1 //===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the SplitAnalysis class as well as mutator functions for
11 // live range splitting.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "SplitKit.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
18 #include "llvm/CodeGen/LiveRangeEdit.h"
19 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
20 #include "llvm/CodeGen/MachineDominators.h"
21 #include "llvm/CodeGen/MachineInstrBuilder.h"
22 #include "llvm/CodeGen/MachineLoopInfo.h"
23 #include "llvm/CodeGen/MachineRegisterInfo.h"
24 #include "llvm/CodeGen/VirtRegMap.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/MathExtras.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include "llvm/Target/TargetInstrInfo.h"
29 #include "llvm/Target/TargetMachine.h"
30 
31 using namespace llvm;
32 
33 #define DEBUG_TYPE "regalloc"
34 
35 STATISTIC(NumFinished, "Number of splits finished");
36 STATISTIC(NumSimple,   "Number of splits that were simple");
37 STATISTIC(NumCopies,   "Number of copies inserted for splitting");
38 STATISTIC(NumRemats,   "Number of rematerialized defs for splitting");
39 STATISTIC(NumRepairs,  "Number of invalid live ranges repaired");
40 
41 //===----------------------------------------------------------------------===//
42 //                     Last Insert Point Analysis
43 //===----------------------------------------------------------------------===//
44 
45 InsertPointAnalysis::InsertPointAnalysis(const LiveIntervals &lis,
46                                          unsigned BBNum)
47     : LIS(lis), LastInsertPoint(BBNum) {}
48 
49 SlotIndex
50 InsertPointAnalysis::computeLastInsertPoint(const LiveInterval &CurLI,
51                                             const MachineBasicBlock &MBB) {
52   unsigned Num = MBB.getNumber();
53   std::pair<SlotIndex, SlotIndex> &LIP = LastInsertPoint[Num];
54   SlotIndex MBBEnd = LIS.getMBBEndIdx(&MBB);
55 
56   SmallVector<const MachineBasicBlock *, 1> EHPadSucessors;
57   for (const MachineBasicBlock *SMBB : MBB.successors())
58     if (SMBB->isEHPad())
59       EHPadSucessors.push_back(SMBB);
60 
61   // Compute insert points on the first call. The pair is independent of the
62   // current live interval.
63   if (!LIP.first.isValid()) {
64     MachineBasicBlock::const_iterator FirstTerm = MBB.getFirstTerminator();
65     if (FirstTerm == MBB.end())
66       LIP.first = MBBEnd;
67     else
68       LIP.first = LIS.getInstructionIndex(*FirstTerm);
69 
70     // If there is a landing pad successor, also find the call instruction.
71     if (EHPadSucessors.empty())
72       return LIP.first;
73     // There may not be a call instruction (?) in which case we ignore LPad.
74     LIP.second = LIP.first;
75     for (MachineBasicBlock::const_iterator I = MBB.end(), E = MBB.begin();
76          I != E;) {
77       --I;
78       if (I->isCall()) {
79         LIP.second = LIS.getInstructionIndex(*I);
80         break;
81       }
82     }
83   }
84 
85   // If CurLI is live into a landing pad successor, move the last insert point
86   // back to the call that may throw.
87   if (!LIP.second)
88     return LIP.first;
89 
90   if (none_of(EHPadSucessors, [&](const MachineBasicBlock *EHPad) {
91         return LIS.isLiveInToMBB(CurLI, EHPad);
92       }))
93     return LIP.first;
94 
95   // Find the value leaving MBB.
96   const VNInfo *VNI = CurLI.getVNInfoBefore(MBBEnd);
97   if (!VNI)
98     return LIP.first;
99 
100   // If the value leaving MBB was defined after the call in MBB, it can't
101   // really be live-in to the landing pad.  This can happen if the landing pad
102   // has a PHI, and this register is undef on the exceptional edge.
103   // <rdar://problem/10664933>
104   if (!SlotIndex::isEarlierInstr(VNI->def, LIP.second) && VNI->def < MBBEnd)
105     return LIP.first;
106 
107   // Value is properly live-in to the landing pad.
108   // Only allow inserts before the call.
109   return LIP.second;
110 }
111 
112 MachineBasicBlock::iterator
113 InsertPointAnalysis::getLastInsertPointIter(const LiveInterval &CurLI,
114                                             MachineBasicBlock &MBB) {
115   SlotIndex LIP = getLastInsertPoint(CurLI, MBB);
116   if (LIP == LIS.getMBBEndIdx(&MBB))
117     return MBB.end();
118   return LIS.getInstructionFromIndex(LIP);
119 }
120 
121 //===----------------------------------------------------------------------===//
122 //                                 Split Analysis
123 //===----------------------------------------------------------------------===//
124 
125 SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm, const LiveIntervals &lis,
126                              const MachineLoopInfo &mli)
127     : MF(vrm.getMachineFunction()), VRM(vrm), LIS(lis), Loops(mli),
128       TII(*MF.getSubtarget().getInstrInfo()), CurLI(nullptr),
129       IPA(lis, MF.getNumBlockIDs()) {}
130 
131 void SplitAnalysis::clear() {
132   UseSlots.clear();
133   UseBlocks.clear();
134   ThroughBlocks.clear();
135   CurLI = nullptr;
136   DidRepairRange = false;
137 }
138 
139 /// analyzeUses - Count instructions, basic blocks, and loops using CurLI.
140 void SplitAnalysis::analyzeUses() {
141   assert(UseSlots.empty() && "Call clear first");
142 
143   // First get all the defs from the interval values. This provides the correct
144   // slots for early clobbers.
145   for (const VNInfo *VNI : CurLI->valnos)
146     if (!VNI->isPHIDef() && !VNI->isUnused())
147       UseSlots.push_back(VNI->def);
148 
149   // Get use slots form the use-def chain.
150   const MachineRegisterInfo &MRI = MF.getRegInfo();
151   for (MachineOperand &MO : MRI.use_nodbg_operands(CurLI->reg))
152     if (!MO.isUndef())
153       UseSlots.push_back(LIS.getInstructionIndex(*MO.getParent()).getRegSlot());
154 
155   array_pod_sort(UseSlots.begin(), UseSlots.end());
156 
157   // Remove duplicates, keeping the smaller slot for each instruction.
158   // That is what we want for early clobbers.
159   UseSlots.erase(std::unique(UseSlots.begin(), UseSlots.end(),
160                              SlotIndex::isSameInstr),
161                  UseSlots.end());
162 
163   // Compute per-live block info.
164   if (!calcLiveBlockInfo()) {
165     // FIXME: calcLiveBlockInfo found inconsistencies in the live range.
166     // I am looking at you, RegisterCoalescer!
167     DidRepairRange = true;
168     ++NumRepairs;
169     DEBUG(dbgs() << "*** Fixing inconsistent live interval! ***\n");
170     const_cast<LiveIntervals&>(LIS)
171       .shrinkToUses(const_cast<LiveInterval*>(CurLI));
172     UseBlocks.clear();
173     ThroughBlocks.clear();
174     bool fixed = calcLiveBlockInfo();
175     (void)fixed;
176     assert(fixed && "Couldn't fix broken live interval");
177   }
178 
179   DEBUG(dbgs() << "Analyze counted "
180                << UseSlots.size() << " instrs in "
181                << UseBlocks.size() << " blocks, through "
182                << NumThroughBlocks << " blocks.\n");
183 }
184 
185 /// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks
186 /// where CurLI is live.
187 bool SplitAnalysis::calcLiveBlockInfo() {
188   ThroughBlocks.resize(MF.getNumBlockIDs());
189   NumThroughBlocks = NumGapBlocks = 0;
190   if (CurLI->empty())
191     return true;
192 
193   LiveInterval::const_iterator LVI = CurLI->begin();
194   LiveInterval::const_iterator LVE = CurLI->end();
195 
196   SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE;
197   UseI = UseSlots.begin();
198   UseE = UseSlots.end();
199 
200   // Loop over basic blocks where CurLI is live.
201   MachineFunction::iterator MFI =
202       LIS.getMBBFromIndex(LVI->start)->getIterator();
203   for (;;) {
204     BlockInfo BI;
205     BI.MBB = &*MFI;
206     SlotIndex Start, Stop;
207     std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
208 
209     // If the block contains no uses, the range must be live through. At one
210     // point, RegisterCoalescer could create dangling ranges that ended
211     // mid-block.
212     if (UseI == UseE || *UseI >= Stop) {
213       ++NumThroughBlocks;
214       ThroughBlocks.set(BI.MBB->getNumber());
215       // The range shouldn't end mid-block if there are no uses. This shouldn't
216       // happen.
217       if (LVI->end < Stop)
218         return false;
219     } else {
220       // This block has uses. Find the first and last uses in the block.
221       BI.FirstInstr = *UseI;
222       assert(BI.FirstInstr >= Start);
223       do ++UseI;
224       while (UseI != UseE && *UseI < Stop);
225       BI.LastInstr = UseI[-1];
226       assert(BI.LastInstr < Stop);
227 
228       // LVI is the first live segment overlapping MBB.
229       BI.LiveIn = LVI->start <= Start;
230 
231       // When not live in, the first use should be a def.
232       if (!BI.LiveIn) {
233         assert(LVI->start == LVI->valno->def && "Dangling Segment start");
234         assert(LVI->start == BI.FirstInstr && "First instr should be a def");
235         BI.FirstDef = BI.FirstInstr;
236       }
237 
238       // Look for gaps in the live range.
