1 //===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the SplitAnalysis class as well as mutator functions for 11 // live range splitting. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "splitter" 16 #include "SplitKit.h" 17 #include "LiveRangeEdit.h" 18 #include "VirtRegMap.h" 19 #include "llvm/CodeGen/CalcSpillWeights.h" 20 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 21 #include "llvm/CodeGen/MachineDominators.h" 22 #include "llvm/CodeGen/MachineInstrBuilder.h" 23 #include "llvm/CodeGen/MachineLoopInfo.h" 24 #include "llvm/CodeGen/MachineRegisterInfo.h" 25 #include "llvm/Support/CommandLine.h" 26 #include "llvm/Support/Debug.h" 27 #include "llvm/Support/raw_ostream.h" 28 #include "llvm/Target/TargetInstrInfo.h" 29 #include "llvm/Target/TargetMachine.h" 30 31 using namespace llvm; 32 33 static cl::opt<bool> 34 AllowSplit("spiller-splits-edges", 35 cl::desc("Allow critical edge splitting during spilling")); 36 37 //===----------------------------------------------------------------------===// 38 // Split Analysis 39 //===----------------------------------------------------------------------===// 40 41 SplitAnalysis::SplitAnalysis(const MachineFunction &mf, 42 const LiveIntervals &lis, 43 const MachineLoopInfo &mli) 44 : mf_(mf), 45 lis_(lis), 46 loops_(mli), 47 tii_(*mf.getTarget().getInstrInfo()), 48 curli_(0) {} 49 50 void SplitAnalysis::clear() { 51 usingInstrs_.clear(); 52 usingBlocks_.clear(); 53 usingLoops_.clear(); 54 curli_ = 0; 55 } 56 57 bool SplitAnalysis::canAnalyzeBranch(const MachineBasicBlock *MBB) { 58 MachineBasicBlock *T, *F; 59 SmallVector<MachineOperand, 4> Cond; 60 return !tii_.AnalyzeBranch(const_cast<MachineBasicBlock&>(*MBB), T, F, Cond); 61 } 62 63 /// analyzeUses - Count instructions, basic blocks, and loops using curli. 64 void SplitAnalysis::analyzeUses() { 65 const MachineRegisterInfo &MRI = mf_.getRegInfo(); 66 for (MachineRegisterInfo::reg_iterator I = MRI.reg_begin(curli_->reg); 67 MachineInstr *MI = I.skipInstruction();) { 68 if (MI->isDebugValue() || !usingInstrs_.insert(MI)) 69 continue; 70 MachineBasicBlock *MBB = MI->getParent(); 71 if (usingBlocks_[MBB]++) 72 continue; 73 for (MachineLoop *Loop = loops_.getLoopFor(MBB); Loop; 74 Loop = Loop->getParentLoop()) 75 usingLoops_[Loop]++; 76 } 77 DEBUG(dbgs() << " counted " 78 << usingInstrs_.size() << " instrs, " 79 << usingBlocks_.size() << " blocks, " 80 << usingLoops_.size() << " loops.\n"); 81 } 82 83 void SplitAnalysis::print(const BlockPtrSet &B, raw_ostream &OS) const { 84 for (BlockPtrSet::const_iterator I = B.begin(), E = B.end(); I != E; ++I) { 85 unsigned count = usingBlocks_.lookup(*I); 86 OS << " BB#" << (*I)->getNumber(); 87 if (count) 88 OS << '(' << count << ')'; 89 } 90 } 91 92 // Get three sets of basic blocks surrounding a loop: Blocks inside the loop, 93 // predecessor blocks, and exit blocks. 94 void SplitAnalysis::getLoopBlocks(const MachineLoop *Loop, LoopBlocks &Blocks) { 95 Blocks.clear(); 96 97 // Blocks in the loop. 98 Blocks.Loop.insert(Loop->block_begin(), Loop->block_end()); 99 100 // Predecessor blocks. 101 const MachineBasicBlock *Header = Loop->getHeader(); 102 for (MachineBasicBlock::const_pred_iterator I = Header->pred_begin(), 103 E = Header->pred_end(); I != E; ++I) 104 if (!Blocks.Loop.count(*I)) 105 Blocks.Preds.insert(*I); 106 107 // Exit blocks. 108 for (MachineLoop::block_iterator I = Loop->block_begin(), 109 E = Loop->block_end(); I != E; ++I) { 110 const MachineBasicBlock *MBB = *I; 111 for (MachineBasicBlock::const_succ_iterator SI = MBB->succ_begin(), 112 SE = MBB->succ_end(); SI != SE; ++SI) 113 if (!Blocks.Loop.count(*SI)) 114 Blocks.Exits.insert(*SI); 115 } 116 } 117 118 void SplitAnalysis::print(const LoopBlocks &B, raw_ostream &OS) const { 119 OS << "Loop:"; 120 print(B.Loop, OS); 121 OS << ", preds:"; 122 print(B.Preds, OS); 123 OS << ", exits:"; 124 print(B.Exits, OS); 125 } 126 127 /// analyzeLoopPeripheralUse - Return an enum describing how curli_ is used in 128 /// and around the Loop. 129 SplitAnalysis::LoopPeripheralUse SplitAnalysis:: 130 analyzeLoopPeripheralUse(const SplitAnalysis::LoopBlocks &Blocks) { 131 LoopPeripheralUse use = ContainedInLoop; 132 for (BlockCountMap::iterator I = usingBlocks_.begin(), E = usingBlocks_.end(); 133 I != E; ++I) { 134 const MachineBasicBlock *MBB = I->first; 135 // Is this a peripheral block? 136 if (use < MultiPeripheral && 137 (Blocks.Preds.count(MBB) || Blocks.Exits.count(MBB))) { 138 if (I->second > 1) use = MultiPeripheral; 139 else use = SinglePeripheral; 140 continue; 141 } 142 // Is it a loop block? 143 if (Blocks.Loop.count(MBB)) 144 continue; 145 // It must be an unrelated block. 146 DEBUG(dbgs() << ", outside: BB#" << MBB->getNumber()); 147 return OutsideLoop; 148 } 149 return use; 150 } 151 152 /// getCriticalExits - It may be necessary to partially break critical edges 153 /// leaving the loop if an exit block has predecessors from outside the loop 154 /// periphery. 