1 //===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the SplitAnalysis class as well as mutator functions for
11 // live range splitting.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #define DEBUG_TYPE "splitter"
16 #include "SplitKit.h"
17 #include "VirtRegMap.h"
18 #include "llvm/CodeGen/CalcSpillWeights.h"
19 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
20 #include "llvm/CodeGen/MachineInstrBuilder.h"
21 #include "llvm/CodeGen/MachineLoopInfo.h"
22 #include "llvm/CodeGen/MachineRegisterInfo.h"
23 #include "llvm/Support/CommandLine.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/raw_ostream.h"
26 #include "llvm/Target/TargetInstrInfo.h"
27 #include "llvm/Target/TargetMachine.h"
28 
29 using namespace llvm;
30 
31 static cl::opt<bool>
32 AllowSplit("spiller-splits-edges",
33            cl::desc("Allow critical edge splitting during spilling"));
34 
35 //===----------------------------------------------------------------------===//
36 //                                 Split Analysis
37 //===----------------------------------------------------------------------===//
38 
39 SplitAnalysis::SplitAnalysis(const MachineFunction &mf,
40                              const LiveIntervals &lis,
41                              const MachineLoopInfo &mli)
42   : mf_(mf),
43     lis_(lis),
44     loops_(mli),
45     tii_(*mf.getTarget().getInstrInfo()),
46     curli_(0) {}
47 
48 void SplitAnalysis::clear() {
49   usingInstrs_.clear();
50   usingBlocks_.clear();
51   usingLoops_.clear();
52   curli_ = 0;
53 }
54 
55 bool SplitAnalysis::canAnalyzeBranch(const MachineBasicBlock *MBB) {
56   MachineBasicBlock *T, *F;
57   SmallVector<MachineOperand, 4> Cond;
58   return !tii_.AnalyzeBranch(const_cast<MachineBasicBlock&>(*MBB), T, F, Cond);
59 }
60 
61 /// analyzeUses - Count instructions, basic blocks, and loops using curli.
62 void SplitAnalysis::analyzeUses() {
63   const MachineRegisterInfo &MRI = mf_.getRegInfo();
64   for (MachineRegisterInfo::reg_iterator I = MRI.reg_begin(curli_->reg);
65        MachineInstr *MI = I.skipInstruction();) {
66     if (MI->isDebugValue() || !usingInstrs_.insert(MI))
67       continue;
68     MachineBasicBlock *MBB = MI->getParent();
69     if (usingBlocks_[MBB]++)
70       continue;
71     for (MachineLoop *Loop = loops_.getLoopFor(MBB); Loop;
72          Loop = Loop->getParentLoop())
73       usingLoops_[Loop]++;
74   }
75   DEBUG(dbgs() << "  counted "
76                << usingInstrs_.size() << " instrs, "
77                << usingBlocks_.size() << " blocks, "
78                << usingLoops_.size()  << " loops.\n");
79 }
80 
81 // Get three sets of basic blocks surrounding a loop: Blocks inside the loop,
82 // predecessor blocks, and exit blocks.
83 void SplitAnalysis::getLoopBlocks(const MachineLoop *Loop, LoopBlocks &Blocks) {
84   Blocks.clear();
85 
86   // Blocks in the loop.
87   Blocks.Loop.insert(Loop->block_begin(), Loop->block_end());
88 
89   // Predecessor blocks.
90   const MachineBasicBlock *Header = Loop->getHeader();
91   for (MachineBasicBlock::const_pred_iterator I = Header->pred_begin(),
92        E = Header->pred_end(); I != E; ++I)
93     if (!Blocks.Loop.count(*I))
94       Blocks.Preds.insert(*I);
95 
96   // Exit blocks.
97   for (MachineLoop::block_iterator I = Loop->block_begin(),
98        E = Loop->block_end(); I != E; ++I) {
99     const MachineBasicBlock *MBB = *I;
100     for (MachineBasicBlock::const_succ_iterator SI = MBB->succ_begin(),
101        SE = MBB->succ_end(); SI != SE; ++SI)
102       if (!Blocks.Loop.count(*SI))
103         Blocks.Exits.insert(*SI);
104   }
105 }
106 
107 /// analyzeLoopPeripheralUse - Return an enum describing how curli_ is used in
108 /// and around the Loop.
109 SplitAnalysis::LoopPeripheralUse SplitAnalysis::
110 analyzeLoopPeripheralUse(const SplitAnalysis::LoopBlocks &Blocks) {
111   LoopPeripheralUse use = ContainedInLoop;
112   for (BlockCountMap::iterator I = usingBlocks_.begin(), E = usingBlocks_.end();
113        I != E; ++I) {
114     const MachineBasicBlock *MBB = I->first;
115     // Is this a peripheral block?
116     if (use < MultiPeripheral &&
117         (Blocks.Preds.count(MBB) || Blocks.Exits.count(MBB))) {
118       if (I->second > 1) use = MultiPeripheral;
119       else               use = SinglePeripheral;
120       continue;
121     }
122     // Is it a loop block?
123     if (Blocks.Loop.count(MBB))
124       continue;
125     // It must be an unrelated block.
126     return OutsideLoop;
127   }
128   return use;
129 }
130 
131 /// getCriticalExits - It may be necessary to partially break critical edges
132 /// leaving the loop if an exit block has phi uses of curli. Collect the exit
133 /// blocks that need special treatment into CriticalExits.
134 void SplitAnalysis::getCriticalExits(const SplitAnalysis::LoopBlocks &Blocks,
135                                      BlockPtrSet &CriticalExits) {
136   CriticalExits.clear();
137 
138   // A critical exit block contains a phi def of curli, and has a predecessor
139   // that is not in the loop nor a loop predecessor.
140   // For such an exit block, the edges carrying the new variable must be moved
141   // to a new pre-exit block.
