rewriteAssigned - Rewrite all uses of Edit->getReg(). 932 void SplitEditor::rewriteAssigned(bool ExtendRanges) { 933 for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Edit->getReg()), 934 RE = MRI.reg_end(); RI != RE;) { 935 MachineOperand &MO = RI.getOperand(); 936 MachineInstr *MI = MO.getParent(); 937 ++RI; 938 // LiveDebugVariables should have handled all DBG_VALUE instructions. 939 if (MI->isDebugValue()) { 940 DEBUG(dbgs() << "Zapping " << *MI); 941 MO.setReg(0); 942 continue; 943 } 944 945 // <undef> operands don't really read the register, so it doesn't matter 946 // which register we choose. When the use operand is tied to a def, we must 947 // use the same register as the def, so just do that always. 948 SlotIndex Idx = LIS.getInstructionIndex(MI); 949 if (MO.isDef() || MO.isUndef()) 950 Idx = MO.isEarlyClobber() ? Idx.getUseIndex() : Idx.getDefIndex(); 951 952 // Rewrite to the mapped register at Idx. 953 unsigned RegIdx = RegAssign.lookup(Idx); 954 LiveInterval *LI = Edit->get(RegIdx); 955 MO.setReg(LI->reg); 956 DEBUG(dbgs() << " rewr BB#" << MI->getParent()->getNumber() << '\t' 957 << Idx << ':' << RegIdx << '\t' << *MI); 958 959 // Extend liveness to Idx if the instruction reads reg. 960 if (!ExtendRanges || MO.isUndef()) 961 continue; 962 963 // Skip instructions that don't read Reg. 964 if (MO.isDef()) { 965 if (!MO.getSubReg() && !MO.isEarlyClobber()) 966 continue; 967 // We may wan't to extend a live range for a partial redef, or for a use 968 // tied to an early clobber. 969 Idx = Idx.getPrevSlot(); 970 if (!Edit->getParent().liveAt(Idx)) 971 continue; 972 } else 973 Idx = Idx.getUseIndex(); 974 975 getLRCalc(RegIdx).extend(LI, Idx.getNextSlot(), LIS.getSlotIndexes(), 976 &MDT, &LIS.getVNInfoAllocator()); 977 } 978 } 979 980 void SplitEditor::deleteRematVictims() { 981 SmallVector<MachineInstr*, 8> Dead; 982 for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I){ 983 LiveInterval *LI = *I; 984 for (LiveInterval::const_iterator LII = LI->begin(), LIE = LI->end(); 985 LII != LIE; ++LII) { 986 // Dead defs end at the store slot. 987 if (LII->end != LII->valno->def.getNextSlot()) 988 continue; 989 MachineInstr *MI = LIS.getInstructionFromIndex(LII->valno->def); 990 assert(MI && "Missing instruction for dead def"); 991 MI->addRegisterDead(LI->reg, &TRI); 992 993 if (!MI->allDefsAreDead()) 994 continue; 995 996 DEBUG(dbgs() << "All defs dead: " << *MI); 997 Dead.push_back(MI); 998 } 999 } 1000 1001 if (Dead.empty()) 1002 return; 1003 1004 Edit->eliminateDeadDefs(Dead, LIS, VRM, TII); 1005 } 1006 1007 void SplitEditor::finish(SmallVectorImpl<unsigned> *LRMap) { 1008 ++NumFinished; 1009 1010 // At this point, the live intervals in Edit contain VNInfos corresponding to 1011 // the inserted copies. 1012 1013 // Add the original defs from the parent interval. 1014 for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(), 1015 E = Edit->getParent().vni_end(); I != E; ++I) { 1016 const VNInfo *ParentVNI = *I; 1017 if (ParentVNI->isUnused()) 1018 continue; 1019 unsigned RegIdx = RegAssign.lookup(ParentVNI->def); 1020 VNInfo *VNI = defValue(RegIdx, ParentVNI, ParentVNI->def); 1021 VNI->setIsPHIDef(ParentVNI->isPHIDef()); 1022 VNI->setCopy(ParentVNI->getCopy()); 1023 1024 // Force rematted values to be recomputed everywhere. 1025 // The new live ranges may be truncated. 