239       BI.LiveOut = true;
240       while (LVI->end < Stop) {
241         SlotIndex LastStop = LVI->end;
242         if (++LVI == LVE || LVI->start >= Stop) {
243           BI.LiveOut = false;
244           BI.LastInstr = LastStop;
245           break;
246         }
247 
248         if (LastStop < LVI->start) {
249           // There is a gap in the live range. Create duplicate entries for the
250           // live-in snippet and the live-out snippet.
251           ++NumGapBlocks;
252 
253           // Push the Live-in part.
254           BI.LiveOut = false;
255           UseBlocks.push_back(BI);
256           UseBlocks.back().LastInstr = LastStop;
257 
258           // Set up BI for the live-out part.
259           BI.LiveIn = false;
260           BI.LiveOut = true;
261           BI.FirstInstr = BI.FirstDef = LVI->start;
262         }
263 
264         // A Segment that starts in the middle of the block must be a def.
265         assert(LVI->start == LVI->valno->def && "Dangling Segment start");
266         if (!BI.FirstDef)
267           BI.FirstDef = LVI->start;
268       }
269 
270       UseBlocks.push_back(BI);
271 
272       // LVI is now at LVE or LVI->end >= Stop.
273       if (LVI == LVE)
274         break;
275     }
276 
277     // Live segment ends exactly at Stop. Move to the next segment.
278     if (LVI->end == Stop && ++LVI == LVE)
279       break;
280 
281     // Pick the next basic block.
282     if (LVI->start < Stop)
283       ++MFI;
284     else
285       MFI = LIS.getMBBFromIndex(LVI->start)->getIterator();
286   }
287 
288   assert(getNumLiveBlocks() == countLiveBlocks(CurLI) && "Bad block count");
289   return true;
290 }
291 
292 unsigned SplitAnalysis::countLiveBlocks(const LiveInterval *cli) const {
293   if (cli->empty())
294     return 0;
295   LiveInterval *li = const_cast<LiveInterval*>(cli);
296   LiveInterval::iterator LVI = li->begin();
297   LiveInterval::iterator LVE = li->end();
298   unsigned Count = 0;
299 
300   // Loop over basic blocks where li is live.
301   MachineFunction::const_iterator MFI =
302       LIS.getMBBFromIndex(LVI->start)->getIterator();
303   SlotIndex Stop = LIS.getMBBEndIdx(&*MFI);
304   for (;;) {
305     ++Count;
306     LVI = li->advanceTo(LVI, Stop);
307     if (LVI == LVE)
308       return Count;
309     do {
310       ++MFI;
311       Stop = LIS.getMBBEndIdx(&*MFI);
312     } while (Stop <= LVI->start);
313   }
314 }
315 
316 bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const {
317   unsigned OrigReg = VRM.getOriginal(CurLI->reg);
318   const LiveInterval &Orig = LIS.getInterval(OrigReg);
319   assert(!Orig.empty() && "Splitting empty interval?");
320   LiveInterval::const_iterator I = Orig.find(Idx);
321 
322   // Range containing Idx should begin at Idx.
323   if (I != Orig.end() && I->start <= Idx)
324     return I->start == Idx;
325 
326   // Range does not contain Idx, previous must end at Idx.
327   return I != Orig.begin() && (--I)->end == Idx;
328 }
329 
330 void SplitAnalysis::analyze(const LiveInterval *li) {
331   clear();
332   CurLI = li;
333   analyzeUses();
334 }
335 
336 
337 //===----------------------------------------------------------------------===//
338 //                               Split Editor
339 //===----------------------------------------------------------------------===//
340 
341 /// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
342 SplitEditor::SplitEditor(SplitAnalysis &sa, AliasAnalysis &aa,
343                          LiveIntervals &lis, VirtRegMap &vrm,
344                          MachineDominatorTree &mdt,
345                          MachineBlockFrequencyInfo &mbfi)
346     : SA(sa), AA(aa), LIS(lis), VRM(vrm),
347       MRI(vrm.getMachineFunction().getRegInfo()), MDT(mdt),
348       TII(*vrm.getMachineFunction().getSubtarget().getInstrInfo()),
349       TRI(*vrm.getMachineFunction().getSubtarget().getRegisterInfo()),
350       MBFI(mbfi), Edit(nullptr), OpenIdx(0), SpillMode(SM_Partition),
351       RegAssign(Allocator) {}
352 
353 void SplitEditor::reset(LiveRangeEdit &LRE, ComplementSpillMode SM) {
354   Edit = &LRE;
355   SpillMode = SM;
356   OpenIdx = 0;
357   RegAssign.clear();
358   Values.clear();
359 
360   // Reset the LiveRangeCalc instances needed for this spill mode.
361   LRCalc[0].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
362                   &LIS.getVNInfoAllocator());
363   if (SpillMode)
364     LRCalc[1].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
365                     &LIS.getVNInfoAllocator());
366 
367   // We don't need an AliasAnalysis since we will only be performing
368   // cheap-as-a-copy remats anyway.
369   Edit->anyRematerializable(nullptr);
370 }
371 
372 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
373 LLVM_DUMP_METHOD void SplitEditor::dump() const {
374   if (RegAssign.empty()) {
375     dbgs() << " empty\n";
376     return;
377   }
378 
379   for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I)
380     dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value();
381   dbgs() << '\n';
382 }
383 #endif
384 
385 LiveInterval::SubRange &SplitEditor::getSubRangeForMask(LaneBitmask LM,
386                                                         LiveInterval &LI) {
387   for (LiveInterval::SubRange &S : LI.subranges())
388     if (S.LaneMask == LM)
389       return S;
390   llvm_unreachable("SubRange for this mask not found");
391 }
392 
393 void SplitEditor::addDeadDef(LiveInterval &LI, VNInfo *VNI, bool Original) {
394   if (!LI.hasSubRanges()) {
395     LI.createDeadDef(VNI);
396     return;
397   }
398 
399   SlotIndex Def = VNI->def;
400   if (Original) {
401     // If we are transferring a def from the original interval, make sure
402     // to only update the subranges for which the original subranges had
403     // a def at this location.
404     for (LiveInterval::SubRange &S : LI.subranges()) {
405       auto &PS = getSubRangeForMask(S.LaneMask, Edit->getParent());
406       VNInfo *PV = PS.getVNInfoAt(Def);
407       if (PV != nullptr && PV->def == Def)
408         S.createDeadDef(Def, LIS.getVNInfoAllocator());
409     }
410   } else {
411     // This is a new def: either from rematerialization, or from an inserted
412     // copy. Since rematerialization can regenerate a definition of a sub-
413     // register, we need to check which subranges need to be updated.
414     const MachineInstr *DefMI = LIS.getInstructionFromIndex(Def);
415     assert(DefMI != nullptr);
416     LaneBitmask LM;
417     for (const MachineOperand &DefOp : DefMI->defs()) {
418       unsigned R = DefOp.getReg();
419       if (R != LI.reg)
420         continue;
421       if (unsigned SR = DefOp.getSubReg())
422         LM |= TRI.getSubRegIndexLaneMask(SR);
423       else {
424         LM = MRI.getMaxLaneMaskForVReg(R);
425         break;
426       }
427     }
428     for (LiveInterval::SubRange &S : LI.subranges())
429       if ((S.LaneMask & LM).any())
430         S.createDeadDef(Def, LIS.getVNInfoAllocator());
431   }
432 }
433 
434 VNInfo *SplitEditor::defValue(unsigned RegIdx,
435                               const VNInfo *ParentVNI,
436                               SlotIndex Idx,
437                               bool Original) {
438   assert(ParentVNI && "Mapping  NULL value");
439   assert(Idx.isValid() && "Invalid SlotIndex");
440   assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI");
441   LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
442 
443   // Create a new value.
444   VNInfo *VNI = LI->getNextValue(Idx, LIS.getVNInfoAllocator());
445 
446   bool Force = LI->hasSubRanges();
447   ValueForcePair FP(Force ? nullptr : VNI, Force);
448   // Use insert for lookup, so we can add missing values with a second lookup.
449   std::pair<ValueMap::iterator, bool> InsP =
450     Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id), FP));
451 
452   // This was the first time (RegIdx, ParentVNI) was mapped, and it is not
453   // forced. Keep it as a simple def without any liveness.
454   if (!Force && InsP.second)
455     return VNI;
456 
457   // If the previous value was a simple mapping, add liveness for it now.
458   if (VNInfo *OldVNI = InsP.first->second.getPointer()) {
459     addDeadDef(*LI, OldVNI, Original);
460 
461     // No longer a simple mapping.  Switch to a complex mapping. If the
462     // interval has subranges, make it a forced mapping.
463     InsP.first->second = ValueForcePair(nullptr, Force);
464   }
465 
466   // This is a complex mapping, add liveness for VNI
467   addDeadDef(*LI, VNI, Original);
468   return VNI;
469 }
470 
471 void SplitEditor::forceRecompute(unsigned RegIdx, const VNInfo *ParentVNI) {
472   assert(ParentVNI && "Mapping  NULL value");
473   ValueForcePair &VFP = Values[std::make_pair(RegIdx, ParentVNI->id)];
474   VNInfo *VNI = VFP.getPointer();
475 
476   // ParentVNI was either unmapped or already complex mapped. Either way, just
477   // set the force bit.
478   if (!VNI) {
479     VFP.setInt(true);
480     return;
481   }
482 
483   // This was previously a single mapping. Make sure the old def is represented
484   // by a trivial live range.
485   addDeadDef(LIS.getInterval(Edit->get(RegIdx)), VNI, false);
486 
487   // Mark as complex mapped, forced.
