1 //===- SplitKit.cpp - Toolkit for splitting live ranges -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the SplitAnalysis class as well as mutator functions for
10 // live range splitting.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "SplitKit.h"
15 #include "llvm/ADT/None.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/Analysis/AliasAnalysis.h"
19 #include "llvm/CodeGen/LiveRangeEdit.h"
20 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
21 #include "llvm/CodeGen/MachineDominators.h"
22 #include "llvm/CodeGen/MachineInstr.h"
23 #include "llvm/CodeGen/MachineInstrBuilder.h"
24 #include "llvm/CodeGen/MachineLoopInfo.h"
25 #include "llvm/CodeGen/MachineOperand.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/CodeGen/TargetInstrInfo.h"
28 #include "llvm/CodeGen/TargetOpcodes.h"
29 #include "llvm/CodeGen/TargetRegisterInfo.h"
30 #include "llvm/CodeGen/TargetSubtargetInfo.h"
31 #include "llvm/CodeGen/VirtRegMap.h"
32 #include "llvm/Config/llvm-config.h"
33 #include "llvm/IR/DebugLoc.h"
34 #include "llvm/Support/Allocator.h"
35 #include "llvm/Support/BlockFrequency.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include <algorithm>
40 #include <cassert>
41 #include <iterator>
42 #include <limits>
43 #include <tuple>
44 
45 using namespace llvm;
46 
47 #define DEBUG_TYPE "regalloc"
48 
49 STATISTIC(NumFinished, "Number of splits finished");
50 STATISTIC(NumSimple,   "Number of splits that were simple");
51 STATISTIC(NumCopies,   "Number of copies inserted for splitting");
52 STATISTIC(NumRemats,   "Number of rematerialized defs for splitting");
53 STATISTIC(NumRepairs,  "Number of invalid live ranges repaired");
54 
55 //===----------------------------------------------------------------------===//
56 //                     Last Insert Point Analysis
57 //===----------------------------------------------------------------------===//
58 
59 InsertPointAnalysis::InsertPointAnalysis(const LiveIntervals &lis,
60                                          unsigned BBNum)
61     : LIS(lis), LastInsertPoint(BBNum) {}
62 
63 SlotIndex
64 InsertPointAnalysis::computeLastInsertPoint(const LiveInterval &CurLI,
65                                             const MachineBasicBlock &MBB) {
66   unsigned Num = MBB.getNumber();
67   std::pair<SlotIndex, SlotIndex> &LIP = LastInsertPoint[Num];
68   SlotIndex MBBEnd = LIS.getMBBEndIdx(&MBB);
69 
70   SmallVector<const MachineBasicBlock *, 1> ExceptionalSuccessors;
71   bool EHPadSuccessor = false;
72   for (const MachineBasicBlock *SMBB : MBB.successors()) {
73     if (SMBB->isEHPad()) {
74       ExceptionalSuccessors.push_back(SMBB);
75       EHPadSuccessor = true;
76     } else if (SMBB->isInlineAsmBrIndirectTarget())
77       ExceptionalSuccessors.push_back(SMBB);
78   }
79 
80   // Compute insert points on the first call. The pair is independent of the
81   // current live interval.
82   if (!LIP.first.isValid()) {
83     MachineBasicBlock::const_iterator FirstTerm = MBB.getFirstTerminator();
84     if (FirstTerm == MBB.end())
85       LIP.first = MBBEnd;
86     else
87       LIP.first = LIS.getInstructionIndex(*FirstTerm);
88 
89     // If there is a landing pad or inlineasm_br successor, also find the
90     // instruction. If there is no such instruction, we don't need to do
91     // anything special.  We assume there cannot be multiple instructions that
92     // are Calls with EHPad successors or INLINEASM_BR in a block. Further, we
93     // assume that if there are any, they will be after any other call
94     // instructions in the block.
95     if (ExceptionalSuccessors.empty())
96       return LIP.first;
97     for (auto I = MBB.rbegin(), E = MBB.rend(); I != E; ++I) {
98       if ((EHPadSuccessor && I->isCall()) ||
99           I->getOpcode() == TargetOpcode::INLINEASM_BR) {
100         LIP.second = LIS.getInstructionIndex(*I);
101         break;
102       }
103     }
104   }
105 
106   // If CurLI is live into a landing pad successor, move the last insert point
107   // back to the call that may throw.
108   if (!LIP.second)
109     return LIP.first;
110 
111   if (none_of(ExceptionalSuccessors, [&](const MachineBasicBlock *EHPad) {
112         return LIS.isLiveInToMBB(CurLI, EHPad);
113       }))
114     return LIP.first;
115 
116   // Find the value leaving MBB.
117   const VNInfo *VNI = CurLI.getVNInfoBefore(MBBEnd);
118   if (!VNI)
119     return LIP.first;
120 
121   // If the value leaving MBB was defined after the call in MBB, it can't
122   // really be live-in to the landing pad.  This can happen if the landing pad
123   // has a PHI, and this register is undef on the exceptional edge.
124   // <rdar://problem/10664933>
125   if (!SlotIndex::isEarlierInstr(VNI->def, LIP.second) && VNI->def < MBBEnd)
126     return LIP.first;
127 
128   // Value is properly live-in to the landing pad.
129   // Only allow inserts before the call.
130   return LIP.second;
131 }
132 
133 MachineBasicBlock::iterator
134 InsertPointAnalysis::getLastInsertPointIter(const LiveInterval &CurLI,
135                                             MachineBasicBlock &MBB) {
136   SlotIndex LIP = getLastInsertPoint(CurLI, MBB);
137   if (LIP == LIS.getMBBEndIdx(&MBB))
138     return MBB.end();
139   return LIS.getInstructionFromIndex(LIP);
140 }
141 
142 //===----------------------------------------------------------------------===//
143 //                                 Split Analysis
144 //===----------------------------------------------------------------------===//
145 
146 SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm, const LiveIntervals &lis,
147                              const MachineLoopInfo &mli)
148     : MF(vrm.getMachineFunction()), VRM(vrm), LIS(lis), Loops(mli),
149       TII(*MF.getSubtarget().getInstrInfo()), IPA(lis, MF.getNumBlockIDs()) {}
150 
151 void SplitAnalysis::clear() {
152   UseSlots.clear();
153   UseBlocks.clear();
154   ThroughBlocks.clear();
155   CurLI = nullptr;
156   DidRepairRange = false;
157 }
158 
159 /// analyzeUses - Count instructions, basic blocks, and loops using CurLI.
160 void SplitAnalysis::analyzeUses() {
161   assert(UseSlots.empty() && "Call clear first");
162 
163   // First get all the defs from the interval values. This provides the correct
164   // slots for early clobbers.
165   for (const VNInfo *VNI : CurLI->valnos)
166     if (!VNI->isPHIDef() && !VNI->isUnused())
167       UseSlots.push_back(VNI->def);
168 
169   // Get use slots form the use-def chain.
170   const MachineRegisterInfo &MRI = MF.getRegInfo();
171   for (MachineOperand &MO : MRI.use_nodbg_operands(CurLI->reg))
172     if (!MO.isUndef())
173       UseSlots.push_back(LIS.getInstructionIndex(*MO.getParent()).getRegSlot());
174 
175   array_pod_sort(UseSlots.begin(), UseSlots.end());
176 
177   // Remove duplicates, keeping the smaller slot for each instruction.
178   // That is what we want for early clobbers.
179   UseSlots.erase(std::unique(UseSlots.begin(), UseSlots.end(),
180                              SlotIndex::isSameInstr),
181                  UseSlots.end());
182 
183   // Compute per-live block info.
184   if (!calcLiveBlockInfo()) {
185     // FIXME: calcLiveBlockInfo found inconsistencies in the live range.
186     // I am looking at you, RegisterCoalescer!
187     DidRepairRange = true;
188     ++NumRepairs;
189     LLVM_DEBUG(dbgs() << "*** Fixing inconsistent live interval! ***\n");
190     const_cast<LiveIntervals&>(LIS)
191       .shrinkToUses(const_cast<LiveInterval*>(CurLI));
192     UseBlocks.clear();
193     ThroughBlocks.clear();
194     bool fixed = calcLiveBlockInfo();
195     (void)fixed;
196     assert(fixed && "Couldn't fix broken live interval");
197   }
198 
199   LLVM_DEBUG(dbgs() << "Analyze counted " << UseSlots.size() << " instrs in "
200                     << UseBlocks.size() << " blocks, through "
201                     << NumThroughBlocks << " blocks.\n");
202 }
203 
204 /// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks
205 /// where CurLI is live.
206 bool SplitAnalysis::calcLiveBlockInfo() {
207   ThroughBlocks.resize(MF.getNumBlockIDs());
208   NumThroughBlocks = NumGapBlocks = 0;
209   if (CurLI->empty())
210     return true;
211 
212   LiveInterval::const_iterator LVI = CurLI->begin();
213   LiveInterval::const_iterator LVE = CurLI->end();
214 
215   SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE;
216   UseI = UseSlots.begin();
217   UseE = UseSlots.end();
218 
219   // Loop over basic blocks where CurLI is live.
220   MachineFunction::iterator MFI =
221       LIS.getMBBFromIndex(LVI->start)->getIterator();
222   while (true) {
223     BlockInfo BI;
224     BI.MBB = &*MFI;
225     SlotIndex Start, Stop;
226     std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
227 
228     // If the block contains no uses, the range must be live through. At one
229     // point, RegisterCoalescer could create dangling ranges that ended
230     // mid-block.
231     if (UseI == UseE || *UseI >= Stop) {
232       ++NumThroughBlocks;
233       ThroughBlocks.set(BI.MBB->getNumber());
234       // The range shouldn't end mid-block if there are no uses. This shouldn't
235       // happen.
236       if (LVI->end < Stop)
237         return false;
238     } else {
239       // This block has uses. Find the first and last uses in the block.
