1 //===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the SplitAnalysis class as well as mutator functions for 11 // live range splitting. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "splitter" 16 #include "SplitKit.h" 17 #include "VirtRegMap.h" 18 #include "llvm/CodeGen/CalcSpillWeights.h" 19 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 20 #include "llvm/CodeGen/MachineInstrBuilder.h" 21 #include "llvm/CodeGen/MachineLoopInfo.h" 22 #include "llvm/CodeGen/MachineRegisterInfo.h" 23 #include "llvm/Support/CommandLine.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/raw_ostream.h" 26 #include "llvm/Target/TargetInstrInfo.h" 27 #include "llvm/Target/TargetMachine.h" 28 29 using namespace llvm; 30 31 static cl::opt<bool> 32 AllowSplit("spiller-splits-edges", 33 cl::desc("Allow critical edge splitting during spilling")); 34 35 //===----------------------------------------------------------------------===// 36 // Split Analysis 37 //===----------------------------------------------------------------------===// 38 39 SplitAnalysis::SplitAnalysis(const MachineFunction &mf, 40 const LiveIntervals &lis, 41 const MachineLoopInfo &mli) 42 : mf_(mf), 43 lis_(lis), 44 loops_(mli), 45 tii_(*mf.getTarget().getInstrInfo()), 46 curli_(0) {} 47 48 void SplitAnalysis::clear() { 49 usingInstrs_.clear(); 50 usingBlocks_.clear(); 51 usingLoops_.clear(); 52 curli_ = 0; 53 } 54 55 bool SplitAnalysis::canAnalyzeBranch(const MachineBasicBlock *MBB) { 56 MachineBasicBlock *T, *F; 57 SmallVector<MachineOperand, 4> Cond; 58 return !tii_.AnalyzeBranch(const_cast<MachineBasicBlock&>(*MBB), T, F, Cond); 59 } 60 61 /// analyzeUses - Count instructions, basic blocks, and loops using curli. 62 void SplitAnalysis::analyzeUses() { 63 const MachineRegisterInfo &MRI = mf_.getRegInfo(); 64 for (MachineRegisterInfo::reg_iterator I = MRI.reg_begin(curli_->reg); 65 MachineInstr *MI = I.skipInstruction();) { 66 if (MI->isDebugValue() || !usingInstrs_.insert(MI)) 67 continue; 68 MachineBasicBlock *MBB = MI->getParent(); 69 if (usingBlocks_[MBB]++) 70 continue; 71 for (MachineLoop *Loop = loops_.getLoopFor(MBB); Loop; 72 Loop = Loop->getParentLoop()) 73 usingLoops_[Loop]++; 74 } 75 DEBUG(dbgs() << " counted " 76 << usingInstrs_.size() << " instrs, " 77 << usingBlocks_.size() << " blocks, " 78 << usingLoops_.size() << " loops.\n"); 79 } 80 81 // Get three sets of basic blocks surrounding a loop: Blocks inside the loop, 82 // predecessor blocks, and exit blocks. 83 void SplitAnalysis::getLoopBlocks(const MachineLoop *Loop, LoopBlocks &Blocks) { 84 Blocks.clear(); 85 86 // Blocks in the loop. 87 Blocks.Loop.insert(Loop->block_begin(), Loop->block_end()); 88 89 // Predecessor blocks. 90 const MachineBasicBlock *Header = Loop->getHeader(); 91 for (MachineBasicBlock::const_pred_iterator I = Header->pred_begin(), 92 E = Header->pred_end(); I != E; ++I) 93 if (!Blocks.Loop.count(*I)) 94 Blocks.Preds.insert(*I); 95 96 // Exit blocks. 97 for (MachineLoop::block_iterator I = Loop->block_begin(), 98 E = Loop->block_end(); I != E; ++I) { 99 const MachineBasicBlock *MBB = *I; 100 for (MachineBasicBlock::const_succ_iterator SI = MBB->succ_begin(), 101 SE = MBB->succ_end(); SI != SE; ++SI) 102 if (!Blocks.Loop.count(*SI)) 103 Blocks.Exits.insert(*SI); 104 } 105 } 106 107 /// analyzeLoopPeripheralUse - Return an enum describing how curli_ is used in 108 /// and around the Loop. 109 SplitAnalysis::LoopPeripheralUse SplitAnalysis:: 110 analyzeLoopPeripheralUse(const SplitAnalysis::LoopBlocks &Blocks) { 111 LoopPeripheralUse use = ContainedInLoop; 112 for (BlockCountMap::iterator I = usingBlocks_.begin(), E = usingBlocks_.end(); 113 I != E; ++I) { 114 const MachineBasicBlock *MBB = I->first; 115 // Is this a peripheral block? 116 if (use < MultiPeripheral && 117 (Blocks.Preds.count(MBB) || Blocks.Exits.count(MBB))) { 118 if (I->second > 1) use = MultiPeripheral; 119 else use = SinglePeripheral; 120 continue; 121 } 122 // Is it a loop block? 123 if (Blocks.Loop.count(MBB)) 124 continue; 125 // It must be an unrelated block. 126 return OutsideLoop; 127 } 128 return use; 129 } 130 131 /// getCriticalExits - It may be necessary to partially break critical edges 132 /// leaving the loop if an exit block has phi uses of curli. Collect the exit 133 /// blocks that need special treatment into CriticalExits. 134 void SplitAnalysis::getCriticalExits(const SplitAnalysis::LoopBlocks &Blocks, 135 BlockPtrSet &CriticalExits) { 136 CriticalExits.clear(); 137 138 // A critical exit block contains a phi def of curli, and has a predecessor 139 // that is not in the loop nor a loop predecessor. 140 // For such an exit block, the edges carrying the new variable must be moved 141 // to a new pre-exit block. 142 for (BlockPtrSet::iterator I = Blocks.Exits.begin(), E = Blocks.Exits.end(); 143 I != E; ++I) { 144 const MachineBasicBlock *Succ = *I; 145 SlotIndex SuccIdx = lis_.getMBBStartIdx(Succ); 146 VNInfo *SuccVNI = curli_->getVNInfoAt(SuccIdx); 147 // This exit may not have curli live in at all. No need to split. 