1 //===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the SplitAnalysis class as well as mutator functions for 11 // live range splitting. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "regalloc" 16 #include "SplitKit.h" 17 #include "LiveRangeEdit.h" 18 #include "VirtRegMap.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 21 #include "llvm/CodeGen/MachineDominators.h" 22 #include "llvm/CodeGen/MachineInstrBuilder.h" 23 #include "llvm/CodeGen/MachineRegisterInfo.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/raw_ostream.h" 26 #include "llvm/Target/TargetInstrInfo.h" 27 #include "llvm/Target/TargetMachine.h" 28 29 using namespace llvm; 30 31 STATISTIC(NumFinished, "Number of splits finished"); 32 STATISTIC(NumSimple, "Number of splits that were simple"); 33 34 //===----------------------------------------------------------------------===// 35 // Split Analysis 36 //===----------------------------------------------------------------------===// 37 38 SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm, 39 const LiveIntervals &lis, 40 const MachineLoopInfo &mli) 41 : MF(vrm.getMachineFunction()), 42 VRM(vrm), 43 LIS(lis), 44 Loops(mli), 45 TII(*MF.getTarget().getInstrInfo()), 46 CurLI(0), 47 LastSplitPoint(MF.getNumBlockIDs()) {} 48 49 void SplitAnalysis::clear() { 50 UseSlots.clear(); 51 UseBlocks.clear(); 52 ThroughBlocks.clear(); 53 CurLI = 0; 54 } 55 56 SlotIndex SplitAnalysis::computeLastSplitPoint(unsigned Num) { 57 const MachineBasicBlock *MBB = MF.getBlockNumbered(Num); 58 const MachineBasicBlock *LPad = MBB->getLandingPadSuccessor(); 59 std::pair<SlotIndex, SlotIndex> &LSP = LastSplitPoint[Num]; 60 61 // Compute split points on the first call. The pair is independent of the 62 // current live interval. 63 if (!LSP.first.isValid()) { 64 MachineBasicBlock::const_iterator FirstTerm = MBB->getFirstTerminator(); 65 if (FirstTerm == MBB->end()) 66 LSP.first = LIS.getMBBEndIdx(MBB); 67 else 68 LSP.first = LIS.getInstructionIndex(FirstTerm); 69 70 // If there is a landing pad successor, also find the call instruction. 71 if (!LPad) 72 return LSP.first; 73 // There may not be a call instruction (?) in which case we ignore LPad. 74 LSP.second = LSP.first; 75 for (MachineBasicBlock::const_iterator I = FirstTerm, E = MBB->begin(); 76 I != E; --I) 77 if (I->getDesc().isCall()) { 78 LSP.second = LIS.getInstructionIndex(I); 79 break; 80 } 81 } 82 83 // If CurLI is live into a landing pad successor, move the last split point 84 // back to the call that may throw. 85 if (LPad && LSP.second.isValid() && LIS.isLiveInToMBB(*CurLI, LPad)) 86 return LSP.second; 87 else 88 return LSP.first; 89 } 90 91 /// analyzeUses - Count instructions, basic blocks, and loops using CurLI. 92 void SplitAnalysis::analyzeUses() { 93 assert(UseSlots.empty() && "Call clear first"); 94 95 // First get all the defs from the interval values. This provides the correct 96 // slots for early clobbers. 97 for (LiveInterval::const_vni_iterator I = CurLI->vni_begin(), 98 E = CurLI->vni_end(); I != E; ++I) 99 if (!(*I)->isPHIDef() && !(*I)->isUnused()) 100 UseSlots.push_back((*I)->def); 101 102 // Get use slots form the use-def chain. 103 const MachineRegisterInfo &MRI = MF.getRegInfo(); 104 for (MachineRegisterInfo::use_nodbg_iterator 105 I = MRI.use_nodbg_begin(CurLI->reg), E = MRI.use_nodbg_end(); I != E; 106 ++I) 107 if (!I.getOperand().isUndef()) 108 UseSlots.push_back(LIS.getInstructionIndex(&*I).getDefIndex()); 109 110 array_pod_sort(UseSlots.begin(), UseSlots.end()); 111 112 // Remove duplicates, keeping the smaller slot for each instruction. 113 // That is what we want for early clobbers. 114 UseSlots.erase(std::unique(UseSlots.begin(), UseSlots.end(), 115 SlotIndex::isSameInstr), 116 UseSlots.end()); 117 118 // Compute per-live block info. 119 if (!calcLiveBlockInfo()) { 120 // FIXME: calcLiveBlockInfo found inconsistencies in the live range. 121 // I am looking at you, SimpleRegisterCoalescing! 