1 //===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the SplitAnalysis class as well as mutator functions for 11 // live range splitting. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "SplitKit.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 18 #include "llvm/CodeGen/LiveRangeEdit.h" 19 #include "llvm/CodeGen/MachineDominators.h" 20 #include "llvm/CodeGen/MachineInstrBuilder.h" 21 #include "llvm/CodeGen/MachineLoopInfo.h" 22 #include "llvm/CodeGen/MachineRegisterInfo.h" 23 #include "llvm/CodeGen/VirtRegMap.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/raw_ostream.h" 26 #include "llvm/Target/TargetInstrInfo.h" 27 #include "llvm/Target/TargetMachine.h" 28 29 using namespace llvm; 30 31 #define DEBUG_TYPE "regalloc" 32 33 STATISTIC(NumFinished, "Number of splits finished"); 34 STATISTIC(NumSimple, "Number of splits that were simple"); 35 STATISTIC(NumCopies, "Number of copies inserted for splitting"); 36 STATISTIC(NumRemats, "Number of rematerialized defs for splitting"); 37 STATISTIC(NumRepairs, "Number of invalid live ranges repaired"); 38 39 //===----------------------------------------------------------------------===// 40 // Split Analysis 41 //===----------------------------------------------------------------------===// 42 43 SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm, const LiveIntervals &lis, 44 const MachineLoopInfo &mli) 45 : MF(vrm.getMachineFunction()), VRM(vrm), LIS(lis), Loops(mli), 46 TII(*MF.getSubtarget().getInstrInfo()), CurLI(nullptr), 47 LastSplitPoint(MF.getNumBlockIDs()) {} 48 49 void SplitAnalysis::clear() { 50 UseSlots.clear(); 51 UseBlocks.clear(); 52 ThroughBlocks.clear(); 53 CurLI = nullptr; 54 DidRepairRange = false; 55 } 56 57 SlotIndex SplitAnalysis::computeLastSplitPoint(unsigned Num) { 58 const MachineBasicBlock *MBB = MF.getBlockNumbered(Num); 59 // FIXME: Handle multiple EH pad successors. 60 const MachineBasicBlock *LPad = MBB->getLandingPadSuccessor(); 61 std::pair<SlotIndex, SlotIndex> &LSP = LastSplitPoint[Num]; 62 SlotIndex MBBEnd = LIS.getMBBEndIdx(MBB); 63 64 // Compute split points on the first call. The pair is independent of the 65 // current live interval. 66 if (!LSP.first.isValid()) { 67 MachineBasicBlock::const_iterator FirstTerm = MBB->getFirstTerminator(); 68 if (FirstTerm == MBB->end()) 69 LSP.first = MBBEnd; 70 else 71 LSP.first = LIS.getInstructionIndex(*FirstTerm); 72 73 // If there is a landing pad successor, also find the call instruction. 74 if (!LPad) 75 return LSP.first; 76 // There may not be a call instruction (?) in which case we ignore LPad. 77 LSP.second = LSP.first; 78 for (MachineBasicBlock::const_iterator I = MBB->end(), E = MBB->begin(); 79 I != E;) { 80 --I; 81 if (I->isCall()) { 82 LSP.second = LIS.getInstructionIndex(*I); 83 break; 84 } 85 } 86 } 87 88 // If CurLI is live into a landing pad successor, move the last split point 89 // back to the call that may throw. 90 if (!LPad || !LSP.second || !LIS.isLiveInToMBB(*CurLI, LPad)) 91 return LSP.first; 92 93 // Find the value leaving MBB. 94 const VNInfo *VNI = CurLI->getVNInfoBefore(MBBEnd); 95 if (!VNI) 96 return LSP.first; 97 98 // If the value leaving MBB was defined after the call in MBB, it can't 99 // really be live-in to the landing pad. This can happen if the landing pad 100 // has a PHI, and this register is undef on the exceptional edge. 101 // <rdar://problem/10664933> 102 if (!SlotIndex::isEarlierInstr(VNI->def, LSP.second) && VNI->def < MBBEnd) 103 return LSP.first; 104 105 // Value is properly live-in to the landing pad. 106 // Only allow splits before the call. 107 return LSP.second; 108 } 109 110 MachineBasicBlock::iterator 111 SplitAnalysis::getLastSplitPointIter(MachineBasicBlock *MBB) { 112 SlotIndex LSP = getLastSplitPoint(MBB->getNumber()); 113 if (LSP == LIS.getMBBEndIdx(MBB)) 114 return MBB->end(); 115 return LIS.getInstructionFromIndex(LSP); 116 } 117 118 /// analyzeUses - Count instructions, basic blocks, and loops using CurLI. 