488   VFP = ValueForcePair(nullptr, true);
489 }
490 
491 SlotIndex SplitEditor::buildSingleSubRegCopy(unsigned FromReg, unsigned ToReg,
492     MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore,
493     unsigned SubIdx, LiveInterval &DestLI, bool Late, SlotIndex Def) {
494   const MCInstrDesc &Desc = TII.get(TargetOpcode::COPY);
495   bool FirstCopy = !Def.isValid();
496   MachineInstr *CopyMI = BuildMI(MBB, InsertBefore, DebugLoc(), Desc)
497       .addReg(ToReg, RegState::Define | getUndefRegState(FirstCopy)
498               | getInternalReadRegState(!FirstCopy), SubIdx)
499       .addReg(FromReg, 0, SubIdx);
500 
501   BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator();
502   if (FirstCopy) {
503     SlotIndexes &Indexes = *LIS.getSlotIndexes();
504     Def = Indexes.insertMachineInstrInMaps(*CopyMI, Late).getRegSlot();
505     DestLI.createDeadDef(Def, Allocator);
506   } else {
507     CopyMI->bundleWithPred();
508   }
509   LaneBitmask LaneMask = TRI.getSubRegIndexLaneMask(SubIdx);
510   DestLI.refineSubRanges(Allocator, LaneMask,
511                          [Def, &Allocator](LiveInterval::SubRange& SR) {
512     SR.createDeadDef(Def, Allocator);
513   });
514   return Def;
515 }
516 
517 SlotIndex SplitEditor::buildCopy(unsigned FromReg, unsigned ToReg,
518     LaneBitmask LaneMask, MachineBasicBlock &MBB,
519     MachineBasicBlock::iterator InsertBefore, bool Late, unsigned RegIdx) {
520   const MCInstrDesc &Desc = TII.get(TargetOpcode::COPY);
521   if (LaneMask.all() || LaneMask == MRI.getMaxLaneMaskForVReg(FromReg)) {
522     // The full vreg is copied.
523     MachineInstr *CopyMI =
524         BuildMI(MBB, InsertBefore, DebugLoc(), Desc, ToReg).addReg(FromReg);
525     SlotIndexes &Indexes = *LIS.getSlotIndexes();
526     return Indexes.insertMachineInstrInMaps(*CopyMI, Late).getRegSlot();
527   }
528 
529   // Only a subset of lanes needs to be copied. The following is a simple
530   // heuristic to construct a sequence of COPYs. We could add a target
531   // specific callback if this turns out to be suboptimal.
532   LiveInterval &DestLI = LIS.getInterval(Edit->get(RegIdx));
533 
534   // First pass: Try to find a perfectly matching subregister index. If none
535   // exists find the one covering the most lanemask bits.
536   SmallVector<unsigned, 8> PossibleIndexes;
537   unsigned BestIdx = 0;
538   unsigned BestCover = 0;
539   const TargetRegisterClass *RC = MRI.getRegClass(FromReg);
540   assert(RC == MRI.getRegClass(ToReg) && "Should have same reg class");
541   for (unsigned Idx = 1, E = TRI.getNumSubRegIndices(); Idx < E; ++Idx) {
542     // Is this index even compatible with the given class?
543     if (TRI.getSubClassWithSubReg(RC, Idx) != RC)
544       continue;
545     LaneBitmask SubRegMask = TRI.getSubRegIndexLaneMask(Idx);
546     // Early exit if we found a perfect match.
547     if (SubRegMask == LaneMask) {
548       BestIdx = Idx;
549       break;
550     }
551 
552     // The index must not cover any lanes outside \p LaneMask.
553     if ((SubRegMask & ~LaneMask).any())
554       continue;
555 
556     unsigned PopCount = countPopulation(SubRegMask.getAsInteger());
557     PossibleIndexes.push_back(Idx);
558     if (PopCount > BestCover) {
559       BestCover = PopCount;
560       BestIdx = Idx;
561     }
562   }
563 
564   // Abort if we cannot possibly implement the COPY with the given indexes.
565   if (BestIdx == 0)
566     report_fatal_error("Impossible to implement partial COPY");
567 
568   SlotIndex Def = buildSingleSubRegCopy(FromReg, ToReg, MBB, InsertBefore,
569                                         BestIdx, DestLI, Late, SlotIndex());
570 
571   // Greedy heuristic: Keep iterating keeping the best covering subreg index
572   // each time.
573   LaneBitmask LanesLeft =
574       LaneMask & ~(TRI.getSubRegIndexLaneMask(BestCover));
575   while (LanesLeft.any()) {
576     unsigned BestIdx = 0;
577     int BestCover = INT_MIN;
578     for (unsigned Idx : PossibleIndexes) {
579       LaneBitmask SubRegMask = TRI.getSubRegIndexLaneMask(Idx);
580       // Early exit if we found a perfect match.
581       if (SubRegMask == LanesLeft) {
582         BestIdx = Idx;
583         break;
584       }
585 
586       // Try to cover as much of the remaining lanes as possible but
587       // as few of the already covered lanes as possible.
588       int Cover = countPopulation((SubRegMask & LanesLeft).getAsInteger())
589                 - countPopulation((SubRegMask & ~LanesLeft).getAsInteger());
590       if (Cover > BestCover) {
591         BestCover = Cover;
592         BestIdx = Idx;
593       }
594     }
595 
596     if (BestIdx == 0)
597       report_fatal_error("Impossible to implement partial COPY");
598 
599     buildSingleSubRegCopy(FromReg, ToReg, MBB, InsertBefore, BestIdx,
600                           DestLI, Late, Def);
601     LanesLeft &= ~TRI.getSubRegIndexLaneMask(BestIdx);
602   }
603 
604   return Def;
605 }
606 
607 VNInfo *SplitEditor::defFromParent(unsigned RegIdx,
608                                    VNInfo *ParentVNI,
609                                    SlotIndex UseIdx,
610                                    MachineBasicBlock &MBB,
611                                    MachineBasicBlock::iterator I) {
612   SlotIndex Def;
613   LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
614 
615   // We may be trying to avoid interference that ends at a deleted instruction,
616   // so always begin RegIdx 0 early and all others late.
617   bool Late = RegIdx != 0;
618 
619   // Attempt cheap-as-a-copy rematerialization.
620   unsigned Original = VRM.getOriginal(Edit->get(RegIdx));
621   LiveInterval &OrigLI = LIS.getInterval(Original);
622   VNInfo *OrigVNI = OrigLI.getVNInfoAt(UseIdx);
623 
624   unsigned Reg = LI->reg;
625   bool DidRemat = false;
626   if (OrigVNI) {
627     LiveRangeEdit::Remat RM(ParentVNI);
628     RM.OrigMI = LIS.getInstructionFromIndex(OrigVNI->def);
629     if (Edit->canRematerializeAt(RM, OrigVNI, UseIdx, true)) {
630       Def = Edit->rematerializeAt(MBB, I, Reg, RM, TRI, Late);
631       ++NumRemats;
632       DidRemat = true;
633     }
634   }
635   if (!DidRemat) {
636     LaneBitmask LaneMask;
637     if (LI->hasSubRanges()) {
638       LaneMask = LaneBitmask::getNone();
639       for (LiveInterval::SubRange &S : LI->subranges())
640         LaneMask |= S.LaneMask;
641     } else {
642       LaneMask = LaneBitmask::getAll();
643     }
644 
645     ++NumCopies;
646     Def = buildCopy(Edit->getReg(), Reg, LaneMask, MBB, I, Late, RegIdx);
647   }
648 
649   // Define the value in Reg.
650   return defValue(RegIdx, ParentVNI, Def, false);
651 }
652 
653 /// Create a new virtual register and live interval.
654 unsigned SplitEditor::openIntv() {
655   // Create the complement as index 0.
656   if (Edit->empty())
657     Edit->createEmptyInterval();
658 
659   // Create the open interval.
660   OpenIdx = Edit->size();
661   Edit->createEmptyInterval();
662   return OpenIdx;
663 }
664 
665 void SplitEditor::selectIntv(unsigned Idx) {
666   assert(Idx != 0 && "Cannot select the complement interval");
667   assert(Idx < Edit->size() && "Can only select previously opened interval");
668   DEBUG(dbgs() << "    selectIntv " << OpenIdx << " -> " << Idx << '\n');
669   OpenIdx = Idx;
670 }
671 
672 SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) {
673   assert(OpenIdx && "openIntv not called before enterIntvBefore");
674   DEBUG(dbgs() << "    enterIntvBefore " << Idx);
675   Idx = Idx.getBaseIndex();
676   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
677   if (!ParentVNI) {
678     DEBUG(dbgs() << ": not live\n");
679     return Idx;
680   }
681   DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
682   MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
683   assert(MI && "enterIntvBefore called with invalid index");
684 
685   VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI);
686   return VNI->def;
687 }
688 
689 SlotIndex SplitEditor::enterIntvAfter(SlotIndex Idx) {
690   assert(OpenIdx && "openIntv not called before enterIntvAfter");
691   DEBUG(dbgs() << "    enterIntvAfter " << Idx);
692   Idx = Idx.getBoundaryIndex();
693   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
694   if (!ParentVNI) {
695     DEBUG(dbgs() << ": not live\n");
696     return Idx;
697   }
698   DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
699   MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
700   assert(MI && "enterIntvAfter called with invalid index");
701 
702   VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(),
703                               std::next(MachineBasicBlock::iterator(MI)));
704   return VNI->def;
705 }
706 
707 SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) {
708   assert(OpenIdx && "openIntv not called before enterIntvAtEnd");
709   SlotIndex End = LIS.getMBBEndIdx(&MBB);
710   SlotIndex Last = End.getPrevSlot();
711   DEBUG(dbgs() << "    enterIntvAtEnd BB#" << MBB.getNumber() << ", " << Last);
712   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last);
713   if (!ParentVNI) {
714     DEBUG(dbgs() << ": not live\n");
715     return End;
716   }
717   DEBUG(dbgs() << ": valno " << ParentVNI->id);
718   VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB,
719                               SA.getLastSplitPointIter(&MBB));
720   RegAssign.insert(VNI->def, End, OpenIdx);
721   DEBUG(dump());
722   return VNI->def;
723 }
724 
725 /// useIntv - indicate that all instructions in MBB should use OpenLI.