122 DEBUG(dbgs() << "*** Fixing inconsistent live interval! ***\n"); 123 const_cast<LiveIntervals&>(LIS) 124 .shrinkToUses(const_cast<LiveInterval*>(CurLI)); 125 UseBlocks.clear(); 126 ThroughBlocks.clear(); 127 bool fixed = calcLiveBlockInfo(); 128 (void)fixed; 129 assert(fixed && "Couldn't fix broken live interval"); 130 } 131 132 DEBUG(dbgs() << "Analyze counted " 133 << UseSlots.size() << " instrs in " 134 << UseBlocks.size() << " blocks, through " 135 << NumThroughBlocks << " blocks.\n"); 136 } 137 138 /// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks 139 /// where CurLI is live. 140 bool SplitAnalysis::calcLiveBlockInfo() { 141 ThroughBlocks.resize(MF.getNumBlockIDs()); 142 NumThroughBlocks = 0; 143 if (CurLI->empty()) 144 return true; 145 146 LiveInterval::const_iterator LVI = CurLI->begin(); 147 LiveInterval::const_iterator LVE = CurLI->end(); 148 149 SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE; 150 UseI = UseSlots.begin(); 151 UseE = UseSlots.end(); 152 153 // Loop over basic blocks where CurLI is live. 154 MachineFunction::iterator MFI = LIS.getMBBFromIndex(LVI->start); 155 for (;;) { 156 BlockInfo BI; 157 BI.MBB = MFI; 158 SlotIndex Start, Stop; 159 tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); 160 161 // LVI is the first live segment overlapping MBB. 162 BI.LiveIn = LVI->start <= Start; 163 if (!BI.LiveIn) 164 BI.Def = LVI->start; 165 166 // Find the first and last uses in the block. 167 bool Uses = UseI != UseE && *UseI < Stop; 168 if (Uses) { 169 BI.FirstUse = *UseI; 170 assert(BI.FirstUse >= Start); 171 do ++UseI; 172 while (UseI != UseE && *UseI < Stop); 173 BI.LastUse = UseI[-1]; 174 assert(BI.LastUse < Stop); 175 } 176 177 // Look for gaps in the live range. 178 bool hasGap = false; 179 BI.LiveOut = true; 180 while (LVI->end < Stop) { 181 SlotIndex LastStop = LVI->end; 182 if (++LVI == LVE || LVI->start >= Stop) { 183 BI.Kill = LastStop; 184 BI.LiveOut = false; 185 break; 186 } 187 if (LastStop < LVI->start) { 188 hasGap = true; 189 BI.Kill = LastStop; 190 BI.Def = LVI->start; 191 } 192 } 193 194 // Don't set LiveThrough when the block has a gap. 195 BI.LiveThrough = !hasGap && BI.LiveIn && BI.LiveOut; 196 if (Uses) 197 UseBlocks.push_back(BI); 198 else { 199 ++NumThroughBlocks; 200 ThroughBlocks.set(BI.MBB->getNumber()); 201 } 202 // FIXME: This should never happen. The live range stops or starts without a 203 // corresponding use. An earlier pass did something wrong. 204 if (!BI.LiveThrough && !Uses) 205 return false; 206 207 // LVI is now at LVE or LVI->end >= Stop. 208 if (LVI == LVE) 209 break; 210 211 // Live segment ends exactly at Stop. Move to the next segment. 212 if (LVI->end == Stop && ++LVI == LVE) 213 break; 214 215 // Pick the next basic block. 216 if (LVI->start < Stop) 217 ++MFI; 218 else 219 MFI = LIS.getMBBFromIndex(LVI->start); 220 } 221 return true; 222 } 223 224 bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const { 225 unsigned OrigReg = VRM.getOriginal(CurLI->reg); 226 const LiveInterval &Orig = LIS.getInterval(OrigReg); 227 assert(!Orig.empty() && "Splitting empty interval?"); 228 LiveInterval::const_iterator I = Orig.find(Idx); 229 230 // Range containing Idx should begin at Idx. 231 if (I != Orig.end() && I->start <= Idx) 232 return I->start == Idx; 233 234 // Range does not contain Idx, previous must end at Idx. 235 return I != Orig.begin() && (--I)->end == Idx; 236 } 237 238 void SplitAnalysis::analyze(const LiveInterval *li) { 239 clear(); 240 CurLI = li; 241 analyzeUses(); 242 } 243 244 245 //===----------------------------------------------------------------------===// 246 // Split Editor 247 //===----------------------------------------------------------------------===// 248 249 /// Create a new SplitEditor for editing the LiveInterval analyzed by SA. 250 SplitEditor::SplitEditor(SplitAnalysis &sa, 251 LiveIntervals &lis, 252 VirtRegMap &vrm, 253 MachineDominatorTree &mdt) 254 : SA(sa), LIS(lis), VRM(vrm), 255 MRI(vrm.getMachineFunction().getRegInfo()), 256 MDT(mdt), 257 TII(*vrm.getMachineFunction().getTarget().getInstrInfo()), 258 TRI(*vrm.getMachineFunction().getTarget().getRegisterInfo()), 259 Edit(0), 260 OpenIdx(0), 261 RegAssign(Allocator) 262 {} 263 264 void SplitEditor::reset(LiveRangeEdit &lre) { 265 Edit = &lre; 266 OpenIdx = 0; 267 RegAssign.clear(); 268 Values.clear(); 269 270 // We don't need to clear LiveOutCache, only LiveOutSeen entries are read. 271 LiveOutSeen.clear(); 272 273 // We don't need an AliasAnalysis since we will only be performing 274 // cheap-as-a-copy remats anyway. 