148 if (!SuccVNI) 149 continue; 150 // If this is not a PHI def, it is either using a value from before the 151 // loop, or a value defined inside the loop. Both are safe. 152 if (!SuccVNI->isPHIDef() || SuccVNI->def.getBaseIndex() != SuccIdx) 153 continue; 154 // This exit block does have a PHI. Does it also have a predecessor that is 155 // not a loop block or loop predecessor? 156 for (MachineBasicBlock::const_pred_iterator PI = Succ->pred_begin(), 157 PE = Succ->pred_end(); PI != PE; ++PI) { 158 const MachineBasicBlock *Pred = *PI; 159 if (Blocks.Loop.count(Pred) || Blocks.Preds.count(Pred)) 160 continue; 161 // This is a critical exit block, and we need to split the exit edge. 162 CriticalExits.insert(Succ); 163 break; 164 } 165 } 166 } 167 168 /// canSplitCriticalExits - Return true if it is possible to insert new exit 169 /// blocks before the blocks in CriticalExits. 170 bool 171 SplitAnalysis::canSplitCriticalExits(const SplitAnalysis::LoopBlocks &Blocks, 172 BlockPtrSet &CriticalExits) { 173 // If we don't allow critical edge splitting, require no critical exits. 174 if (!AllowSplit) 175 return CriticalExits.empty(); 176 177 for (BlockPtrSet::iterator I = CriticalExits.begin(), E = CriticalExits.end(); 178 I != E; ++I) { 179 const MachineBasicBlock *Succ = *I; 180 // We want to insert a new pre-exit MBB before Succ, and change all the 181 // in-loop blocks to branch to the pre-exit instead of Succ. 182 // Check that all the in-loop predecessors can be changed. 183 for (MachineBasicBlock::const_pred_iterator PI = Succ->pred_begin(), 184 PE = Succ->pred_end(); PI != PE; ++PI) { 185 const MachineBasicBlock *Pred = *PI; 186 // The external predecessors won't be altered. 187 if (!Blocks.Loop.count(Pred) && !Blocks.Preds.count(Pred)) 188 continue; 189 if (!canAnalyzeBranch(Pred)) 190 return false; 191 } 192 193 // If Succ's layout predecessor falls through, that too must be analyzable. 194 // We need to insert the pre-exit block in the gap. 195 MachineFunction::const_iterator MFI = Succ; 196 if (MFI == mf_.begin()) 197 continue; 198 if (!canAnalyzeBranch(--MFI)) 199 return false; 200 } 201 // No problems found. 202 return true; 203 } 204 205 void SplitAnalysis::analyze(const LiveInterval *li) { 206 clear(); 207 curli_ = li; 208 analyzeUses(); 209 } 210 211 const MachineLoop *SplitAnalysis::getBestSplitLoop() { 212 assert(curli_ && "Call analyze() before getBestSplitLoop"); 213 if (usingLoops_.empty()) 214 return 0; 215 216 LoopPtrSet Loops; 217 LoopBlocks Blocks; 218 BlockPtrSet CriticalExits; 219 220 // We split around loops where curli is used outside the periphery. 221 for (LoopCountMap::const_iterator I = usingLoops_.begin(), 222 E = usingLoops_.end(); I != E; ++I) { 223 const MachineLoop *Loop = I->first; 224 getLoopBlocks(Loop, Blocks); 225 226 switch(analyzeLoopPeripheralUse(Blocks)) { 227 case OutsideLoop: 228 break; 229 case MultiPeripheral: 230 // FIXME: We could split a live range with multiple uses in a peripheral 231 // block and still make progress. However, it is possible that splitting 232 // another live range will insert copies into a peripheral block, and 233 // there is a small chance we can enter an infinity loop, inserting copies 234 // forever. 235 // For safety, stick to splitting live ranges with uses outside the 236 // periphery. 237 DEBUG(dbgs() << " multiple peripheral uses in " << *Loop); 238 break; 239 case ContainedInLoop: 240 DEBUG(dbgs() << " contained in " << *Loop); 241 continue; 242 case SinglePeripheral: 243 DEBUG(dbgs() << " single peripheral use in " << *Loop); 244 continue; 245 } 246 // Will it be possible to split around this loop? 247 getCriticalExits(Blocks, CriticalExits); 248 DEBUG(dbgs() << " " << CriticalExits.size() << " critical exits from " 249 << *Loop); 250 if (!canSplitCriticalExits(Blocks, CriticalExits)) 251 continue; 252 // This is a possible split. 253 Loops.insert(Loop); 254 } 255 256 DEBUG(dbgs() << " getBestSplitLoop found " << Loops.size() 257 << " candidate loops.\n"); 258 259 if (Loops.empty()) 260 return 0; 261 262 // Pick the earliest loop. 263 // FIXME: Are there other heuristics to consider? 264 const MachineLoop *Best = 0; 265 SlotIndex BestIdx; 266 for (LoopPtrSet::const_iterator I = Loops.begin(), E = Loops.end(); I != E; 267 ++I) { 268 SlotIndex Idx = lis_.getMBBStartIdx((*I)->getHeader()); 269 if (!Best || Idx < BestIdx) 270 Best = *I, BestIdx = Idx; 271 } 272 DEBUG(dbgs() << " getBestSplitLoop found " << *Best); 273 return Best; 274 } 275 276 /// getMultiUseBlocks - if curli has more than one use in a basic block, it 277 /// may be an advantage to split curli for the duration of the block. 