1026 if (Edit->didRematerialize(ParentVNI)) 1027 for (unsigned i = 0, e = Edit->size(); i != e; ++i) 1028 forceRecompute(i, ParentVNI); 1029 } 1030 1031 // Hoist back-copies to the complement interval when in spill mode. 1032 switch (SpillMode) { 1033 case SM_Partition: 1034 // Leave all back-copies as is. 1035 break; 1036 case SM_Size: 1037 hoistCopiesForSize(); 1038 break; 1039 case SM_Speed: 1040 llvm_unreachable("Spill mode 'speed' not implemented yet"); 1041 break; 1042 } 1043 1044 // Transfer the simply mapped values, check if any are skipped. 1045 bool Skipped = transferValues(); 1046 if (Skipped) 1047 extendPHIKillRanges(); 1048 else 1049 ++NumSimple; 1050 1051 // Rewrite virtual registers, possibly extending ranges. 1052 rewriteAssigned(Skipped); 1053 1054 // Delete defs that were rematted everywhere. 1055 if (Skipped) 1056 deleteRematVictims(); 1057 1058 // Get rid of unused values and set phi-kill flags. 1059 for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I) 1060 (*I)->RenumberValues(LIS); 1061 1062 // Provide a reverse mapping from original indices to Edit ranges. 1063 if (LRMap) { 1064 LRMap->clear(); 1065 for (unsigned i = 0, e = Edit->size(); i != e; ++i) 1066 LRMap->push_back(i); 1067 } 1068 1069 // Now check if any registers were separated into multiple components. 1070 ConnectedVNInfoEqClasses ConEQ(LIS); 1071 for (unsigned i = 0, e = Edit->size(); i != e; ++i) { 1072 // Don't use iterators, they are invalidated by create() below. 1073 LiveInterval *li = Edit->get(i); 1074 unsigned NumComp = ConEQ.Classify(li); 1075 if (NumComp <= 1) 1076 continue; 1077 DEBUG(dbgs() << " " << NumComp << " components: " << *li << '\n'); 1078 SmallVector<LiveInterval*, 8> dups; 1079 dups.push_back(li); 1080 for (unsigned j = 1; j != NumComp; ++j) 1081 dups.push_back(&Edit->create(LIS, VRM)); 1082 ConEQ.Distribute(&dups[0], MRI); 1083 // The new intervals all map back to i. 1084 if (LRMap) 1085 LRMap->resize(Edit->size(), i); 1086 } 1087 1088 // Calculate spill weight and allocation hints for new intervals. 1089 Edit->calculateRegClassAndHint(VRM.getMachineFunction(), LIS, SA.Loops); 1090 1091 assert(!LRMap || LRMap->size() == Edit->size()); 1092 } 1093 1094 1095 //===----------------------------------------------------------------------===// 1096 // Single Block Splitting 1097 //===----------------------------------------------------------------------===// 1098 1099 bool SplitAnalysis::shouldSplitSingleBlock(const BlockInfo &BI, 1100 bool SingleInstrs) const { 1101 // Always split for multiple instructions. 1102 if (!BI.isOneInstr()) 1103 return true; 1104 // Don't split for single instructions unless explicitly requested. 1105 if (!SingleInstrs) 1106 return false; 1107 // Splitting a live-through range always makes progress. 1108 if (BI.LiveIn && BI.LiveOut) 1109 return true; 1110 // No point in isolating a copy. It has no register class constraints. 1111 if (LIS.getInstructionFromIndex(BI.FirstInstr)->isCopyLike()) 1112 return false; 1113 // Finally, don't isolate an end point that was created by earlier splits. 1114 return isOriginalEndpoint(BI.FirstInstr); 1115 } 1116 1117 void SplitEditor::splitSingleBlock(const SplitAnalysis::BlockInfo &BI) { 1118 openIntv(); 1119 SlotIndex LastSplitPoint = SA.getLastSplitPoint(BI.MBB->getNumber()); 1120 SlotIndex SegStart = enterIntvBefore(std::min(BI.FirstInstr, 1121 LastSplitPoint)); 1122 if (!BI.LiveOut || BI.LastInstr < LastSplitPoint) { 1123 useIntv(SegStart, leaveIntvAfter(BI.LastInstr)); 1124 } else { 1125 // The last use is after the last valid split point. 