275 Edit->anyRematerializable(LIS, TII, 0); 276 } 277 278 void SplitEditor::dump() const { 279 if (RegAssign.empty()) { 280 dbgs() << " empty\n"; 281 return; 282 } 283 284 for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I) 285 dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value(); 286 dbgs() << '\n'; 287 } 288 289 VNInfo *SplitEditor::defValue(unsigned RegIdx, 290 const VNInfo *ParentVNI, 291 SlotIndex Idx) { 292 assert(ParentVNI && "Mapping NULL value"); 293 assert(Idx.isValid() && "Invalid SlotIndex"); 294 assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI"); 295 LiveInterval *LI = Edit->get(RegIdx); 296 297 // Create a new value. 298 VNInfo *VNI = LI->getNextValue(Idx, 0, LIS.getVNInfoAllocator()); 299 300 // Use insert for lookup, so we can add missing values with a second lookup. 301 std::pair<ValueMap::iterator, bool> InsP = 302 Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id), VNI)); 303 304 // This was the first time (RegIdx, ParentVNI) was mapped. 305 // Keep it as a simple def without any liveness. 306 if (InsP.second) 307 return VNI; 308 309 // If the previous value was a simple mapping, add liveness for it now. 310 if (VNInfo *OldVNI = InsP.first->second) { 311 SlotIndex Def = OldVNI->def; 312 LI->addRange(LiveRange(Def, Def.getNextSlot(), OldVNI)); 313 // No longer a simple mapping. 314 InsP.first->second = 0; 315 } 316 317 // This is a complex mapping, add liveness for VNI 318 SlotIndex Def = VNI->def; 319 LI->addRange(LiveRange(Def, Def.getNextSlot(), VNI)); 320 321 return VNI; 322 } 323 324 void SplitEditor::markComplexMapped(unsigned RegIdx, const VNInfo *ParentVNI) { 325 assert(ParentVNI && "Mapping NULL value"); 326 VNInfo *&VNI = Values[std::make_pair(RegIdx, ParentVNI->id)]; 327 328 // ParentVNI was either unmapped or already complex mapped. Either way. 329 if (!VNI) 330 return; 331 332 // This was previously a single mapping. Make sure the old def is represented 333 // by a trivial live range. 334 SlotIndex Def = VNI->def; 335 Edit->get(RegIdx)->addRange(LiveRange(Def, Def.getNextSlot(), VNI)); 336 VNI = 0; 337 } 338 339 // extendRange - Extend the live range to reach Idx. 340 // Potentially create phi-def values. 341 void SplitEditor::extendRange(unsigned RegIdx, SlotIndex Idx) { 342 assert(Idx.isValid() && "Invalid SlotIndex"); 343 MachineBasicBlock *IdxMBB = LIS.getMBBFromIndex(Idx); 344 assert(IdxMBB && "No MBB at Idx"); 345 LiveInterval *LI = Edit->get(RegIdx); 346 347 // Is there a def in the same MBB we can extend? 348 if (LI->extendInBlock(LIS.getMBBStartIdx(IdxMBB), Idx)) 349 return; 350 351 // Now for the fun part. We know that ParentVNI potentially has multiple defs, 352 // and we may need to create even more phi-defs to preserve VNInfo SSA form. 353 // Perform a search for all predecessor blocks where we know the dominating 354 // VNInfo. Insert phi-def VNInfos along the path back to IdxMBB. 355 356 // Initialize the live-out cache the first time it is needed. 357 if (LiveOutSeen.empty()) { 358 unsigned N = VRM.getMachineFunction().getNumBlockIDs(); 359 LiveOutSeen.resize(N); 360 LiveOutCache.resize(N); 361 } 362 363 // Blocks where LI should be live-in. 364 SmallVector<MachineDomTreeNode*, 16> LiveIn; 365 LiveIn.push_back(MDT[IdxMBB]); 366 367 // Remember if we have seen more than one value. 368 bool UniqueVNI = true; 369 VNInfo *IdxVNI = 0; 370 371 // Using LiveOutCache as a visited set, perform a BFS for all reaching defs. 372 for (unsigned i = 0; i != LiveIn.size(); ++i) { 373 MachineBasicBlock *MBB = LiveIn[i]->getBlock(); 374 assert(!MBB->pred_empty() && "Value live-in to entry block?"); 375 for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), 376 PE = MBB->pred_end(); PI != PE; ++PI) { 377 MachineBasicBlock *Pred = *PI; 378 LiveOutPair &LOP = LiveOutCache[Pred]; 379 380 // Is this a known live-out block? 