278 bool SplitAnalysis::getMultiUseBlocks(BlockPtrSet &Blocks) { 279 // If curli is local to one block, there is no point to splitting it. 280 if (usingBlocks_.size() <= 1) 281 return false; 282 // Add blocks with multiple uses. 283 for (BlockCountMap::iterator I = usingBlocks_.begin(), E = usingBlocks_.end(); 284 I != E; ++I) 285 switch (I->second) { 286 case 0: 287 case 1: 288 continue; 289 case 2: { 290 // It doesn't pay to split a 2-instr block if it redefines curli. 291 VNInfo *VN1 = curli_->getVNInfoAt(lis_.getMBBStartIdx(I->first)); 292 VNInfo *VN2 = 293 curli_->getVNInfoAt(lis_.getMBBEndIdx(I->first).getPrevIndex()); 294 // live-in and live-out with a different value. 295 if (VN1 && VN2 && VN1 != VN2) 296 continue; 297 } // Fall through. 298 default: 299 Blocks.insert(I->first); 300 } 301 return !Blocks.empty(); 302 } 303 304 //===----------------------------------------------------------------------===// 305 // LiveIntervalMap 306 //===----------------------------------------------------------------------===// 307 308 // Work around the fact that the std::pair constructors are broken for pointer 309 // pairs in some implementations. makeVV(x, 0) works. 310 static inline std::pair<const VNInfo*, VNInfo*> 311 makeVV(const VNInfo *a, VNInfo *b) { 312 return std::make_pair(a, b); 313 } 314 315 void LiveIntervalMap::reset(LiveInterval *li) { 316 li_ = li; 317 valueMap_.clear(); 318 } 319 320 bool LiveIntervalMap::isComplexMapped(const VNInfo *ParentVNI) const { 321 ValueMap::const_iterator i = valueMap_.find(ParentVNI); 322 return i != valueMap_.end() && i->second == 0; 323 } 324 325 // defValue - Introduce a li_ def for ParentVNI that could be later than 326 // ParentVNI->def. 327 VNInfo *LiveIntervalMap::defValue(const VNInfo *ParentVNI, SlotIndex Idx) { 328 assert(li_ && "call reset first"); 329 assert(ParentVNI && "Mapping NULL value"); 330 assert(Idx.isValid() && "Invalid SlotIndex"); 331 assert(parentli_.getVNInfoAt(Idx) == ParentVNI && "Bad ParentVNI"); 332 333 // Create a new value. 334 VNInfo *VNI = li_->getNextValue(Idx, 0, lis_.getVNInfoAllocator()); 335 336 // Use insert for lookup, so we can add missing values with a second lookup. 337 std::pair<ValueMap::iterator,bool> InsP = 338 valueMap_.insert(makeVV(ParentVNI, Idx == ParentVNI->def ? VNI : 0)); 339 340 // This is now a complex def. Mark with a NULL in valueMap. 341 if (!InsP.second) 342 InsP.first->second = 0; 343 344 return VNI; 345 } 346 347 348 // mapValue - Find the mapped value for ParentVNI at Idx. 349 // Potentially create phi-def values. 350 VNInfo *LiveIntervalMap::mapValue(const VNInfo *ParentVNI, SlotIndex Idx, 351 bool *simple) { 352 assert(li_ && "call reset first"); 353 assert(ParentVNI && "Mapping NULL value"); 354 assert(Idx.isValid() && "Invalid SlotIndex"); 355 assert(parentli_.getVNInfoAt(Idx) == ParentVNI && "Bad ParentVNI"); 356 357 // Use insert for lookup, so we can add missing values with a second lookup. 358 std::pair<ValueMap::iterator,bool> InsP = 359 valueMap_.insert(makeVV(ParentVNI, 0)); 360 361 // This was an unknown value. Create a simple mapping. 362 if (InsP.second) { 363 if (simple) *simple = true; 364 return InsP.first->second = li_->createValueCopy(ParentVNI, 365 lis_.getVNInfoAllocator()); 366 } 367 368 // This was a simple mapped value. 369 if (InsP.first->second) { 370 if (simple) *simple = true; 371 return InsP.first->second; 372 } 373 374 // This is a complex mapped value. There may be multiple defs, and we may need 375 // to create phi-defs. 376 if (simple) *simple = false; 377 MachineBasicBlock *IdxMBB = lis_.getMBBFromIndex(Idx); 378 assert(IdxMBB && "No MBB at Idx"); 379 380 // Is there a def in the same MBB we can extend? 381 if (VNInfo *VNI = extendTo(IdxMBB, Idx)) 382 return VNI; 383 384 // Now for the fun part. We know that ParentVNI potentially has multiple defs, 385 // and we may need to create even more phi-defs to preserve VNInfo SSA form. 386 // Perform a depth-first search for predecessor blocks where we know the 387 // dominating VNInfo. Insert phi-def VNInfos along the path back to IdxMBB. 388 389 // Track MBBs where we have created or learned the dominating value. 390 // This may change during the DFS as we create new phi-defs. 391 typedef DenseMap<MachineBasicBlock*, VNInfo*> MBBValueMap; 392 MBBValueMap DomValue; 393 typedef SplitAnalysis::BlockPtrSet BlockPtrSet; 394 BlockPtrSet Visited; 395 396 // Iterate over IdxMBB predecessors in a depth-first order. 397 // Skip begin() since that is always IdxMBB. 398 for (idf_ext_iterator<MachineBasicBlock*, BlockPtrSet> 399 IDFI = llvm::next(idf_ext_begin(IdxMBB, Visited)), 400 IDFE = idf_ext_end(IdxMBB, Visited); IDFI != IDFE;) { 401 MachineBasicBlock *MBB = *IDFI; 402 SlotIndex End = lis_.getMBBEndIdx(MBB).getPrevSlot(); 403 404 // We are operating on the restricted CFG where ParentVNI is live. 405 if (parentli_.getVNInfoAt(End) != ParentVNI) { 406 IDFI.skipChildren(); 407 continue; 408 } 409 410 // Do we have a dominating value in this block? 