240       BI.FirstInstr = *UseI;
241       assert(BI.FirstInstr >= Start);
242       do ++UseI;
243       while (UseI != UseE && *UseI < Stop);
244       BI.LastInstr = UseI[-1];
245       assert(BI.LastInstr < Stop);
246 
247       // LVI is the first live segment overlapping MBB.
248       BI.LiveIn = LVI->start <= Start;
249 
250       // When not live in, the first use should be a def.
251       if (!BI.LiveIn) {
252         assert(LVI->start == LVI->valno->def && "Dangling Segment start");
253         assert(LVI->start == BI.FirstInstr && "First instr should be a def");
254         BI.FirstDef = BI.FirstInstr;
255       }
256 
257       // Look for gaps in the live range.
258       BI.LiveOut = true;
259       while (LVI->end < Stop) {
260         SlotIndex LastStop = LVI->end;
261         if (++LVI == LVE || LVI->start >= Stop) {
262           BI.LiveOut = false;
263           BI.LastInstr = LastStop;
264           break;
265         }
266 
267         if (LastStop < LVI->start) {
268           // There is a gap in the live range. Create duplicate entries for the
269           // live-in snippet and the live-out snippet.
270           ++NumGapBlocks;
271 
272           // Push the Live-in part.
273           BI.LiveOut = false;
274           UseBlocks.push_back(BI);
275           UseBlocks.back().LastInstr = LastStop;
276 
277           // Set up BI for the live-out part.
278           BI.LiveIn = false;
279           BI.LiveOut = true;
280           BI.FirstInstr = BI.FirstDef = LVI->start;
281         }
282 
283         // A Segment that starts in the middle of the block must be a def.
284         assert(LVI->start == LVI->valno->def && "Dangling Segment start");
285         if (!BI.FirstDef)
286           BI.FirstDef = LVI->start;
287       }
288 
289       UseBlocks.push_back(BI);
290 
291       // LVI is now at LVE or LVI->end >= Stop.
292       if (LVI == LVE)
293         break;
294     }
295 
296     // Live segment ends exactly at Stop. Move to the next segment.
297     if (LVI->end == Stop && ++LVI == LVE)
298       break;
299 
300     // Pick the next basic block.
301     if (LVI->start < Stop)
302       ++MFI;
303     else
304       MFI = LIS.getMBBFromIndex(LVI->start)->getIterator();
305   }
306 
307   assert(getNumLiveBlocks() == countLiveBlocks(CurLI) && "Bad block count");
308   return true;
309 }
310 
311 unsigned SplitAnalysis::countLiveBlocks(const LiveInterval *cli) const {
312   if (cli->empty())
313     return 0;
314   LiveInterval *li = const_cast<LiveInterval*>(cli);
315   LiveInterval::iterator LVI = li->begin();
316   LiveInterval::iterator LVE = li->end();
317   unsigned Count = 0;
318 
319   // Loop over basic blocks where li is live.
320   MachineFunction::const_iterator MFI =
321       LIS.getMBBFromIndex(LVI->start)->getIterator();
322   SlotIndex Stop = LIS.getMBBEndIdx(&*MFI);
323   while (true) {
324     ++Count;
325     LVI = li->advanceTo(LVI, Stop);
326     if (LVI == LVE)
327       return Count;
328     do {
329       ++MFI;
330       Stop = LIS.getMBBEndIdx(&*MFI);
331     } while (Stop <= LVI->start);
332   }
333 }
334 
335 bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const {
336   unsigned OrigReg = VRM.getOriginal(CurLI->reg);
337   const LiveInterval &Orig = LIS.getInterval(OrigReg);
338   assert(!Orig.empty() && "Splitting empty interval?");
339   LiveInterval::const_iterator I = Orig.find(Idx);
340 
341   // Range containing Idx should begin at Idx.
342   if (I != Orig.end() && I->start <= Idx)
343     return I->start == Idx;
344 
345   // Range does not contain Idx, previous must end at Idx.
346   return I != Orig.begin() && (--I)->end == Idx;
347 }
348 
349 void SplitAnalysis::analyze(const LiveInterval *li) {
350   clear();
351   CurLI = li;
352   analyzeUses();
353 }
354 
355 //===----------------------------------------------------------------------===//
356 //                               Split Editor
357 //===----------------------------------------------------------------------===//
358 
359 /// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
360 SplitEditor::SplitEditor(SplitAnalysis &sa, AliasAnalysis &aa,
361                          LiveIntervals &lis, VirtRegMap &vrm,
362                          MachineDominatorTree &mdt,
363                          MachineBlockFrequencyInfo &mbfi)
364     : SA(sa), AA(aa), LIS(lis), VRM(vrm),
365       MRI(vrm.getMachineFunction().getRegInfo()), MDT(mdt),
366       TII(*vrm.getMachineFunction().getSubtarget().getInstrInfo()),
367       TRI(*vrm.getMachineFunction().getSubtarget().getRegisterInfo()),
368       MBFI(mbfi), RegAssign(Allocator) {}
369 
370 void SplitEditor::reset(LiveRangeEdit &LRE, ComplementSpillMode SM) {
371   Edit = &LRE;
372   SpillMode = SM;
373   OpenIdx = 0;
374   RegAssign.clear();
375   Values.clear();
376 
377   // Reset the LiveIntervalCalc instances needed for this spill mode.
378   LICalc[0].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
379                   &LIS.getVNInfoAllocator());
380   if (SpillMode)
381     LICalc[1].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
382                     &LIS.getVNInfoAllocator());
383 
384   // We don't need an AliasAnalysis since we will only be performing
385   // cheap-as-a-copy remats anyway.
386   Edit->anyRematerializable(nullptr);
387 }
388 
389 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
390 LLVM_DUMP_METHOD void SplitEditor::dump() const {
391   if (RegAssign.empty()) {
392     dbgs() << " empty\n";
393     return;
394   }
395 
396   for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I)
397     dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value();
398   dbgs() << '\n';
399 }
400 #endif
401 
402 LiveInterval::SubRange &SplitEditor::getSubRangeForMask(LaneBitmask LM,
403                                                         LiveInterval &LI) {
404   for (LiveInterval::SubRange &S : LI.subranges())
405     if (S.LaneMask == LM)
406       return S;
407   llvm_unreachable("SubRange for this mask not found");
408 }
409 
410 void SplitEditor::addDeadDef(LiveInterval &LI, VNInfo *VNI, bool Original) {
411   if (!LI.hasSubRanges()) {
412     LI.createDeadDef(VNI);
413     return;
414   }
415 
416   SlotIndex Def = VNI->def;
417   if (Original) {
418     // If we are transferring a def from the original interval, make sure
419     // to only update the subranges for which the original subranges had
420     // a def at this location.
421     for (LiveInterval::SubRange &S : LI.subranges()) {
422       auto &PS = getSubRangeForMask(S.LaneMask, Edit->getParent());
423       VNInfo *PV = PS.getVNInfoAt(Def);
424       if (PV != nullptr && PV->def == Def)
425         S.createDeadDef(Def, LIS.getVNInfoAllocator());
426     }
427   } else {
428     // This is a new def: either from rematerialization, or from an inserted
429     // copy. Since rematerialization can regenerate a definition of a sub-
430     // register, we need to check which subranges need to be updated.
431     const MachineInstr *DefMI = LIS.getInstructionFromIndex(Def);
432     assert(DefMI != nullptr);
433     LaneBitmask LM;
434     for (const MachineOperand &DefOp : DefMI->defs()) {
435       Register R = DefOp.getReg();
436       if (R != LI.reg)
437         continue;
438       if (unsigned SR = DefOp.getSubReg())
439         LM |= TRI.getSubRegIndexLaneMask(SR);
440       else {
441         LM = MRI.getMaxLaneMaskForVReg(R);
442         break;
443       }
444     }
445     for (LiveInterval::SubRange &S : LI.subranges())
446       if ((S.LaneMask & LM).any())
447         S.createDeadDef(Def, LIS.getVNInfoAllocator());
448   }
449 }
450 
451 VNInfo *SplitEditor::defValue(unsigned RegIdx,
452                               const VNInfo *ParentVNI,
453                               SlotIndex Idx,
454                               bool Original) {
455   assert(ParentVNI && "Mapping  NULL value");
456   assert(Idx.isValid() && "Invalid SlotIndex");
457   assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI");
458   LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
459 
460   // Create a new value.
461   VNInfo *VNI = LI->getNextValue(Idx, LIS.getVNInfoAllocator());
462 
463   bool Force = LI->hasSubRanges();
464   ValueForcePair FP(Force ? nullptr : VNI, Force);
465   // Use insert for lookup, so we can add missing values with a second lookup.
466   std::pair<ValueMap::iterator, bool> InsP =
467     Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id), FP));
468 
469   // This was the first time (RegIdx, ParentVNI) was mapped, and it is not
470   // forced. Keep it as a simple def without any liveness.
471   if (!Force && InsP.second)
472     return VNI;
473 
474   // If the previous value was a simple mapping, add liveness for it now.
475   if (VNInfo *OldVNI = InsP.first->second.getPointer()) {
476     addDeadDef(*LI, OldVNI, Original);
477 
478     // No longer a simple mapping.  Switch to a complex mapping. If the
479     // interval has subranges, make it a forced mapping.
480     InsP.first->second = ValueForcePair(nullptr, Force);
481   }
482 
483   // This is a complex mapping, add liveness for VNI
484   addDeadDef(*LI, VNI, Original);
485   return VNI;
486 }
487 
488 void SplitEditor::forceRecompute(unsigned RegIdx, const VNInfo &ParentVNI) {
489   ValueForcePair &VFP = Values[std::make_pair(RegIdx, ParentVNI.id)];
490   VNInfo *VNI = VFP.getPointer();
491 
492   // ParentVNI was either unmapped or already complex mapped. Either way, just
493   // set the force bit.
494   if (!VNI) {
495     VFP.setInt(true);
496     return;
497   }
498 
499   // This was previously a single mapping. Make sure the old def is represented
500   // by a trivial live range.