381 if (LiveOutSeen.test(Pred->getNumber())) { 382 if (VNInfo *VNI = LOP.first) { 383 if (IdxVNI && IdxVNI != VNI) 384 UniqueVNI = false; 385 IdxVNI = VNI; 386 } 387 continue; 388 } 389 390 // First time. LOP is garbage and must be cleared below. 391 LiveOutSeen.set(Pred->getNumber()); 392 393 // Does Pred provide a live-out value? 394 SlotIndex Start, Last; 395 tie(Start, Last) = LIS.getSlotIndexes()->getMBBRange(Pred); 396 Last = Last.getPrevSlot(); 397 VNInfo *VNI = LI->extendInBlock(Start, Last); 398 LOP.first = VNI; 399 if (VNI) { 400 LOP.second = MDT[LIS.getMBBFromIndex(VNI->def)]; 401 if (IdxVNI && IdxVNI != VNI) 402 UniqueVNI = false; 403 IdxVNI = VNI; 404 continue; 405 } 406 LOP.second = 0; 407 408 // No, we need a live-in value for Pred as well 409 if (Pred != IdxMBB) 410 LiveIn.push_back(MDT[Pred]); 411 else 412 UniqueVNI = false; // Loopback to IdxMBB, ask updateSSA() for help. 413 } 414 } 415 416 // We may need to add phi-def values to preserve the SSA form. 417 if (UniqueVNI) { 418 LiveOutPair LOP(IdxVNI, MDT[LIS.getMBBFromIndex(IdxVNI->def)]); 419 // Update LiveOutCache, but skip IdxMBB at LiveIn[0]. 420 for (unsigned i = 1, e = LiveIn.size(); i != e; ++i) 421 LiveOutCache[LiveIn[i]->getBlock()] = LOP; 422 } else 423 IdxVNI = updateSSA(RegIdx, LiveIn, Idx, IdxMBB); 424 425 // Since we went through the trouble of a full BFS visiting all reaching defs, 426 // the values in LiveIn are now accurate. No more phi-defs are needed 427 // for these blocks, so we can color the live ranges. 428 for (unsigned i = 0, e = LiveIn.size(); i != e; ++i) { 429 MachineBasicBlock *MBB = LiveIn[i]->getBlock(); 430 SlotIndex Start = LIS.getMBBStartIdx(MBB); 431 VNInfo *VNI = LiveOutCache[MBB].first; 432 433 // Anything in LiveIn other than IdxMBB is live-through. 434 // In IdxMBB, we should stop at Idx unless the same value is live-out. 435 if (MBB == IdxMBB && IdxVNI != VNI) 436 LI->addRange(LiveRange(Start, Idx.getNextSlot(), IdxVNI)); 437 else 438 LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), VNI)); 439 } 440 } 441 442 VNInfo *SplitEditor::updateSSA(unsigned RegIdx, 443 SmallVectorImpl<MachineDomTreeNode*> &LiveIn, 444 SlotIndex Idx, 445 const MachineBasicBlock *IdxMBB) { 446 // This is essentially the same iterative algorithm that SSAUpdater uses, 447 // except we already have a dominator tree, so we don't have to recompute it. 448 LiveInterval *LI = Edit->get(RegIdx); 449 VNInfo *IdxVNI = 0; 450 unsigned Changes; 451 do { 452 Changes = 0; 453 // Propagate live-out values down the dominator tree, inserting phi-defs 454 // when necessary. Since LiveIn was created by a BFS, going backwards makes 455 // it more likely for us to visit immediate dominators before their 456 // children. 457 for (unsigned i = LiveIn.size(); i; --i) { 458 MachineDomTreeNode *Node = LiveIn[i-1]; 459 MachineBasicBlock *MBB = Node->getBlock(); 460 MachineDomTreeNode *IDom = Node->getIDom(); 461 LiveOutPair IDomValue; 462 463 // We need a live-in value to a block with no immediate dominator? 464 // This is probably an unreachable block that has survived somehow. 465 bool needPHI = !IDom || !LiveOutSeen.test(IDom->getBlock()->getNumber()); 466 467 // IDom dominates all of our predecessors, but it may not be the immediate 468 // dominator. Check if any of them have live-out values that are properly 469 // dominated by IDom. If so, we need a phi-def here. 470 if (!needPHI) { 471 IDomValue = LiveOutCache[IDom->getBlock()]; 472 for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), 473 PE = MBB->pred_end(); PI != PE; ++PI) { 474 LiveOutPair Value = LiveOutCache[*PI]; 475 if (!Value.first || Value.first == IDomValue.first) 476 continue; 477 // This predecessor is carrying something other than IDomValue. 478 // It could be because IDomValue hasn't propagated yet, or it could be 479 // because MBB is in the dominance frontier of that value. 480 if (MDT.dominates(IDom, Value.second)) { 481 needPHI = true; 482 break; 483 } 484 } 485 } 486 487 // Create a phi-def if required. 