411 VNInfo *VNI = extendTo(MBB, End); 412 if (!VNI) { 413 ++IDFI; 414 continue; 415 } 416 417 // Yes, VNI dominates MBB. Make sure we visit MBB again from other paths. 418 Visited.erase(MBB); 419 420 // Track the path back to IdxMBB, creating phi-defs 421 // as needed along the way. 422 for (unsigned PI = IDFI.getPathLength()-1; PI != 0; --PI) { 423 // Start from MBB's immediate successor. End at IdxMBB. 424 MachineBasicBlock *Succ = IDFI.getPath(PI-1); 425 std::pair<MBBValueMap::iterator, bool> InsP = 426 DomValue.insert(MBBValueMap::value_type(Succ, VNI)); 427 428 // This is the first time we backtrack to Succ. 429 if (InsP.second) 430 continue; 431 432 // We reached Succ again with the same VNI. Nothing is going to change. 433 VNInfo *OVNI = InsP.first->second; 434 if (OVNI == VNI) 435 break; 436 437 // Succ already has a phi-def. No need to continue. 438 SlotIndex Start = lis_.getMBBStartIdx(Succ); 439 if (OVNI->def == Start) 440 break; 441 442 // We have a collision between the old and new VNI at Succ. That means 443 // neither dominates and we need a new phi-def. 444 VNI = li_->getNextValue(Start, 0, lis_.getVNInfoAllocator()); 445 VNI->setIsPHIDef(true); 446 InsP.first->second = VNI; 447 448 // Replace OVNI with VNI in the remaining path. 449 for (; PI > 1 ; --PI) { 450 MBBValueMap::iterator I = DomValue.find(IDFI.getPath(PI-2)); 451 if (I == DomValue.end() || I->second != OVNI) 452 break; 453 I->second = VNI; 454 } 455 } 456 457 // No need to search the children, we found a dominating value. 458 IDFI.skipChildren(); 459 } 460 461 // The search should at least find a dominating value for IdxMBB. 462 assert(!DomValue.empty() && "Couldn't find a reaching definition"); 463 464 // Since we went through the trouble of a full DFS visiting all reaching defs, 465 // the values in DomValue are now accurate. No more phi-defs are needed for 466 // these blocks, so we can color the live ranges. 467 // This makes the next mapValue call much faster. 468 VNInfo *IdxVNI = 0; 469 for (MBBValueMap::iterator I = DomValue.begin(), E = DomValue.end(); I != E; 470 ++I) { 471 MachineBasicBlock *MBB = I->first; 472 VNInfo *VNI = I->second; 473 SlotIndex Start = lis_.getMBBStartIdx(MBB); 474 if (MBB == IdxMBB) { 475 // Don't add full liveness to IdxMBB, stop at Idx. 476 if (Start != Idx) 477 li_->addRange(LiveRange(Start, Idx.getNextSlot(), VNI)); 478 // The caller had better add some liveness to IdxVNI, or it leaks. 479 IdxVNI = VNI; 480 } else 481 li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), VNI)); 482 } 483 484 assert(IdxVNI && "Didn't find value for Idx"); 485 return IdxVNI; 486 } 487 488 // extendTo - Find the last li_ value defined in MBB at or before Idx. The 489 // parentli_ is assumed to be live at Idx. Extend the live range to Idx. 490 // Return the found VNInfo, or NULL. 491 VNInfo *LiveIntervalMap::extendTo(MachineBasicBlock *MBB, SlotIndex Idx) { 492 assert(li_ && "call reset first"); 493 LiveInterval::iterator I = std::upper_bound(li_->begin(), li_->end(), Idx); 494 if (I == li_->begin()) 495 return 0; 496 --I; 497 if (I->end <= lis_.getMBBStartIdx(MBB)) 498 return 0; 499 if (I->end <= Idx) 500 I->end = Idx.getNextSlot(); 501 return I->valno; 502 } 503 504 // addSimpleRange - Add a simple range from parentli_ to li_. 505 // ParentVNI must be live in the [Start;End) interval. 506 void LiveIntervalMap::addSimpleRange(SlotIndex Start, SlotIndex End, 507 const VNInfo *ParentVNI) { 508 assert(li_ && "call reset first"); 509 bool simple; 510 VNInfo *VNI = mapValue(ParentVNI, Start, &simple); 511 // A simple mapping is easy. 512 if (simple) { 513 li_->addRange(LiveRange(Start, End, VNI)); 514 return; 515 } 516 517 // ParentVNI is a complex value. We must map per MBB. 518 MachineFunction::iterator MBB = lis_.getMBBFromIndex(Start); 519 MachineFunction::iterator MBBE = lis_.getMBBFromIndex(End.getPrevSlot()); 520 521 if (MBB == MBBE) { 522 li_->addRange(LiveRange(Start, End, VNI)); 523 return; 524 } 525 526 // First block. 527 li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), VNI)); 528 529 // Run sequence of full blocks. 530 for (++MBB; MBB != MBBE; ++MBB) { 531 Start = lis_.getMBBStartIdx(MBB); 532 li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), 533 mapValue(ParentVNI, Start))); 534 } 535 536 // Final block. 537 Start = lis_.getMBBStartIdx(MBB); 538 if (Start != End) 539 li_->addRange(LiveRange(Start, End, mapValue(ParentVNI, Start))); 540 } 541 542 /// addRange - Add live ranges to li_ where [Start;End) intersects parentli_. 543 /// All needed values whose def is not inside [Start;End) must be defined 544 /// beforehand so mapValue will work. 545 void LiveIntervalMap::addRange(SlotIndex Start, SlotIndex End) { 546 assert(li_ && "call reset first"); 547 LiveInterval::const_iterator B = parentli_.begin(), E = parentli_.end(); 548 LiveInterval::const_iterator I = std::lower_bound(B, E, Start); 549 550 // Check if --I begins before Start and overlaps. 