726 void SplitEditor::useIntv(const MachineBasicBlock &MBB) {
727   useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB));
728 }
729 
730 void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) {
731   assert(OpenIdx && "openIntv not called before useIntv");
732   DEBUG(dbgs() << "    useIntv [" << Start << ';' << End << "):");
733   RegAssign.insert(Start, End, OpenIdx);
734   DEBUG(dump());
735 }
736 
737 SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) {
738   assert(OpenIdx && "openIntv not called before leaveIntvAfter");
739   DEBUG(dbgs() << "    leaveIntvAfter " << Idx);
740 
741   // The interval must be live beyond the instruction at Idx.
742   SlotIndex Boundary = Idx.getBoundaryIndex();
743   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Boundary);
744   if (!ParentVNI) {
745     DEBUG(dbgs() << ": not live\n");
746     return Boundary.getNextSlot();
747   }
748   DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
749   MachineInstr *MI = LIS.getInstructionFromIndex(Boundary);
750   assert(MI && "No instruction at index");
751 
752   // In spill mode, make live ranges as short as possible by inserting the copy
753   // before MI.  This is only possible if that instruction doesn't redefine the
754   // value.  The inserted COPY is not a kill, and we don't need to recompute
755   // the source live range.  The spiller also won't try to hoist this copy.
756   if (SpillMode && !SlotIndex::isSameInstr(ParentVNI->def, Idx) &&
757       MI->readsVirtualRegister(Edit->getReg())) {
758     forceRecompute(0, ParentVNI);
759     defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
760     return Idx;
761   }
762 
763   VNInfo *VNI = defFromParent(0, ParentVNI, Boundary, *MI->getParent(),
764                               std::next(MachineBasicBlock::iterator(MI)));
765   return VNI->def;
766 }
767 
768 SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) {
769   assert(OpenIdx && "openIntv not called before leaveIntvBefore");
770   DEBUG(dbgs() << "    leaveIntvBefore " << Idx);
771 
772   // The interval must be live into the instruction at Idx.
773   Idx = Idx.getBaseIndex();
774   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
775   if (!ParentVNI) {
776     DEBUG(dbgs() << ": not live\n");
777     return Idx.getNextSlot();
778   }
779   DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
780 
781   MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
782   assert(MI && "No instruction at index");
783   VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
784   return VNI->def;
785 }
786 
787 SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) {
788   assert(OpenIdx && "openIntv not called before leaveIntvAtTop");
789   SlotIndex Start = LIS.getMBBStartIdx(&MBB);
790   DEBUG(dbgs() << "    leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start);
791 
792   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
793   if (!ParentVNI) {
794     DEBUG(dbgs() << ": not live\n");
795     return Start;
796   }
797 
798   VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB,
799                               MBB.SkipPHIsLabelsAndDebug(MBB.begin()));
800   RegAssign.insert(Start, VNI->def, OpenIdx);
801   DEBUG(dump());
802   return VNI->def;
803 }
804 
805 void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) {
806   assert(OpenIdx && "openIntv not called before overlapIntv");
807   const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
808   assert(ParentVNI == Edit->getParent().getVNInfoBefore(End) &&
809          "Parent changes value in extended range");
810   assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) &&
811          "Range cannot span basic blocks");
812 
813   // The complement interval will be extended as needed by LRCalc.extend().
814   if (ParentVNI)
815     forceRecompute(0, ParentVNI);
816   DEBUG(dbgs() << "    overlapIntv [" << Start << ';' << End << "):");
817   RegAssign.insert(Start, End, OpenIdx);
818   DEBUG(dump());
819 }
820 
821 //===----------------------------------------------------------------------===//
822 //                                  Spill modes
823 //===----------------------------------------------------------------------===//
824 
825 void SplitEditor::removeBackCopies(SmallVectorImpl<VNInfo*> &Copies) {
826   LiveInterval *LI = &LIS.getInterval(Edit->get(0));
827   DEBUG(dbgs() << "Removing " << Copies.size() << " back-copies.\n");
828   RegAssignMap::iterator AssignI;
829   AssignI.setMap(RegAssign);
830 
831   for (unsigned i = 0, e = Copies.size(); i != e; ++i) {
832     SlotIndex Def = Copies[i]->def;
833     MachineInstr *MI = LIS.getInstructionFromIndex(Def);
834     assert(MI && "No instruction for back-copy");
835 
836     MachineBasicBlock *MBB = MI->getParent();
837     MachineBasicBlock::iterator MBBI(MI);
838     bool AtBegin;
839     do AtBegin = MBBI == MBB->begin();
840     while (!AtBegin && (--MBBI)->isDebugValue());
841 
842     DEBUG(dbgs() << "Removing " << Def << '\t' << *MI);
843     LIS.removeVRegDefAt(*LI, Def);
844     LIS.RemoveMachineInstrFromMaps(*MI);
845     MI->eraseFromParent();
846 
847     // Adjust RegAssign if a register assignment is killed at Def. We want to
848     // avoid calculating the live range of the source register if possible.
849     AssignI.find(Def.getPrevSlot());
850     if (!AssignI.valid() || AssignI.start() >= Def)
851       continue;
852     // If MI doesn't kill the assigned register, just leave it.
853     if (AssignI.stop() != Def)
854       continue;
855     unsigned RegIdx = AssignI.value();
856     if (AtBegin || !MBBI->readsVirtualRegister(Edit->getReg())) {
857       DEBUG(dbgs() << "  cannot find simple kill of RegIdx " << RegIdx << '\n');
858       forceRecompute(RegIdx, Edit->getParent().getVNInfoAt(Def));
859     } else {
860       SlotIndex Kill = LIS.getInstructionIndex(*MBBI).getRegSlot();
861       DEBUG(dbgs() << "  move kill to " << Kill << '\t' << *MBBI);
862       AssignI.setStop(Kill);
863     }
864   }
865 }
866 
867 MachineBasicBlock*
868 SplitEditor::findShallowDominator(MachineBasicBlock *MBB,
869                                   MachineBasicBlock *DefMBB) {
870   if (MBB == DefMBB)
871     return MBB;
872   assert(MDT.dominates(DefMBB, MBB) && "MBB must be dominated by the def.");
873 
874   const MachineLoopInfo &Loops = SA.Loops;
875   const MachineLoop *DefLoop = Loops.getLoopFor(DefMBB);
876   MachineDomTreeNode *DefDomNode = MDT[DefMBB];
877 
878   // Best candidate so far.
879   MachineBasicBlock *BestMBB = MBB;
880   unsigned BestDepth = UINT_MAX;
881 
882   for (;;) {
883     const MachineLoop *Loop = Loops.getLoopFor(MBB);
884 
885     // MBB isn't in a loop, it doesn't get any better.  All dominators have a
886     // higher frequency by definition.
887     if (!Loop) {
888       DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#"
889                    << MBB->getNumber() << " at depth 0\n");
890       return MBB;
891     }
892 
893     // We'll never be able to exit the DefLoop.
894     if (Loop == DefLoop) {
895       DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#"
896                    << MBB->getNumber() << " in the same loop\n");
897       return MBB;
898     }
899 
900     // Least busy dominator seen so far.
901     unsigned Depth = Loop->getLoopDepth();
902     if (Depth < BestDepth) {
903       BestMBB = MBB;
904       BestDepth = Depth;
905       DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#"
906                    << MBB->getNumber() << " at depth " << Depth << '\n');
907     }
908 
909     // Leave loop by going to the immediate dominator of the loop header.
910     // This is a bigger stride than simply walking up the dominator tree.
911     MachineDomTreeNode *IDom = MDT[Loop->getHeader()]->getIDom();
912 
913     // Too far up the dominator tree?
914     if (!IDom || !MDT.dominates(DefDomNode, IDom))
915       return BestMBB;
916 
917     MBB = IDom->getBlock();
918   }
919 }
920 
921 void SplitEditor::computeRedundantBackCopies(
922     DenseSet<unsigned> &NotToHoistSet, SmallVectorImpl<VNInfo *> &BackCopies) {
923   LiveInterval *LI = &LIS.getInterval(Edit->get(0));
924   LiveInterval *Parent = &Edit->getParent();
925   SmallVector<SmallPtrSet<VNInfo *, 8>, 8> EqualVNs(Parent->getNumValNums());
926   SmallPtrSet<VNInfo *, 8> DominatedVNIs;
927 
928   // Aggregate VNIs having the same value as ParentVNI.
929   for (VNInfo *VNI : LI->valnos) {
930     if (VNI->isUnused())
931       continue;
932     VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
933     EqualVNs[ParentVNI->id].insert(VNI);
934   }
935 
936   // For VNI aggregation of each ParentVNI, collect dominated, i.e.,
937   // redundant VNIs to BackCopies.