488 if (needPHI) { 489 ++Changes; 490 SlotIndex Start = LIS.getMBBStartIdx(MBB); 491 VNInfo *VNI = LI->getNextValue(Start, 0, LIS.getVNInfoAllocator()); 492 VNI->setIsPHIDef(true); 493 // We no longer need LI to be live-in. 494 LiveIn.erase(LiveIn.begin()+(i-1)); 495 // Blocks in LiveIn are either IdxMBB, or have a value live-through. 496 if (MBB == IdxMBB) 497 IdxVNI = VNI; 498 // Check if we need to update live-out info. 499 LiveOutPair &LOP = LiveOutCache[MBB]; 500 if (LOP.second == Node || !LiveOutSeen.test(MBB->getNumber())) { 501 // We already have a live-out defined in MBB, so this must be IdxMBB. 502 assert(MBB == IdxMBB && "Adding phi-def to known live-out"); 503 LI->addRange(LiveRange(Start, Idx.getNextSlot(), VNI)); 504 } else { 505 // This phi-def is also live-out, so color the whole block. 506 LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), VNI)); 507 LOP = LiveOutPair(VNI, Node); 508 } 509 } else if (IDomValue.first) { 510 // No phi-def here. Remember incoming value for IdxMBB. 511 if (MBB == IdxMBB) { 512 IdxVNI = IDomValue.first; 513 // IdxMBB need not be live-out. 514 if (!LiveOutSeen.test(MBB->getNumber())) 515 continue; 516 } 517 assert(LiveOutSeen.test(MBB->getNumber()) && "Expected live-out block"); 518 // Propagate IDomValue if needed: 519 // MBB is live-out and doesn't define its own value. 520 LiveOutPair &LOP = LiveOutCache[MBB]; 521 if (LOP.second != Node && LOP.first != IDomValue.first) { 522 ++Changes; 523 LOP = IDomValue; 524 } 525 } 526 } 527 } while (Changes); 528 529 assert(IdxVNI && "Didn't find value for Idx"); 530 return IdxVNI; 531 } 532 533 VNInfo *SplitEditor::defFromParent(unsigned RegIdx, 534 VNInfo *ParentVNI, 535 SlotIndex UseIdx, 536 MachineBasicBlock &MBB, 537 MachineBasicBlock::iterator I) { 538 MachineInstr *CopyMI = 0; 539 SlotIndex Def; 540 LiveInterval *LI = Edit->get(RegIdx); 541 542 // Attempt cheap-as-a-copy rematerialization. 543 LiveRangeEdit::Remat RM(ParentVNI); 544 if (Edit->canRematerializeAt(RM, UseIdx, true, LIS)) { 545 Def = Edit->rematerializeAt(MBB, I, LI->reg, RM, LIS, TII, TRI); 546 } else { 547 // Can't remat, just insert a copy from parent. 548 CopyMI = BuildMI(MBB, I, DebugLoc(), TII.get(TargetOpcode::COPY), LI->reg) 549 .addReg(Edit->getReg()); 550 Def = LIS.InsertMachineInstrInMaps(CopyMI).getDefIndex(); 551 } 552 553 // Define the value in Reg. 554 VNInfo *VNI = defValue(RegIdx, ParentVNI, Def); 555 VNI->setCopy(CopyMI); 556 return VNI; 557 } 558 559 /// Create a new virtual register and live interval. 560 unsigned SplitEditor::openIntv() { 561 // Create the complement as index 0. 562 if (Edit->empty()) 563 Edit->create(LIS, VRM); 564 565 // Create the open interval. 566 OpenIdx = Edit->size(); 567 Edit->create(LIS, VRM); 568 return OpenIdx; 569 } 570 571 void SplitEditor::selectIntv(unsigned Idx) { 572 assert(Idx != 0 && "Cannot select the complement interval"); 573 assert(Idx < Edit->size() && "Can only select previously opened interval"); 574 OpenIdx = Idx; 575 } 576 577 SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) { 578 assert(OpenIdx && "openIntv not called before enterIntvBefore"); 579 DEBUG(dbgs() << " enterIntvBefore " << Idx); 580 Idx = Idx.getBaseIndex(); 581 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 582 if (!ParentVNI) { 583 DEBUG(dbgs() << ": not live\n"); 584 return Idx; 585 } 586 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 587 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 588 assert(MI && "enterIntvBefore called with invalid index"); 589 590 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI); 591 return VNI->def; 592 } 593 594 SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) { 595 assert(OpenIdx && "openIntv not called before enterIntvAtEnd"); 596 SlotIndex End = LIS.getMBBEndIdx(&MBB); 597 SlotIndex Last = End.getPrevSlot(); 598 DEBUG(dbgs() << " enterIntvAtEnd BB#" << MBB.getNumber() << ", " << Last); 599 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last); 600 if (!ParentVNI) { 601 DEBUG(dbgs() << ": not live\n"); 602 return End; 603 } 604 DEBUG(dbgs() << ": valno " << ParentVNI->id); 605 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB, 606 LIS.getLastSplitPoint(Edit->getParent(), &MBB)); 607 RegAssign.insert(VNI->def, End, OpenIdx); 608 DEBUG(dump()); 609 return VNI->def; 610 } 611 612 /// useIntv - indicate that all instructions in MBB should use OpenLI. 