155 void SplitAnalysis::getCriticalExits(const SplitAnalysis::LoopBlocks &Blocks, 156 BlockPtrSet &CriticalExits) { 157 CriticalExits.clear(); 158 159 // A critical exit block has curli live-in, and has a predecessor that is not 160 // in the loop nor a loop predecessor. For such an exit block, the edges 161 // carrying the new variable must be moved to a new pre-exit block. 162 for (BlockPtrSet::iterator I = Blocks.Exits.begin(), E = Blocks.Exits.end(); 163 I != E; ++I) { 164 const MachineBasicBlock *Exit = *I; 165 // A single-predecessor exit block is definitely not a critical edge. 166 if (Exit->pred_size() == 1) 167 continue; 168 // This exit may not have curli live in at all. No need to split. 169 if (!lis_.isLiveInToMBB(*curli_, Exit)) 170 continue; 171 // Does this exit block have a predecessor that is not a loop block or loop 172 // predecessor? 173 for (MachineBasicBlock::const_pred_iterator PI = Exit->pred_begin(), 174 PE = Exit->pred_end(); PI != PE; ++PI) { 175 const MachineBasicBlock *Pred = *PI; 176 if (Blocks.Loop.count(Pred) || Blocks.Preds.count(Pred)) 177 continue; 178 // This is a critical exit block, and we need to split the exit edge. 179 CriticalExits.insert(Exit); 180 break; 181 } 182 } 183 } 184 185 void SplitAnalysis::getCriticalPreds(const SplitAnalysis::LoopBlocks &Blocks, 186 BlockPtrSet &CriticalPreds) { 187 CriticalPreds.clear(); 188 189 // A critical predecessor block has curli live-out, and has a successor that 190 // has curli live-in and is not in the loop nor a loop exit block. For such a 191 // predecessor block, we must carry the value in both the 'inside' and 192 // 'outside' registers. 193 for (BlockPtrSet::iterator I = Blocks.Preds.begin(), E = Blocks.Preds.end(); 194 I != E; ++I) { 195 const MachineBasicBlock *Pred = *I; 196 // Definitely not a critical edge. 197 if (Pred->succ_size() == 1) 198 continue; 199 // This block may not have curli live out at all if there is a PHI. 200 if (!lis_.isLiveOutOfMBB(*curli_, Pred)) 201 continue; 202 // Does this block have a successor outside the loop? 203 for (MachineBasicBlock::const_pred_iterator SI = Pred->succ_begin(), 204 SE = Pred->succ_end(); SI != SE; ++SI) { 205 const MachineBasicBlock *Succ = *SI; 206 if (Blocks.Loop.count(Succ) || Blocks.Exits.count(Succ)) 207 continue; 208 if (!lis_.isLiveInToMBB(*curli_, Succ)) 209 continue; 210 // This is a critical predecessor block. 211 CriticalPreds.insert(Pred); 212 break; 213 } 214 } 215 } 216 217 /// canSplitCriticalExits - Return true if it is possible to insert new exit 218 /// blocks before the blocks in CriticalExits. 219 bool 220 SplitAnalysis::canSplitCriticalExits(const SplitAnalysis::LoopBlocks &Blocks, 221 BlockPtrSet &CriticalExits) { 222 // If we don't allow critical edge splitting, require no critical exits. 223 if (!AllowSplit) 224 return CriticalExits.empty(); 225 226 for (BlockPtrSet::iterator I = CriticalExits.begin(), E = CriticalExits.end(); 227 I != E; ++I) { 228 const MachineBasicBlock *Succ = *I; 229 // We want to insert a new pre-exit MBB before Succ, and change all the 230 // in-loop blocks to branch to the pre-exit instead of Succ. 231 // Check that all the in-loop predecessors can be changed. 232 for (MachineBasicBlock::const_pred_iterator PI = Succ->pred_begin(), 233 PE = Succ->pred_end(); PI != PE; ++PI) { 234 const MachineBasicBlock *Pred = *PI; 235 // The external predecessors won't be altered. 236 if (!Blocks.Loop.count(Pred) && !Blocks.Preds.count(Pred)) 237 continue; 238 if (!canAnalyzeBranch(Pred)) 239 return false; 240 } 241 242 // If Succ's layout predecessor falls through, that too must be analyzable. 243 // We need to insert the pre-exit block in the gap. 244 MachineFunction::const_iterator MFI = Succ; 245 if (MFI == mf_.begin()) 246 continue; 247 if (!canAnalyzeBranch(--MFI)) 248 return false; 249 } 250 // No problems found. 251 return true; 252 } 253 254 void SplitAnalysis::analyze(const LiveInterval *li) { 255 clear(); 256 curli_ = li; 257 analyzeUses(); 258 } 259 260 const MachineLoop *SplitAnalysis::getBestSplitLoop() { 261 assert(curli_ && "Call analyze() before getBestSplitLoop"); 262 if (usingLoops_.empty()) 263 return 0; 264 265 LoopPtrSet Loops; 266 LoopBlocks Blocks; 267 BlockPtrSet CriticalExits; 268 269 // We split around loops where curli is used outside the periphery. 270 for (LoopCountMap::const_iterator I = usingLoops_.begin(), 271 E = usingLoops_.end(); I != E; ++I) { 272 const MachineLoop *Loop = I->first; 273 getLoopBlocks(Loop, Blocks); 274 DEBUG({ dbgs() << " "; print(Blocks, dbgs()); }); 275 276 switch(analyzeLoopPeripheralUse(Blocks)) { 277 case OutsideLoop: 278 break; 279 case MultiPeripheral: 280 // FIXME: We could split a live range with multiple uses in a peripheral 281 // block and still make progress. However, it is possible that splitting 282 // another live range will insert copies into a peripheral block, and 283 // there is a small chance we can enter an infinity loop, inserting copies 284 // forever. 285 // For safety, stick to splitting live ranges with uses outside the 286 // periphery. 