1126 SlotIndex SegStop = leaveIntvBefore(LastSplitPoint); 1127 useIntv(SegStart, SegStop); 1128 overlapIntv(SegStop, BI.LastInstr); 1129 } 1130 } 1131 1132 1133 //===----------------------------------------------------------------------===// 1134 // Global Live Range Splitting Support 1135 //===----------------------------------------------------------------------===// 1136 1137 // These methods support a method of global live range splitting that uses a 1138 // global algorithm to decide intervals for CFG edges. They will insert split 1139 // points and color intervals in basic blocks while avoiding interference. 1140 // 1141 // Note that splitSingleBlock is also useful for blocks where both CFG edges 1142 // are on the stack. 1143 1144 void SplitEditor::splitLiveThroughBlock(unsigned MBBNum, 1145 unsigned IntvIn, SlotIndex LeaveBefore, 1146 unsigned IntvOut, SlotIndex EnterAfter){ 1147 SlotIndex Start, Stop; 1148 tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(MBBNum); 1149 1150 DEBUG(dbgs() << "BB#" << MBBNum << " [" << Start << ';' << Stop 1151 << ") intf " << LeaveBefore << '-' << EnterAfter 1152 << ", live-through " << IntvIn << " -> " << IntvOut); 1153 1154 assert((IntvIn || IntvOut) && "Use splitSingleBlock for isolated blocks"); 1155 1156 assert((!LeaveBefore || LeaveBefore < Stop) && "Interference after block"); 1157 assert((!IntvIn || !LeaveBefore || LeaveBefore > Start) && "Impossible intf"); 1158 assert((!EnterAfter || EnterAfter >= Start) && "Interference before block"); 1159 1160 MachineBasicBlock *MBB = VRM.getMachineFunction().getBlockNumbered(MBBNum); 1161 1162 if (!IntvOut) { 1163 DEBUG(dbgs() << ", spill on entry.\n"); 1164 // 1165 // <<<<<<<<< Possible LeaveBefore interference. 1166 // |-----------| Live through. 1167 // -____________ Spill on entry. 1168 // 1169 selectIntv(IntvIn); 1170 SlotIndex Idx = leaveIntvAtTop(*MBB); 1171 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1172 (void)Idx; 1173 return; 1174 } 1175 1176 if (!IntvIn) { 1177 DEBUG(dbgs() << ", reload on exit.\n"); 1178 // 1179 // >>>>>>> Possible EnterAfter interference. 1180 // |-----------| Live through. 1181 // ___________-- Reload on exit. 1182 // 1183 selectIntv(IntvOut); 1184 SlotIndex Idx = enterIntvAtEnd(*MBB); 1185 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1186 (void)Idx; 1187 return; 1188 } 1189 1190 if (IntvIn == IntvOut && !LeaveBefore && !EnterAfter) { 1191 DEBUG(dbgs() << ", straight through.\n"); 1192 // 1193 // |-----------| Live through. 1194 // ------------- Straight through, same intv, no interference. 1195 // 1196 selectIntv(IntvOut); 1197 useIntv(Start, Stop); 1198 return; 1199 } 1200 1201 // We cannot legally insert splits after LSP. 1202 SlotIndex LSP = SA.getLastSplitPoint(MBBNum); 1203 assert((!IntvOut || !EnterAfter || EnterAfter < LSP) && "Impossible intf"); 1204 1205 if (IntvIn != IntvOut && (!LeaveBefore || !EnterAfter || 1206 LeaveBefore.getBaseIndex() > EnterAfter.getBoundaryIndex())) { 1207 DEBUG(dbgs() << ", switch avoiding interference.\n"); 1208 // 1209 // >>>> <<<< Non-overlapping EnterAfter/LeaveBefore interference. 1210 // |-----------| Live through. 1211 // ------======= Switch intervals between interference. 