119 void SplitAnalysis::analyzeUses() { 120 assert(UseSlots.empty() && "Call clear first"); 121 122 // First get all the defs from the interval values. This provides the correct 123 // slots for early clobbers. 124 for (const VNInfo *VNI : CurLI->valnos) 125 if (!VNI->isPHIDef() && !VNI->isUnused()) 126 UseSlots.push_back(VNI->def); 127 128 // Get use slots form the use-def chain. 129 const MachineRegisterInfo &MRI = MF.getRegInfo(); 130 for (MachineOperand &MO : MRI.use_nodbg_operands(CurLI->reg)) 131 if (!MO.isUndef()) 132 UseSlots.push_back(LIS.getInstructionIndex(*MO.getParent()).getRegSlot()); 133 134 array_pod_sort(UseSlots.begin(), UseSlots.end()); 135 136 // Remove duplicates, keeping the smaller slot for each instruction. 137 // That is what we want for early clobbers. 138 UseSlots.erase(std::unique(UseSlots.begin(), UseSlots.end(), 139 SlotIndex::isSameInstr), 140 UseSlots.end()); 141 142 // Compute per-live block info. 143 if (!calcLiveBlockInfo()) { 144 // FIXME: calcLiveBlockInfo found inconsistencies in the live range. 145 // I am looking at you, RegisterCoalescer! 146 DidRepairRange = true; 147 ++NumRepairs; 148 DEBUG(dbgs() << "*** Fixing inconsistent live interval! ***\n"); 149 const_cast<LiveIntervals&>(LIS) 150 .shrinkToUses(const_cast<LiveInterval*>(CurLI)); 151 UseBlocks.clear(); 152 ThroughBlocks.clear(); 153 bool fixed = calcLiveBlockInfo(); 154 (void)fixed; 155 assert(fixed && "Couldn't fix broken live interval"); 156 } 157 158 DEBUG(dbgs() << "Analyze counted " 159 << UseSlots.size() << " instrs in " 160 << UseBlocks.size() << " blocks, through " 161 << NumThroughBlocks << " blocks.\n"); 162 } 163 164 /// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks 165 /// where CurLI is live. 166 bool SplitAnalysis::calcLiveBlockInfo() { 167 ThroughBlocks.resize(MF.getNumBlockIDs()); 168 NumThroughBlocks = NumGapBlocks = 0; 169 if (CurLI->empty()) 170 return true; 171 172 LiveInterval::const_iterator LVI = CurLI->begin(); 173 LiveInterval::const_iterator LVE = CurLI->end(); 174 175 SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE; 176 UseI = UseSlots.begin(); 177 UseE = UseSlots.end(); 178 179 // Loop over basic blocks where CurLI is live. 180 MachineFunction::iterator MFI = 181 LIS.getMBBFromIndex(LVI->start)->getIterator(); 182 for (;;) { 183 BlockInfo BI; 184 BI.MBB = &*MFI; 185 SlotIndex Start, Stop; 186 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); 187 188 // If the block contains no uses, the range must be live through. At one 189 // point, RegisterCoalescer could create dangling ranges that ended 190 // mid-block. 191 if (UseI == UseE || *UseI >= Stop) { 192 ++NumThroughBlocks; 193 ThroughBlocks.set(BI.MBB->getNumber()); 194 // The range shouldn't end mid-block if there are no uses. This shouldn't 195 // happen. 196 if (LVI->end < Stop) 197 return false; 198 } else { 199 // This block has uses. Find the first and last uses in the block. 200 BI.FirstInstr = *UseI; 201 assert(BI.FirstInstr >= Start); 202 do ++UseI; 203 while (UseI != UseE && *UseI < Stop); 204 BI.LastInstr = UseI[-1]; 205 assert(BI.LastInstr < Stop); 206 207 // LVI is the first live segment overlapping MBB. 208 BI.LiveIn = LVI->start <= Start; 209 210 // When not live in, the first use should be a def. 211 if (!BI.LiveIn) { 212 assert(LVI->start == LVI->valno->def && "Dangling Segment start"); 213 assert(LVI->start == BI.FirstInstr && "First instr should be a def"); 214 BI.FirstDef = BI.FirstInstr; 215 } 216 217 // Look for gaps in the live range. 