287 DEBUG(dbgs() << ": multiple peripheral uses\n"); 288 break; 289 case ContainedInLoop: 290 DEBUG(dbgs() << ": fully contained\n"); 291 continue; 292 case SinglePeripheral: 293 DEBUG(dbgs() << ": single peripheral use\n"); 294 continue; 295 } 296 // Will it be possible to split around this loop? 297 getCriticalExits(Blocks, CriticalExits); 298 DEBUG(dbgs() << ": " << CriticalExits.size() << " critical exits\n"); 299 if (!canSplitCriticalExits(Blocks, CriticalExits)) 300 continue; 301 // This is a possible split. 302 Loops.insert(Loop); 303 } 304 305 DEBUG(dbgs() << " getBestSplitLoop found " << Loops.size() 306 << " candidate loops.\n"); 307 308 if (Loops.empty()) 309 return 0; 310 311 // Pick the earliest loop. 312 // FIXME: Are there other heuristics to consider? 313 const MachineLoop *Best = 0; 314 SlotIndex BestIdx; 315 for (LoopPtrSet::const_iterator I = Loops.begin(), E = Loops.end(); I != E; 316 ++I) { 317 SlotIndex Idx = lis_.getMBBStartIdx((*I)->getHeader()); 318 if (!Best || Idx < BestIdx) 319 Best = *I, BestIdx = Idx; 320 } 321 DEBUG(dbgs() << " getBestSplitLoop found " << *Best); 322 return Best; 323 } 324 325 //===----------------------------------------------------------------------===// 326 // LiveIntervalMap 327 //===----------------------------------------------------------------------===// 328 329 // Work around the fact that the std::pair constructors are broken for pointer 330 // pairs in some implementations. makeVV(x, 0) works. 331 static inline std::pair<const VNInfo*, VNInfo*> 332 makeVV(const VNInfo *a, VNInfo *b) { 333 return std::make_pair(a, b); 334 } 335 336 void LiveIntervalMap::reset(LiveInterval *li) { 337 li_ = li; 338 valueMap_.clear(); 339 } 340 341 bool LiveIntervalMap::isComplexMapped(const VNInfo *ParentVNI) const { 342 ValueMap::const_iterator i = valueMap_.find(ParentVNI); 343 return i != valueMap_.end() && i->second == 0; 344 } 345 346 // defValue - Introduce a li_ def for ParentVNI that could be later than 347 // ParentVNI->def. 348 VNInfo *LiveIntervalMap::defValue(const VNInfo *ParentVNI, SlotIndex Idx) { 349 assert(li_ && "call reset first"); 350 assert(ParentVNI && "Mapping NULL value"); 351 assert(Idx.isValid() && "Invalid SlotIndex"); 352 assert(parentli_.getVNInfoAt(Idx) == ParentVNI && "Bad ParentVNI"); 353 354 // Create a new value. 355 VNInfo *VNI = li_->getNextValue(Idx, 0, lis_.getVNInfoAllocator()); 356 357 // Preserve the PHIDef bit. 358 if (ParentVNI->isPHIDef() && Idx == ParentVNI->def) 359 VNI->setIsPHIDef(true); 360 361 // Use insert for lookup, so we can add missing values with a second lookup. 362 std::pair<ValueMap::iterator,bool> InsP = 363 valueMap_.insert(makeVV(ParentVNI, Idx == ParentVNI->def ? VNI : 0)); 364 365 // This is now a complex def. Mark with a NULL in valueMap. 366 if (!InsP.second) 367 InsP.first->second = 0; 368 369 return VNI; 370 } 371 372 373 // mapValue - Find the mapped value for ParentVNI at Idx. 374 // Potentially create phi-def values. 375 VNInfo *LiveIntervalMap::mapValue(const VNInfo *ParentVNI, SlotIndex Idx, 376 bool *simple) { 377 assert(li_ && "call reset first"); 378 assert(ParentVNI && "Mapping NULL value"); 379 assert(Idx.isValid() && "Invalid SlotIndex"); 380 assert(parentli_.getVNInfoAt(Idx) == ParentVNI && "Bad ParentVNI"); 381 382 // Use insert for lookup, so we can add missing values with a second lookup. 383 std::pair<ValueMap::iterator,bool> InsP = 384 valueMap_.insert(makeVV(ParentVNI, 0)); 385 386 // This was an unknown value. Create a simple mapping. 387 if (InsP.second) { 388 if (simple) *simple = true; 389 return InsP.first->second = li_->createValueCopy(ParentVNI, 390 lis_.getVNInfoAllocator()); 391 } 392 393 // This was a simple mapped value. 394 if (InsP.first->second) { 395 if (simple) *simple = true; 396 return InsP.first->second; 397 } 398 399 // This is a complex mapped value. There may be multiple defs, and we may need 400 // to create phi-defs. 401 if (simple) *simple = false; 402 MachineBasicBlock *IdxMBB = lis_.getMBBFromIndex(Idx); 403 assert(IdxMBB && "No MBB at Idx"); 404 405 // Is there a def in the same MBB we can extend? 406 if (VNInfo *VNI = extendTo(IdxMBB, Idx)) 407 return VNI; 408 409 // Now for the fun part. We know that ParentVNI potentially has multiple defs, 410 // and we may need to create even more phi-defs to preserve VNInfo SSA form. 411 // Perform a depth-first search for predecessor blocks where we know the 412 // dominating VNInfo. Insert phi-def VNInfos along the path back to IdxMBB. 413 414 // Track MBBs where we have created or learned the dominating value. 415 // This may change during the DFS as we create new phi-defs. 416 typedef DenseMap<MachineBasicBlock*, VNInfo*> MBBValueMap; 417 MBBValueMap DomValue; 418 typedef SplitAnalysis::BlockPtrSet BlockPtrSet; 419 BlockPtrSet Visited; 420 421 // Iterate over IdxMBB predecessors in a depth-first order. 422 // Skip begin() since that is always IdxMBB. 423 for (idf_ext_iterator<MachineBasicBlock*, BlockPtrSet> 424 IDFI = llvm::next(idf_ext_begin(IdxMBB, Visited)), 425 IDFE = idf_ext_end(IdxMBB, Visited); IDFI != IDFE;) { 426 MachineBasicBlock *MBB = *IDFI; 427 SlotIndex End = lis_.getMBBEndIdx(MBB).getPrevSlot(); 428 429 // We are operating on the restricted CFG where ParentVNI is live. 430 if (parentli_.getVNInfoAt(End) != ParentVNI) { 431 IDFI.skipChildren(); 432 continue; 433 } 434 435 // Do we have a dominating value in this block? 