501   addDeadDef(LIS.getInterval(Edit->get(RegIdx)), VNI, false);
502 
503   // Mark as complex mapped, forced.
504   VFP = ValueForcePair(nullptr, true);
505 }
506 
507 SlotIndex SplitEditor::buildSingleSubRegCopy(unsigned FromReg, unsigned ToReg,
508     MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore,
509     unsigned SubIdx, LiveInterval &DestLI, bool Late, SlotIndex Def) {
510   const MCInstrDesc &Desc = TII.get(TargetOpcode::COPY);
511   bool FirstCopy = !Def.isValid();
512   MachineInstr *CopyMI = BuildMI(MBB, InsertBefore, DebugLoc(), Desc)
513       .addReg(ToReg, RegState::Define | getUndefRegState(FirstCopy)
514               | getInternalReadRegState(!FirstCopy), SubIdx)
515       .addReg(FromReg, 0, SubIdx);
516 
517   BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator();
518   SlotIndexes &Indexes = *LIS.getSlotIndexes();
519   if (FirstCopy) {
520     Def = Indexes.insertMachineInstrInMaps(*CopyMI, Late).getRegSlot();
521   } else {
522     CopyMI->bundleWithPred();
523   }
524   LaneBitmask LaneMask = TRI.getSubRegIndexLaneMask(SubIdx);
525   DestLI.refineSubRanges(Allocator, LaneMask,
526                          [Def, &Allocator](LiveInterval::SubRange &SR) {
527                            SR.createDeadDef(Def, Allocator);
528                          },
529                          Indexes, TRI);
530   return Def;
531 }
532 
533 SlotIndex SplitEditor::buildCopy(unsigned FromReg, unsigned ToReg,
534     LaneBitmask LaneMask, MachineBasicBlock &MBB,
535     MachineBasicBlock::iterator InsertBefore, bool Late, unsigned RegIdx) {
536   const MCInstrDesc &Desc = TII.get(TargetOpcode::COPY);
537   if (LaneMask.all() || LaneMask == MRI.getMaxLaneMaskForVReg(FromReg)) {
538     // The full vreg is copied.
539     MachineInstr *CopyMI =
540         BuildMI(MBB, InsertBefore, DebugLoc(), Desc, ToReg).addReg(FromReg);
541     SlotIndexes &Indexes = *LIS.getSlotIndexes();
542     return Indexes.insertMachineInstrInMaps(*CopyMI, Late).getRegSlot();
543   }
544 
545   // Only a subset of lanes needs to be copied. The following is a simple
546   // heuristic to construct a sequence of COPYs. We could add a target
547   // specific callback if this turns out to be suboptimal.
548   LiveInterval &DestLI = LIS.getInterval(Edit->get(RegIdx));
549 
550   // First pass: Try to find a perfectly matching subregister index. If none
551   // exists find the one covering the most lanemask bits.
552   SmallVector<unsigned, 8> PossibleIndexes;
553   unsigned BestIdx = 0;
554   unsigned BestCover = 0;
555   const TargetRegisterClass *RC = MRI.getRegClass(FromReg);
556   assert(RC == MRI.getRegClass(ToReg) && "Should have same reg class");
557   for (unsigned Idx = 1, E = TRI.getNumSubRegIndices(); Idx < E; ++Idx) {
558     // Is this index even compatible with the given class?
559     if (TRI.getSubClassWithSubReg(RC, Idx) != RC)
560       continue;
561     LaneBitmask SubRegMask = TRI.getSubRegIndexLaneMask(Idx);
562     // Early exit if we found a perfect match.
563     if (SubRegMask == LaneMask) {
564       BestIdx = Idx;
565       break;
566     }
567 
568     // The index must not cover any lanes outside \p LaneMask.
569     if ((SubRegMask & ~LaneMask).any())
570       continue;
571 
572     unsigned PopCount = SubRegMask.getNumLanes();
573     PossibleIndexes.push_back(Idx);
574     if (PopCount > BestCover) {
575       BestCover = PopCount;
576       BestIdx = Idx;
577     }
578   }
579 
580   // Abort if we cannot possibly implement the COPY with the given indexes.
581   if (BestIdx == 0)
582     report_fatal_error("Impossible to implement partial COPY");
583 
584   SlotIndex Def = buildSingleSubRegCopy(FromReg, ToReg, MBB, InsertBefore,
585                                         BestIdx, DestLI, Late, SlotIndex());
586 
587   // Greedy heuristic: Keep iterating keeping the best covering subreg index
588   // each time.
589   LaneBitmask LanesLeft = LaneMask & ~(TRI.getSubRegIndexLaneMask(BestIdx));
590   while (LanesLeft.any()) {
591     unsigned BestIdx = 0;
592     int BestCover = std::numeric_limits<int>::min();
593     for (unsigned Idx : PossibleIndexes) {
594       LaneBitmask SubRegMask = TRI.getSubRegIndexLaneMask(Idx);
595       // Early exit if we found a perfect match.
596       if (SubRegMask == LanesLeft) {
597         BestIdx = Idx;
598         break;
599       }
600 
601       // Try to cover as much of the remaining lanes as possible but
602       // as few of the already covered lanes as possible.
603       int Cover = (SubRegMask & LanesLeft).getNumLanes()
604                 - (SubRegMask & ~LanesLeft).getNumLanes();
605       if (Cover > BestCover) {
606         BestCover = Cover;
607         BestIdx = Idx;
608       }
609     }
610 
611     if (BestIdx == 0)
612       report_fatal_error("Impossible to implement partial COPY");
613 
614     buildSingleSubRegCopy(FromReg, ToReg, MBB, InsertBefore, BestIdx,
615                           DestLI, Late, Def);
616     LanesLeft &= ~TRI.getSubRegIndexLaneMask(BestIdx);
617   }
618 
619   return Def;
620 }
621 
622 VNInfo *SplitEditor::defFromParent(unsigned RegIdx,
623                                    VNInfo *ParentVNI,
624                                    SlotIndex UseIdx,
625                                    MachineBasicBlock &MBB,
626                                    MachineBasicBlock::iterator I) {
627   SlotIndex Def;
628   LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
629 
630   // We may be trying to avoid interference that ends at a deleted instruction,
631   // so always begin RegIdx 0 early and all others late.
632   bool Late = RegIdx != 0;
633 
634   // Attempt cheap-as-a-copy rematerialization.
635   unsigned Original = VRM.getOriginal(Edit->get(RegIdx));
636   LiveInterval &OrigLI = LIS.getInterval(Original);
637   VNInfo *OrigVNI = OrigLI.getVNInfoAt(UseIdx);
638 
639   unsigned Reg = LI->reg;
640   bool DidRemat = false;
641   if (OrigVNI) {
642     LiveRangeEdit::Remat RM(ParentVNI);
643     RM.OrigMI = LIS.getInstructionFromIndex(OrigVNI->def);
644     if (Edit->canRematerializeAt(RM, OrigVNI, UseIdx, true)) {
645       Def = Edit->rematerializeAt(MBB, I, Reg, RM, TRI, Late);
646       ++NumRemats;
647       DidRemat = true;
648     }
649   }
650   if (!DidRemat) {
651     LaneBitmask LaneMask;
652     if (LI->hasSubRanges()) {
653       LaneMask = LaneBitmask::getNone();
654       for (LiveInterval::SubRange &S : LI->subranges())
655         LaneMask |= S.LaneMask;
656     } else {
657       LaneMask = LaneBitmask::getAll();
658     }
659 
660     ++NumCopies;
661     Def = buildCopy(Edit->getReg(), Reg, LaneMask, MBB, I, Late, RegIdx);
662   }
663 
664   // Define the value in Reg.
665   return defValue(RegIdx, ParentVNI, Def, false);
666 }
667 
668 /// Create a new virtual register and live interval.
669 unsigned SplitEditor::openIntv() {
670   // Create the complement as index 0.
671   if (Edit->empty())
672     Edit->createEmptyInterval();
673 
674   // Create the open interval.
675   OpenIdx = Edit->size();
676   Edit->createEmptyInterval();
677   return OpenIdx;
678 }
679 
680 void SplitEditor::selectIntv(unsigned Idx) {
681   assert(Idx != 0 && "Cannot select the complement interval");
682   assert(Idx < Edit->size() && "Can only select previously opened interval");
683   LLVM_DEBUG(dbgs() << "    selectIntv " << OpenIdx << " -> " << Idx << '\n');
684   OpenIdx = Idx;
685 }
686 
687 SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) {
688   assert(OpenIdx && "openIntv not called before enterIntvBefore");
689   LLVM_DEBUG(dbgs() << "    enterIntvBefore " << Idx);
690   Idx = Idx.getBaseIndex();
691   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
692   if (!ParentVNI) {
693     LLVM_DEBUG(dbgs() << ": not live\n");
694     return Idx;
695   }
696   LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
697   MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
698   assert(MI && "enterIntvBefore called with invalid index");
699 
700   VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI);
701   return VNI->def;
702 }
703 
704 SlotIndex SplitEditor::enterIntvAfter(SlotIndex Idx) {
705   assert(OpenIdx && "openIntv not called before enterIntvAfter");
706   LLVM_DEBUG(dbgs() << "    enterIntvAfter " << Idx);
707   Idx = Idx.getBoundaryIndex();
708   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
709   if (!ParentVNI) {
710     LLVM_DEBUG(dbgs() << ": not live\n");
711     return Idx;
712   }
713   LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
714   MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
715   assert(MI && "enterIntvAfter called with invalid index");
716 
717   VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(),
718                               std::next(MachineBasicBlock::iterator(MI)));
719   return VNI->def;
720 }
721 
722 SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) {
723   assert(OpenIdx && "openIntv not called before enterIntvAtEnd");
724   SlotIndex End = LIS.getMBBEndIdx(&MBB);
725   SlotIndex Last = End.getPrevSlot();
726   LLVM_DEBUG(dbgs() << "    enterIntvAtEnd " << printMBBReference(MBB) << ", "
727                     << Last);
728   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last);
729   if (!ParentVNI) {
730     LLVM_DEBUG(dbgs() << ": not live\n");
731     return End;
732   }
733   LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id);
734   VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB,
735                               SA.getLastSplitPointIter(&MBB));
736   RegAssign.insert(VNI->def, End, OpenIdx);
737   LLVM_DEBUG(dump());
738   return VNI->def;
739 }
740 
741 /// useIntv - indicate that all instructions in MBB should use OpenLI.