938   for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) {
939     VNInfo *ParentVNI = Parent->getValNumInfo(i);
940     if (!NotToHoistSet.count(ParentVNI->id))
941       continue;
942     SmallPtrSetIterator<VNInfo *> It1 = EqualVNs[ParentVNI->id].begin();
943     SmallPtrSetIterator<VNInfo *> It2 = It1;
944     for (; It1 != EqualVNs[ParentVNI->id].end(); ++It1) {
945       It2 = It1;
946       for (++It2; It2 != EqualVNs[ParentVNI->id].end(); ++It2) {
947         if (DominatedVNIs.count(*It1) || DominatedVNIs.count(*It2))
948           continue;
949 
950         MachineBasicBlock *MBB1 = LIS.getMBBFromIndex((*It1)->def);
951         MachineBasicBlock *MBB2 = LIS.getMBBFromIndex((*It2)->def);
952         if (MBB1 == MBB2) {
953           DominatedVNIs.insert((*It1)->def < (*It2)->def ? (*It2) : (*It1));
954         } else if (MDT.dominates(MBB1, MBB2)) {
955           DominatedVNIs.insert(*It2);
956         } else if (MDT.dominates(MBB2, MBB1)) {
957           DominatedVNIs.insert(*It1);
958         }
959       }
960     }
961     if (!DominatedVNIs.empty()) {
962       forceRecompute(0, ParentVNI);
963       for (auto VNI : DominatedVNIs) {
964         BackCopies.push_back(VNI);
965       }
966       DominatedVNIs.clear();
967     }
968   }
969 }
970 
971 /// For SM_Size mode, find a common dominator for all the back-copies for
972 /// the same ParentVNI and hoist the backcopies to the dominator BB.
973 /// For SM_Speed mode, if the common dominator is hot and it is not beneficial
974 /// to do the hoisting, simply remove the dominated backcopies for the same
975 /// ParentVNI.
976 void SplitEditor::hoistCopies() {
977   // Get the complement interval, always RegIdx 0.
978   LiveInterval *LI = &LIS.getInterval(Edit->get(0));
979   LiveInterval *Parent = &Edit->getParent();
980 
981   // Track the nearest common dominator for all back-copies for each ParentVNI,
982   // indexed by ParentVNI->id.
983   typedef std::pair<MachineBasicBlock*, SlotIndex> DomPair;
984   SmallVector<DomPair, 8> NearestDom(Parent->getNumValNums());
985   // The total cost of all the back-copies for each ParentVNI.
986   SmallVector<BlockFrequency, 8> Costs(Parent->getNumValNums());
987   // The ParentVNI->id set for which hoisting back-copies are not beneficial
988   // for Speed.
989   DenseSet<unsigned> NotToHoistSet;
990 
991   // Find the nearest common dominator for parent values with multiple
992   // back-copies.  If a single back-copy dominates, put it in DomPair.second.
993   for (VNInfo *VNI : LI->valnos) {
994     if (VNI->isUnused())
995       continue;
996     VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
997     assert(ParentVNI && "Parent not live at complement def");
998 
999     // Don't hoist remats.  The complement is probably going to disappear
1000     // completely anyway.
1001     if (Edit->didRematerialize(ParentVNI))
1002       continue;
1003 
1004     MachineBasicBlock *ValMBB = LIS.getMBBFromIndex(VNI->def);
1005 
1006     DomPair &Dom = NearestDom[ParentVNI->id];
1007 
1008     // Keep directly defined parent values.  This is either a PHI or an
1009     // instruction in the complement range.  All other copies of ParentVNI
1010     // should be eliminated.
1011     if (VNI->def == ParentVNI->def) {
1012       DEBUG(dbgs() << "Direct complement def at " << VNI->def << '\n');
1013       Dom = DomPair(ValMBB, VNI->def);
1014       continue;
1015     }
1016     // Skip the singly mapped values.  There is nothing to gain from hoisting a
1017     // single back-copy.
1018     if (Values.lookup(std::make_pair(0, ParentVNI->id)).getPointer()) {
1019       DEBUG(dbgs() << "Single complement def at " << VNI->def << '\n');
1020       continue;
1021     }
1022 
1023     if (!Dom.first) {
1024       // First time we see ParentVNI.  VNI dominates itself.
1025       Dom = DomPair(ValMBB, VNI->def);
1026     } else if (Dom.first == ValMBB) {
1027       // Two defs in the same block.  Pick the earlier def.
1028       if (!Dom.second.isValid() || VNI->def < Dom.second)
1029         Dom.second = VNI->def;
1030     } else {
1031       // Different basic blocks. Check if one dominates.
1032       MachineBasicBlock *Near =
1033         MDT.findNearestCommonDominator(Dom.first, ValMBB);
1034       if (Near == ValMBB)
1035         // Def ValMBB dominates.
1036         Dom = DomPair(ValMBB, VNI->def);
1037       else if (Near != Dom.first)
1038         // None dominate. Hoist to common dominator, need new def.
1039         Dom = DomPair(Near, SlotIndex());
1040       Costs[ParentVNI->id] += MBFI.getBlockFreq(ValMBB);
1041     }
1042 
1043     DEBUG(dbgs() << "Multi-mapped complement " << VNI->id << '@' << VNI->def
1044                  << " for parent " << ParentVNI->id << '@' << ParentVNI->def
1045                  << " hoist to BB#" << Dom.first->getNumber() << ' '
1046                  << Dom.second << '\n');
1047   }
1048 
1049   // Insert the hoisted copies.
1050   for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) {
1051     DomPair &Dom = NearestDom[i];
1052     if (!Dom.first || Dom.second.isValid())
1053       continue;
1054     // This value needs a hoisted copy inserted at the end of Dom.first.
1055     VNInfo *ParentVNI = Parent->getValNumInfo(i);
1056     MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(ParentVNI->def);
1057     // Get a less loopy dominator than Dom.first.
1058     Dom.first = findShallowDominator(Dom.first, DefMBB);
1059     if (SpillMode == SM_Speed &&
1060         MBFI.getBlockFreq(Dom.first) > Costs[ParentVNI->id]) {
1061       NotToHoistSet.insert(ParentVNI->id);
1062       continue;
1063     }
1064     SlotIndex Last = LIS.getMBBEndIdx(Dom.first).getPrevSlot();
1065     Dom.second =
1066       defFromParent(0, ParentVNI, Last, *Dom.first,
1067                     SA.getLastSplitPointIter(Dom.first))->def;
1068   }
1069 
1070   // Remove redundant back-copies that are now known to be dominated by another
1071   // def with the same value.
1072   SmallVector<VNInfo*, 8> BackCopies;
1073   for (VNInfo *VNI : LI->valnos) {
1074     if (VNI->isUnused())
1075       continue;
1076     VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
1077     const DomPair &Dom = NearestDom[ParentVNI->id];
1078     if (!Dom.first || Dom.second == VNI->def ||
1079         NotToHoistSet.count(ParentVNI->id))
1080       continue;
1081     BackCopies.push_back(VNI);
1082     forceRecompute(0, ParentVNI);
1083   }
1084 
1085   // If it is not beneficial to hoist all the BackCopies, simply remove
1086   // redundant BackCopies in speed mode.
1087   if (SpillMode == SM_Speed && !NotToHoistSet.empty())
1088     computeRedundantBackCopies(NotToHoistSet, BackCopies);
1089 
1090   removeBackCopies(BackCopies);
1091 }
1092 
1093 
1094 /// transferValues - Transfer all possible values to the new live ranges.
1095 /// Values that were rematerialized are left alone, they need LRCalc.extend().
1096 bool SplitEditor::transferValues() {
1097   bool Skipped = false;
1098   RegAssignMap::const_iterator AssignI = RegAssign.begin();
1099   for (const LiveRange::Segment &S : Edit->getParent()) {
1100     DEBUG(dbgs() << "  blit " << S << ':');
1101     VNInfo *ParentVNI = S.valno;
1102     // RegAssign has holes where RegIdx 0 should be used.
1103     SlotIndex Start = S.start;
1104     AssignI.advanceTo(Start);
1105     do {
1106       unsigned RegIdx;
1107       SlotIndex End = S.end;
1108       if (!AssignI.valid()) {
1109         RegIdx = 0;
1110       } else if (AssignI.start() <= Start) {
1111         RegIdx = AssignI.value();
1112         if (AssignI.stop() < End) {
1113           End = AssignI.stop();
1114           ++AssignI;
1115         }
1116       } else {
1117         RegIdx = 0;
1118         End = std::min(End, AssignI.start());
1119       }
1120 
1121       // The interval [Start;End) is continuously mapped to RegIdx, ParentVNI.
1122       DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx
1123                    << '(' << PrintReg(Edit->get(RegIdx)) << ')');
1124       LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
1125 
1126       // Check for a simply defined value that can be blitted directly.
1127       ValueForcePair VFP = Values.lookup(std::make_pair(RegIdx, ParentVNI->id));
1128       if (VNInfo *VNI = VFP.getPointer()) {
1129         DEBUG(dbgs() << ':' << VNI->id);
1130         LI.addSegment(LiveInterval::Segment(Start, End, VNI));
1131         Start = End;
1132         continue;
1133       }
1134 
1135       // Skip values with forced recomputation.
1136       if (VFP.getInt()) {
1137         DEBUG(dbgs() << "(recalc)");
1138         Skipped = true;
1139         Start = End;
1140         continue;
1141       }
1142 
1143       LiveRangeCalc &LRC = getLRCalc(RegIdx);
1144 
1145       // This value has multiple defs in RegIdx, but it wasn't rematerialized,
1146       // so the live range is accurate. Add live-in blocks in [Start;End) to the
1147       // LiveInBlocks.