436 VNInfo *VNI = extendTo(MBB, End); 437 if (!VNI) { 438 ++IDFI; 439 continue; 440 } 441 442 // Yes, VNI dominates MBB. Make sure we visit MBB again from other paths. 443 Visited.erase(MBB); 444 445 // Track the path back to IdxMBB, creating phi-defs 446 // as needed along the way. 447 for (unsigned PI = IDFI.getPathLength()-1; PI != 0; --PI) { 448 // Start from MBB's immediate successor. End at IdxMBB. 449 MachineBasicBlock *Succ = IDFI.getPath(PI-1); 450 std::pair<MBBValueMap::iterator, bool> InsP = 451 DomValue.insert(MBBValueMap::value_type(Succ, VNI)); 452 453 // This is the first time we backtrack to Succ. 454 if (InsP.second) 455 continue; 456 457 // We reached Succ again with the same VNI. Nothing is going to change. 458 VNInfo *OVNI = InsP.first->second; 459 if (OVNI == VNI) 460 break; 461 462 // Succ already has a phi-def. No need to continue. 463 SlotIndex Start = lis_.getMBBStartIdx(Succ); 464 if (OVNI->def == Start) 465 break; 466 467 // We have a collision between the old and new VNI at Succ. That means 468 // neither dominates and we need a new phi-def. 469 VNI = li_->getNextValue(Start, 0, lis_.getVNInfoAllocator()); 470 VNI->setIsPHIDef(true); 471 InsP.first->second = VNI; 472 473 // Replace OVNI with VNI in the remaining path. 474 for (; PI > 1 ; --PI) { 475 MBBValueMap::iterator I = DomValue.find(IDFI.getPath(PI-2)); 476 if (I == DomValue.end() || I->second != OVNI) 477 break; 478 I->second = VNI; 479 } 480 } 481 482 // No need to search the children, we found a dominating value. 483 IDFI.skipChildren(); 484 } 485 486 // The search should at least find a dominating value for IdxMBB. 487 assert(!DomValue.empty() && "Couldn't find a reaching definition"); 488 489 // Since we went through the trouble of a full DFS visiting all reaching defs, 490 // the values in DomValue are now accurate. No more phi-defs are needed for 491 // these blocks, so we can color the live ranges. 492 // This makes the next mapValue call much faster. 493 VNInfo *IdxVNI = 0; 494 for (MBBValueMap::iterator I = DomValue.begin(), E = DomValue.end(); I != E; 495 ++I) { 496 MachineBasicBlock *MBB = I->first; 497 VNInfo *VNI = I->second; 498 SlotIndex Start = lis_.getMBBStartIdx(MBB); 499 if (MBB == IdxMBB) { 500 // Don't add full liveness to IdxMBB, stop at Idx. 501 if (Start != Idx) 502 li_->addRange(LiveRange(Start, Idx.getNextSlot(), VNI)); 503 // The caller had better add some liveness to IdxVNI, or it leaks. 504 IdxVNI = VNI; 505 } else 506 li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), VNI)); 507 } 508 509 assert(IdxVNI && "Didn't find value for Idx"); 510 return IdxVNI; 511 } 512 513 // extendTo - Find the last li_ value defined in MBB at or before Idx. The 514 // parentli_ is assumed to be live at Idx. Extend the live range to Idx. 515 // Return the found VNInfo, or NULL. 516 VNInfo *LiveIntervalMap::extendTo(const MachineBasicBlock *MBB, SlotIndex Idx) { 517 assert(li_ && "call reset first"); 518 LiveInterval::iterator I = std::upper_bound(li_->begin(), li_->end(), Idx); 519 if (I == li_->begin()) 520 return 0; 521 --I; 522 if (I->end <= lis_.getMBBStartIdx(MBB)) 523 return 0; 524 if (I->end <= Idx) 525 I->end = Idx.getNextSlot(); 526 return I->valno; 527 } 528 529 // addSimpleRange - Add a simple range from parentli_ to li_. 530 // ParentVNI must be live in the [Start;End) interval. 531 void LiveIntervalMap::addSimpleRange(SlotIndex Start, SlotIndex End, 532 const VNInfo *ParentVNI) { 533 assert(li_ && "call reset first"); 534 bool simple; 535 VNInfo *VNI = mapValue(ParentVNI, Start, &simple); 536 // A simple mapping is easy. 537 if (simple) { 538 li_->addRange(LiveRange(Start, End, VNI)); 539 return; 540 } 541 542 // ParentVNI is a complex value. We must map per MBB. 543 MachineFunction::iterator MBB = lis_.getMBBFromIndex(Start); 544 MachineFunction::iterator MBBE = lis_.getMBBFromIndex(End.getPrevSlot()); 545 546 if (MBB == MBBE) { 547 li_->addRange(LiveRange(Start, End, VNI)); 548 return; 549 } 550 551 // First block. 552 li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), VNI)); 553 554 // Run sequence of full blocks. 555 for (++MBB; MBB != MBBE; ++MBB) { 556 Start = lis_.getMBBStartIdx(MBB); 557 li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), 558 mapValue(ParentVNI, Start))); 559 } 560 561 // Final block. 562 Start = lis_.getMBBStartIdx(MBB); 563 if (Start != End) 564 li_->addRange(LiveRange(Start, End, mapValue(ParentVNI, Start))); 565 } 566 567 /// addRange - Add live ranges to li_ where [Start;End) intersects parentli_. 568 /// All needed values whose def is not inside [Start;End) must be defined 569 /// beforehand so mapValue will work. 570 void LiveIntervalMap::addRange(SlotIndex Start, SlotIndex End) { 571 assert(li_ && "call reset first"); 572 LiveInterval::const_iterator B = parentli_.begin(), E = parentli_.end(); 573 LiveInterval::const_iterator I = std::lower_bound(B, E, Start); 574 575 // Check if --I begins before Start and overlaps. 