742 void SplitEditor::useIntv(const MachineBasicBlock &MBB) {
743   useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB));
744 }
745 
746 void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) {
747   assert(OpenIdx && "openIntv not called before useIntv");
748   LLVM_DEBUG(dbgs() << "    useIntv [" << Start << ';' << End << "):");
749   RegAssign.insert(Start, End, OpenIdx);
750   LLVM_DEBUG(dump());
751 }
752 
753 SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) {
754   assert(OpenIdx && "openIntv not called before leaveIntvAfter");
755   LLVM_DEBUG(dbgs() << "    leaveIntvAfter " << Idx);
756 
757   // The interval must be live beyond the instruction at Idx.
758   SlotIndex Boundary = Idx.getBoundaryIndex();
759   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Boundary);
760   if (!ParentVNI) {
761     LLVM_DEBUG(dbgs() << ": not live\n");
762     return Boundary.getNextSlot();
763   }
764   LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
765   MachineInstr *MI = LIS.getInstructionFromIndex(Boundary);
766   assert(MI && "No instruction at index");
767 
768   // In spill mode, make live ranges as short as possible by inserting the copy
769   // before MI.  This is only possible if that instruction doesn't redefine the
770   // value.  The inserted COPY is not a kill, and we don't need to recompute
771   // the source live range.  The spiller also won't try to hoist this copy.
772   if (SpillMode && !SlotIndex::isSameInstr(ParentVNI->def, Idx) &&
773       MI->readsVirtualRegister(Edit->getReg())) {
774     forceRecompute(0, *ParentVNI);
775     defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
776     return Idx;
777   }
778 
779   VNInfo *VNI = defFromParent(0, ParentVNI, Boundary, *MI->getParent(),
780                               std::next(MachineBasicBlock::iterator(MI)));
781   return VNI->def;
782 }
783 
784 SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) {
785   assert(OpenIdx && "openIntv not called before leaveIntvBefore");
786   LLVM_DEBUG(dbgs() << "    leaveIntvBefore " << Idx);
787 
788   // The interval must be live into the instruction at Idx.
789   Idx = Idx.getBaseIndex();
790   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
791   if (!ParentVNI) {
792     LLVM_DEBUG(dbgs() << ": not live\n");
793     return Idx.getNextSlot();
794   }
795   LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
796 
797   MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
798   assert(MI && "No instruction at index");
799   VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
800   return VNI->def;
801 }
802 
803 SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) {
804   assert(OpenIdx && "openIntv not called before leaveIntvAtTop");
805   SlotIndex Start = LIS.getMBBStartIdx(&MBB);
806   LLVM_DEBUG(dbgs() << "    leaveIntvAtTop " << printMBBReference(MBB) << ", "
807                     << Start);
808 
809   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
810   if (!ParentVNI) {
811     LLVM_DEBUG(dbgs() << ": not live\n");
812     return Start;
813   }
814 
815   VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB,
816                               MBB.SkipPHIsLabelsAndDebug(MBB.begin()));
817   RegAssign.insert(Start, VNI->def, OpenIdx);
818   LLVM_DEBUG(dump());
819   return VNI->def;
820 }
821 
822 void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) {
823   assert(OpenIdx && "openIntv not called before overlapIntv");
824   const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
825   assert(ParentVNI == Edit->getParent().getVNInfoBefore(End) &&
826          "Parent changes value in extended range");
827   assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) &&
828          "Range cannot span basic blocks");
829 
830   // The complement interval will be extended as needed by LICalc.extend().
831   if (ParentVNI)
832     forceRecompute(0, *ParentVNI);
833   LLVM_DEBUG(dbgs() << "    overlapIntv [" << Start << ';' << End << "):");
834   RegAssign.insert(Start, End, OpenIdx);
835   LLVM_DEBUG(dump());
836 }
837 
838 //===----------------------------------------------------------------------===//
839 //                                  Spill modes
840 //===----------------------------------------------------------------------===//
841 
842 void SplitEditor::removeBackCopies(SmallVectorImpl<VNInfo*> &Copies) {
843   LiveInterval *LI = &LIS.getInterval(Edit->get(0));
844   LLVM_DEBUG(dbgs() << "Removing " << Copies.size() << " back-copies.\n");
845   RegAssignMap::iterator AssignI;
846   AssignI.setMap(RegAssign);
847 
848   for (unsigned i = 0, e = Copies.size(); i != e; ++i) {
849     SlotIndex Def = Copies[i]->def;
850     MachineInstr *MI = LIS.getInstructionFromIndex(Def);
851     assert(MI && "No instruction for back-copy");
852 
853     MachineBasicBlock *MBB = MI->getParent();
854     MachineBasicBlock::iterator MBBI(MI);
855     bool AtBegin;
856     do AtBegin = MBBI == MBB->begin();
857     while (!AtBegin && (--MBBI)->isDebugInstr());
858 
859     LLVM_DEBUG(dbgs() << "Removing " << Def << '\t' << *MI);
860     LIS.removeVRegDefAt(*LI, Def);
861     LIS.RemoveMachineInstrFromMaps(*MI);
862     MI->eraseFromParent();
863 
864     // Adjust RegAssign if a register assignment is killed at Def. We want to
865     // avoid calculating the live range of the source register if possible.
866     AssignI.find(Def.getPrevSlot());
867     if (!AssignI.valid() || AssignI.start() >= Def)
868       continue;
869     // If MI doesn't kill the assigned register, just leave it.
870     if (AssignI.stop() != Def)
871       continue;
872     unsigned RegIdx = AssignI.value();
873     if (AtBegin || !MBBI->readsVirtualRegister(Edit->getReg())) {
874       LLVM_DEBUG(dbgs() << "  cannot find simple kill of RegIdx " << RegIdx
875                         << '\n');
876       forceRecompute(RegIdx, *Edit->getParent().getVNInfoAt(Def));
877     } else {
878       SlotIndex Kill = LIS.getInstructionIndex(*MBBI).getRegSlot();
879       LLVM_DEBUG(dbgs() << "  move kill to " << Kill << '\t' << *MBBI);
880       AssignI.setStop(Kill);
881     }
882   }
883 }
884 
885 MachineBasicBlock*
886 SplitEditor::findShallowDominator(MachineBasicBlock *MBB,
887                                   MachineBasicBlock *DefMBB) {
888   if (MBB == DefMBB)
889     return MBB;
890   assert(MDT.dominates(DefMBB, MBB) && "MBB must be dominated by the def.");
891 
892   const MachineLoopInfo &Loops = SA.Loops;
893   const MachineLoop *DefLoop = Loops.getLoopFor(DefMBB);
894   MachineDomTreeNode *DefDomNode = MDT[DefMBB];
895 
896   // Best candidate so far.
897   MachineBasicBlock *BestMBB = MBB;
898   unsigned BestDepth = std::numeric_limits<unsigned>::max();
899 
900   while (true) {
901     const MachineLoop *Loop = Loops.getLoopFor(MBB);
902 
903     // MBB isn't in a loop, it doesn't get any better.  All dominators have a
904     // higher frequency by definition.
905     if (!Loop) {
906       LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB)
907                         << " dominates " << printMBBReference(*MBB)
908                         << " at depth 0\n");
909       return MBB;
910     }
911 
912     // We'll never be able to exit the DefLoop.
913     if (Loop == DefLoop) {
914       LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB)
915                         << " dominates " << printMBBReference(*MBB)
916                         << " in the same loop\n");
917       return MBB;
918     }
919 
920     // Least busy dominator seen so far.
921     unsigned Depth = Loop->getLoopDepth();
922     if (Depth < BestDepth) {
923       BestMBB = MBB;
924       BestDepth = Depth;
925       LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB)
926                         << " dominates " << printMBBReference(*MBB)
927                         << " at depth " << Depth << '\n');
928     }
929 
930     // Leave loop by going to the immediate dominator of the loop header.
931     // This is a bigger stride than simply walking up the dominator tree.
932     MachineDomTreeNode *IDom = MDT[Loop->getHeader()]->getIDom();
933 
934     // Too far up the dominator tree?
935     if (!IDom || !MDT.dominates(DefDomNode, IDom))
936       return BestMBB;
937 
938     MBB = IDom->getBlock();
939   }
940 }
941 
942 void SplitEditor::computeRedundantBackCopies(
943     DenseSet<unsigned> &NotToHoistSet, SmallVectorImpl<VNInfo *> &BackCopies) {
944   LiveInterval *LI = &LIS.getInterval(Edit->get(0));
945   LiveInterval *Parent = &Edit->getParent();
946   SmallVector<SmallPtrSet<VNInfo *, 8>, 8> EqualVNs(Parent->getNumValNums());
947   SmallPtrSet<VNInfo *, 8> DominatedVNIs;
948 
949   // Aggregate VNIs having the same value as ParentVNI.
950   for (VNInfo *VNI : LI->valnos) {
951     if (VNI->isUnused())
952       continue;
953     VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
954     EqualVNs[ParentVNI->id].insert(VNI);
955   }
956 
957   // For VNI aggregation of each ParentVNI, collect dominated, i.e.,
958   // redundant VNIs to BackCopies.