1148       MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start)->getIterator();
1149       SlotIndex BlockStart, BlockEnd;
1150       std::tie(BlockStart, BlockEnd) = LIS.getSlotIndexes()->getMBBRange(&*MBB);
1151 
1152       // The first block may be live-in, or it may have its own def.
1153       if (Start != BlockStart) {
1154         VNInfo *VNI = LI.extendInBlock(BlockStart, std::min(BlockEnd, End));
1155         assert(VNI && "Missing def for complex mapped value");
1156         DEBUG(dbgs() << ':' << VNI->id << "*BB#" << MBB->getNumber());
1157         // MBB has its own def. Is it also live-out?
1158         if (BlockEnd <= End)
1159           LRC.setLiveOutValue(&*MBB, VNI);
1160 
1161         // Skip to the next block for live-in.
1162         ++MBB;
1163         BlockStart = BlockEnd;
1164       }
1165 
1166       // Handle the live-in blocks covered by [Start;End).
1167       assert(Start <= BlockStart && "Expected live-in block");
1168       while (BlockStart < End) {
1169         DEBUG(dbgs() << ">BB#" << MBB->getNumber());
1170         BlockEnd = LIS.getMBBEndIdx(&*MBB);
1171         if (BlockStart == ParentVNI->def) {
1172           // This block has the def of a parent PHI, so it isn't live-in.
1173           assert(ParentVNI->isPHIDef() && "Non-phi defined at block start?");
1174           VNInfo *VNI = LI.extendInBlock(BlockStart, std::min(BlockEnd, End));
1175           assert(VNI && "Missing def for complex mapped parent PHI");
1176           if (End >= BlockEnd)
1177             LRC.setLiveOutValue(&*MBB, VNI); // Live-out as well.
1178         } else {
1179           // This block needs a live-in value.  The last block covered may not
1180           // be live-out.
1181           if (End < BlockEnd)
1182             LRC.addLiveInBlock(LI, MDT[&*MBB], End);
1183           else {
1184             // Live-through, and we don't know the value.
1185             LRC.addLiveInBlock(LI, MDT[&*MBB]);
1186             LRC.setLiveOutValue(&*MBB, nullptr);
1187           }
1188         }
1189         BlockStart = BlockEnd;
1190         ++MBB;
1191       }
1192       Start = End;
1193     } while (Start != S.end);
1194     DEBUG(dbgs() << '\n');
1195   }
1196 
1197   LRCalc[0].calculateValues();
1198   if (SpillMode)
1199     LRCalc[1].calculateValues();
1200 
1201   return Skipped;
1202 }
1203 
1204 static bool removeDeadSegment(SlotIndex Def, LiveRange &LR) {
1205   const LiveRange::Segment *Seg = LR.getSegmentContaining(Def);
1206   if (Seg == nullptr)
1207     return true;
1208   if (Seg->end != Def.getDeadSlot())
1209     return false;
1210   // This is a dead PHI. Remove it.
1211   LR.removeSegment(*Seg, true);
1212   return true;
1213 }
1214 
1215 void SplitEditor::extendPHIRange(MachineBasicBlock &B, LiveRangeCalc &LRC,
1216                                  LiveRange &LR, LaneBitmask LM,
1217                                  ArrayRef<SlotIndex> Undefs) {
1218   for (MachineBasicBlock *P : B.predecessors()) {
1219     SlotIndex End = LIS.getMBBEndIdx(P);
1220     SlotIndex LastUse = End.getPrevSlot();
1221     // The predecessor may not have a live-out value. That is OK, like an
1222     // undef PHI operand.
1223     LiveInterval &PLI = Edit->getParent();
1224     // Need the cast because the inputs to ?: would otherwise be deemed
1225     // "incompatible": SubRange vs LiveInterval.
1226     LiveRange &PSR = !LM.all() ? getSubRangeForMask(LM, PLI)
1227                                : static_cast<LiveRange&>(PLI);
1228     if (PSR.liveAt(LastUse))
1229       LRC.extend(LR, End, /*PhysReg=*/0, Undefs);
1230   }
1231 }
1232 
1233 void SplitEditor::extendPHIKillRanges() {
1234   // Extend live ranges to be live-out for successor PHI values.
1235 
1236   // Visit each PHI def slot in the parent live interval. If the def is dead,
1237   // remove it. Otherwise, extend the live interval to reach the end indexes
1238   // of all predecessor blocks.
1239 
1240   LiveInterval &ParentLI = Edit->getParent();
1241   for (const VNInfo *V : ParentLI.valnos) {
1242     if (V->isUnused() || !V->isPHIDef())
1243       continue;
1244 
1245     unsigned RegIdx = RegAssign.lookup(V->def);
1246     LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
1247     LiveRangeCalc &LRC = getLRCalc(RegIdx);
1248     MachineBasicBlock &B = *LIS.getMBBFromIndex(V->def);
1249     if (!removeDeadSegment(V->def, LI))
1250       extendPHIRange(B, LRC, LI, LaneBitmask::getAll(), /*Undefs=*/{});
1251   }
1252 
1253   SmallVector<SlotIndex, 4> Undefs;
1254   LiveRangeCalc SubLRC;
1255 
1256   for (LiveInterval::SubRange &PS : ParentLI.subranges()) {
1257     for (const VNInfo *V : PS.valnos) {
1258       if (V->isUnused() || !V->isPHIDef())
1259         continue;
1260       unsigned RegIdx = RegAssign.lookup(V->def);
1261       LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
1262       LiveInterval::SubRange &S = getSubRangeForMask(PS.LaneMask, LI);
1263       if (removeDeadSegment(V->def, S))
1264         continue;
1265 
1266       MachineBasicBlock &B = *LIS.getMBBFromIndex(V->def);
1267       SubLRC.reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
1268                    &LIS.getVNInfoAllocator());
1269       Undefs.clear();
1270       LI.computeSubRangeUndefs(Undefs, PS.LaneMask, MRI, *LIS.getSlotIndexes());
1271       extendPHIRange(B, SubLRC, S, PS.LaneMask, Undefs);
1272     }
1273   }
1274 }
1275 
1276 /// rewriteAssigned - Rewrite all uses of Edit->getReg().
1277 void SplitEditor::rewriteAssigned(bool ExtendRanges) {
1278   struct ExtPoint {
1279     ExtPoint(const MachineOperand &O, unsigned R, SlotIndex N)
1280       : MO(O), RegIdx(R), Next(N) {}
1281     MachineOperand MO;
1282     unsigned RegIdx;
1283     SlotIndex Next;
1284   };
1285 
1286   SmallVector<ExtPoint,4> ExtPoints;
1287 
1288   for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Edit->getReg()),
1289        RE = MRI.reg_end(); RI != RE;) {
1290     MachineOperand &MO = *RI;
1291     MachineInstr *MI = MO.getParent();
1292     ++RI;
1293     // LiveDebugVariables should have handled all DBG_VALUE instructions.
1294     if (MI->isDebugValue()) {
1295       DEBUG(dbgs() << "Zapping " << *MI);
1296       MO.setReg(0);
1297       continue;
1298     }
1299 
1300     // <undef> operands don't really read the register, so it doesn't matter
1301     // which register we choose.  When the use operand is tied to a def, we must
1302     // use the same register as the def, so just do that always.
1303     SlotIndex Idx = LIS.getInstructionIndex(*MI);
1304     if (MO.isDef() || MO.isUndef())
1305       Idx = Idx.getRegSlot(MO.isEarlyClobber());
1306 
1307     // Rewrite to the mapped register at Idx.
1308     unsigned RegIdx = RegAssign.lookup(Idx);
1309     LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
1310     MO.setReg(LI.reg);
1311     DEBUG(dbgs() << "  rewr BB#" << MI->getParent()->getNumber() << '\t'
1312                  << Idx << ':' << RegIdx << '\t' << *MI);
1313 
1314     // Extend liveness to Idx if the instruction reads reg.
1315     if (!ExtendRanges || MO.isUndef())
1316       continue;
1317 
1318     // Skip instructions that don't read Reg.
1319     if (MO.isDef()) {
1320       if (!MO.getSubReg() && !MO.isEarlyClobber())
1321         continue;
1322       // We may want to extend a live range for a partial redef, or for a use
1323       // tied to an early clobber.
1324       Idx = Idx.getPrevSlot();
1325       if (!Edit->getParent().liveAt(Idx))
1326         continue;
1327     } else
1328       Idx = Idx.getRegSlot(true);
1329 
1330     SlotIndex Next = Idx.getNextSlot();
1331     if (LI.hasSubRanges()) {
1332       // We have to delay extending subranges until we have seen all operands
1333       // defining the register. This is because a <def,read-undef> operand
1334       // will create an "undef" point, and we cannot extend any subranges
1335       // until all of them have been accounted for.
1336       if (MO.isUse())
1337         ExtPoints.push_back(ExtPoint(MO, RegIdx, Next));
1338     } else {
1339       LiveRangeCalc &LRC = getLRCalc(RegIdx);
1340       LRC.extend(LI, Next, 0, ArrayRef<SlotIndex>());
1341     }
1342   }
1343 
1344   for (ExtPoint &EP : ExtPoints) {
1345     LiveInterval &LI = LIS.getInterval(Edit->get(EP.RegIdx));
1346     assert(LI.hasSubRanges());
1347 
1348     LiveRangeCalc SubLRC;
1349     unsigned Reg = EP.MO.getReg(), Sub = EP.MO.getSubReg();
1350     LaneBitmask LM = Sub != 0 ? TRI.getSubRegIndexLaneMask(Sub)
1351                               : MRI.getMaxLaneMaskForVReg(Reg);
1352     for (LiveInterval::SubRange &S : LI.subranges()) {
1353       if ((S.LaneMask & LM).none())
1354         continue;
1355       // The problem here can be that the new register may have been created
1356       // for a partially defined original register. For example:
1357       //   %vreg827:subreg_hireg<def,read-undef> = ...