576 if (I != B) { 577 --I; 578 if (I->end > Start) 579 addSimpleRange(Start, std::min(End, I->end), I->valno); 580 ++I; 581 } 582 583 // The remaining ranges begin after Start. 584 for (;I != E && I->start < End; ++I) 585 addSimpleRange(I->start, std::min(End, I->end), I->valno); 586 } 587 588 VNInfo *LiveIntervalMap::defByCopyFrom(unsigned Reg, 589 const VNInfo *ParentVNI, 590 MachineBasicBlock &MBB, 591 MachineBasicBlock::iterator I) { 592 const TargetInstrDesc &TID = MBB.getParent()->getTarget().getInstrInfo()-> 593 get(TargetOpcode::COPY); 594 MachineInstr *MI = BuildMI(MBB, I, DebugLoc(), TID, li_->reg).addReg(Reg); 595 SlotIndex DefIdx = lis_.InsertMachineInstrInMaps(MI).getDefIndex(); 596 VNInfo *VNI = defValue(ParentVNI, DefIdx); 597 VNI->setCopy(MI); 598 li_->addRange(LiveRange(DefIdx, DefIdx.getNextSlot(), VNI)); 599 return VNI; 600 } 601 602 //===----------------------------------------------------------------------===// 603 // Split Editor 604 //===----------------------------------------------------------------------===// 605 606 /// Create a new SplitEditor for editing the LiveInterval analyzed by SA. 607 SplitEditor::SplitEditor(SplitAnalysis &sa, 608 LiveIntervals &lis, 609 VirtRegMap &vrm, 610 MachineDominatorTree &mdt, 611 LiveRangeEdit &edit) 612 : sa_(sa), lis_(lis), vrm_(vrm), 613 mri_(vrm.getMachineFunction().getRegInfo()), 614 tii_(*vrm.getMachineFunction().getTarget().getInstrInfo()), 615 edit_(edit), 616 dupli_(lis_, mdt, edit.getParent()), 617 openli_(lis_, mdt, edit.getParent()) 618 { 619 } 620 621 bool SplitEditor::intervalsLiveAt(SlotIndex Idx) const { 622 for (LiveRangeEdit::iterator I = edit_.begin(), E = edit_.end(); I != E; ++I) 623 if (*I != dupli_.getLI() && (*I)->liveAt(Idx)) 624 return true; 625 return false; 626 } 627 628 /// Create a new virtual register and live interval. 629 void SplitEditor::openIntv() { 630 assert(!openli_.getLI() && "Previous LI not closed before openIntv"); 631 632 if (!dupli_.getLI()) 633 dupli_.reset(&edit_.create(mri_, lis_, vrm_)); 634 635 openli_.reset(&edit_.create(mri_, lis_, vrm_)); 636 } 637 638 /// enterIntvBefore - Enter openli before the instruction at Idx. If curli is 639 /// not live before Idx, a COPY is not inserted. 640 void SplitEditor::enterIntvBefore(SlotIndex Idx) { 641 assert(openli_.getLI() && "openIntv not called before enterIntvBefore"); 642 DEBUG(dbgs() << " enterIntvBefore " << Idx); 643 VNInfo *ParentVNI = edit_.getParent().getVNInfoAt(Idx.getUseIndex()); 644 if (!ParentVNI) { 645 DEBUG(dbgs() << ": not live\n"); 646 return; 647 } 648 DEBUG(dbgs() << ": valno " << ParentVNI->id); 649 truncatedValues.insert(ParentVNI); 650 MachineInstr *MI = lis_.getInstructionFromIndex(Idx); 651 assert(MI && "enterIntvBefore called with invalid index"); 652 VNInfo *VNI = openli_.defByCopyFrom(edit_.getReg(), ParentVNI, 653 *MI->getParent(), MI); 654 openli_.getLI()->addRange(LiveRange(VNI->def, Idx.getDefIndex(), VNI)); 655 DEBUG(dbgs() << ": " << *openli_.getLI() << '\n'); 656 } 657 658 /// enterIntvAtEnd - Enter openli at the end of MBB. 659 void SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) { 660 assert(openli_.getLI() && "openIntv not called before enterIntvAtEnd"); 661 SlotIndex End = lis_.getMBBEndIdx(&MBB); 662 DEBUG(dbgs() << " enterIntvAtEnd BB#" << MBB.getNumber() << ", " << End); 663 VNInfo *ParentVNI = edit_.getParent().getVNInfoAt(End.getPrevSlot()); 664 if (!ParentVNI) { 665 DEBUG(dbgs() << ": not live\n"); 666 return; 667 } 668 DEBUG(dbgs() << ": valno " << ParentVNI->id); 669 truncatedValues.insert(ParentVNI); 670 VNInfo *VNI = openli_.defByCopyFrom(edit_.getReg(), ParentVNI, 671 MBB, MBB.getFirstTerminator()); 672 // Make sure openli is live out of MBB. 673 openli_.getLI()->addRange(LiveRange(VNI->def, End, VNI)); 674 DEBUG(dbgs() << ": " << *openli_.getLI() << '\n'); 675 } 676 677 /// useIntv - indicate that all instructions in MBB should use openli. 678 void SplitEditor::useIntv(const MachineBasicBlock &MBB) { 679 useIntv(lis_.getMBBStartIdx(&MBB), lis_.getMBBEndIdx(&MBB)); 680 } 681 682 void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) { 683 assert(openli_.getLI() && "openIntv not called before useIntv"); 684 openli_.addRange(Start, End); 685 DEBUG(dbgs() << " use [" << Start << ';' << End << "): " 686 << *openli_.getLI() << '\n'); 687 } 688 689 /// leaveIntvAfter - Leave openli after the instruction at Idx. 690 void SplitEditor::leaveIntvAfter(SlotIndex Idx) { 691 assert(openli_.getLI() && "openIntv not called before leaveIntvAfter"); 692 DEBUG(dbgs() << " leaveIntvAfter " << Idx); 693 694 // The interval must be live beyond the instruction at Idx. 695 VNInfo *ParentVNI = edit_.getParent().getVNInfoAt(Idx.getBoundaryIndex()); 696 if (!ParentVNI) { 697 DEBUG(dbgs() << ": not live\n"); 698 return; 699 } 700 DEBUG(dbgs() << ": valno " << ParentVNI->id); 701 702 MachineBasicBlock::iterator MII = lis_.getInstructionFromIndex(Idx); 703 MachineBasicBlock *MBB = MII->getParent(); 704 VNInfo *VNI = dupli_.defByCopyFrom(openli_.getLI()->reg, ParentVNI, *MBB, 705 llvm::next(MII)); 706 707 // Finally we must make sure that openli is properly extended from Idx to the 708 // new copy. 709 openli_.addSimpleRange(Idx.getBoundaryIndex(), VNI->def, ParentVNI); 710 DEBUG(dbgs() << ": " << *openli_.getLI() << '\n'); 711 } 712 713 /// leaveIntvAtTop - Leave the interval at the top of MBB. 714 /// Currently, only one value can leave the interval. 