613 void SplitEditor::useIntv(const MachineBasicBlock &MBB) { 614 useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB)); 615 } 616 617 void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) { 618 assert(OpenIdx && "openIntv not called before useIntv"); 619 DEBUG(dbgs() << " useIntv [" << Start << ';' << End << "):"); 620 RegAssign.insert(Start, End, OpenIdx); 621 DEBUG(dump()); 622 } 623 624 SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) { 625 assert(OpenIdx && "openIntv not called before leaveIntvAfter"); 626 DEBUG(dbgs() << " leaveIntvAfter " << Idx); 627 628 // The interval must be live beyond the instruction at Idx. 629 Idx = Idx.getBoundaryIndex(); 630 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 631 if (!ParentVNI) { 632 DEBUG(dbgs() << ": not live\n"); 633 return Idx.getNextSlot(); 634 } 635 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 636 637 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 638 assert(MI && "No instruction at index"); 639 VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), 640 llvm::next(MachineBasicBlock::iterator(MI))); 641 return VNI->def; 642 } 643 644 SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) { 645 assert(OpenIdx && "openIntv not called before leaveIntvBefore"); 646 DEBUG(dbgs() << " leaveIntvBefore " << Idx); 647 648 // The interval must be live into the instruction at Idx. 649 Idx = Idx.getBoundaryIndex(); 650 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 651 if (!ParentVNI) { 652 DEBUG(dbgs() << ": not live\n"); 653 return Idx.getNextSlot(); 654 } 655 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 656 657 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 658 assert(MI && "No instruction at index"); 659 VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI); 660 return VNI->def; 661 } 662 663 SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) { 664 assert(OpenIdx && "openIntv not called before leaveIntvAtTop"); 665 SlotIndex Start = LIS.getMBBStartIdx(&MBB); 666 DEBUG(dbgs() << " leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start); 667 668 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start); 669 if (!ParentVNI) { 670 DEBUG(dbgs() << ": not live\n"); 671 return Start; 672 } 673 674 VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB, 675 MBB.SkipPHIsAndLabels(MBB.begin())); 676 RegAssign.insert(Start, VNI->def, OpenIdx); 677 DEBUG(dump()); 678 return VNI->def; 679 } 680 681 void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) { 682 assert(OpenIdx && "openIntv not called before overlapIntv"); 683 const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start); 684 assert(ParentVNI == Edit->getParent().getVNInfoAt(End.getPrevSlot()) && 685 "Parent changes value in extended range"); 686 assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) && 687 "Range cannot span basic blocks"); 688 689 // The complement interval will be extended as needed by extendRange(). 690 if (ParentVNI) 691 markComplexMapped(0, ParentVNI); 692 DEBUG(dbgs() << " overlapIntv [" << Start << ';' << End << "):"); 693 RegAssign.insert(Start, End, OpenIdx); 694 DEBUG(dump()); 695 } 696 697 /// transferSimpleValues - Transfer all simply defined values to the new live 698 /// ranges. 699 /// Values that were rematerialized or that have multiple defs are left alone. 700 bool SplitEditor::transferSimpleValues() { 701 bool Skipped = false; 702 RegAssignMap::const_iterator AssignI = RegAssign.begin(); 703 for (LiveInterval::const_iterator ParentI = Edit->getParent().begin(), 704 ParentE = Edit->getParent().end(); ParentI != ParentE; ++ParentI) { 705 DEBUG(dbgs() << " blit " << *ParentI << ':'); 706 VNInfo *ParentVNI = ParentI->valno; 707 // RegAssign has holes where RegIdx 0 should be used. 708 SlotIndex Start = ParentI->start; 709 AssignI.advanceTo(Start); 710 do { 711 unsigned RegIdx; 712 SlotIndex End = ParentI->end; 713 if (!AssignI.valid()) { 714 RegIdx = 0; 715 } else if (AssignI.start() <= Start) { 716 RegIdx = AssignI.value(); 717 if (AssignI.stop() < End) { 718 End = AssignI.stop(); 719 ++AssignI; 720 } 721 } else { 722 RegIdx = 0; 723 End = std::min(End, AssignI.start()); 724 } 725 DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx); 726 if (VNInfo *VNI = Values.lookup(std::make_pair(RegIdx, ParentVNI->id))) { 727 DEBUG(dbgs() << ':' << VNI->id); 728 Edit->get(RegIdx)->addRange(LiveRange(Start, End, VNI)); 729 } else 730 Skipped = true; 731 Start = End; 732 } while (Start != ParentI->end); 733 DEBUG(dbgs() << '\n'); 734 } 735 return Skipped; 736 } 737 738 void SplitEditor::extendPHIKillRanges() { 739 // Extend live ranges to be live-out for successor PHI values. 740 for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(), 741 E = Edit->getParent().vni_end(); I != E; ++I) { 742 const VNInfo *PHIVNI = *I; 743 if (PHIVNI->isUnused() || !PHIVNI->isPHIDef()) 744 continue; 745 unsigned RegIdx = RegAssign.lookup(PHIVNI->def); 746 MachineBasicBlock *MBB = LIS.getMBBFromIndex(PHIVNI->def); 747 for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), 748 PE = MBB->pred_end(); PI != PE; ++PI) { 749 SlotIndex End = LIS.getMBBEndIdx(*PI).getPrevSlot(); 750 // The predecessor may not have a live-out value. That is OK, like an 751 // undef PHI operand. 752 if (Edit->getParent().liveAt(End)) { 753 assert(RegAssign.lookup(End) == RegIdx && 754 "Different register assignment in phi predecessor"); 755 extendRange(RegIdx, End); 756 } 757 } 758 } 759 } 760 761 /// rewriteAssigned - Rewrite all uses of Edit->getReg(). 762 void SplitEditor::rewriteAssigned(bool ExtendRanges) { 763 for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Edit->getReg()), 764 RE = MRI.reg_end(); RI != RE;) { 765 MachineOperand &MO = RI.getOperand(); 766 MachineInstr *MI = MO.getParent(); 767 ++RI; 768 // LiveDebugVariables should have handled all DBG_VALUE instructions. 769 if (MI->isDebugValue()) { 770 DEBUG(dbgs() << "Zapping " << *MI); 771 MO.setReg(0); 772 continue; 773 } 774 775 // <undef> operands don't really read the register, so just assign them to 776 // the complement. 777 if (MO.isUse() && MO.isUndef()) { 778 MO.setReg(Edit->get(0)->reg); 779 continue; 780 } 781 782 SlotIndex Idx = LIS.getInstructionIndex(MI); 783 if (MO.isDef()) 784 Idx = MO.isEarlyClobber() ? Idx.getUseIndex() : Idx.getDefIndex(); 785 786 // Rewrite to the mapped register at Idx. 787 unsigned RegIdx = RegAssign.lookup(Idx); 788 MO.setReg(Edit->get(RegIdx)->reg); 789 DEBUG(dbgs() << " rewr BB#" << MI->getParent()->getNumber() << '\t' 790 << Idx << ':' << RegIdx << '\t' << *MI); 791 792 // Extend liveness to Idx if the instruction reads reg. 793 if (!ExtendRanges) 794 continue; 795 796 // Skip instructions that don't read Reg. 797 if (MO.isDef()) { 798 if (!MO.getSubReg() && !MO.isEarlyClobber()) 799 continue; 800 // We may wan't to extend a live range for a partial redef, or for a use 801 // tied to an early clobber. 802 Idx = Idx.getPrevSlot(); 803 if (!Edit->getParent().liveAt(Idx)) 804 continue; 805 } else 806 Idx = Idx.getUseIndex(); 807 808 extendRange(RegIdx, Idx); 809 } 810 } 811 812 void SplitEditor::deleteRematVictims() { 813 SmallVector<MachineInstr*, 8> Dead; 814 for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I){ 815 LiveInterval *LI = *I; 816 for (LiveInterval::const_iterator LII = LI->begin(), LIE = LI->end(); 817 LII != LIE; ++LII) { 818 // Dead defs end at the store slot. 819 if (LII->end != LII->valno->def.getNextSlot()) 820 continue; 821 MachineInstr *MI = LIS.getInstructionFromIndex(LII->valno->def); 822 assert(MI && "Missing instruction for dead def"); 823 MI->addRegisterDead(LI->reg, &TRI); 824 825 if (!MI->allDefsAreDead()) 826 continue; 827 828 DEBUG(dbgs() << "All defs dead: " << *MI); 829 Dead.push_back(MI); 830 } 831 } 832 833 if (Dead.empty()) 834 return; 835 836 Edit->eliminateDeadDefs(Dead, LIS, VRM, TII); 837 } 838 839 void SplitEditor::finish() { 840 ++NumFinished; 841 842 // At this point, the live intervals in Edit contain VNInfos corresponding to 843 // the inserted copies. 844 845 // Add the original defs from the parent interval. 