1358       //   ...
1359       //   %vreg828<def> = COPY %vreg827
1360       if (S.empty())
1361         continue;
1362       SubLRC.reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
1363                    &LIS.getVNInfoAllocator());
1364       SmallVector<SlotIndex, 4> Undefs;
1365       LI.computeSubRangeUndefs(Undefs, S.LaneMask, MRI, *LIS.getSlotIndexes());
1366       SubLRC.extend(S, EP.Next, 0, Undefs);
1367     }
1368   }
1369 
1370   for (unsigned R : *Edit) {
1371     LiveInterval &LI = LIS.getInterval(R);
1372     if (!LI.hasSubRanges())
1373       continue;
1374     LI.clear();
1375     LI.removeEmptySubRanges();
1376     LIS.constructMainRangeFromSubranges(LI);
1377   }
1378 }
1379 
1380 void SplitEditor::deleteRematVictims() {
1381   SmallVector<MachineInstr*, 8> Dead;
1382   for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I){
1383     LiveInterval *LI = &LIS.getInterval(*I);
1384     for (const LiveRange::Segment &S : LI->segments) {
1385       // Dead defs end at the dead slot.
1386       if (S.end != S.valno->def.getDeadSlot())
1387         continue;
1388       if (S.valno->isPHIDef())
1389         continue;
1390       MachineInstr *MI = LIS.getInstructionFromIndex(S.valno->def);
1391       assert(MI && "Missing instruction for dead def");
1392       MI->addRegisterDead(LI->reg, &TRI);
1393 
1394       if (!MI->allDefsAreDead())
1395         continue;
1396 
1397       DEBUG(dbgs() << "All defs dead: " << *MI);
1398       Dead.push_back(MI);
1399     }
1400   }
1401 
1402   if (Dead.empty())
1403     return;
1404 
1405   Edit->eliminateDeadDefs(Dead, None, &AA);
1406 }
1407 
1408 void SplitEditor::finish(SmallVectorImpl<unsigned> *LRMap) {
1409   ++NumFinished;
1410 
1411   // At this point, the live intervals in Edit contain VNInfos corresponding to
1412   // the inserted copies.
1413 
1414   // Add the original defs from the parent interval.
1415   for (const VNInfo *ParentVNI : Edit->getParent().valnos) {
1416     if (ParentVNI->isUnused())
1417       continue;
1418     unsigned RegIdx = RegAssign.lookup(ParentVNI->def);
1419     defValue(RegIdx, ParentVNI, ParentVNI->def, true);
1420 
1421     // Force rematted values to be recomputed everywhere.
1422     // The new live ranges may be truncated.
1423     if (Edit->didRematerialize(ParentVNI))
1424       for (unsigned i = 0, e = Edit->size(); i != e; ++i)
1425         forceRecompute(i, ParentVNI);
1426   }
1427 
1428   // Hoist back-copies to the complement interval when in spill mode.
1429   switch (SpillMode) {
1430   case SM_Partition:
1431     // Leave all back-copies as is.
1432     break;
1433   case SM_Size:
1434   case SM_Speed:
1435     // hoistCopies will behave differently between size and speed.
1436     hoistCopies();
1437   }
1438 
1439   // Transfer the simply mapped values, check if any are skipped.
1440   bool Skipped = transferValues();
1441 
1442   // Rewrite virtual registers, possibly extending ranges.
1443   rewriteAssigned(Skipped);
1444 
1445   if (Skipped)
1446     extendPHIKillRanges();
1447   else
1448     ++NumSimple;
1449 
1450   // Delete defs that were rematted everywhere.
1451   if (Skipped)
1452     deleteRematVictims();
1453 
1454   // Get rid of unused values and set phi-kill flags.
1455   for (unsigned Reg : *Edit) {
1456     LiveInterval &LI = LIS.getInterval(Reg);
1457     LI.removeEmptySubRanges();
1458     LI.RenumberValues();
1459   }
1460 
1461   // Provide a reverse mapping from original indices to Edit ranges.
1462   if (LRMap) {
1463     LRMap->clear();
1464     for (unsigned i = 0, e = Edit->size(); i != e; ++i)
1465       LRMap->push_back(i);
1466   }
1467 
1468   // Now check if any registers were separated into multiple components.
1469   ConnectedVNInfoEqClasses ConEQ(LIS);
1470   for (unsigned i = 0, e = Edit->size(); i != e; ++i) {
1471     // Don't use iterators, they are invalidated by create() below.
1472     unsigned VReg = Edit->get(i);
1473     LiveInterval &LI = LIS.getInterval(VReg);
1474     SmallVector<LiveInterval*, 8> SplitLIs;
1475     LIS.splitSeparateComponents(LI, SplitLIs);
1476     unsigned Original = VRM.getOriginal(VReg);
1477     for (LiveInterval *SplitLI : SplitLIs)
1478       VRM.setIsSplitFromReg(SplitLI->reg, Original);
1479 
1480     // The new intervals all map back to i.
1481     if (LRMap)
1482       LRMap->resize(Edit->size(), i);
1483   }
1484 
1485   // Calculate spill weight and allocation hints for new intervals.
1486   Edit->calculateRegClassAndHint(VRM.getMachineFunction(), SA.Loops, MBFI);
1487 
1488   assert(!LRMap || LRMap->size() == Edit->size());
1489 }
1490 
1491 
1492 //===----------------------------------------------------------------------===//
1493 //                            Single Block Splitting
1494 //===----------------------------------------------------------------------===//
1495 
1496 bool SplitAnalysis::shouldSplitSingleBlock(const BlockInfo &BI,
1497                                            bool SingleInstrs) const {
1498   // Always split for multiple instructions.
1499   if (!BI.isOneInstr())
1500     return true;
1501   // Don't split for single instructions unless explicitly requested.
1502   if (!SingleInstrs)
1503     return false;
1504   // Splitting a live-through range always makes progress.
1505   if (BI.LiveIn && BI.LiveOut)
1506     return true;
1507   // No point in isolating a copy. It has no register class constraints.
1508   if (LIS.getInstructionFromIndex(BI.FirstInstr)->isCopyLike())
1509     return false;
1510   // Finally, don't isolate an end point that was created by earlier splits.
1511   return isOriginalEndpoint(BI.FirstInstr);
1512 }
1513 
1514 void SplitEditor::splitSingleBlock(const SplitAnalysis::BlockInfo &BI) {
1515   openIntv();
1516   SlotIndex LastSplitPoint = SA.getLastSplitPoint(BI.MBB->getNumber());
1517   SlotIndex SegStart = enterIntvBefore(std::min(BI.FirstInstr,
1518     LastSplitPoint));
1519   if (!BI.LiveOut || BI.LastInstr < LastSplitPoint) {
1520     useIntv(SegStart, leaveIntvAfter(BI.LastInstr));
1521   } else {
1522       // The last use is after the last valid split point.
1523     SlotIndex SegStop = leaveIntvBefore(LastSplitPoint);
1524     useIntv(SegStart, SegStop);
1525     overlapIntv(SegStop, BI.LastInstr);
1526   }
1527 }
1528 
1529 
1530 //===----------------------------------------------------------------------===//
1531 //                    Global Live Range Splitting Support
1532 //===----------------------------------------------------------------------===//
1533 
1534 // These methods support a method of global live range splitting that uses a
1535 // global algorithm to decide intervals for CFG edges. They will insert split
1536 // points and color intervals in basic blocks while avoiding interference.
1537 //
1538 // Note that splitSingleBlock is also useful for blocks where both CFG edges
1539 // are on the stack.
1540 
1541 void SplitEditor::splitLiveThroughBlock(unsigned MBBNum,
1542                                         unsigned IntvIn, SlotIndex LeaveBefore,
1543                                         unsigned IntvOut, SlotIndex EnterAfter){
1544   SlotIndex Start, Stop;
1545   std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(MBBNum);
1546 
1547   DEBUG(dbgs() << "BB#" << MBBNum << " [" << Start << ';' << Stop
1548                << ") intf " << LeaveBefore << '-' << EnterAfter
1549                << ", live-through " << IntvIn << " -> " << IntvOut);
1550 
1551   assert((IntvIn || IntvOut) && "Use splitSingleBlock for isolated blocks");
1552 
1553   assert((!LeaveBefore || LeaveBefore < Stop) && "Interference after block");
1554   assert((!IntvIn || !LeaveBefore || LeaveBefore > Start) && "Impossible intf");
1555   assert((!EnterAfter || EnterAfter >= Start) && "Interference before block");
1556 
1557   MachineBasicBlock *MBB = VRM.getMachineFunction().getBlockNumbered(MBBNum);
1558 
1559   if (!IntvOut) {
1560     DEBUG(dbgs() << ", spill on entry.\n");
1561     //
1562     //        <<<<<<<<<    Possible LeaveBefore interference.
1563     //    |-----------|    Live through.
1564     //    -____________    Spill on entry.