715 void SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) { 716 assert(openli_.getLI() && "openIntv not called before leaveIntvAtTop"); 717 SlotIndex Start = lis_.getMBBStartIdx(&MBB); 718 DEBUG(dbgs() << " leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start); 719 720 VNInfo *ParentVNI = edit_.getParent().getVNInfoAt(Start); 721 if (!ParentVNI) { 722 DEBUG(dbgs() << ": not live\n"); 723 return; 724 } 725 726 // We are going to insert a back copy, so we must have a dupli_. 727 VNInfo *VNI = dupli_.defByCopyFrom(openli_.getLI()->reg, ParentVNI, 728 MBB, MBB.begin()); 729 730 // Finally we must make sure that openli is properly extended from Start to 731 // the new copy. 732 openli_.addSimpleRange(Start, VNI->def, ParentVNI); 733 DEBUG(dbgs() << ": " << *openli_.getLI() << '\n'); 734 } 735 736 /// closeIntv - Indicate that we are done editing the currently open 737 /// LiveInterval, and ranges can be trimmed. 738 void SplitEditor::closeIntv() { 739 assert(openli_.getLI() && "openIntv not called before closeIntv"); 740 741 DEBUG(dbgs() << " closeIntv cleaning up\n"); 742 DEBUG(dbgs() << " open " << *openli_.getLI() << '\n'); 743 openli_.reset(0); 744 } 745 746 /// rewrite - Rewrite all uses of reg to use the new registers. 747 void SplitEditor::rewrite(unsigned reg) { 748 for (MachineRegisterInfo::reg_iterator RI = mri_.reg_begin(reg), 749 RE = mri_.reg_end(); RI != RE;) { 750 MachineOperand &MO = RI.getOperand(); 751 MachineInstr *MI = MO.getParent(); 752 ++RI; 753 if (MI->isDebugValue()) { 754 DEBUG(dbgs() << "Zapping " << *MI); 755 // FIXME: We can do much better with debug values. 756 MO.setReg(0); 757 continue; 758 } 759 SlotIndex Idx = lis_.getInstructionIndex(MI); 760 Idx = MO.isUse() ? Idx.getUseIndex() : Idx.getDefIndex(); 761 LiveInterval *LI = 0; 762 for (LiveRangeEdit::iterator I = edit_.begin(), E = edit_.end(); I != E; 763 ++I) { 764 LiveInterval *testli = *I; 765 if (testli->liveAt(Idx)) { 766 LI = testli; 767 break; 768 } 769 } 770 DEBUG(dbgs() << " rewr BB#" << MI->getParent()->getNumber() << '\t'<< Idx); 771 assert(LI && "No register was live at use"); 772 MO.setReg(LI->reg); 773 DEBUG(dbgs() << '\t' << *MI); 774 } 775 } 776 777 void 778 SplitEditor::addTruncSimpleRange(SlotIndex Start, SlotIndex End, VNInfo *VNI) { 779 // Build vector of iterator pairs from the intervals. 780 typedef std::pair<LiveInterval::const_iterator, 781 LiveInterval::const_iterator> IIPair; 782 SmallVector<IIPair, 8> Iters; 783 for (LiveRangeEdit::iterator LI = edit_.begin(), LE = edit_.end(); LI != LE; 784 ++LI) { 785 if (*LI == dupli_.getLI()) 786 continue; 787 LiveInterval::const_iterator I = (*LI)->find(Start); 788 LiveInterval::const_iterator E = (*LI)->end(); 789 if (I != E) 790 Iters.push_back(std::make_pair(I, E)); 791 } 792 793 SlotIndex sidx = Start; 794 // Break [Start;End) into segments that don't overlap any intervals. 795 for (;;) { 796 SlotIndex next = sidx, eidx = End; 797 // Find overlapping intervals. 798 for (unsigned i = 0; i != Iters.size() && sidx < eidx; ++i) { 799 LiveInterval::const_iterator I = Iters[i].first; 800 // Interval I is overlapping [sidx;eidx). Trim sidx. 801 if (I->start <= sidx) { 802 sidx = I->end; 803 // Move to the next run, remove iters when all are consumed. 804 I = ++Iters[i].first; 805 if (I == Iters[i].second) { 806 Iters.erase(Iters.begin() + i); 807 --i; 808 continue; 809 } 810 } 811 // Trim eidx too if needed. 812 if (I->start >= eidx) 813 continue; 814 eidx = I->start; 815 next = I->end; 816 } 817 // Now, [sidx;eidx) doesn't overlap anything in intervals_. 818 if (sidx < eidx) 819 dupli_.addSimpleRange(sidx, eidx, VNI); 820 // If the interval end was truncated, we can try again from next. 821 if (next <= sidx) 822 break; 823 sidx = next; 824 } 825 } 826 827 void SplitEditor::computeRemainder() { 828 // First we need to fill in the live ranges in dupli. 829 // If values were redefined, we need a full recoloring with SSA update. 830 // If values were truncated, we only need to truncate the ranges. 831 // If values were partially rematted, we should shrink to uses. 832 // If values were fully rematted, they should be omitted. 833 // FIXME: If a single value is redefined, just move the def and truncate. 834 LiveInterval &parent = edit_.getParent(); 835 836 // Values that are fully contained in the split intervals. 837 SmallPtrSet<const VNInfo*, 8> deadValues; 838 // Map all curli values that should have live defs in dupli. 839 for (LiveInterval::const_vni_iterator I = parent.vni_begin(), 840 E = parent.vni_end(); I != E; ++I) { 841 const VNInfo *VNI = *I; 842 // Original def is contained in the split intervals. 843 if (intervalsLiveAt(VNI->def)) { 844 // Did this value escape? 