142   for (BlockPtrSet::iterator I = Blocks.Exits.begin(), E = Blocks.Exits.end();
143        I != E; ++I) {
144     const MachineBasicBlock *Succ = *I;
145     SlotIndex SuccIdx = lis_.getMBBStartIdx(Succ);
146     VNInfo *SuccVNI = curli_->getVNInfoAt(SuccIdx);
147     // This exit may not have curli live in at all. No need to split.
148     if (!SuccVNI)
149       continue;
150     // If this is not a PHI def, it is either using a value from before the
151     // loop, or a value defined inside the loop. Both are safe.
152     if (!SuccVNI->isPHIDef() || SuccVNI->def.getBaseIndex() != SuccIdx)
153       continue;
154     // This exit block does have a PHI. Does it also have a predecessor that is
155     // not a loop block or loop predecessor?
156     for (MachineBasicBlock::const_pred_iterator PI = Succ->pred_begin(),
157          PE = Succ->pred_end(); PI != PE; ++PI) {
158       const MachineBasicBlock *Pred = *PI;
159       if (Blocks.Loop.count(Pred) || Blocks.Preds.count(Pred))
160         continue;
161       // This is a critical exit block, and we need to split the exit edge.
162       CriticalExits.insert(Succ);
163       break;
164     }
165   }
166 }
167 
168 /// canSplitCriticalExits - Return true if it is possible to insert new exit
169 /// blocks before the blocks in CriticalExits.
170 bool
171 SplitAnalysis::canSplitCriticalExits(const SplitAnalysis::LoopBlocks &Blocks,
172                                      BlockPtrSet &CriticalExits) {
173   // If we don't allow critical edge splitting, require no critical exits.
174   if (!AllowSplit)
175     return CriticalExits.empty();
176 
177   for (BlockPtrSet::iterator I = CriticalExits.begin(), E = CriticalExits.end();
178        I != E; ++I) {
179     const MachineBasicBlock *Succ = *I;
180     // We want to insert a new pre-exit MBB before Succ, and change all the
181     // in-loop blocks to branch to the pre-exit instead of Succ.
182     // Check that all the in-loop predecessors can be changed.
183     for (MachineBasicBlock::const_pred_iterator PI = Succ->pred_begin(),
184          PE = Succ->pred_end(); PI != PE; ++PI) {
185       const MachineBasicBlock *Pred = *PI;
186       // The external predecessors won't be altered.
187       if (!Blocks.Loop.count(Pred) && !Blocks.Preds.count(Pred))
188         continue;
189       if (!canAnalyzeBranch(Pred))
190         return false;
191     }
192 
193     // If Succ's layout predecessor falls through, that too must be analyzable.
194     // We need to insert the pre-exit block in the gap.
195     MachineFunction::const_iterator MFI = Succ;
196     if (MFI == mf_.begin())
197       continue;
198     if (!canAnalyzeBranch(--MFI))
199       return false;
200   }
201   // No problems found.
202   return true;
203 }
204 
205 void SplitAnalysis::analyze(const LiveInterval *li) {
206   clear();
207   curli_ = li;
208   analyzeUses();
209 }
210 
211 const MachineLoop *SplitAnalysis::getBestSplitLoop() {
212   assert(curli_ && "Call analyze() before getBestSplitLoop");
213   if (usingLoops_.empty())
214     return 0;
215 
216   LoopPtrSet Loops;
217   LoopBlocks Blocks;
218   BlockPtrSet CriticalExits;
219 
220   // We split around loops where curli is used outside the periphery.
221   for (LoopCountMap::const_iterator I = usingLoops_.begin(),
222        E = usingLoops_.end(); I != E; ++I) {
223     const MachineLoop *Loop = I->first;
224     getLoopBlocks(Loop, Blocks);
225 
226     switch(analyzeLoopPeripheralUse(Blocks)) {
227     case OutsideLoop:
228       break;
229     case MultiPeripheral:
230       // FIXME: We could split a live range with multiple uses in a peripheral
231       // block and still make progress. However, it is possible that splitting
232       // another live range will insert copies into a peripheral block, and
233       // there is a small chance we can enter an infinity loop, inserting copies
234       // forever.
235       // For safety, stick to splitting live ranges with uses outside the
236       // periphery.
237       DEBUG(dbgs() << "  multiple peripheral uses in " << *Loop);
238       break;
239     case ContainedInLoop:
240       DEBUG(dbgs() << "  contained in " << *Loop);
241       continue;
242     case SinglePeripheral:
243       DEBUG(dbgs() << "  single peripheral use in " << *Loop);
244       continue;
245     }
246     // Will it be possible to split around this loop?
247     getCriticalExits(Blocks, CriticalExits);
248     DEBUG(dbgs() << "  " << CriticalExits.size() << " critical exits from "
249                  << *Loop);
250     if (!canSplitCriticalExits(Blocks, CriticalExits))
251       continue;
252     // This is a possible split.
253     Loops.insert(Loop);
254   }
255 
256   DEBUG(dbgs() << "  getBestSplitLoop found " << Loops.size()
257                << " candidate loops.\n");
258 
259   if (Loops.empty())
260     return 0;
261 
262   // Pick the earliest loop.
263   // FIXME: Are there other heuristics to consider?
264   const MachineLoop *Best = 0;
265   SlotIndex BestIdx;
266   for (LoopPtrSet::const_iterator I = Loops.begin(), E = Loops.end(); I != E;
267        ++I) {
268     SlotIndex Idx = lis_.getMBBStartIdx((*I)->getHeader());
269     if (!Best || Idx < BestIdx)
270       Best = *I, BestIdx = Idx;
271   }
272   DEBUG(dbgs() << "  getBestSplitLoop found " << *Best);
273   return Best;
274 }
275 
276 /// getMultiUseBlocks - if curli has more than one use in a basic block, it
277 /// may be an advantage to split curli for the duration of the block.
278 bool SplitAnalysis::getMultiUseBlocks(BlockPtrSet &Blocks) {
279   // If curli is local to one block, there is no point to splitting it.
280   if (usingBlocks_.size() <= 1)
281     return false;
282   // Add blocks with multiple uses.