551 if (I != B) { 552 --I; 553 if (I->end > Start) 554 addSimpleRange(Start, std::min(End, I->end), I->valno); 555 ++I; 556 } 557 558 // The remaining ranges begin after Start. 559 for (;I != E && I->start < End; ++I) 560 addSimpleRange(I->start, std::min(End, I->end), I->valno); 561 } 562 563 VNInfo *LiveIntervalMap::defByCopyFrom(unsigned Reg, 564 const VNInfo *ParentVNI, 565 MachineBasicBlock &MBB, 566 MachineBasicBlock::iterator I) { 567 const TargetInstrDesc &TID = MBB.getParent()->getTarget().getInstrInfo()-> 568 get(TargetOpcode::COPY); 569 MachineInstr *MI = BuildMI(MBB, I, DebugLoc(), TID, li_->reg).addReg(Reg); 570 SlotIndex DefIdx = lis_.InsertMachineInstrInMaps(MI).getDefIndex(); 571 VNInfo *VNI = defValue(ParentVNI, DefIdx); 572 VNI->setCopy(MI); 573 li_->addRange(LiveRange(DefIdx, DefIdx.getNextSlot(), VNI)); 574 return VNI; 575 } 576 577 //===----------------------------------------------------------------------===// 578 // Split Editor 579 //===----------------------------------------------------------------------===// 580 581 /// Create a new SplitEditor for editing the LiveInterval analyzed by SA. 582 SplitEditor::SplitEditor(SplitAnalysis &sa, LiveIntervals &lis, VirtRegMap &vrm, 583 SmallVectorImpl<LiveInterval*> &intervals) 584 : sa_(sa), lis_(lis), vrm_(vrm), 585 mri_(vrm.getMachineFunction().getRegInfo()), 586 tii_(*vrm.getMachineFunction().getTarget().getInstrInfo()), 587 curli_(sa_.getCurLI()), 588 dupli_(lis_, *curli_), 589 openli_(lis_, *curli_), 590 intervals_(intervals), 591 firstInterval(intervals_.size()) 592 { 593 assert(curli_ && "SplitEditor created from empty SplitAnalysis"); 594 595 // Make sure curli_ is assigned a stack slot, so all our intervals get the 596 // same slot as curli_. 597 if (vrm_.getStackSlot(curli_->reg) == VirtRegMap::NO_STACK_SLOT) 598 vrm_.assignVirt2StackSlot(curli_->reg); 599 600 } 601 602 LiveInterval *SplitEditor::createInterval() { 603 unsigned Reg = mri_.createVirtualRegister(mri_.getRegClass(curli_->reg)); 604 LiveInterval &Intv = lis_.getOrCreateInterval(Reg); 605 vrm_.grow(); 606 vrm_.assignVirt2StackSlot(Reg, vrm_.getStackSlot(curli_->reg)); 607 return &Intv; 608 } 609 610 bool SplitEditor::intervalsLiveAt(SlotIndex Idx) const { 611 for (int i = firstInterval, e = intervals_.size(); i != e; ++i) 612 if (intervals_[i]->liveAt(Idx)) 613 return true; 614 return false; 615 } 616 617 /// Create a new virtual register and live interval. 618 void SplitEditor::openIntv() { 619 assert(!openli_.getLI() && "Previous LI not closed before openIntv"); 620 621 if (!dupli_.getLI()) 622 dupli_.reset(createInterval()); 623 624 openli_.reset(createInterval()); 625 intervals_.push_back(openli_.getLI()); 626 } 627 628 /// enterIntvBefore - Enter openli before the instruction at Idx. If curli is 629 /// not live before Idx, a COPY is not inserted. 630 void SplitEditor::enterIntvBefore(SlotIndex Idx) { 631 assert(openli_.getLI() && "openIntv not called before enterIntvBefore"); 632 DEBUG(dbgs() << " enterIntvBefore " << Idx); 633 VNInfo *ParentVNI = curli_->getVNInfoAt(Idx.getUseIndex()); 634 if (!ParentVNI) { 635 DEBUG(dbgs() << ": not live\n"); 636 return; 637 } 638 DEBUG(dbgs() << ": valno " << ParentVNI->id); 639 truncatedValues.insert(ParentVNI); 640 MachineInstr *MI = lis_.getInstructionFromIndex(Idx); 641 assert(MI && "enterIntvBefore called with invalid index"); 642 VNInfo *VNI = openli_.defByCopyFrom(curli_->reg, ParentVNI, 643 *MI->getParent(), MI); 644 openli_.getLI()->addRange(LiveRange(VNI->def, Idx.getDefIndex(), VNI)); 645 DEBUG(dbgs() << ": " << *openli_.getLI() << '\n'); 646 } 647 648 /// enterIntvAtEnd - Enter openli at the end of MBB. 649 void SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) { 650 assert(openli_.getLI() && "openIntv not called before enterIntvAtEnd"); 651 SlotIndex End = lis_.getMBBEndIdx(&MBB); 652 DEBUG(dbgs() << " enterIntvAtEnd BB#" << MBB.getNumber() << ", " << End); 653 VNInfo *ParentVNI = curli_->getVNInfoAt(End.getPrevSlot()); 654 if (!ParentVNI) { 655 DEBUG(dbgs() << ": not live\n"); 656 return; 657 } 658 DEBUG(dbgs() << ": valno " << ParentVNI->id); 659 truncatedValues.insert(ParentVNI); 660 VNInfo *VNI = openli_.defByCopyFrom(curli_->reg, ParentVNI, 661 MBB, MBB.getFirstTerminator()); 662 // Make sure openli is live out of MBB. 663 openli_.getLI()->addRange(LiveRange(VNI->def, End, VNI)); 664 DEBUG(dbgs() << ": " << *openli_.getLI() << '\n'); 665 } 666 667 /// useIntv - indicate that all instructions in MBB should use openli. 