1212 // 1213 selectIntv(IntvOut); 1214 SlotIndex Idx; 1215 if (LeaveBefore && LeaveBefore < LSP) { 1216 Idx = enterIntvBefore(LeaveBefore); 1217 useIntv(Idx, Stop); 1218 } else { 1219 Idx = enterIntvAtEnd(*MBB); 1220 } 1221 selectIntv(IntvIn); 1222 useIntv(Start, Idx); 1223 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1224 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1225 return; 1226 } 1227 1228 DEBUG(dbgs() << ", create local intv for interference.\n"); 1229 // 1230 // >>><><><><<<< Overlapping EnterAfter/LeaveBefore interference. 1231 // |-----------| Live through. 1232 // ==---------== Switch intervals before/after interference. 1233 // 1234 assert(LeaveBefore <= EnterAfter && "Missed case"); 1235 1236 selectIntv(IntvOut); 1237 SlotIndex Idx = enterIntvAfter(EnterAfter); 1238 useIntv(Idx, Stop); 1239 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1240 1241 selectIntv(IntvIn); 1242 Idx = leaveIntvBefore(LeaveBefore); 1243 useIntv(Start, Idx); 1244 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1245 } 1246 1247 1248 void SplitEditor::splitRegInBlock(const SplitAnalysis::BlockInfo &BI, 1249 unsigned IntvIn, SlotIndex LeaveBefore) { 1250 SlotIndex Start, Stop; 1251 tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); 1252 1253 DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " [" << Start << ';' << Stop 1254 << "), uses " << BI.FirstInstr << '-' << BI.LastInstr 1255 << ", reg-in " << IntvIn << ", leave before " << LeaveBefore 1256 << (BI.LiveOut ? ", stack-out" : ", killed in block")); 1257 1258 assert(IntvIn && "Must have register in"); 1259 assert(BI.LiveIn && "Must be live-in"); 1260 assert((!LeaveBefore || LeaveBefore > Start) && "Bad interference"); 1261 1262 if (!BI.LiveOut && (!LeaveBefore || LeaveBefore >= BI.LastInstr)) { 1263 DEBUG(dbgs() << " before interference.\n"); 1264 // 1265 // <<< Interference after kill. 1266 // |---o---x | Killed in block. 1267 // ========= Use IntvIn everywhere. 1268 // 1269 selectIntv(IntvIn); 1270 useIntv(Start, BI.LastInstr); 1271 return; 1272 } 1273 1274 SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber()); 1275 1276 if (!LeaveBefore || LeaveBefore > BI.LastInstr.getBoundaryIndex()) { 1277 // 1278 // <<< Possible interference after last use. 1279 // |---o---o---| Live-out on stack. 1280 // =========____ Leave IntvIn after last use. 1281 // 1282 // < Interference after last use. 1283 // |---o---o--o| Live-out on stack, late last use. 1284 // ============ Copy to stack after LSP, overlap IntvIn. 1285 // \_____ Stack interval is live-out. 1286 // 1287 if (BI.LastInstr < LSP) { 1288 DEBUG(dbgs() << ", spill after last use before interference.\n"); 1289 selectIntv(IntvIn); 1290 SlotIndex Idx = leaveIntvAfter(BI.LastInstr); 1291 useIntv(Start, Idx); 1292 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1293 } else { 1294 DEBUG(dbgs() << ", spill before last split point.\n"); 1295 selectIntv(IntvIn); 1296 SlotIndex Idx = leaveIntvBefore(LSP); 1297 overlapIntv(Idx, BI.LastInstr); 1298 useIntv(Start, Idx); 1299 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1300 } 1301 return; 1302 } 1303 1304 // The interference is overlapping somewhere we wanted to use IntvIn. That 1305 // means we need to create a local interval that can be allocated a 1306 // different register. 