283   for (BlockCountMap::iterator I = usingBlocks_.begin(), E = usingBlocks_.end();
284        I != E; ++I)
285     switch (I->second) {
286     case 0:
287     case 1:
288       continue;
289     case 2: {
290       // It doesn't pay to split a 2-instr block if it redefines curli.
291       VNInfo *VN1 = curli_->getVNInfoAt(lis_.getMBBStartIdx(I->first));
292       VNInfo *VN2 =
293         curli_->getVNInfoAt(lis_.getMBBEndIdx(I->first).getPrevIndex());
294       // live-in and live-out with a different value.
295       if (VN1 && VN2 && VN1 != VN2)
296         continue;
297     } // Fall through.
298     default:
299       Blocks.insert(I->first);
300     }
301   return !Blocks.empty();
302 }
303 
304 //===----------------------------------------------------------------------===//
305 //                               LiveIntervalMap
306 //===----------------------------------------------------------------------===//
307 
308 // Work around the fact that the std::pair constructors are broken for pointer
309 // pairs in some implementations. makeVV(x, 0) works.
310 static inline std::pair<const VNInfo*, VNInfo*>
311 makeVV(const VNInfo *a, VNInfo *b) {
312   return std::make_pair(a, b);
313 }
314 
315 void LiveIntervalMap::reset(LiveInterval *li) {
316   li_ = li;
317   valueMap_.clear();
318 }
319 
320 bool LiveIntervalMap::isComplexMapped(const VNInfo *ParentVNI) const {
321   ValueMap::const_iterator i = valueMap_.find(ParentVNI);
322   return i != valueMap_.end() && i->second == 0;
323 }
324 
325 // defValue - Introduce a li_ def for ParentVNI that could be later than
326 // ParentVNI->def.
327 VNInfo *LiveIntervalMap::defValue(const VNInfo *ParentVNI, SlotIndex Idx) {
328   assert(li_ && "call reset first");
329   assert(ParentVNI && "Mapping  NULL value");
330   assert(Idx.isValid() && "Invalid SlotIndex");
331   assert(parentli_.getVNInfoAt(Idx) == ParentVNI && "Bad ParentVNI");
332 
333   // Create a new value.
334   VNInfo *VNI = li_->getNextValue(Idx, 0, lis_.getVNInfoAllocator());
335 
336   // Use insert for lookup, so we can add missing values with a second lookup.
337   std::pair<ValueMap::iterator,bool> InsP =
338     valueMap_.insert(makeVV(ParentVNI, Idx == ParentVNI->def ? VNI : 0));
339 
340   // This is now a complex def. Mark with a NULL in valueMap.
341   if (!InsP.second)
342     InsP.first->second = 0;
343 
344   return VNI;
345 }
346 
347 
348 // mapValue - Find the mapped value for ParentVNI at Idx.
349 // Potentially create phi-def values.
350 VNInfo *LiveIntervalMap::mapValue(const VNInfo *ParentVNI, SlotIndex Idx,
351                                   bool *simple) {
352   assert(li_ && "call reset first");
353   assert(ParentVNI && "Mapping  NULL value");
354   assert(Idx.isValid() && "Invalid SlotIndex");
355   assert(parentli_.getVNInfoAt(Idx) == ParentVNI && "Bad ParentVNI");
356 
357   // Use insert for lookup, so we can add missing values with a second lookup.
358   std::pair<ValueMap::iterator,bool> InsP =
359     valueMap_.insert(makeVV(ParentVNI, 0));
360 
361   // This was an unknown value. Create a simple mapping.
362   if (InsP.second) {
363     if (simple) *simple = true;
364     return InsP.first->second = li_->createValueCopy(ParentVNI,
365                                                      lis_.getVNInfoAllocator());
366   }
367 
368   // This was a simple mapped value.
369   if (InsP.first->second) {
370     if (simple) *simple = true;
371     return InsP.first->second;
372   }
373 
374   // This is a complex mapped value. There may be multiple defs, and we may need
375   // to create phi-defs.
376   if (simple) *simple = false;
377   MachineBasicBlock *IdxMBB = lis_.getMBBFromIndex(Idx);
378   assert(IdxMBB && "No MBB at Idx");
379 
380   // Is there a def in the same MBB we can extend?
381   if (VNInfo *VNI = extendTo(IdxMBB, Idx))
382     return VNI;
383 
384   // Now for the fun part. We know that ParentVNI potentially has multiple defs,
385   // and we may need to create even more phi-defs to preserve VNInfo SSA form.
386   // Perform a depth-first search for predecessor blocks where we know the
387   // dominating VNInfo. Insert phi-def VNInfos along the path back to IdxMBB.
388 
389   // Track MBBs where we have created or learned the dominating value.
390   // This may change during the DFS as we create new phi-defs.
391   typedef DenseMap<MachineBasicBlock*, VNInfo*> MBBValueMap;
392   MBBValueMap DomValue;
393   typedef SplitAnalysis::BlockPtrSet BlockPtrSet;
394   BlockPtrSet Visited;
395 
396   // Iterate over IdxMBB predecessors in a depth-first order.
397   // Skip begin() since that is always IdxMBB.
398   for (idf_ext_iterator<MachineBasicBlock*, BlockPtrSet>
399          IDFI = llvm::next(idf_ext_begin(IdxMBB, Visited)),
400          IDFE = idf_ext_end(IdxMBB, Visited); IDFI != IDFE;) {
401     MachineBasicBlock *MBB = *IDFI;
402     SlotIndex End = lis_.getMBBEndIdx(MBB).getPrevSlot();
403 
404     // We are operating on the restricted CFG where ParentVNI is live.
405     if (parentli_.getVNInfoAt(End) != ParentVNI) {
406       IDFI.skipChildren();
407       continue;
408     }
409 
410     // Do we have a dominating value in this block?
411     VNInfo *VNI = extendTo(MBB, End);
412     if (!VNI) {
413       ++IDFI;
414       continue;
415     }
416 
417     // Yes, VNI dominates MBB. Make sure we visit MBB again from other paths.