668 void SplitEditor::useIntv(const MachineBasicBlock &MBB) { 669 useIntv(lis_.getMBBStartIdx(&MBB), lis_.getMBBEndIdx(&MBB)); 670 } 671 672 void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) { 673 assert(openli_.getLI() && "openIntv not called before useIntv"); 674 openli_.addRange(Start, End); 675 DEBUG(dbgs() << " use [" << Start << ';' << End << "): " 676 << *openli_.getLI() << '\n'); 677 } 678 679 /// leaveIntvAfter - Leave openli after the instruction at Idx. 680 void SplitEditor::leaveIntvAfter(SlotIndex Idx) { 681 assert(openli_.getLI() && "openIntv not called before leaveIntvAfter"); 682 DEBUG(dbgs() << " leaveIntvAfter " << Idx); 683 684 // The interval must be live beyond the instruction at Idx. 685 VNInfo *ParentVNI = curli_->getVNInfoAt(Idx.getBoundaryIndex()); 686 if (!ParentVNI) { 687 DEBUG(dbgs() << ": not live\n"); 688 return; 689 } 690 DEBUG(dbgs() << ": valno " << ParentVNI->id); 691 692 MachineBasicBlock::iterator MII = lis_.getInstructionFromIndex(Idx); 693 MachineBasicBlock *MBB = MII->getParent(); 694 VNInfo *VNI = dupli_.defByCopyFrom(openli_.getLI()->reg, ParentVNI, *MBB, 695 llvm::next(MII)); 696 697 // Finally we must make sure that openli is properly extended from Idx to the 698 // new copy. 699 openli_.addSimpleRange(Idx.getBoundaryIndex(), VNI->def, ParentVNI); 700 DEBUG(dbgs() << ": " << *openli_.getLI() << '\n'); 701 } 702 703 /// leaveIntvAtTop - Leave the interval at the top of MBB. 704 /// Currently, only one value can leave the interval. 705 void SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) { 706 assert(openli_.getLI() && "openIntv not called before leaveIntvAtTop"); 707 SlotIndex Start = lis_.getMBBStartIdx(&MBB); 708 DEBUG(dbgs() << " leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start); 709 710 VNInfo *ParentVNI = curli_->getVNInfoAt(Start); 711 if (!ParentVNI) { 712 DEBUG(dbgs() << ": not live\n"); 713 return; 714 } 715 716 // We are going to insert a back copy, so we must have a dupli_. 717 VNInfo *VNI = dupli_.defByCopyFrom(openli_.getLI()->reg, ParentVNI, 718 MBB, MBB.begin()); 719 720 // Finally we must make sure that openli is properly extended from Start to 721 // the new copy. 722 openli_.addSimpleRange(Start, VNI->def, ParentVNI); 723 DEBUG(dbgs() << ": " << *openli_.getLI() << '\n'); 724 } 725 726 /// closeIntv - Indicate that we are done editing the currently open 727 /// LiveInterval, and ranges can be trimmed. 728 void SplitEditor::closeIntv() { 729 assert(openli_.getLI() && "openIntv not called before closeIntv"); 730 731 DEBUG(dbgs() << " closeIntv cleaning up\n"); 732 DEBUG(dbgs() << " open " << *openli_.getLI() << '\n'); 733 openli_.reset(0); 734 } 735 736 /// rewrite - Rewrite all uses of reg to use the new registers. 737 void SplitEditor::rewrite(unsigned reg) { 738 for (MachineRegisterInfo::reg_iterator RI = mri_.reg_begin(reg), 739 RE = mri_.reg_end(); RI != RE;) { 740 MachineOperand &MO = RI.getOperand(); 741 MachineInstr *MI = MO.getParent(); 742 ++RI; 743 if (MI->isDebugValue()) { 744 DEBUG(dbgs() << "Zapping " << *MI); 745 // FIXME: We can do much better with debug values. 746 MO.setReg(0); 747 continue; 748 } 749 SlotIndex Idx = lis_.getInstructionIndex(MI); 750 Idx = MO.isUse() ? Idx.getUseIndex() : Idx.getDefIndex(); 751 LiveInterval *LI = 0; 752 for (unsigned i = firstInterval, e = intervals_.size(); i != e; ++i) { 753 LiveInterval *testli = intervals_[i]; 754 if (testli->liveAt(Idx)) { 755 LI = testli; 756 break; 757 } 758 } 759 assert(LI && "No register was live at use"); 760 MO.setReg(LI->reg); 761 DEBUG(dbgs() << " rewrite BB#" << MI->getParent()->getNumber() << '\t' 762 << Idx << '\t' << *MI); 763 } 764 } 765 766 void 767 SplitEditor::addTruncSimpleRange(SlotIndex Start, SlotIndex End, VNInfo *VNI) { 768 // Build vector of iterator pairs from the intervals. 769 typedef std::pair<LiveInterval::const_iterator, 770 LiveInterval::const_iterator> IIPair; 771 SmallVector<IIPair, 8> Iters; 772 for (int i = firstInterval, e = intervals_.size(); i != e; ++i) { 773 LiveInterval::const_iterator I = intervals_[i]->find(Start); 774 LiveInterval::const_iterator E = intervals_[i]->end(); 775 if (I != E) 776 Iters.push_back(std::make_pair(I, E)); 777 } 778 779 SlotIndex sidx = Start; 780 // Break [Start;End) into segments that don't overlap any intervals. 781 for (;;) { 782 SlotIndex next = sidx, eidx = End; 783 // Find overlapping intervals. 784 for (unsigned i = 0; i != Iters.size() && sidx < eidx; ++i) { 785 LiveInterval::const_iterator I = Iters[i].first; 786 // Interval I is overlapping [sidx;eidx). Trim sidx. 787 if (I->start <= sidx) { 788 sidx = I->end; 789 // Move to the next run, remove iters when all are consumed. 790 I = ++Iters[i].first; 791 if (I == Iters[i].second) { 792 Iters.erase(Iters.begin() + i); 793 --i; 794 continue; 795 } 796 } 797 // Trim eidx too if needed. 798 if (I->start >= eidx) 799 continue; 800 eidx = I->start; 801 next = I->end; 802 } 803 // Now, [sidx;eidx) doesn't overlap anything in intervals_. 804 if (sidx < eidx) 805 dupli_.addSimpleRange(sidx, eidx, VNI); 806 // If the interval end was truncated, we can try again from next. 807 if (next <= sidx) 808 break; 809 sidx = next; 810 } 811 } 812 813 void SplitEditor::computeRemainder() { 814 // First we need to fill in the live ranges in dupli. 815 // If values were redefined, we need a full recoloring with SSA update. 