959   for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) {
960     VNInfo *ParentVNI = Parent->getValNumInfo(i);
961     if (!NotToHoistSet.count(ParentVNI->id))
962       continue;
963     SmallPtrSetIterator<VNInfo *> It1 = EqualVNs[ParentVNI->id].begin();
964     SmallPtrSetIterator<VNInfo *> It2 = It1;
965     for (; It1 != EqualVNs[ParentVNI->id].end(); ++It1) {
966       It2 = It1;
967       for (++It2; It2 != EqualVNs[ParentVNI->id].end(); ++It2) {
968         if (DominatedVNIs.count(*It1) || DominatedVNIs.count(*It2))
969           continue;
970 
971         MachineBasicBlock *MBB1 = LIS.getMBBFromIndex((*It1)->def);
972         MachineBasicBlock *MBB2 = LIS.getMBBFromIndex((*It2)->def);
973         if (MBB1 == MBB2) {
974           DominatedVNIs.insert((*It1)->def < (*It2)->def ? (*It2) : (*It1));
975         } else if (MDT.dominates(MBB1, MBB2)) {
976           DominatedVNIs.insert(*It2);
977         } else if (MDT.dominates(MBB2, MBB1)) {
978           DominatedVNIs.insert(*It1);
979         }
980       }
981     }
982     if (!DominatedVNIs.empty()) {
983       forceRecompute(0, *ParentVNI);
984       for (auto VNI : DominatedVNIs) {
985         BackCopies.push_back(VNI);
986       }
987       DominatedVNIs.clear();
988     }
989   }
990 }
991 
992 /// For SM_Size mode, find a common dominator for all the back-copies for
993 /// the same ParentVNI and hoist the backcopies to the dominator BB.
994 /// For SM_Speed mode, if the common dominator is hot and it is not beneficial
995 /// to do the hoisting, simply remove the dominated backcopies for the same
996 /// ParentVNI.
997 void SplitEditor::hoistCopies() {
998   // Get the complement interval, always RegIdx 0.
999   LiveInterval *LI = &LIS.getInterval(Edit->get(0));
1000   LiveInterval *Parent = &Edit->getParent();
1001 
1002   // Track the nearest common dominator for all back-copies for each ParentVNI,
1003   // indexed by ParentVNI->id.
1004   using DomPair = std::pair<MachineBasicBlock *, SlotIndex>;
1005   SmallVector<DomPair, 8> NearestDom(Parent->getNumValNums());
1006   // The total cost of all the back-copies for each ParentVNI.
1007   SmallVector<BlockFrequency, 8> Costs(Parent->getNumValNums());
1008   // The ParentVNI->id set for which hoisting back-copies are not beneficial
1009   // for Speed.
1010   DenseSet<unsigned> NotToHoistSet;
1011 
1012   // Find the nearest common dominator for parent values with multiple
1013   // back-copies.  If a single back-copy dominates, put it in DomPair.second.
1014   for (VNInfo *VNI : LI->valnos) {
1015     if (VNI->isUnused())
1016       continue;
1017     VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
1018     assert(ParentVNI && "Parent not live at complement def");
1019 
1020     // Don't hoist remats.  The complement is probably going to disappear
1021     // completely anyway.
1022     if (Edit->didRematerialize(ParentVNI))
1023       continue;
1024 
1025     MachineBasicBlock *ValMBB = LIS.getMBBFromIndex(VNI->def);
1026 
1027     DomPair &Dom = NearestDom[ParentVNI->id];
1028 
1029     // Keep directly defined parent values.  This is either a PHI or an
1030     // instruction in the complement range.  All other copies of ParentVNI
1031     // should be eliminated.
1032     if (VNI->def == ParentVNI->def) {
1033       LLVM_DEBUG(dbgs() << "Direct complement def at " << VNI->def << '\n');
1034       Dom = DomPair(ValMBB, VNI->def);
1035       continue;
1036     }
1037     // Skip the singly mapped values.  There is nothing to gain from hoisting a
1038     // single back-copy.
1039     if (Values.lookup(std::make_pair(0, ParentVNI->id)).getPointer()) {
1040       LLVM_DEBUG(dbgs() << "Single complement def at " << VNI->def << '\n');
1041       continue;
1042     }
1043 
1044     if (!Dom.first) {
1045       // First time we see ParentVNI.  VNI dominates itself.
1046       Dom = DomPair(ValMBB, VNI->def);
1047     } else if (Dom.first == ValMBB) {
1048       // Two defs in the same block.  Pick the earlier def.
1049       if (!Dom.second.isValid() || VNI->def < Dom.second)
1050         Dom.second = VNI->def;
1051     } else {
1052       // Different basic blocks. Check if one dominates.
1053       MachineBasicBlock *Near =
1054         MDT.findNearestCommonDominator(Dom.first, ValMBB);
1055       if (Near == ValMBB)
1056         // Def ValMBB dominates.
1057         Dom = DomPair(ValMBB, VNI->def);
1058       else if (Near != Dom.first)
1059         // None dominate. Hoist to common dominator, need new def.
1060         Dom = DomPair(Near, SlotIndex());
1061       Costs[ParentVNI->id] += MBFI.getBlockFreq(ValMBB);
1062     }
1063 
1064     LLVM_DEBUG(dbgs() << "Multi-mapped complement " << VNI->id << '@'
1065                       << VNI->def << " for parent " << ParentVNI->id << '@'
1066                       << ParentVNI->def << " hoist to "
1067                       << printMBBReference(*Dom.first) << ' ' << Dom.second
1068                       << '\n');
1069   }
1070 
1071   // Insert the hoisted copies.
1072   for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) {
1073     DomPair &Dom = NearestDom[i];
1074     if (!Dom.first || Dom.second.isValid())
1075       continue;
1076     // This value needs a hoisted copy inserted at the end of Dom.first.
1077     VNInfo *ParentVNI = Parent->getValNumInfo(i);
1078     MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(ParentVNI->def);
1079     // Get a less loopy dominator than Dom.first.
1080     Dom.first = findShallowDominator(Dom.first, DefMBB);
1081     if (SpillMode == SM_Speed &&
1082         MBFI.getBlockFreq(Dom.first) > Costs[ParentVNI->id]) {
1083       NotToHoistSet.insert(ParentVNI->id);
1084       continue;
1085     }
1086     SlotIndex Last = LIS.getMBBEndIdx(Dom.first).getPrevSlot();
1087     Dom.second =
1088       defFromParent(0, ParentVNI, Last, *Dom.first,
1089                     SA.getLastSplitPointIter(Dom.first))->def;
1090   }
1091 
1092   // Remove redundant back-copies that are now known to be dominated by another
1093   // def with the same value.
1094   SmallVector<VNInfo*, 8> BackCopies;
1095   for (VNInfo *VNI : LI->valnos) {
1096     if (VNI->isUnused())
1097       continue;
1098     VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
1099     const DomPair &Dom = NearestDom[ParentVNI->id];
1100     if (!Dom.first || Dom.second == VNI->def ||
1101         NotToHoistSet.count(ParentVNI->id))
1102       continue;
1103     BackCopies.push_back(VNI);
1104     forceRecompute(0, *ParentVNI);
1105   }
1106 
1107   // If it is not beneficial to hoist all the BackCopies, simply remove
1108   // redundant BackCopies in speed mode.
1109   if (SpillMode == SM_Speed && !NotToHoistSet.empty())
1110     computeRedundantBackCopies(NotToHoistSet, BackCopies);
1111 
1112   removeBackCopies(BackCopies);
1113 }
1114 
1115 /// transferValues - Transfer all possible values to the new live ranges.
1116 /// Values that were rematerialized are left alone, they need LICalc.extend().
1117 bool SplitEditor::transferValues() {
1118   bool Skipped = false;
1119   RegAssignMap::const_iterator AssignI = RegAssign.begin();
1120   for (const LiveRange::Segment &S : Edit->getParent()) {
1121     LLVM_DEBUG(dbgs() << "  blit " << S << ':');
1122     VNInfo *ParentVNI = S.valno;
1123     // RegAssign has holes where RegIdx 0 should be used.
1124     SlotIndex Start = S.start;
1125     AssignI.advanceTo(Start);
1126     do {
1127       unsigned RegIdx;
1128       SlotIndex End = S.end;
1129       if (!AssignI.valid()) {
1130         RegIdx = 0;
1131       } else if (AssignI.start() <= Start) {
1132         RegIdx = AssignI.value();
1133         if (AssignI.stop() < End) {
1134           End = AssignI.stop();
1135           ++AssignI;
1136         }
1137       } else {
1138         RegIdx = 0;
1139         End = std::min(End, AssignI.start());
1140       }
1141 
1142       // The interval [Start;End) is continuously mapped to RegIdx, ParentVNI.
1143       LLVM_DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx << '('
1144                         << printReg(Edit->get(RegIdx)) << ')');
1145       LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
1146 
1147       // Check for a simply defined value that can be blitted directly.
1148       ValueForcePair VFP = Values.lookup(std::make_pair(RegIdx, ParentVNI->id));
1149       if (VNInfo *VNI = VFP.getPointer()) {
1150         LLVM_DEBUG(dbgs() << ':' << VNI->id);
1151         LI.addSegment(LiveInterval::Segment(Start, End, VNI));
1152         Start = End;
1153         continue;
1154       }
1155 
1156       // Skip values with forced recomputation.
1157       if (VFP.getInt()) {
1158         LLVM_DEBUG(dbgs() << "(recalc)");
1159         Skipped = true;
1160         Start = End;
1161         continue;
1162       }
1163 
1164       LiveIntervalCalc &LIC = getLICalc(RegIdx);
1165 
1166       // This value has multiple defs in RegIdx, but it wasn't rematerialized,
1167       // so the live range is accurate. Add live-in blocks in [Start;End) to the
1168       // LiveInBlocks.
1169       MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start)->getIterator();
1170       SlotIndex BlockStart, BlockEnd;
1171       std::tie(BlockStart, BlockEnd) = LIS.getSlotIndexes()->getMBBRange(&*MBB);
1172 
1173       // The first block may be live-in, or it may have its own def.