846 for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(), 847 E = Edit->getParent().vni_end(); I != E; ++I) { 848 const VNInfo *ParentVNI = *I; 849 if (ParentVNI->isUnused()) 850 continue; 851 unsigned RegIdx = RegAssign.lookup(ParentVNI->def); 852 VNInfo *VNI = defValue(RegIdx, ParentVNI, ParentVNI->def); 853 VNI->setIsPHIDef(ParentVNI->isPHIDef()); 854 VNI->setCopy(ParentVNI->getCopy()); 855 856 // Mark rematted values as complex everywhere to force liveness computation. 857 // The new live ranges may be truncated. 858 if (Edit->didRematerialize(ParentVNI)) 859 for (unsigned i = 0, e = Edit->size(); i != e; ++i) 860 markComplexMapped(i, ParentVNI); 861 } 862 863 #ifndef NDEBUG 864 // Every new interval must have a def by now, otherwise the split is bogus. 865 for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I) 866 assert((*I)->hasAtLeastOneValue() && "Split interval has no value"); 867 #endif 868 869 // Transfer the simply mapped values, check if any are complex. 870 bool Complex = transferSimpleValues(); 871 if (Complex) 872 extendPHIKillRanges(); 873 else 874 ++NumSimple; 875 876 // Rewrite virtual registers, possibly extending ranges. 877 rewriteAssigned(Complex); 878 879 // Delete defs that were rematted everywhere. 880 if (Complex) 881 deleteRematVictims(); 882 883 // Get rid of unused values and set phi-kill flags. 884 for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I) 885 (*I)->RenumberValues(LIS); 886 887 // Now check if any registers were separated into multiple components. 888 ConnectedVNInfoEqClasses ConEQ(LIS); 889 for (unsigned i = 0, e = Edit->size(); i != e; ++i) { 890 // Don't use iterators, they are invalidated by create() below. 891 LiveInterval *li = Edit->get(i); 892 unsigned NumComp = ConEQ.Classify(li); 893 if (NumComp <= 1) 894 continue; 895 DEBUG(dbgs() << " " << NumComp << " components: " << *li << '\n'); 896 SmallVector<LiveInterval*, 8> dups; 897 dups.push_back(li); 898 for (unsigned i = 1; i != NumComp; ++i) 899 dups.push_back(&Edit->create(LIS, VRM)); 900 ConEQ.Distribute(&dups[0], MRI); 901 } 902 903 // Calculate spill weight and allocation hints for new intervals. 904 Edit->calculateRegClassAndHint(VRM.getMachineFunction(), LIS, SA.Loops); 905 } 906 907 908 //===----------------------------------------------------------------------===// 909 // Single Block Splitting 910 //===----------------------------------------------------------------------===// 911 912 /// getMultiUseBlocks - if CurLI has more than one use in a basic block, it 913 /// may be an advantage to split CurLI for the duration of the block. 914 bool SplitAnalysis::getMultiUseBlocks(BlockPtrSet &Blocks) { 915 // If CurLI is local to one block, there is no point to splitting it. 916 if (UseBlocks.size() <= 1) 917 return false; 918 // Add blocks with multiple uses. 919 for (unsigned i = 0, e = UseBlocks.size(); i != e; ++i) { 920 const BlockInfo &BI = UseBlocks[i]; 921 if (BI.FirstUse == BI.LastUse) 922 continue; 923 Blocks.insert(BI.MBB); 924 } 925 return !Blocks.empty(); 926 } 927 928 void SplitEditor::splitSingleBlock(const SplitAnalysis::BlockInfo &BI) { 929 openIntv(); 930 SlotIndex LastSplitPoint = SA.getLastSplitPoint(BI.MBB->getNumber()); 931 SlotIndex SegStart = enterIntvBefore(std::min(BI.FirstUse, 932 LastSplitPoint)); 933 if (!BI.LiveOut || BI.LastUse < LastSplitPoint) { 934 useIntv(SegStart, leaveIntvAfter(BI.LastUse)); 935 } else { 936 // The last use is after the last valid split point. 937 SlotIndex SegStop = leaveIntvBefore(LastSplitPoint); 938 useIntv(SegStart, SegStop); 939 overlapIntv(SegStop, BI.LastUse); 940 } 941 } 942 943 /// splitSingleBlocks - Split CurLI into a separate live interval inside each 944 /// basic block in Blocks. 945 void SplitEditor::splitSingleBlocks(const SplitAnalysis::BlockPtrSet &Blocks) { 946 DEBUG(dbgs() << " splitSingleBlocks for " << Blocks.size() << " blocks.\n"); 947 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA.getUseBlocks(); 948 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 949 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 950 if (Blocks.count(BI.MBB)) 951 splitSingleBlock(BI); 952 } 953 finish(); 954 } 955