418     Visited.erase(MBB);
419 
420     // Track the path back to IdxMBB, creating phi-defs
421     // as needed along the way.
422     for (unsigned PI = IDFI.getPathLength()-1; PI != 0; --PI) {
423       // Start from MBB's immediate successor. End at IdxMBB.
424       MachineBasicBlock *Succ = IDFI.getPath(PI-1);
425       std::pair<MBBValueMap::iterator, bool> InsP =
426         DomValue.insert(MBBValueMap::value_type(Succ, VNI));
427 
428       // This is the first time we backtrack to Succ.
429       if (InsP.second)
430         continue;
431 
432       // We reached Succ again with the same VNI. Nothing is going to change.
433       VNInfo *OVNI = InsP.first->second;
434       if (OVNI == VNI)
435         break;
436 
437       // Succ already has a phi-def. No need to continue.
438       SlotIndex Start = lis_.getMBBStartIdx(Succ);
439       if (OVNI->def == Start)
440         break;
441 
442       // We have a collision between the old and new VNI at Succ. That means
443       // neither dominates and we need a new phi-def.
444       VNI = li_->getNextValue(Start, 0, lis_.getVNInfoAllocator());
445       VNI->setIsPHIDef(true);
446       InsP.first->second = VNI;
447 
448       // Replace OVNI with VNI in the remaining path.
449       for (; PI > 1 ; --PI) {
450         MBBValueMap::iterator I = DomValue.find(IDFI.getPath(PI-2));
451         if (I == DomValue.end() || I->second != OVNI)
452           break;
453         I->second = VNI;
454       }
455     }
456 
457     // No need to search the children, we found a dominating value.
458     IDFI.skipChildren();
459   }
460 
461   // The search should at least find a dominating value for IdxMBB.
462   assert(!DomValue.empty() && "Couldn't find a reaching definition");
463 
464   // Since we went through the trouble of a full DFS visiting all reaching defs,
465   // the values in DomValue are now accurate. No more phi-defs are needed for
466   // these blocks, so we can color the live ranges.
467   // This makes the next mapValue call much faster.
468   VNInfo *IdxVNI = 0;
469   for (MBBValueMap::iterator I = DomValue.begin(), E = DomValue.end(); I != E;
470        ++I) {
471      MachineBasicBlock *MBB = I->first;
472      VNInfo *VNI = I->second;
473      SlotIndex Start = lis_.getMBBStartIdx(MBB);
474      if (MBB == IdxMBB) {
475        // Don't add full liveness to IdxMBB, stop at Idx.
476        if (Start != Idx)
477          li_->addRange(LiveRange(Start, Idx.getNextSlot(), VNI));
478        // The caller had better add some liveness to IdxVNI, or it leaks.
479        IdxVNI = VNI;
480      } else
481       li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), VNI));
482   }
483 
484   assert(IdxVNI && "Didn't find value for Idx");
485   return IdxVNI;
486 }
487 
488 // extendTo - Find the last li_ value defined in MBB at or before Idx. The
489 // parentli_ is assumed to be live at Idx. Extend the live range to Idx.
490 // Return the found VNInfo, or NULL.
491 VNInfo *LiveIntervalMap::extendTo(MachineBasicBlock *MBB, SlotIndex Idx) {
492   assert(li_ && "call reset first");
493   LiveInterval::iterator I = std::upper_bound(li_->begin(), li_->end(), Idx);
494   if (I == li_->begin())
495     return 0;
496   --I;
497   if (I->end <= lis_.getMBBStartIdx(MBB))
498     return 0;
499   if (I->end <= Idx)
500     I->end = Idx.getNextSlot();
501   return I->valno;
502 }
503 
504 // addSimpleRange - Add a simple range from parentli_ to li_.
505 // ParentVNI must be live in the [Start;End) interval.
506 void LiveIntervalMap::addSimpleRange(SlotIndex Start, SlotIndex End,
507                                      const VNInfo *ParentVNI) {
508   assert(li_ && "call reset first");
509   bool simple;
510   VNInfo *VNI = mapValue(ParentVNI, Start, &simple);
511   // A simple mapping is easy.
512   if (simple) {
513     li_->addRange(LiveRange(Start, End, VNI));
514     return;
515   }
516 
517   // ParentVNI is a complex value. We must map per MBB.
518   MachineFunction::iterator MBB = lis_.getMBBFromIndex(Start);
519   MachineFunction::iterator MBBE = lis_.getMBBFromIndex(End.getPrevSlot());
520 
521   if (MBB == MBBE) {
522     li_->addRange(LiveRange(Start, End, VNI));
523     return;
524   }
525 
526   // First block.
527   li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), VNI));
528 
529   // Run sequence of full blocks.
530   for (++MBB; MBB != MBBE; ++MBB) {
531     Start = lis_.getMBBStartIdx(MBB);
532     li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB),
533                             mapValue(ParentVNI, Start)));
534   }
535 
536   // Final block.
537   Start = lis_.getMBBStartIdx(MBB);
538   if (Start != End)
539     li_->addRange(LiveRange(Start, End, mapValue(ParentVNI, Start)));
540 }
541 
542 /// addRange - Add live ranges to li_ where [Start;End) intersects parentli_.
543 /// All needed values whose def is not inside [Start;End) must be defined
544 /// beforehand so mapValue will work.
545 void LiveIntervalMap::addRange(SlotIndex Start, SlotIndex End) {
546   assert(li_ && "call reset first");
547   LiveInterval::const_iterator B = parentli_.begin(), E = parentli_.end();
548   LiveInterval::const_iterator I = std::lower_bound(B, E, Start);
549 
550   // Check if --I begins before Start and overlaps.
551   if (I != B) {
552     --I;
553     if (I->end > Start)
554       addSimpleRange(Start, std::min(End, I->end), I->valno);
555     ++I;
556   }
557 
558   // The remaining ranges begin after Start.