816 // If values were truncated, we only need to truncate the ranges. 817 // If values were partially rematted, we should shrink to uses. 818 // If values were fully rematted, they should be omitted. 819 // FIXME: If a single value is redefined, just move the def and truncate. 820 821 // Values that are fully contained in the split intervals. 822 SmallPtrSet<const VNInfo*, 8> deadValues; 823 824 // Map all curli values that should have live defs in dupli. 825 for (LiveInterval::const_vni_iterator I = curli_->vni_begin(), 826 E = curli_->vni_end(); I != E; ++I) { 827 const VNInfo *VNI = *I; 828 // Original def is contained in the split intervals. 829 if (intervalsLiveAt(VNI->def)) { 830 // Did this value escape? 831 if (dupli_.isMapped(VNI)) 832 truncatedValues.insert(VNI); 833 else 834 deadValues.insert(VNI); 835 continue; 836 } 837 // Add minimal live range at the definition. 838 VNInfo *DVNI = dupli_.defValue(VNI, VNI->def); 839 dupli_.getLI()->addRange(LiveRange(VNI->def, VNI->def.getNextSlot(), DVNI)); 840 } 841 842 // Add all ranges to dupli. 843 for (LiveInterval::const_iterator I = curli_->begin(), E = curli_->end(); 844 I != E; ++I) { 845 const LiveRange &LR = *I; 846 if (truncatedValues.count(LR.valno)) { 847 // recolor after removing intervals_. 848 addTruncSimpleRange(LR.start, LR.end, LR.valno); 849 } else if (!deadValues.count(LR.valno)) { 850 // recolor without truncation. 851 dupli_.addSimpleRange(LR.start, LR.end, LR.valno); 852 } 853 } 854 } 855 856 void SplitEditor::finish() { 857 assert(!openli_.getLI() && "Previous LI not closed before rewrite"); 858 assert(dupli_.getLI() && "No dupli for rewrite. Noop spilt?"); 859 860 // Complete dupli liveness. 861 computeRemainder(); 862 863 // Get rid of unused values and set phi-kill flags. 864 dupli_.getLI()->RenumberValues(lis_); 865 866 // Now check if dupli was separated into multiple connected components. 867 ConnectedVNInfoEqClasses ConEQ(lis_); 868 if (unsigned NumComp = ConEQ.Classify(dupli_.getLI())) { 869 DEBUG(dbgs() << " Remainder has " << NumComp << " connected components: " 870 << *dupli_.getLI() << '\n'); 871 unsigned firstComp = intervals_.size(); 872 intervals_.push_back(dupli_.getLI()); 873 // Did the remainder break up? Create intervals for all the components. 874 if (NumComp > 1) { 875 for (unsigned i = 1; i != NumComp; ++i) 876 intervals_.push_back(createInterval()); 877 ConEQ.Distribute(&intervals_[firstComp]); 878 // Rewrite uses to the new regs. 879 rewrite(dupli_.getLI()->reg); 880 } 881 } else { 882 DEBUG(dbgs() << " dupli became empty?\n"); 883 lis_.removeInterval(dupli_.getLI()->reg); 884 dupli_.reset(0); 885 } 886 887 // Rewrite instructions. 888 rewrite(curli_->reg); 889 890 // Calculate spill weight and allocation hints for new intervals. 891 VirtRegAuxInfo vrai(vrm_.getMachineFunction(), lis_, sa_.loops_); 892 for (unsigned i = firstInterval, e = intervals_.size(); i != e; ++i) { 893 LiveInterval &li = *intervals_[i]; 894 vrai.CalculateRegClass(li.reg); 895 vrai.CalculateWeightAndHint(li); 896 DEBUG(dbgs() << " new interval " << mri_.getRegClass(li.reg)->getName() 897 << ":" << li << '\n'); 898 } 899 } 900 901 902 //===----------------------------------------------------------------------===// 903 // Loop Splitting 904 //===----------------------------------------------------------------------===// 905 906 void SplitEditor::splitAroundLoop(const MachineLoop *Loop) { 907 SplitAnalysis::LoopBlocks Blocks; 908 sa_.getLoopBlocks(Loop, Blocks); 909 910 DEBUG({ 911 dbgs() << " splitAroundLoop"; 912 for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Loop.begin(), 913 E = Blocks.Loop.end(); I != E; ++I) 914 dbgs() << " BB#" << (*I)->getNumber(); 915 dbgs() << ", preds:"; 916 for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Preds.begin(), 917 E = Blocks.Preds.end(); I != E; ++I) 918 dbgs() << " BB#" << (*I)->getNumber(); 919 dbgs() << ", exits:"; 920 for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Exits.begin(), 921 E = Blocks.Exits.end(); I != E; ++I) 922 dbgs() << " BB#" << (*I)->getNumber(); 923 dbgs() << '\n'; 924 }); 925 926 // Break critical edges as needed. 927 SplitAnalysis::BlockPtrSet CriticalExits; 928 sa_.getCriticalExits(Blocks, CriticalExits); 929 assert(CriticalExits.empty() && "Cannot break critical exits yet"); 930 931 // Create new live interval for the loop. 932 openIntv(); 933 934 // Insert copies in the predecessors. 935 for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Preds.begin(), 936 E = Blocks.Preds.end(); I != E; ++I) { 937 MachineBasicBlock &MBB = const_cast<MachineBasicBlock&>(**I); 938 enterIntvAtEnd(MBB); 939 } 940 941 // Switch all loop blocks. 942 for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Loop.begin(), 943 E = Blocks.Loop.end(); I != E; ++I) 944 useIntv(**I); 945 946 // Insert back copies in the exit blocks. 