1174       if (Start != BlockStart) {
1175         VNInfo *VNI = LI.extendInBlock(BlockStart, std::min(BlockEnd, End));
1176         assert(VNI && "Missing def for complex mapped value");
1177         LLVM_DEBUG(dbgs() << ':' << VNI->id << "*" << printMBBReference(*MBB));
1178         // MBB has its own def. Is it also live-out?
1179         if (BlockEnd <= End)
1180           LIC.setLiveOutValue(&*MBB, VNI);
1181 
1182         // Skip to the next block for live-in.
1183         ++MBB;
1184         BlockStart = BlockEnd;
1185       }
1186 
1187       // Handle the live-in blocks covered by [Start;End).
1188       assert(Start <= BlockStart && "Expected live-in block");
1189       while (BlockStart < End) {
1190         LLVM_DEBUG(dbgs() << ">" << printMBBReference(*MBB));
1191         BlockEnd = LIS.getMBBEndIdx(&*MBB);
1192         if (BlockStart == ParentVNI->def) {
1193           // This block has the def of a parent PHI, so it isn't live-in.
1194           assert(ParentVNI->isPHIDef() && "Non-phi defined at block start?");
1195           VNInfo *VNI = LI.extendInBlock(BlockStart, std::min(BlockEnd, End));
1196           assert(VNI && "Missing def for complex mapped parent PHI");
1197           if (End >= BlockEnd)
1198             LIC.setLiveOutValue(&*MBB, VNI); // Live-out as well.
1199         } else {
1200           // This block needs a live-in value.  The last block covered may not
1201           // be live-out.
1202           if (End < BlockEnd)
1203             LIC.addLiveInBlock(LI, MDT[&*MBB], End);
1204           else {
1205             // Live-through, and we don't know the value.
1206             LIC.addLiveInBlock(LI, MDT[&*MBB]);
1207             LIC.setLiveOutValue(&*MBB, nullptr);
1208           }
1209         }
1210         BlockStart = BlockEnd;
1211         ++MBB;
1212       }
1213       Start = End;
1214     } while (Start != S.end);
1215     LLVM_DEBUG(dbgs() << '\n');
1216   }
1217 
1218   LICalc[0].calculateValues();
1219   if (SpillMode)
1220     LICalc[1].calculateValues();
1221 
1222   return Skipped;
1223 }
1224 
1225 static bool removeDeadSegment(SlotIndex Def, LiveRange &LR) {
1226   const LiveRange::Segment *Seg = LR.getSegmentContaining(Def);
1227   if (Seg == nullptr)
1228     return true;
1229   if (Seg->end != Def.getDeadSlot())
1230     return false;
1231   // This is a dead PHI. Remove it.
1232   LR.removeSegment(*Seg, true);
1233   return true;
1234 }
1235 
1236 void SplitEditor::extendPHIRange(MachineBasicBlock &B, LiveIntervalCalc &LIC,
1237                                  LiveRange &LR, LaneBitmask LM,
1238                                  ArrayRef<SlotIndex> Undefs) {
1239   for (MachineBasicBlock *P : B.predecessors()) {
1240     SlotIndex End = LIS.getMBBEndIdx(P);
1241     SlotIndex LastUse = End.getPrevSlot();
1242     // The predecessor may not have a live-out value. That is OK, like an
1243     // undef PHI operand.
1244     LiveInterval &PLI = Edit->getParent();
1245     // Need the cast because the inputs to ?: would otherwise be deemed
1246     // "incompatible": SubRange vs LiveInterval.
1247     LiveRange &PSR = !LM.all() ? getSubRangeForMask(LM, PLI)
1248                                : static_cast<LiveRange&>(PLI);
1249     if (PSR.liveAt(LastUse))
1250       LIC.extend(LR, End, /*PhysReg=*/0, Undefs);
1251   }
1252 }
1253 
1254 void SplitEditor::extendPHIKillRanges() {
1255   // Extend live ranges to be live-out for successor PHI values.
1256 
1257   // Visit each PHI def slot in the parent live interval. If the def is dead,
1258   // remove it. Otherwise, extend the live interval to reach the end indexes
1259   // of all predecessor blocks.
1260 
1261   LiveInterval &ParentLI = Edit->getParent();
1262   for (const VNInfo *V : ParentLI.valnos) {
1263     if (V->isUnused() || !V->isPHIDef())
1264       continue;
1265 
1266     unsigned RegIdx = RegAssign.lookup(V->def);
1267     LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
1268     LiveIntervalCalc &LIC = getLICalc(RegIdx);
1269     MachineBasicBlock &B = *LIS.getMBBFromIndex(V->def);
1270     if (!removeDeadSegment(V->def, LI))
1271       extendPHIRange(B, LIC, LI, LaneBitmask::getAll(), /*Undefs=*/{});
1272   }
1273 
1274   SmallVector<SlotIndex, 4> Undefs;
1275   LiveIntervalCalc SubLIC;
1276 
1277   for (LiveInterval::SubRange &PS : ParentLI.subranges()) {
1278     for (const VNInfo *V : PS.valnos) {
1279       if (V->isUnused() || !V->isPHIDef())
1280         continue;
1281       unsigned RegIdx = RegAssign.lookup(V->def);
1282       LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
1283       LiveInterval::SubRange &S = getSubRangeForMask(PS.LaneMask, LI);
1284       if (removeDeadSegment(V->def, S))
1285         continue;
1286 
1287       MachineBasicBlock &B = *LIS.getMBBFromIndex(V->def);
1288       SubLIC.reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
1289                    &LIS.getVNInfoAllocator());
1290       Undefs.clear();
1291       LI.computeSubRangeUndefs(Undefs, PS.LaneMask, MRI, *LIS.getSlotIndexes());
1292       extendPHIRange(B, SubLIC, S, PS.LaneMask, Undefs);
1293     }
1294   }
1295 }
1296 
1297 /// rewriteAssigned - Rewrite all uses of Edit->getReg().
1298 void SplitEditor::rewriteAssigned(bool ExtendRanges) {
1299   struct ExtPoint {
1300     ExtPoint(const MachineOperand &O, unsigned R, SlotIndex N)
1301       : MO(O), RegIdx(R), Next(N) {}
1302 
1303     MachineOperand MO;
1304     unsigned RegIdx;
1305     SlotIndex Next;
1306   };
1307 
1308   SmallVector<ExtPoint,4> ExtPoints;
1309 
1310   for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Edit->getReg()),
1311        RE = MRI.reg_end(); RI != RE;) {
1312     MachineOperand &MO = *RI;
1313     MachineInstr *MI = MO.getParent();
1314     ++RI;
1315     // LiveDebugVariables should have handled all DBG_VALUE instructions.
1316     if (MI->isDebugValue()) {
1317       LLVM_DEBUG(dbgs() << "Zapping " << *MI);
1318       MO.setReg(0);
1319       continue;
1320     }
1321 
1322     // <undef> operands don't really read the register, so it doesn't matter
1323     // which register we choose.  When the use operand is tied to a def, we must
1324     // use the same register as the def, so just do that always.
1325     SlotIndex Idx = LIS.getInstructionIndex(*MI);
1326     if (MO.isDef() || MO.isUndef())
1327       Idx = Idx.getRegSlot(MO.isEarlyClobber());
1328 
1329     // Rewrite to the mapped register at Idx.
1330     unsigned RegIdx = RegAssign.lookup(Idx);
1331     LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
1332     MO.setReg(LI.reg);
1333     LLVM_DEBUG(dbgs() << "  rewr " << printMBBReference(*MI->getParent())
1334                       << '\t' << Idx << ':' << RegIdx << '\t' << *MI);
1335 
1336     // Extend liveness to Idx if the instruction reads reg.
1337     if (!ExtendRanges || MO.isUndef())
1338       continue;
1339 
1340     // Skip instructions that don't read Reg.
1341     if (MO.isDef()) {
1342       if (!MO.getSubReg() && !MO.isEarlyClobber())
1343         continue;
1344       // We may want to extend a live range for a partial redef, or for a use
1345       // tied to an early clobber.
1346       Idx = Idx.getPrevSlot();
1347       if (!Edit->getParent().liveAt(Idx))
1348         continue;
1349     } else
1350       Idx = Idx.getRegSlot(true);
1351 
1352     SlotIndex Next = Idx.getNextSlot();
1353     if (LI.hasSubRanges()) {
1354       // We have to delay extending subranges until we have seen all operands
1355       // defining the register. This is because a <def,read-undef> operand
1356       // will create an "undef" point, and we cannot extend any subranges
1357       // until all of them have been accounted for.
1358       if (MO.isUse())
1359         ExtPoints.push_back(ExtPoint(MO, RegIdx, Next));
1360     } else {
1361       LiveIntervalCalc &LIC = getLICalc(RegIdx);
1362       LIC.extend(LI, Next, 0, ArrayRef<SlotIndex>());
1363     }
1364   }
1365 
1366   for (ExtPoint &EP : ExtPoints) {
1367     LiveInterval &LI = LIS.getInterval(Edit->get(EP.RegIdx));
1368     assert(LI.hasSubRanges());
1369 
1370     LiveIntervalCalc SubLIC;
1371     Register Reg = EP.MO.getReg(), Sub = EP.MO.getSubReg();
1372     LaneBitmask LM = Sub != 0 ? TRI.getSubRegIndexLaneMask(Sub)
1373                               : MRI.getMaxLaneMaskForVReg(Reg);
1374     for (LiveInterval::SubRange &S : LI.subranges()) {
1375       if ((S.LaneMask & LM).none())
1376         continue;
1377       // The problem here can be that the new register may have been created
1378       // for a partially defined original register. For example:
1379       //   %0:subreg_hireg<def,read-undef> = ...
1380       //   ...