559   for (;I != E && I->start < End; ++I)
560     addSimpleRange(I->start, std::min(End, I->end), I->valno);
561 }
562 
563 VNInfo *LiveIntervalMap::defByCopyFrom(unsigned Reg,
564                                        const VNInfo *ParentVNI,
565                                        MachineBasicBlock &MBB,
566                                        MachineBasicBlock::iterator I) {
567   const TargetInstrDesc &TID = MBB.getParent()->getTarget().getInstrInfo()->
568     get(TargetOpcode::COPY);
569   MachineInstr *MI = BuildMI(MBB, I, DebugLoc(), TID, li_->reg).addReg(Reg);
570   SlotIndex DefIdx = lis_.InsertMachineInstrInMaps(MI).getDefIndex();
571   VNInfo *VNI = defValue(ParentVNI, DefIdx);
572   VNI->setCopy(MI);
573   li_->addRange(LiveRange(DefIdx, DefIdx.getNextSlot(), VNI));
574   return VNI;
575 }
576 
577 //===----------------------------------------------------------------------===//
578 //                               Split Editor
579 //===----------------------------------------------------------------------===//
580 
581 /// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
582 SplitEditor::SplitEditor(SplitAnalysis &sa, LiveIntervals &lis, VirtRegMap &vrm,
583                          SmallVectorImpl<LiveInterval*> &intervals)
584   : sa_(sa), lis_(lis), vrm_(vrm),
585     mri_(vrm.getMachineFunction().getRegInfo()),
586     tii_(*vrm.getMachineFunction().getTarget().getInstrInfo()),
587     curli_(sa_.getCurLI()),
588     dupli_(lis_, *curli_),
589     openli_(lis_, *curli_),
590     intervals_(intervals),
591     firstInterval(intervals_.size())
592 {
593   assert(curli_ && "SplitEditor created from empty SplitAnalysis");
594 
595   // Make sure curli_ is assigned a stack slot, so all our intervals get the
596   // same slot as curli_.
597   if (vrm_.getStackSlot(curli_->reg) == VirtRegMap::NO_STACK_SLOT)
598     vrm_.assignVirt2StackSlot(curli_->reg);
599 
600 }
601 
602 LiveInterval *SplitEditor::createInterval() {
603   unsigned Reg = mri_.createVirtualRegister(mri_.getRegClass(curli_->reg));
604   LiveInterval &Intv = lis_.getOrCreateInterval(Reg);
605   vrm_.grow();
606   vrm_.assignVirt2StackSlot(Reg, vrm_.getStackSlot(curli_->reg));
607   return &Intv;
608 }
609 
610 bool SplitEditor::intervalsLiveAt(SlotIndex Idx) const {
611   for (int i = firstInterval, e = intervals_.size(); i != e; ++i)
612     if (intervals_[i]->liveAt(Idx))
613       return true;
614   return false;
615 }
616 
617 /// Create a new virtual register and live interval.
618 void SplitEditor::openIntv() {
619   assert(!openli_.getLI() && "Previous LI not closed before openIntv");
620 
621   if (!dupli_.getLI())
622     dupli_.reset(createInterval());
623 
624   openli_.reset(createInterval());
625   intervals_.push_back(openli_.getLI());
626 }
627 
628 /// enterIntvBefore - Enter openli before the instruction at Idx. If curli is
629 /// not live before Idx, a COPY is not inserted.
630 void SplitEditor::enterIntvBefore(SlotIndex Idx) {
631   assert(openli_.getLI() && "openIntv not called before enterIntvBefore");
632   DEBUG(dbgs() << "    enterIntvBefore " << Idx);
633   VNInfo *ParentVNI = curli_->getVNInfoAt(Idx.getUseIndex());
634   if (!ParentVNI) {
635     DEBUG(dbgs() << ": not live\n");
636     return;
637   }
638   DEBUG(dbgs() << ": valno " << ParentVNI->id);
639   truncatedValues.insert(ParentVNI);
640   MachineInstr *MI = lis_.getInstructionFromIndex(Idx);
641   assert(MI && "enterIntvBefore called with invalid index");
642   VNInfo *VNI = openli_.defByCopyFrom(curli_->reg, ParentVNI,
643                                       *MI->getParent(), MI);
644   openli_.getLI()->addRange(LiveRange(VNI->def, Idx.getDefIndex(), VNI));
645   DEBUG(dbgs() << ": " << *openli_.getLI() << '\n');
646 }
647 
648 /// enterIntvAtEnd - Enter openli at the end of MBB.
649 void SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) {
650   assert(openli_.getLI() && "openIntv not called before enterIntvAtEnd");
651   SlotIndex End = lis_.getMBBEndIdx(&MBB);
652   DEBUG(dbgs() << "    enterIntvAtEnd BB#" << MBB.getNumber() << ", " << End);
653   VNInfo *ParentVNI = curli_->getVNInfoAt(End.getPrevSlot());
654   if (!ParentVNI) {
655     DEBUG(dbgs() << ": not live\n");
656     return;
657   }
658   DEBUG(dbgs() << ": valno " << ParentVNI->id);
659   truncatedValues.insert(ParentVNI);
660   VNInfo *VNI = openli_.defByCopyFrom(curli_->reg, ParentVNI,
661                                       MBB, MBB.getFirstTerminator());
662   // Make sure openli is live out of MBB.
663   openli_.getLI()->addRange(LiveRange(VNI->def, End, VNI));
664   DEBUG(dbgs() << ": " << *openli_.getLI() << '\n');
665 }
666 
667 /// useIntv - indicate that all instructions in MBB should use openli.
668 void SplitEditor::useIntv(const MachineBasicBlock &MBB) {
669   useIntv(lis_.getMBBStartIdx(&MBB), lis_.getMBBEndIdx(&MBB));
670 }
671 
672 void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) {
673   assert(openli_.getLI() && "openIntv not called before useIntv");
674   openli_.addRange(Start, End);
675   DEBUG(dbgs() << "    use [" << Start << ';' << End << "): "
676                << *openli_.getLI() << '\n');
677 }
678 
679 /// leaveIntvAfter - Leave openli after the instruction at Idx.