845 if (dupli_.isMapped(VNI)) 846 truncatedValues.insert(VNI); 847 else 848 deadValues.insert(VNI); 849 continue; 850 } 851 // Add minimal live range at the definition. 852 VNInfo *DVNI = dupli_.defValue(VNI, VNI->def); 853 dupli_.getLI()->addRange(LiveRange(VNI->def, VNI->def.getNextSlot(), DVNI)); 854 } 855 856 // Add all ranges to dupli. 857 for (LiveInterval::const_iterator I = parent.begin(), E = parent.end(); 858 I != E; ++I) { 859 const LiveRange &LR = *I; 860 if (truncatedValues.count(LR.valno)) { 861 // recolor after removing intervals_. 862 addTruncSimpleRange(LR.start, LR.end, LR.valno); 863 } else if (!deadValues.count(LR.valno)) { 864 // recolor without truncation. 865 dupli_.addSimpleRange(LR.start, LR.end, LR.valno); 866 } 867 } 868 869 // Extend dupli_ to be live out of any critical loop predecessors. 870 // This means we have multiple registers live out of those blocks. 871 // The alternative would be to split the critical edges. 872 if (criticalPreds_.empty()) 873 return; 874 for (SplitAnalysis::BlockPtrSet::iterator I = criticalPreds_.begin(), 875 E = criticalPreds_.end(); I != E; ++I) 876 dupli_.extendTo(*I, lis_.getMBBEndIdx(*I).getPrevSlot()); 877 criticalPreds_.clear(); 878 } 879 880 void SplitEditor::finish() { 881 assert(!openli_.getLI() && "Previous LI not closed before rewrite"); 882 assert(dupli_.getLI() && "No dupli for rewrite. Noop spilt?"); 883 884 // Complete dupli liveness. 885 computeRemainder(); 886 887 // Get rid of unused values and set phi-kill flags. 888 for (LiveRangeEdit::iterator I = edit_.begin(), E = edit_.end(); I != E; ++I) 889 (*I)->RenumberValues(lis_); 890 891 // Rewrite instructions. 892 rewrite(edit_.getReg()); 893 894 // Now check if any registers were separated into multiple components. 895 ConnectedVNInfoEqClasses ConEQ(lis_); 896 for (unsigned i = 0, e = edit_.size(); i != e; ++i) { 897 // Don't use iterators, they are invalidated by create() below. 898 LiveInterval *li = edit_.get(i); 899 unsigned NumComp = ConEQ.Classify(li); 900 if (NumComp <= 1) 901 continue; 902 DEBUG(dbgs() << " " << NumComp << " components: " << *li << '\n'); 903 SmallVector<LiveInterval*, 8> dups; 904 dups.push_back(li); 905 for (unsigned i = 1; i != NumComp; ++i) 906 dups.push_back(&edit_.create(mri_, lis_, vrm_)); 907 ConEQ.Distribute(&dups[0]); 908 // Rewrite uses to the new regs. 909 rewrite(li->reg); 910 } 911 912 // Calculate spill weight and allocation hints for new intervals. 913 VirtRegAuxInfo vrai(vrm_.getMachineFunction(), lis_, sa_.loops_); 914 for (LiveRangeEdit::iterator I = edit_.begin(), E = edit_.end(); I != E; ++I){ 915 LiveInterval &li = **I; 916 vrai.CalculateRegClass(li.reg); 917 vrai.CalculateWeightAndHint(li); 918 DEBUG(dbgs() << " new interval " << mri_.getRegClass(li.reg)->getName() 919 << ":" << li << '\n'); 920 } 921 } 922 923 924 //===----------------------------------------------------------------------===// 925 // Loop Splitting 926 //===----------------------------------------------------------------------===// 927 928 void SplitEditor::splitAroundLoop(const MachineLoop *Loop) { 929 SplitAnalysis::LoopBlocks Blocks; 930 sa_.getLoopBlocks(Loop, Blocks); 931 932 DEBUG({ 933 dbgs() << " splitAround"; sa_.print(Blocks, dbgs()); dbgs() << '\n'; 934 }); 935 936 // Break critical edges as needed. 937 SplitAnalysis::BlockPtrSet CriticalExits; 938 sa_.getCriticalExits(Blocks, CriticalExits); 939 assert(CriticalExits.empty() && "Cannot break critical exits yet"); 940 941 // Get critical predecessors so computeRemainder can deal with them. 942 sa_.getCriticalPreds(Blocks, criticalPreds_); 943 944 // Create new live interval for the loop. 945 openIntv(); 946 947 // Insert copies in the predecessors. 948 for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Preds.begin(), 949 E = Blocks.Preds.end(); I != E; ++I) { 950 MachineBasicBlock &MBB = const_cast<MachineBasicBlock&>(**I); 951 enterIntvAtEnd(MBB); 952 } 953 954 // Switch all loop blocks. 955 for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Loop.begin(), 956 E = Blocks.Loop.end(); I != E; ++I) 957 useIntv(**I); 958 959 // Insert back copies in the exit blocks. 960 for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Exits.begin(), 961 E = Blocks.Exits.end(); I != E; ++I) { 962 MachineBasicBlock &MBB = const_cast<MachineBasicBlock&>(**I); 963 leaveIntvAtTop(MBB); 964 } 965 966 // Done. 967 closeIntv(); 968 finish(); 969 } 970 971 972 //===----------------------------------------------------------------------===// 973 // Single Block Splitting 974 //===----------------------------------------------------------------------===// 975 976 /// getMultiUseBlocks - if curli has more than one use in a basic block, it 977 /// may be an advantage to split curli for the duration of the block. 978 bool SplitAnalysis::getMultiUseBlocks(BlockPtrSet &Blocks) { 979 // If curli is local to one block, there is no point to splitting it. 980 if (usingBlocks_.size() <= 1) 981 return false; 982 // Add blocks with multiple uses. 983 for (BlockCountMap::iterator I = usingBlocks_.begin(), E = usingBlocks_.end(); 984 I != E; ++I) 985 switch (I->second) { 986 case 0: 987 case 1: 988 continue; 989 case 2: { 990 // When there are only two uses and curli is both live in and live out, 991 // we don't really win anything by isolating the block since we would be 992 // inserting two copies. 