1381       //   %1 = COPY %0
1382       if (S.empty())
1383         continue;
1384       SubLIC.reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
1385                    &LIS.getVNInfoAllocator());
1386       SmallVector<SlotIndex, 4> Undefs;
1387       LI.computeSubRangeUndefs(Undefs, S.LaneMask, MRI, *LIS.getSlotIndexes());
1388       SubLIC.extend(S, EP.Next, 0, Undefs);
1389     }
1390   }
1391 
1392   for (unsigned R : *Edit) {
1393     LiveInterval &LI = LIS.getInterval(R);
1394     if (!LI.hasSubRanges())
1395       continue;
1396     LI.clear();
1397     LI.removeEmptySubRanges();
1398     LIS.constructMainRangeFromSubranges(LI);
1399   }
1400 }
1401 
1402 void SplitEditor::deleteRematVictims() {
1403   SmallVector<MachineInstr*, 8> Dead;
1404   for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I){
1405     LiveInterval *LI = &LIS.getInterval(*I);
1406     for (const LiveRange::Segment &S : LI->segments) {
1407       // Dead defs end at the dead slot.
1408       if (S.end != S.valno->def.getDeadSlot())
1409         continue;
1410       if (S.valno->isPHIDef())
1411         continue;
1412       MachineInstr *MI = LIS.getInstructionFromIndex(S.valno->def);
1413       assert(MI && "Missing instruction for dead def");
1414       MI->addRegisterDead(LI->reg, &TRI);
1415 
1416       if (!MI->allDefsAreDead())
1417         continue;
1418 
1419       LLVM_DEBUG(dbgs() << "All defs dead: " << *MI);
1420       Dead.push_back(MI);
1421     }
1422   }
1423 
1424   if (Dead.empty())
1425     return;
1426 
1427   Edit->eliminateDeadDefs(Dead, None, &AA);
1428 }
1429 
1430 void SplitEditor::forceRecomputeVNI(const VNInfo &ParentVNI) {
1431   // Fast-path for common case.
1432   if (!ParentVNI.isPHIDef()) {
1433     for (unsigned I = 0, E = Edit->size(); I != E; ++I)
1434       forceRecompute(I, ParentVNI);
1435     return;
1436   }
1437 
1438   // Trace value through phis.
1439   SmallPtrSet<const VNInfo *, 8> Visited; ///< whether VNI was/is in worklist.
1440   SmallVector<const VNInfo *, 4> WorkList;
1441   Visited.insert(&ParentVNI);
1442   WorkList.push_back(&ParentVNI);
1443 
1444   const LiveInterval &ParentLI = Edit->getParent();
1445   const SlotIndexes &Indexes = *LIS.getSlotIndexes();
1446   do {
1447     const VNInfo &VNI = *WorkList.back();
1448     WorkList.pop_back();
1449     for (unsigned I = 0, E = Edit->size(); I != E; ++I)
1450       forceRecompute(I, VNI);
1451     if (!VNI.isPHIDef())
1452       continue;
1453 
1454     MachineBasicBlock &MBB = *Indexes.getMBBFromIndex(VNI.def);
1455     for (const MachineBasicBlock *Pred : MBB.predecessors()) {
1456       SlotIndex PredEnd = Indexes.getMBBEndIdx(Pred);
1457       VNInfo *PredVNI = ParentLI.getVNInfoBefore(PredEnd);
1458       assert(PredVNI && "Value available in PhiVNI predecessor");
1459       if (Visited.insert(PredVNI).second)
1460         WorkList.push_back(PredVNI);
1461     }
1462   } while(!WorkList.empty());
1463 }
1464 
1465 void SplitEditor::finish(SmallVectorImpl<unsigned> *LRMap) {
1466   ++NumFinished;
1467 
1468   // At this point, the live intervals in Edit contain VNInfos corresponding to
1469   // the inserted copies.
1470 
1471   // Add the original defs from the parent interval.
1472   for (const VNInfo *ParentVNI : Edit->getParent().valnos) {
1473     if (ParentVNI->isUnused())
1474       continue;
1475     unsigned RegIdx = RegAssign.lookup(ParentVNI->def);
1476     defValue(RegIdx, ParentVNI, ParentVNI->def, true);
1477 
1478     // Force rematted values to be recomputed everywhere.
1479     // The new live ranges may be truncated.
1480     if (Edit->didRematerialize(ParentVNI))
1481       forceRecomputeVNI(*ParentVNI);
1482   }
1483 
1484   // Hoist back-copies to the complement interval when in spill mode.
1485   switch (SpillMode) {
1486   case SM_Partition:
1487     // Leave all back-copies as is.
1488     break;
1489   case SM_Size:
1490   case SM_Speed:
1491     // hoistCopies will behave differently between size and speed.
1492     hoistCopies();
1493   }
1494 
1495   // Transfer the simply mapped values, check if any are skipped.
1496   bool Skipped = transferValues();
1497 
1498   // Rewrite virtual registers, possibly extending ranges.
1499   rewriteAssigned(Skipped);
1500 
1501   if (Skipped)
1502     extendPHIKillRanges();
1503   else
1504     ++NumSimple;
1505 
1506   // Delete defs that were rematted everywhere.
1507   if (Skipped)
1508     deleteRematVictims();
1509 
1510   // Get rid of unused values and set phi-kill flags.
1511   for (unsigned Reg : *Edit) {
1512     LiveInterval &LI = LIS.getInterval(Reg);
1513     LI.removeEmptySubRanges();
1514     LI.RenumberValues();
1515   }
1516 
1517   // Provide a reverse mapping from original indices to Edit ranges.
1518   if (LRMap) {
1519     LRMap->clear();
1520     for (unsigned i = 0, e = Edit->size(); i != e; ++i)
1521       LRMap->push_back(i);
1522   }
1523 
1524   // Now check if any registers were separated into multiple components.
1525   ConnectedVNInfoEqClasses ConEQ(LIS);
1526   for (unsigned i = 0, e = Edit->size(); i != e; ++i) {
1527     // Don't use iterators, they are invalidated by create() below.
1528     unsigned VReg = Edit->get(i);
1529     LiveInterval &LI = LIS.getInterval(VReg);
1530     SmallVector<LiveInterval*, 8> SplitLIs;
1531     LIS.splitSeparateComponents(LI, SplitLIs);
1532     unsigned Original = VRM.getOriginal(VReg);
1533     for (LiveInterval *SplitLI : SplitLIs)
1534       VRM.setIsSplitFromReg(SplitLI->reg, Original);
1535 
1536     // The new intervals all map back to i.
1537     if (LRMap)
1538       LRMap->resize(Edit->size(), i);
1539   }
1540 
1541   // Calculate spill weight and allocation hints for new intervals.
1542   Edit->calculateRegClassAndHint(VRM.getMachineFunction(), SA.Loops, MBFI);
1543 
1544   assert(!LRMap || LRMap->size() == Edit->size());
1545 }
1546 
1547 //===----------------------------------------------------------------------===//
1548 //                            Single Block Splitting
1549 //===----------------------------------------------------------------------===//
1550 
1551 bool SplitAnalysis::shouldSplitSingleBlock(const BlockInfo &BI,
1552                                            bool SingleInstrs) const {
1553   // Always split for multiple instructions.
1554   if (!BI.isOneInstr())
1555     return true;
1556   // Don't split for single instructions unless explicitly requested.
1557   if (!SingleInstrs)
1558     return false;
1559   // Splitting a live-through range always makes progress.
1560   if (BI.LiveIn && BI.LiveOut)
1561     return true;
1562   // No point in isolating a copy. It has no register class constraints.
1563   if (LIS.getInstructionFromIndex(BI.FirstInstr)->isCopyLike())
1564     return false;
1565   // Finally, don't isolate an end point that was created by earlier splits.
1566   return isOriginalEndpoint(BI.FirstInstr);
1567 }
1568 
1569 void SplitEditor::splitSingleBlock(const SplitAnalysis::BlockInfo &BI) {
1570   openIntv();
1571   SlotIndex LastSplitPoint = SA.getLastSplitPoint(BI.MBB->getNumber());
1572   SlotIndex SegStart = enterIntvBefore(std::min(BI.FirstInstr,
1573     LastSplitPoint));
1574   if (!BI.LiveOut || BI.LastInstr < LastSplitPoint) {
1575     useIntv(SegStart, leaveIntvAfter(BI.LastInstr));
1576   } else {
1577       // The last use is after the last valid split point.
1578     SlotIndex SegStop = leaveIntvBefore(LastSplitPoint);
1579     useIntv(SegStart, SegStop);
1580     overlapIntv(SegStop, BI.LastInstr);
1581   }
1582 }
1583 
1584 //===----------------------------------------------------------------------===//
1585 //                    Global Live Range Splitting Support
1586 //===----------------------------------------------------------------------===//
1587 
1588 // These methods support a method of global live range splitting that uses a
1589 // global algorithm to decide intervals for CFG edges. They will insert split
1590 // points and color intervals in basic blocks while avoiding interference.
1591 //
1592 // Note that splitSingleBlock is also useful for blocks where both CFG edges
1593 // are on the stack.
1594 
1595 void SplitEditor::splitLiveThroughBlock(unsigned MBBNum,
1596                                         unsigned IntvIn, SlotIndex LeaveBefore,
1597                                         unsigned IntvOut, SlotIndex EnterAfter){
1598   SlotIndex Start, Stop;
1599   std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(MBBNum);
1600 
1601   LLVM_DEBUG(dbgs() << "%bb." << MBBNum << " [" << Start << ';' << Stop
1602                     << ") intf " << LeaveBefore << '-' << EnterAfter
1603                     << ", live-through " << IntvIn << " -> " << IntvOut);
1604 
1605   assert((IntvIn || IntvOut) && "Use splitSingleBlock for isolated blocks");
1606 
1607   assert((!LeaveBefore || LeaveBefore < Stop) && "Interference after block");
1608   assert((!IntvIn || !LeaveBefore || LeaveBefore > Start) && "Impossible intf");
1609   assert((!EnterAfter || EnterAfter >= Start) && "Interference before block");
1610 
1611   MachineBasicBlock *MBB = VRM.getMachineFunction().getBlockNumbered(MBBNum);
1612 
1613   if (!IntvOut) {
1614     LLVM_DEBUG(dbgs() << ", spill on entry.\n");
1615     //
1616     //        <<<<<<<<<    Possible LeaveBefore interference.