947 for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Exits.begin(), 948 E = Blocks.Exits.end(); I != E; ++I) { 949 MachineBasicBlock &MBB = const_cast<MachineBasicBlock&>(**I); 950 leaveIntvAtTop(MBB); 951 } 952 953 // Done. 954 closeIntv(); 955 finish(); 956 } 957 958 959 //===----------------------------------------------------------------------===// 960 // Single Block Splitting 961 //===----------------------------------------------------------------------===// 962 963 /// splitSingleBlocks - Split curli into a separate live interval inside each 964 /// basic block in Blocks. 965 void SplitEditor::splitSingleBlocks(const SplitAnalysis::BlockPtrSet &Blocks) { 966 DEBUG(dbgs() << " splitSingleBlocks for " << Blocks.size() << " blocks.\n"); 967 // Determine the first and last instruction using curli in each block. 968 typedef std::pair<SlotIndex,SlotIndex> IndexPair; 969 typedef DenseMap<const MachineBasicBlock*,IndexPair> IndexPairMap; 970 IndexPairMap MBBRange; 971 for (SplitAnalysis::InstrPtrSet::const_iterator I = sa_.usingInstrs_.begin(), 972 E = sa_.usingInstrs_.end(); I != E; ++I) { 973 const MachineBasicBlock *MBB = (*I)->getParent(); 974 if (!Blocks.count(MBB)) 975 continue; 976 SlotIndex Idx = lis_.getInstructionIndex(*I); 977 DEBUG(dbgs() << " BB#" << MBB->getNumber() << '\t' << Idx << '\t' << **I); 978 IndexPair &IP = MBBRange[MBB]; 979 if (!IP.first.isValid() || Idx < IP.first) 980 IP.first = Idx; 981 if (!IP.second.isValid() || Idx > IP.second) 982 IP.second = Idx; 983 } 984 985 // Create a new interval for each block. 986 for (SplitAnalysis::BlockPtrSet::const_iterator I = Blocks.begin(), 987 E = Blocks.end(); I != E; ++I) { 988 IndexPair &IP = MBBRange[*I]; 989 DEBUG(dbgs() << " splitting for BB#" << (*I)->getNumber() << ": [" 990 << IP.first << ';' << IP.second << ")\n"); 991 assert(IP.first.isValid() && IP.second.isValid()); 992 993 openIntv(); 994 enterIntvBefore(IP.first); 995 useIntv(IP.first.getBaseIndex(), IP.second.getBoundaryIndex()); 996 leaveIntvAfter(IP.second); 997 closeIntv(); 998 } 999 finish(); 1000 } 1001 1002 1003 //===----------------------------------------------------------------------===// 1004 // Sub Block Splitting 1005 //===----------------------------------------------------------------------===// 1006 1007 /// getBlockForInsideSplit - If curli is contained inside a single basic block, 1008 /// and it wou pay to subdivide the interval inside that block, return it. 1009 /// Otherwise return NULL. The returned block can be passed to 1010 /// SplitEditor::splitInsideBlock. 1011 const MachineBasicBlock *SplitAnalysis::getBlockForInsideSplit() { 1012 // The interval must be exclusive to one block. 1013 if (usingBlocks_.size() != 1) 1014 return 0; 1015 // Don't to this for less than 4 instructions. We want to be sure that 1016 // splitting actually reduces the instruction count per interval. 1017 if (usingInstrs_.size() < 4) 1018 return 0; 1019 return usingBlocks_.begin()->first; 1020 } 1021 1022 /// splitInsideBlock - Split curli into multiple intervals inside MBB. 1023 void SplitEditor::splitInsideBlock(const MachineBasicBlock *MBB) { 1024 SmallVector<SlotIndex, 32> Uses; 1025 Uses.reserve(sa_.usingInstrs_.size()); 1026 for (SplitAnalysis::InstrPtrSet::const_iterator I = sa_.usingInstrs_.begin(), 1027 E = sa_.usingInstrs_.end(); I != E; ++I) 1028 if ((*I)->getParent() == MBB) 1029 Uses.push_back(lis_.getInstructionIndex(*I)); 1030 DEBUG(dbgs() << " splitInsideBlock BB#" << MBB->getNumber() << " for " 1031 << Uses.size() << " instructions.\n"); 1032 assert(Uses.size() >= 3 && "Need at least 3 instructions"); 1033 array_pod_sort(Uses.begin(), Uses.end()); 1034 1035 // Simple algorithm: Find the largest gap between uses as determined by slot 1036 // indices. Create new intervals for instructions before the gap and after the 1037 // gap. 1038 unsigned bestPos = 0; 1039 int bestGap = 0; 1040 DEBUG(dbgs() << " dist (" << Uses[0]); 1041 for (unsigned i = 1, e = Uses.size(); i != e; ++i) { 1042 int g = Uses[i-1].distance(Uses[i]); 1043 DEBUG(dbgs() << ") -" << g << "- (" << Uses[i]); 1044 if (g > bestGap) 1045 bestPos = i, bestGap = g; 1046 } 1047 DEBUG(dbgs() << "), best: -" << bestGap << "-\n"); 1048 1049 // bestPos points to the first use after the best gap. 1050 assert(bestPos > 0 && "Invalid gap"); 1051 1052 // FIXME: Don't create intervals for low densities. 1053 1054 // First interval before the gap. Don't create single-instr intervals. 1055 if (bestPos > 1) { 1056 openIntv(); 1057 enterIntvBefore(Uses.front()); 1058 useIntv(Uses.front().getBaseIndex(), Uses[bestPos-1].getBoundaryIndex()); 1059 leaveIntvAfter(Uses[bestPos-1]); 1060 closeIntv(); 1061 } 1062 1063 // Second interval after the gap. 1064 if (bestPos < Uses.size()-1) { 1065 openIntv(); 1066 enterIntvBefore(Uses[bestPos]); 1067 useIntv(Uses[bestPos].getBaseIndex(), Uses.back().getBoundaryIndex()); 1068 leaveIntvAfter(Uses.back()); 1069 closeIntv(); 1070 } 1071 1072 finish(); 1073 } 1074