218 BI.LiveOut = true; 219 while (LVI->end < Stop) { 220 SlotIndex LastStop = LVI->end; 221 if (++LVI == LVE || LVI->start >= Stop) { 222 BI.LiveOut = false; 223 BI.LastInstr = LastStop; 224 break; 225 } 226 227 if (LastStop < LVI->start) { 228 // There is a gap in the live range. Create duplicate entries for the 229 // live-in snippet and the live-out snippet. 230 ++NumGapBlocks; 231 232 // Push the Live-in part. 233 BI.LiveOut = false; 234 UseBlocks.push_back(BI); 235 UseBlocks.back().LastInstr = LastStop; 236 237 // Set up BI for the live-out part. 238 BI.LiveIn = false; 239 BI.LiveOut = true; 240 BI.FirstInstr = BI.FirstDef = LVI->start; 241 } 242 243 // A Segment that starts in the middle of the block must be a def. 244 assert(LVI->start == LVI->valno->def && "Dangling Segment start"); 245 if (!BI.FirstDef) 246 BI.FirstDef = LVI->start; 247 } 248 249 UseBlocks.push_back(BI); 250 251 // LVI is now at LVE or LVI->end >= Stop. 252 if (LVI == LVE) 253 break; 254 } 255 256 // Live segment ends exactly at Stop. Move to the next segment. 257 if (LVI->end == Stop && ++LVI == LVE) 258 break; 259 260 // Pick the next basic block. 261 if (LVI->start < Stop) 262 ++MFI; 263 else 264 MFI = LIS.getMBBFromIndex(LVI->start)->getIterator(); 265 } 266 267 assert(getNumLiveBlocks() == countLiveBlocks(CurLI) && "Bad block count"); 268 return true; 269 } 270 271 unsigned SplitAnalysis::countLiveBlocks(const LiveInterval *cli) const { 272 if (cli->empty()) 273 return 0; 274 LiveInterval *li = const_cast<LiveInterval*>(cli); 275 LiveInterval::iterator LVI = li->begin(); 276 LiveInterval::iterator LVE = li->end(); 277 unsigned Count = 0; 278 279 // Loop over basic blocks where li is live. 280 MachineFunction::const_iterator MFI = 281 LIS.getMBBFromIndex(LVI->start)->getIterator(); 282 SlotIndex Stop = LIS.getMBBEndIdx(&*MFI); 283 for (;;) { 284 ++Count; 285 LVI = li->advanceTo(LVI, Stop); 286 if (LVI == LVE) 287 return Count; 288 do { 289 ++MFI; 290 Stop = LIS.getMBBEndIdx(&*MFI); 291 } while (Stop <= LVI->start); 292 } 293 } 294 295 bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const { 296 unsigned OrigReg = VRM.getOriginal(CurLI->reg); 297 const LiveInterval &Orig = LIS.getInterval(OrigReg); 298 assert(!Orig.empty() && "Splitting empty interval?"); 299 LiveInterval::const_iterator I = Orig.find(Idx); 300 301 // Range containing Idx should begin at Idx. 302 if (I != Orig.end() && I->start <= Idx) 303 return I->start == Idx; 304 305 // Range does not contain Idx, previous must end at Idx. 306 return I != Orig.begin() && (--I)->end == Idx; 307 } 308 309 void SplitAnalysis::analyze(const LiveInterval *li) { 310 clear(); 311 CurLI = li; 312 analyzeUses(); 313 } 314 315 316 //===----------------------------------------------------------------------===// 317 // Split Editor 318 //===----------------------------------------------------------------------===// 319 320 /// Create a new SplitEditor for editing the LiveInterval analyzed by SA. 321 SplitEditor::SplitEditor(SplitAnalysis &sa, LiveIntervals &lis, VirtRegMap &vrm, 322 MachineDominatorTree &mdt, 323 MachineBlockFrequencyInfo &mbfi) 324 : SA(sa), LIS(lis), VRM(vrm), MRI(vrm.getMachineFunction().getRegInfo()), 325 MDT(mdt), TII(*vrm.getMachineFunction().getSubtarget().getInstrInfo()), 326 TRI(*vrm.getMachineFunction().getSubtarget().getRegisterInfo()), 327 MBFI(mbfi), Edit(nullptr), OpenIdx(0), SpillMode(SM_Partition), 328 RegAssign(Allocator) {} 329 330 void SplitEditor::reset(LiveRangeEdit &LRE, ComplementSpillMode SM) { 331 Edit = &LRE; 332 SpillMode = SM; 333 OpenIdx = 0; 334 RegAssign.clear(); 335 Values.clear(); 336 337 // Reset the LiveRangeCalc instances needed for this spill mode. 338 LRCalc[0].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT, 339 &LIS.getVNInfoAllocator()); 340 if (SpillMode) 341 LRCalc[1].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT, 342 &LIS.getVNInfoAllocator()); 343 344 // We don't need an AliasAnalysis since we will only be performing 345 // cheap-as-a-copy remats anyway. 