680 void SplitEditor::leaveIntvAfter(SlotIndex Idx) {
681   assert(openli_.getLI() && "openIntv not called before leaveIntvAfter");
682   DEBUG(dbgs() << "    leaveIntvAfter " << Idx);
683 
684   // The interval must be live beyond the instruction at Idx.
685   VNInfo *ParentVNI = curli_->getVNInfoAt(Idx.getBoundaryIndex());
686   if (!ParentVNI) {
687     DEBUG(dbgs() << ": not live\n");
688     return;
689   }
690   DEBUG(dbgs() << ": valno " << ParentVNI->id);
691 
692   MachineBasicBlock::iterator MII = lis_.getInstructionFromIndex(Idx);
693   MachineBasicBlock *MBB = MII->getParent();
694   VNInfo *VNI = dupli_.defByCopyFrom(openli_.getLI()->reg, ParentVNI, *MBB,
695                                      llvm::next(MII));
696 
697   // Finally we must make sure that openli is properly extended from Idx to the
698   // new copy.
699   openli_.addSimpleRange(Idx.getBoundaryIndex(), VNI->def, ParentVNI);
700   DEBUG(dbgs() << ": " << *openli_.getLI() << '\n');
701 }
702 
703 /// leaveIntvAtTop - Leave the interval at the top of MBB.
704 /// Currently, only one value can leave the interval.
705 void SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) {
706   assert(openli_.getLI() && "openIntv not called before leaveIntvAtTop");
707   SlotIndex Start = lis_.getMBBStartIdx(&MBB);
708   DEBUG(dbgs() << "    leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start);
709 
710   VNInfo *ParentVNI = curli_->getVNInfoAt(Start);
711   if (!ParentVNI) {
712     DEBUG(dbgs() << ": not live\n");
713     return;
714   }
715 
716   // We are going to insert a back copy, so we must have a dupli_.
717   VNInfo *VNI = dupli_.defByCopyFrom(openli_.getLI()->reg, ParentVNI,
718                                      MBB, MBB.begin());
719 
720   // Finally we must make sure that openli is properly extended from Start to
721   // the new copy.
722   openli_.addSimpleRange(Start, VNI->def, ParentVNI);
723   DEBUG(dbgs() << ": " << *openli_.getLI() << '\n');
724 }
725 
726 /// closeIntv - Indicate that we are done editing the currently open
727 /// LiveInterval, and ranges can be trimmed.
728 void SplitEditor::closeIntv() {
729   assert(openli_.getLI() && "openIntv not called before closeIntv");
730 
731   DEBUG(dbgs() << "    closeIntv cleaning up\n");
732   DEBUG(dbgs() << "    open " << *openli_.getLI() << '\n');
733   openli_.reset(0);
734 }
735 
736 /// rewrite - Rewrite all uses of reg to use the new registers.
737 void SplitEditor::rewrite(unsigned reg) {
738   for (MachineRegisterInfo::reg_iterator RI = mri_.reg_begin(reg),
739        RE = mri_.reg_end(); RI != RE;) {
740     MachineOperand &MO = RI.getOperand();
741     MachineInstr *MI = MO.getParent();
742     ++RI;
743     if (MI->isDebugValue()) {
744       DEBUG(dbgs() << "Zapping " << *MI);
745       // FIXME: We can do much better with debug values.
746       MO.setReg(0);
747       continue;
748     }
749     SlotIndex Idx = lis_.getInstructionIndex(MI);
750     Idx = MO.isUse() ? Idx.getUseIndex() : Idx.getDefIndex();
751     LiveInterval *LI = 0;
752     for (unsigned i = firstInterval, e = intervals_.size(); i != e; ++i) {
753       LiveInterval *testli = intervals_[i];
754       if (testli->liveAt(Idx)) {
755         LI = testli;
756         break;
757       }
758     }
759     assert(LI && "No register was live at use");
760     MO.setReg(LI->reg);
761     DEBUG(dbgs() << "  rewrite BB#" << MI->getParent()->getNumber() << '\t'
762                  << Idx << '\t' << *MI);
763   }
764 }
765 
766 void
767 SplitEditor::addTruncSimpleRange(SlotIndex Start, SlotIndex End, VNInfo *VNI) {
768   // Build vector of iterator pairs from the intervals.
769   typedef std::pair<LiveInterval::const_iterator,
770                     LiveInterval::const_iterator> IIPair;
771   SmallVector<IIPair, 8> Iters;
772   for (int i = firstInterval, e = intervals_.size(); i != e; ++i) {
773     LiveInterval::const_iterator I = intervals_[i]->find(Start);
774     LiveInterval::const_iterator E = intervals_[i]->end();
775     if (I != E)
776       Iters.push_back(std::make_pair(I, E));
777   }
778 
779   SlotIndex sidx = Start;
780   // Break [Start;End) into segments that don't overlap any intervals.
781   for (;;) {
782     SlotIndex next = sidx, eidx = End;
783     // Find overlapping intervals.
784     for (unsigned i = 0; i != Iters.size() && sidx < eidx; ++i) {
785       LiveInterval::const_iterator I = Iters[i].first;
786       // Interval I is overlapping [sidx;eidx). Trim sidx.
787       if (I->start <= sidx) {
788         sidx = I->end;
789         // Move to the next run, remove iters when all are consumed.
790         I = ++Iters[i].first;
791         if (I == Iters[i].second) {
792           Iters.erase(Iters.begin() + i);
793           --i;
794           continue;
795         }
796       }
797       // Trim eidx too if needed.
798       if (I->start >= eidx)
799         continue;
800       eidx = I->start;
801       next = I->end;
802     }
803     // Now, [sidx;eidx) doesn't overlap anything in intervals_.
804     if (sidx < eidx)
805       dupli_.addSimpleRange(sidx, eidx, VNI);
806     // If the interval end was truncated, we can try again from next.