1565     //
1566     selectIntv(IntvIn);
1567     SlotIndex Idx = leaveIntvAtTop(*MBB);
1568     assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1569     (void)Idx;
1570     return;
1571   }
1572 
1573   if (!IntvIn) {
1574     DEBUG(dbgs() << ", reload on exit.\n");
1575     //
1576     //    >>>>>>>          Possible EnterAfter interference.
1577     //    |-----------|    Live through.
1578     //    ___________--    Reload on exit.
1579     //
1580     selectIntv(IntvOut);
1581     SlotIndex Idx = enterIntvAtEnd(*MBB);
1582     assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1583     (void)Idx;
1584     return;
1585   }
1586 
1587   if (IntvIn == IntvOut && !LeaveBefore && !EnterAfter) {
1588     DEBUG(dbgs() << ", straight through.\n");
1589     //
1590     //    |-----------|    Live through.
1591     //    -------------    Straight through, same intv, no interference.
1592     //
1593     selectIntv(IntvOut);
1594     useIntv(Start, Stop);
1595     return;
1596   }
1597 
1598   // We cannot legally insert splits after LSP.
1599   SlotIndex LSP = SA.getLastSplitPoint(MBBNum);
1600   assert((!IntvOut || !EnterAfter || EnterAfter < LSP) && "Impossible intf");
1601 
1602   if (IntvIn != IntvOut && (!LeaveBefore || !EnterAfter ||
1603                   LeaveBefore.getBaseIndex() > EnterAfter.getBoundaryIndex())) {
1604     DEBUG(dbgs() << ", switch avoiding interference.\n");
1605     //
1606     //    >>>>     <<<<    Non-overlapping EnterAfter/LeaveBefore interference.
1607     //    |-----------|    Live through.
1608     //    ------=======    Switch intervals between interference.
1609     //
1610     selectIntv(IntvOut);
1611     SlotIndex Idx;
1612     if (LeaveBefore && LeaveBefore < LSP) {
1613       Idx = enterIntvBefore(LeaveBefore);
1614       useIntv(Idx, Stop);
1615     } else {
1616       Idx = enterIntvAtEnd(*MBB);
1617     }
1618     selectIntv(IntvIn);
1619     useIntv(Start, Idx);
1620     assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1621     assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1622     return;
1623   }
1624 
1625   DEBUG(dbgs() << ", create local intv for interference.\n");
1626   //
1627   //    >>><><><><<<<    Overlapping EnterAfter/LeaveBefore interference.
1628   //    |-----------|    Live through.
1629   //    ==---------==    Switch intervals before/after interference.
1630   //
1631   assert(LeaveBefore <= EnterAfter && "Missed case");
1632 
1633   selectIntv(IntvOut);
1634   SlotIndex Idx = enterIntvAfter(EnterAfter);
1635   useIntv(Idx, Stop);
1636   assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1637 
1638   selectIntv(IntvIn);
1639   Idx = leaveIntvBefore(LeaveBefore);
1640   useIntv(Start, Idx);
1641   assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1642 }
1643 
1644 
1645 void SplitEditor::splitRegInBlock(const SplitAnalysis::BlockInfo &BI,
1646                                   unsigned IntvIn, SlotIndex LeaveBefore) {
1647   SlotIndex Start, Stop;
1648   std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
1649 
1650   DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " [" << Start << ';' << Stop
1651                << "), uses " << BI.FirstInstr << '-' << BI.LastInstr
1652                << ", reg-in " << IntvIn << ", leave before " << LeaveBefore
1653                << (BI.LiveOut ? ", stack-out" : ", killed in block"));
1654 
1655   assert(IntvIn && "Must have register in");
1656   assert(BI.LiveIn && "Must be live-in");
1657   assert((!LeaveBefore || LeaveBefore > Start) && "Bad interference");
1658 
1659   if (!BI.LiveOut && (!LeaveBefore || LeaveBefore >= BI.LastInstr)) {
1660     DEBUG(dbgs() << " before interference.\n");
1661     //
1662     //               <<<    Interference after kill.
1663     //     |---o---x   |    Killed in block.
1664     //     =========        Use IntvIn everywhere.
1665     //
1666     selectIntv(IntvIn);
1667     useIntv(Start, BI.LastInstr);
1668     return;
1669   }
1670 
1671   SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber());
1672 
1673   if (!LeaveBefore || LeaveBefore > BI.LastInstr.getBoundaryIndex()) {
1674     //
1675     //               <<<    Possible interference after last use.
1676     //     |---o---o---|    Live-out on stack.
1677     //     =========____    Leave IntvIn after last use.
1678     //
1679     //                 <    Interference after last use.
1680     //     |---o---o--o|    Live-out on stack, late last use.
1681     //     ============     Copy to stack after LSP, overlap IntvIn.
1682     //            \_____    Stack interval is live-out.
1683     //
1684     if (BI.LastInstr < LSP) {
1685       DEBUG(dbgs() << ", spill after last use before interference.\n");
1686       selectIntv(IntvIn);
1687       SlotIndex Idx = leaveIntvAfter(BI.LastInstr);
1688       useIntv(Start, Idx);
1689       assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1690     } else {
1691       DEBUG(dbgs() << ", spill before last split point.\n");
1692       selectIntv(IntvIn);
1693       SlotIndex Idx = leaveIntvBefore(LSP);
1694       overlapIntv(Idx, BI.LastInstr);
1695       useIntv(Start, Idx);
1696       assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1697     }
1698     return;
1699   }
1700 
1701   // The interference is overlapping somewhere we wanted to use IntvIn. That
1702   // means we need to create a local interval that can be allocated a
1703   // different register.
1704   unsigned LocalIntv = openIntv();
1705   (void)LocalIntv;
1706   DEBUG(dbgs() << ", creating local interval " << LocalIntv << ".\n");
1707 
1708   if (!BI.LiveOut || BI.LastInstr < LSP) {
1709     //
1710     //           <<<<<<<    Interference overlapping uses.
1711     //     |---o---o---|    Live-out on stack.
1712     //     =====----____    Leave IntvIn before interference, then spill.
1713     //
1714     SlotIndex To = leaveIntvAfter(BI.LastInstr);
1715     SlotIndex From = enterIntvBefore(LeaveBefore);
1716     useIntv(From, To);
1717     selectIntv(IntvIn);
1718     useIntv(Start, From);
1719     assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
1720     return;
1721   }
1722 
1723   //           <<<<<<<    Interference overlapping uses.
1724   //     |---o---o--o|    Live-out on stack, late last use.
1725   //     =====-------     Copy to stack before LSP, overlap LocalIntv.
1726   //            \_____    Stack interval is live-out.
1727   //
1728   SlotIndex To = leaveIntvBefore(LSP);
1729   overlapIntv(To, BI.LastInstr);
1730   SlotIndex From = enterIntvBefore(std::min(To, LeaveBefore));
1731   useIntv(From, To);
1732   selectIntv(IntvIn);
1733   useIntv(Start, From);
1734   assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
1735 }
1736 
1737 void SplitEditor::splitRegOutBlock(const SplitAnalysis::BlockInfo &BI,
1738                                    unsigned IntvOut, SlotIndex EnterAfter) {
1739   SlotIndex Start, Stop;
1740   std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
1741 
1742   DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " [" << Start << ';' << Stop
1743                << "), uses " << BI.FirstInstr << '-' << BI.LastInstr
1744                << ", reg-out " << IntvOut << ", enter after " << EnterAfter
1745                << (BI.LiveIn ? ", stack-in" : ", defined in block"));
1746 
1747   SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber());
1748 
1749   assert(IntvOut && "Must have register out");
1750   assert(BI.LiveOut && "Must be live-out");
1751   assert((!EnterAfter || EnterAfter < LSP) && "Bad interference");
1752 
1753   if (!BI.LiveIn && (!EnterAfter || EnterAfter <= BI.FirstInstr)) {
1754     DEBUG(dbgs() << " after interference.\n");
1755     //
1756     //    >>>>             Interference before def.
1757     //    |   o---o---|    Defined in block.
1758     //        =========    Use IntvOut everywhere.
1759     //
1760     selectIntv(IntvOut);
1761     useIntv(BI.FirstInstr, Stop);
1762     return;
1763   }
1764 
1765   if (!EnterAfter || EnterAfter < BI.FirstInstr.getBaseIndex()) {
1766     DEBUG(dbgs() << ", reload after interference.\n");
1767     //
1768     //    >>>>             Interference before def.
1769     //    |---o---o---|    Live-through, stack-in.
1770     //    ____=========    Enter IntvOut before first use.
1771     //
1772     selectIntv(IntvOut);
1773     SlotIndex Idx = enterIntvBefore(std::min(LSP, BI.FirstInstr));
1774     useIntv(Idx, Stop);
1775     assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1776     return;
1777   }
1778 
1779   // The interference is overlapping somewhere we wanted to use IntvOut. That
1780   // means we need to create a local interval that can be allocated a
1781   // different register.
1782   DEBUG(dbgs() << ", interference overlaps uses.\n");
1783   //
1784   //    >>>>>>>          Interference overlapping uses.
1785   //    |---o---o---|    Live-through, stack-in.
1786   //    ____---======    Create local interval for interference range.
1787   //
1788   selectIntv(IntvOut);
1789   SlotIndex Idx = enterIntvAfter(EnterAfter);
1790   useIntv(Idx, Stop);
1791   assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1792 
1793   openIntv();
1794   SlotIndex From = enterIntvBefore(std::min(Idx, BI.FirstInstr));
1795   useIntv(From, Idx);
1796 }
1797