1617     //    |-----------|    Live through.
1618     //    -____________    Spill on entry.
1619     //
1620     selectIntv(IntvIn);
1621     SlotIndex Idx = leaveIntvAtTop(*MBB);
1622     assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1623     (void)Idx;
1624     return;
1625   }
1626 
1627   if (!IntvIn) {
1628     LLVM_DEBUG(dbgs() << ", reload on exit.\n");
1629     //
1630     //    >>>>>>>          Possible EnterAfter interference.
1631     //    |-----------|    Live through.
1632     //    ___________--    Reload on exit.
1633     //
1634     selectIntv(IntvOut);
1635     SlotIndex Idx = enterIntvAtEnd(*MBB);
1636     assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1637     (void)Idx;
1638     return;
1639   }
1640 
1641   if (IntvIn == IntvOut && !LeaveBefore && !EnterAfter) {
1642     LLVM_DEBUG(dbgs() << ", straight through.\n");
1643     //
1644     //    |-----------|    Live through.
1645     //    -------------    Straight through, same intv, no interference.
1646     //
1647     selectIntv(IntvOut);
1648     useIntv(Start, Stop);
1649     return;
1650   }
1651 
1652   // We cannot legally insert splits after LSP.
1653   SlotIndex LSP = SA.getLastSplitPoint(MBBNum);
1654   assert((!IntvOut || !EnterAfter || EnterAfter < LSP) && "Impossible intf");
1655 
1656   if (IntvIn != IntvOut && (!LeaveBefore || !EnterAfter ||
1657                   LeaveBefore.getBaseIndex() > EnterAfter.getBoundaryIndex())) {
1658     LLVM_DEBUG(dbgs() << ", switch avoiding interference.\n");
1659     //
1660     //    >>>>     <<<<    Non-overlapping EnterAfter/LeaveBefore interference.
1661     //    |-----------|    Live through.
1662     //    ------=======    Switch intervals between interference.
1663     //
1664     selectIntv(IntvOut);
1665     SlotIndex Idx;
1666     if (LeaveBefore && LeaveBefore < LSP) {
1667       Idx = enterIntvBefore(LeaveBefore);
1668       useIntv(Idx, Stop);
1669     } else {
1670       Idx = enterIntvAtEnd(*MBB);
1671     }
1672     selectIntv(IntvIn);
1673     useIntv(Start, Idx);
1674     assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1675     assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1676     return;
1677   }
1678 
1679   LLVM_DEBUG(dbgs() << ", create local intv for interference.\n");
1680   //
1681   //    >>><><><><<<<    Overlapping EnterAfter/LeaveBefore interference.
1682   //    |-----------|    Live through.
1683   //    ==---------==    Switch intervals before/after interference.
1684   //
1685   assert(LeaveBefore <= EnterAfter && "Missed case");
1686 
1687   selectIntv(IntvOut);
1688   SlotIndex Idx = enterIntvAfter(EnterAfter);
1689   useIntv(Idx, Stop);
1690   assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1691 
1692   selectIntv(IntvIn);
1693   Idx = leaveIntvBefore(LeaveBefore);
1694   useIntv(Start, Idx);
1695   assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1696 }
1697 
1698 void SplitEditor::splitRegInBlock(const SplitAnalysis::BlockInfo &BI,
1699                                   unsigned IntvIn, SlotIndex LeaveBefore) {
1700   SlotIndex Start, Stop;
1701   std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
1702 
1703   LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " [" << Start << ';'
1704                     << Stop << "), uses " << BI.FirstInstr << '-'
1705                     << BI.LastInstr << ", reg-in " << IntvIn
1706                     << ", leave before " << LeaveBefore
1707                     << (BI.LiveOut ? ", stack-out" : ", killed in block"));
1708 
1709   assert(IntvIn && "Must have register in");
1710   assert(BI.LiveIn && "Must be live-in");
1711   assert((!LeaveBefore || LeaveBefore > Start) && "Bad interference");
1712 
1713   if (!BI.LiveOut && (!LeaveBefore || LeaveBefore >= BI.LastInstr)) {
1714     LLVM_DEBUG(dbgs() << " before interference.\n");
1715     //
1716     //               <<<    Interference after kill.
1717     //     |---o---x   |    Killed in block.
1718     //     =========        Use IntvIn everywhere.
1719     //
1720     selectIntv(IntvIn);
1721     useIntv(Start, BI.LastInstr);
1722     return;
1723   }
1724 
1725   SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber());
1726 
1727   if (!LeaveBefore || LeaveBefore > BI.LastInstr.getBoundaryIndex()) {
1728     //
1729     //               <<<    Possible interference after last use.
1730     //     |---o---o---|    Live-out on stack.
1731     //     =========____    Leave IntvIn after last use.
1732     //
1733     //                 <    Interference after last use.
1734     //     |---o---o--o|    Live-out on stack, late last use.
1735     //     ============     Copy to stack after LSP, overlap IntvIn.
1736     //            \_____    Stack interval is live-out.
1737     //
1738     if (BI.LastInstr < LSP) {
1739       LLVM_DEBUG(dbgs() << ", spill after last use before interference.\n");
1740       selectIntv(IntvIn);
1741       SlotIndex Idx = leaveIntvAfter(BI.LastInstr);
1742       useIntv(Start, Idx);
1743       assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1744     } else {
1745       LLVM_DEBUG(dbgs() << ", spill before last split point.\n");
1746       selectIntv(IntvIn);
1747       SlotIndex Idx = leaveIntvBefore(LSP);
1748       overlapIntv(Idx, BI.LastInstr);
1749       useIntv(Start, Idx);
1750       assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1751     }
1752     return;
1753   }
1754 
1755   // The interference is overlapping somewhere we wanted to use IntvIn. That
1756   // means we need to create a local interval that can be allocated a
1757   // different register.
1758   unsigned LocalIntv = openIntv();
1759   (void)LocalIntv;
1760   LLVM_DEBUG(dbgs() << ", creating local interval " << LocalIntv << ".\n");
1761 
1762   if (!BI.LiveOut || BI.LastInstr < LSP) {
1763     //
1764     //           <<<<<<<    Interference overlapping uses.
1765     //     |---o---o---|    Live-out on stack.
1766     //     =====----____    Leave IntvIn before interference, then spill.
1767     //
1768     SlotIndex To = leaveIntvAfter(BI.LastInstr);
1769     SlotIndex From = enterIntvBefore(LeaveBefore);
1770     useIntv(From, To);
1771     selectIntv(IntvIn);
1772     useIntv(Start, From);
1773     assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
1774     return;
1775   }
1776 
1777   //           <<<<<<<    Interference overlapping uses.
1778   //     |---o---o--o|    Live-out on stack, late last use.
1779   //     =====-------     Copy to stack before LSP, overlap LocalIntv.
1780   //            \_____    Stack interval is live-out.
1781   //
1782   SlotIndex To = leaveIntvBefore(LSP);
1783   overlapIntv(To, BI.LastInstr);
1784   SlotIndex From = enterIntvBefore(std::min(To, LeaveBefore));
1785   useIntv(From, To);
1786   selectIntv(IntvIn);
1787   useIntv(Start, From);
1788   assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
1789 }
1790 
1791 void SplitEditor::splitRegOutBlock(const SplitAnalysis::BlockInfo &BI,
1792                                    unsigned IntvOut, SlotIndex EnterAfter) {
1793   SlotIndex Start, Stop;
1794   std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
1795 
1796   LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " [" << Start << ';'
1797                     << Stop << "), uses " << BI.FirstInstr << '-'
1798                     << BI.LastInstr << ", reg-out " << IntvOut
1799                     << ", enter after " << EnterAfter
1800                     << (BI.LiveIn ? ", stack-in" : ", defined in block"));
1801 
1802   SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber());
1803 
1804   assert(IntvOut && "Must have register out");
1805   assert(BI.LiveOut && "Must be live-out");
1806   assert((!EnterAfter || EnterAfter < LSP) && "Bad interference");
1807 
1808   if (!BI.LiveIn && (!EnterAfter || EnterAfter <= BI.FirstInstr)) {
1809     LLVM_DEBUG(dbgs() << " after interference.\n");
1810     //
1811     //    >>>>             Interference before def.
1812     //    |   o---o---|    Defined in block.
1813     //        =========    Use IntvOut everywhere.
1814     //
1815     selectIntv(IntvOut);
1816     useIntv(BI.FirstInstr, Stop);
1817     return;
1818   }
1819 
1820   if (!EnterAfter || EnterAfter < BI.FirstInstr.getBaseIndex()) {
1821     LLVM_DEBUG(dbgs() << ", reload after interference.\n");
1822     //
1823     //    >>>>             Interference before def.
1824     //    |---o---o---|    Live-through, stack-in.
1825     //    ____=========    Enter IntvOut before first use.
1826     //
1827     selectIntv(IntvOut);
1828     SlotIndex Idx = enterIntvBefore(std::min(LSP, BI.FirstInstr));
1829     useIntv(Idx, Stop);
1830     assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1831     return;
1832   }
1833 
1834   // The interference is overlapping somewhere we wanted to use IntvOut. That
1835   // means we need to create a local interval that can be allocated a
1836   // different register.
1837   LLVM_DEBUG(dbgs() << ", interference overlaps uses.\n");
1838   //
1839   //    >>>>>>>          Interference overlapping uses.
1840   //    |---o---o---|    Live-through, stack-in.
1841   //    ____---======    Create local interval for interference range.
1842   //
1843   selectIntv(IntvOut);
1844   SlotIndex Idx = enterIntvAfter(EnterAfter);
1845   useIntv(Idx, Stop);
1846   assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1847 
1848   openIntv();
1849   SlotIndex From = enterIntvBefore(std::min(Idx, BI.FirstInstr));
1850   useIntv(From, Idx);
1851 }
1852