807     if (next <= sidx)
808       break;
809     sidx = next;
810   }
811 }
812 
813 void SplitEditor::computeRemainder() {
814   // First we need to fill in the live ranges in dupli.
815   // If values were redefined, we need a full recoloring with SSA update.
816   // If values were truncated, we only need to truncate the ranges.
817   // If values were partially rematted, we should shrink to uses.
818   // If values were fully rematted, they should be omitted.
819   // FIXME: If a single value is redefined, just move the def and truncate.
820 
821   // Values that are fully contained in the split intervals.
822   SmallPtrSet<const VNInfo*, 8> deadValues;
823 
824   // Map all curli values that should have live defs in dupli.
825   for (LiveInterval::const_vni_iterator I = curli_->vni_begin(),
826        E = curli_->vni_end(); I != E; ++I) {
827     const VNInfo *VNI = *I;
828     // Original def is contained in the split intervals.
829     if (intervalsLiveAt(VNI->def)) {
830       // Did this value escape?
831       if (dupli_.isMapped(VNI))
832         truncatedValues.insert(VNI);
833       else
834         deadValues.insert(VNI);
835       continue;
836     }
837     // Add minimal live range at the definition.
838     VNInfo *DVNI = dupli_.defValue(VNI, VNI->def);
839     dupli_.getLI()->addRange(LiveRange(VNI->def, VNI->def.getNextSlot(), DVNI));
840   }
841 
842   // Add all ranges to dupli.
843   for (LiveInterval::const_iterator I = curli_->begin(), E = curli_->end();
844        I != E; ++I) {
845     const LiveRange &LR = *I;
846     if (truncatedValues.count(LR.valno)) {
847       // recolor after removing intervals_.
848       addTruncSimpleRange(LR.start, LR.end, LR.valno);
849     } else if (!deadValues.count(LR.valno)) {
850       // recolor without truncation.
851       dupli_.addSimpleRange(LR.start, LR.end, LR.valno);
852     }
853   }
854 }
855 
856 void SplitEditor::finish() {
857   assert(!openli_.getLI() && "Previous LI not closed before rewrite");
858   assert(dupli_.getLI() && "No dupli for rewrite. Noop spilt?");
859 
860   // Complete dupli liveness.
861   computeRemainder();
862 
863   // Get rid of unused values and set phi-kill flags.
864   dupli_.getLI()->RenumberValues(lis_);
865 
866   // Now check if dupli was separated into multiple connected components.
867   ConnectedVNInfoEqClasses ConEQ(lis_);
868   if (unsigned NumComp = ConEQ.Classify(dupli_.getLI())) {
869     DEBUG(dbgs() << "  Remainder has " << NumComp << " connected components: "
870                  << *dupli_.getLI() << '\n');
871     unsigned firstComp = intervals_.size();
872     intervals_.push_back(dupli_.getLI());
873     // Did the remainder break up? Create intervals for all the components.
874     if (NumComp > 1) {
875       for (unsigned i = 1; i != NumComp; ++i)
876         intervals_.push_back(createInterval());
877       ConEQ.Distribute(&intervals_[firstComp]);
878       // Rewrite uses to the new regs.
879       rewrite(dupli_.getLI()->reg);
880     }
881   } else {
882     DEBUG(dbgs() << "  dupli became empty?\n");
883     lis_.removeInterval(dupli_.getLI()->reg);
884     dupli_.reset(0);
885   }
886 
887   // Rewrite instructions.
888   rewrite(curli_->reg);
889 
890   // Calculate spill weight and allocation hints for new intervals.
891   VirtRegAuxInfo vrai(vrm_.getMachineFunction(), lis_, sa_.loops_);
892   for (unsigned i = firstInterval, e = intervals_.size(); i != e; ++i) {
893     LiveInterval &li = *intervals_[i];
894     vrai.CalculateRegClass(li.reg);
895     vrai.CalculateWeightAndHint(li);
896     DEBUG(dbgs() << "  new interval " << mri_.getRegClass(li.reg)->getName()
897                  << ":" << li << '\n');
898   }
899 }
900 
901 
902 //===----------------------------------------------------------------------===//
903 //                               Loop Splitting
904 //===----------------------------------------------------------------------===//
905 
906 void SplitEditor::splitAroundLoop(const MachineLoop *Loop) {
907   SplitAnalysis::LoopBlocks Blocks;
908   sa_.getLoopBlocks(Loop, Blocks);
909 
910   DEBUG({
911     dbgs() << "  splitAroundLoop";
912     for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Loop.begin(),
913          E = Blocks.Loop.end(); I != E; ++I)
914       dbgs() << " BB#" << (*I)->getNumber();
915     dbgs() << ", preds:";
916     for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Preds.begin(),
917          E = Blocks.Preds.end(); I != E; ++I)
918       dbgs() << " BB#" << (*I)->getNumber();
919     dbgs() << ", exits:";
920     for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Exits.begin(),
921          E = Blocks.Exits.end(); I != E; ++I)
922       dbgs() << " BB#" << (*I)->getNumber();
923     dbgs() << '\n';
924   });
925 
926   // Break critical edges as needed.
927   SplitAnalysis::BlockPtrSet CriticalExits;
928   sa_.getCriticalExits(Blocks, CriticalExits);
929   assert(CriticalExits.empty() && "Cannot break critical exits yet");
930 
931   // Create new live interval for the loop.
932   openIntv();
933 
934   // Insert copies in the predecessors.
935   for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Preds.begin(),
936        E = Blocks.Preds.end(); I != E; ++I) {
937     MachineBasicBlock &MBB = const_cast<MachineBasicBlock&>(**I);
938     enterIntvAtEnd(MBB);
939   }
940 
941   // Switch all loop blocks.
942   for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Loop.begin(),
943        E = Blocks.Loop.end(); I != E; ++I)
944      useIntv(**I);
945 
946   // Insert back copies in the exit blocks.