993 // The remaing register would still have two uses in the block. (Unless it 994 // separates into disconnected components). 995 if (lis_.isLiveInToMBB(*curli_, I->first) && 996 lis_.isLiveOutOfMBB(*curli_, I->first)) 997 continue; 998 } // Fall through. 999 default: 1000 Blocks.insert(I->first); 1001 } 1002 return !Blocks.empty(); 1003 } 1004 1005 /// splitSingleBlocks - Split curli into a separate live interval inside each 1006 /// basic block in Blocks. 1007 void SplitEditor::splitSingleBlocks(const SplitAnalysis::BlockPtrSet &Blocks) { 1008 DEBUG(dbgs() << " splitSingleBlocks for " << Blocks.size() << " blocks.\n"); 1009 // Determine the first and last instruction using curli in each block. 1010 typedef std::pair<SlotIndex,SlotIndex> IndexPair; 1011 typedef DenseMap<const MachineBasicBlock*,IndexPair> IndexPairMap; 1012 IndexPairMap MBBRange; 1013 for (SplitAnalysis::InstrPtrSet::const_iterator I = sa_.usingInstrs_.begin(), 1014 E = sa_.usingInstrs_.end(); I != E; ++I) { 1015 const MachineBasicBlock *MBB = (*I)->getParent(); 1016 if (!Blocks.count(MBB)) 1017 continue; 1018 SlotIndex Idx = lis_.getInstructionIndex(*I); 1019 DEBUG(dbgs() << " BB#" << MBB->getNumber() << '\t' << Idx << '\t' << **I); 1020 IndexPair &IP = MBBRange[MBB]; 1021 if (!IP.first.isValid() || Idx < IP.first) 1022 IP.first = Idx; 1023 if (!IP.second.isValid() || Idx > IP.second) 1024 IP.second = Idx; 1025 } 1026 1027 // Create a new interval for each block. 1028 for (SplitAnalysis::BlockPtrSet::const_iterator I = Blocks.begin(), 1029 E = Blocks.end(); I != E; ++I) { 1030 IndexPair &IP = MBBRange[*I]; 1031 DEBUG(dbgs() << " splitting for BB#" << (*I)->getNumber() << ": [" 1032 << IP.first << ';' << IP.second << ")\n"); 1033 assert(IP.first.isValid() && IP.second.isValid()); 1034 1035 openIntv(); 1036 enterIntvBefore(IP.first); 1037 useIntv(IP.first.getBaseIndex(), IP.second.getBoundaryIndex()); 1038 leaveIntvAfter(IP.second); 1039 closeIntv(); 1040 } 1041 finish(); 1042 } 1043 1044 1045 //===----------------------------------------------------------------------===// 1046 // Sub Block Splitting 1047 //===----------------------------------------------------------------------===// 1048 1049 /// getBlockForInsideSplit - If curli is contained inside a single basic block, 1050 /// and it wou pay to subdivide the interval inside that block, return it. 1051 /// Otherwise return NULL. The returned block can be passed to 1052 /// SplitEditor::splitInsideBlock. 1053 const MachineBasicBlock *SplitAnalysis::getBlockForInsideSplit() { 1054 // The interval must be exclusive to one block. 1055 if (usingBlocks_.size() != 1) 1056 return 0; 1057 // Don't to this for less than 4 instructions. We want to be sure that 1058 // splitting actually reduces the instruction count per interval. 1059 if (usingInstrs_.size() < 4) 1060 return 0; 1061 return usingBlocks_.begin()->first; 1062 } 1063 1064 /// splitInsideBlock - Split curli into multiple intervals inside MBB. 1065 void SplitEditor::splitInsideBlock(const MachineBasicBlock *MBB) { 1066 SmallVector<SlotIndex, 32> Uses; 1067 Uses.reserve(sa_.usingInstrs_.size()); 1068 for (SplitAnalysis::InstrPtrSet::const_iterator I = sa_.usingInstrs_.begin(), 1069 E = sa_.usingInstrs_.end(); I != E; ++I) 1070 if ((*I)->getParent() == MBB) 1071 Uses.push_back(lis_.getInstructionIndex(*I)); 1072 DEBUG(dbgs() << " splitInsideBlock BB#" << MBB->getNumber() << " for " 1073 << Uses.size() << " instructions.\n"); 1074 assert(Uses.size() >= 3 && "Need at least 3 instructions"); 1075 array_pod_sort(Uses.begin(), Uses.end()); 1076 1077 // Simple algorithm: Find the largest gap between uses as determined by slot 1078 // indices. Create new intervals for instructions before the gap and after the 1079 // gap. 1080 unsigned bestPos = 0; 1081 int bestGap = 0; 1082 DEBUG(dbgs() << " dist (" << Uses[0]); 1083 for (unsigned i = 1, e = Uses.size(); i != e; ++i) { 1084 int g = Uses[i-1].distance(Uses[i]); 1085 DEBUG(dbgs() << ") -" << g << "- (" << Uses[i]); 1086 if (g > bestGap) 1087 bestPos = i, bestGap = g; 1088 } 1089 DEBUG(dbgs() << "), best: -" << bestGap << "-\n"); 1090 1091 // bestPos points to the first use after the best gap. 1092 assert(bestPos > 0 && "Invalid gap"); 1093 1094 // FIXME: Don't create intervals for low densities. 1095 1096 // First interval before the gap. Don't create single-instr intervals. 1097 if (bestPos > 1) { 1098 openIntv(); 1099 enterIntvBefore(Uses.front()); 1100 useIntv(Uses.front().getBaseIndex(), Uses[bestPos-1].getBoundaryIndex()); 1101 leaveIntvAfter(Uses[bestPos-1]); 1102 closeIntv(); 1103 } 1104 1105 // Second interval after the gap. 1106 if (bestPos < Uses.size()-1) { 1107 openIntv(); 1108 enterIntvBefore(Uses[bestPos]); 1109 useIntv(Uses[bestPos].getBaseIndex(), Uses.back().getBoundaryIndex()); 1110 leaveIntvAfter(Uses.back()); 1111 closeIntv(); 1112 } 1113 1114 finish(); 1115 } 1116