1307 unsigned LocalIntv = openIntv(); 1308 (void)LocalIntv; 1309 DEBUG(dbgs() << ", creating local interval " << LocalIntv << ".\n"); 1310 1311 if (!BI.LiveOut || BI.LastInstr < LSP) { 1312 // 1313 // <<<<<<< Interference overlapping uses. 1314 // |---o---o---| Live-out on stack. 1315 // =====----____ Leave IntvIn before interference, then spill. 1316 // 1317 SlotIndex To = leaveIntvAfter(BI.LastInstr); 1318 SlotIndex From = enterIntvBefore(LeaveBefore); 1319 useIntv(From, To); 1320 selectIntv(IntvIn); 1321 useIntv(Start, From); 1322 assert((!LeaveBefore || From <= LeaveBefore) && "Interference"); 1323 return; 1324 } 1325 1326 // <<<<<<< Interference overlapping uses. 1327 // |---o---o--o| Live-out on stack, late last use. 1328 // =====------- Copy to stack before LSP, overlap LocalIntv. 1329 // \_____ Stack interval is live-out. 1330 // 1331 SlotIndex To = leaveIntvBefore(LSP); 1332 overlapIntv(To, BI.LastInstr); 1333 SlotIndex From = enterIntvBefore(std::min(To, LeaveBefore)); 1334 useIntv(From, To); 1335 selectIntv(IntvIn); 1336 useIntv(Start, From); 1337 assert((!LeaveBefore || From <= LeaveBefore) && "Interference"); 1338 } 1339 1340 void SplitEditor::splitRegOutBlock(const SplitAnalysis::BlockInfo &BI, 1341 unsigned IntvOut, SlotIndex EnterAfter) { 1342 SlotIndex Start, Stop; 1343 tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); 1344 1345 DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " [" << Start << ';' << Stop 1346 << "), uses " << BI.FirstInstr << '-' << BI.LastInstr 1347 << ", reg-out " << IntvOut << ", enter after " << EnterAfter 1348 << (BI.LiveIn ? ", stack-in" : ", defined in block")); 1349 1350 SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber()); 1351 1352 assert(IntvOut && "Must have register out"); 1353 assert(BI.LiveOut && "Must be live-out"); 1354 assert((!EnterAfter || EnterAfter < LSP) && "Bad interference"); 1355 1356 if (!BI.LiveIn && (!EnterAfter || EnterAfter <= BI.FirstInstr)) { 1357 DEBUG(dbgs() << " after interference.\n"); 1358 // 1359 // >>>> Interference before def. 1360 // | o---o---| Defined in block. 1361 // ========= Use IntvOut everywhere. 1362 // 1363 selectIntv(IntvOut); 1364 useIntv(BI.FirstInstr, Stop); 1365 return; 1366 } 1367 1368 if (!EnterAfter || EnterAfter < BI.FirstInstr.getBaseIndex()) { 1369 DEBUG(dbgs() << ", reload after interference.\n"); 1370 // 1371 // >>>> Interference before def. 1372 // |---o---o---| Live-through, stack-in. 1373 // ____========= Enter IntvOut before first use. 1374 // 1375 selectIntv(IntvOut); 1376 SlotIndex Idx = enterIntvBefore(std::min(LSP, BI.FirstInstr)); 1377 useIntv(Idx, Stop); 1378 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1379 return; 1380 } 1381 1382 // The interference is overlapping somewhere we wanted to use IntvOut. That 1383 // means we need to create a local interval that can be allocated a 1384 // different register. 1385 DEBUG(dbgs() << ", interference overlaps uses.\n"); 1386 // 1387 // >>>>>>> Interference overlapping uses. 1388 // |---o---o---| Live-through, stack-in. 1389 // ____---====== Create local interval for interference range. 1390 // 1391 selectIntv(IntvOut); 1392 SlotIndex Idx = enterIntvAfter(EnterAfter); 1393 useIntv(Idx, Stop); 1394 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1395 1396 openIntv(); 1397 SlotIndex From = enterIntvBefore(std::min(Idx, BI.FirstInstr)); 1398 useIntv(From, Idx); 1399 } 1400