947   for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Exits.begin(),
948        E = Blocks.Exits.end(); I != E; ++I) {
949     MachineBasicBlock &MBB = const_cast<MachineBasicBlock&>(**I);
950     leaveIntvAtTop(MBB);
951   }
952 
953   // Done.
954   closeIntv();
955   finish();
956 }
957 
958 
959 //===----------------------------------------------------------------------===//
960 //                            Single Block Splitting
961 //===----------------------------------------------------------------------===//
962 
963 /// splitSingleBlocks - Split curli into a separate live interval inside each
964 /// basic block in Blocks.
965 void SplitEditor::splitSingleBlocks(const SplitAnalysis::BlockPtrSet &Blocks) {
966   DEBUG(dbgs() << "  splitSingleBlocks for " << Blocks.size() << " blocks.\n");
967   // Determine the first and last instruction using curli in each block.
968   typedef std::pair<SlotIndex,SlotIndex> IndexPair;
969   typedef DenseMap<const MachineBasicBlock*,IndexPair> IndexPairMap;
970   IndexPairMap MBBRange;
971   for (SplitAnalysis::InstrPtrSet::const_iterator I = sa_.usingInstrs_.begin(),
972        E = sa_.usingInstrs_.end(); I != E; ++I) {
973     const MachineBasicBlock *MBB = (*I)->getParent();
974     if (!Blocks.count(MBB))
975       continue;
976     SlotIndex Idx = lis_.getInstructionIndex(*I);
977     DEBUG(dbgs() << "  BB#" << MBB->getNumber() << '\t' << Idx << '\t' << **I);
978     IndexPair &IP = MBBRange[MBB];
979     if (!IP.first.isValid() || Idx < IP.first)
980       IP.first = Idx;
981     if (!IP.second.isValid() || Idx > IP.second)
982       IP.second = Idx;
983   }
984 
985   // Create a new interval for each block.
986   for (SplitAnalysis::BlockPtrSet::const_iterator I = Blocks.begin(),
987        E = Blocks.end(); I != E; ++I) {
988     IndexPair &IP = MBBRange[*I];
989     DEBUG(dbgs() << "  splitting for BB#" << (*I)->getNumber() << ": ["
990                  << IP.first << ';' << IP.second << ")\n");
991     assert(IP.first.isValid() && IP.second.isValid());
992 
993     openIntv();
994     enterIntvBefore(IP.first);
995     useIntv(IP.first.getBaseIndex(), IP.second.getBoundaryIndex());
996     leaveIntvAfter(IP.second);
997     closeIntv();
998   }
999   finish();
1000 }
1001 
1002 
1003 //===----------------------------------------------------------------------===//
1004 //                            Sub Block Splitting
1005 //===----------------------------------------------------------------------===//
1006 
1007 /// getBlockForInsideSplit - If curli is contained inside a single basic block,
1008 /// and it wou pay to subdivide the interval inside that block, return it.
1009 /// Otherwise return NULL. The returned block can be passed to
1010 /// SplitEditor::splitInsideBlock.
1011 const MachineBasicBlock *SplitAnalysis::getBlockForInsideSplit() {
1012   // The interval must be exclusive to one block.
1013   if (usingBlocks_.size() != 1)
1014     return 0;
1015   // Don't to this for less than 4 instructions. We want to be sure that
1016   // splitting actually reduces the instruction count per interval.
1017   if (usingInstrs_.size() < 4)
1018     return 0;
1019   return usingBlocks_.begin()->first;
1020 }
1021 
1022 /// splitInsideBlock - Split curli into multiple intervals inside MBB.
1023 void SplitEditor::splitInsideBlock(const MachineBasicBlock *MBB) {
1024   SmallVector<SlotIndex, 32> Uses;
1025   Uses.reserve(sa_.usingInstrs_.size());
1026   for (SplitAnalysis::InstrPtrSet::const_iterator I = sa_.usingInstrs_.begin(),
1027        E = sa_.usingInstrs_.end(); I != E; ++I)
1028     if ((*I)->getParent() == MBB)
1029       Uses.push_back(lis_.getInstructionIndex(*I));
1030   DEBUG(dbgs() << "  splitInsideBlock BB#" << MBB->getNumber() << " for "
1031                << Uses.size() << " instructions.\n");
1032   assert(Uses.size() >= 3 && "Need at least 3 instructions");
1033   array_pod_sort(Uses.begin(), Uses.end());
1034 
1035   // Simple algorithm: Find the largest gap between uses as determined by slot
1036   // indices. Create new intervals for instructions before the gap and after the
1037   // gap.
1038   unsigned bestPos = 0;
1039   int bestGap = 0;
1040   DEBUG(dbgs() << "    dist (" << Uses[0]);
1041   for (unsigned i = 1, e = Uses.size(); i != e; ++i) {
1042     int g = Uses[i-1].distance(Uses[i]);
1043     DEBUG(dbgs() << ") -" << g << "- (" << Uses[i]);
1044     if (g > bestGap)
1045       bestPos = i, bestGap = g;
1046   }
1047   DEBUG(dbgs() << "), best: -" << bestGap << "-\n");
1048 
1049   // bestPos points to the first use after the best gap.
1050   assert(bestPos > 0 && "Invalid gap");
1051 
1052   // FIXME: Don't create intervals for low densities.
1053 
1054   // First interval before the gap. Don't create single-instr intervals.
1055   if (bestPos > 1) {
1056     openIntv();
1057     enterIntvBefore(Uses.front());
1058     useIntv(Uses.front().getBaseIndex(), Uses[bestPos-1].getBoundaryIndex());
1059     leaveIntvAfter(Uses[bestPos-1]);
1060     closeIntv();
1061   }
1062 
1063   // Second interval after the gap.
1064   if (bestPos < Uses.size()-1) {
1065     openIntv();
1066     enterIntvBefore(Uses[bestPos]);
1067     useIntv(Uses[bestPos].getBaseIndex(), Uses.back().getBoundaryIndex());
1068     leaveIntvAfter(Uses.back());
1069     closeIntv();
1070   }
1071 
1072   finish();
1073 }
1074