346 Edit->anyRematerializable(nullptr); 347 } 348 349 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 350 LLVM_DUMP_METHOD void SplitEditor::dump() const { 351 if (RegAssign.empty()) { 352 dbgs() << " empty\n"; 353 return; 354 } 355 356 for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I) 357 dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value(); 358 dbgs() << '\n'; 359 } 360 #endif 361 362 VNInfo *SplitEditor::defValue(unsigned RegIdx, 363 const VNInfo *ParentVNI, 364 SlotIndex Idx) { 365 assert(ParentVNI && "Mapping NULL value"); 366 assert(Idx.isValid() && "Invalid SlotIndex"); 367 assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI"); 368 LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx)); 369 370 // Create a new value. 371 VNInfo *VNI = LI->getNextValue(Idx, LIS.getVNInfoAllocator()); 372 373 // Use insert for lookup, so we can add missing values with a second lookup. 374 std::pair<ValueMap::iterator, bool> InsP = 375 Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id), 376 ValueForcePair(VNI, false))); 377 378 // This was the first time (RegIdx, ParentVNI) was mapped. 379 // Keep it as a simple def without any liveness. 380 if (InsP.second) 381 return VNI; 382 383 // If the previous value was a simple mapping, add liveness for it now. 384 if (VNInfo *OldVNI = InsP.first->second.getPointer()) { 385 SlotIndex Def = OldVNI->def; 386 LI->addSegment(LiveInterval::Segment(Def, Def.getDeadSlot(), OldVNI)); 387 // No longer a simple mapping. Switch to a complex, non-forced mapping. 388 InsP.first->second = ValueForcePair(); 389 } 390 391 // This is a complex mapping, add liveness for VNI 392 SlotIndex Def = VNI->def; 393 LI->addSegment(LiveInterval::Segment(Def, Def.getDeadSlot(), VNI)); 394 395 return VNI; 396 } 397 398 void SplitEditor::forceRecompute(unsigned RegIdx, const VNInfo *ParentVNI) { 399 assert(ParentVNI && "Mapping NULL value"); 400 ValueForcePair &VFP = Values[std::make_pair(RegIdx, ParentVNI->id)]; 401 VNInfo *VNI = VFP.getPointer(); 402 403 // ParentVNI was either unmapped or already complex mapped. Either way, just 404 // set the force bit. 405 if (!VNI) { 406 VFP.setInt(true); 407 return; 408 } 409 410 // This was previously a single mapping. Make sure the old def is represented 411 // by a trivial live range. 412 SlotIndex Def = VNI->def; 413 LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx)); 414 LI->addSegment(LiveInterval::Segment(Def, Def.getDeadSlot(), VNI)); 415 // Mark as complex mapped, forced. 416 VFP = ValueForcePair(nullptr, true); 417 } 418 419 VNInfo *SplitEditor::defFromParent(unsigned RegIdx, 420 VNInfo *ParentVNI, 421 SlotIndex UseIdx, 422 MachineBasicBlock &MBB, 423 MachineBasicBlock::iterator I) { 424 MachineInstr *CopyMI = nullptr; 425 SlotIndex Def; 426 LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx)); 427 428 // We may be trying to avoid interference that ends at a deleted instruction, 429 // so always begin RegIdx 0 early and all others late. 430 bool Late = RegIdx != 0; 431 432 // Attempt cheap-as-a-copy rematerialization. 433 LiveRangeEdit::Remat RM(ParentVNI); 434 if (Edit->canRematerializeAt(RM, UseIdx, true)) { 435 Def = Edit->rematerializeAt(MBB, I, LI->reg, RM, TRI, Late); 436 ++NumRemats; 437 } else { 438 // Can't remat, just insert a copy from parent. 439 CopyMI = BuildMI(MBB, I, DebugLoc(), TII.get(TargetOpcode::COPY), LI->reg) 440 .addReg(Edit->getReg()); 441 Def = LIS.getSlotIndexes() 442 ->insertMachineInstrInMaps(*CopyMI, Late) 443 .getRegSlot(); 444 ++NumCopies; 445 } 446 447 // Define the value in Reg. 448 return defValue(RegIdx, ParentVNI, Def); 449 } 450 451 /// Create a new virtual register and live interval. 452 unsigned SplitEditor::openIntv() { 453 // Create the complement as index 0. 454 if (Edit->empty()) 455 Edit->createEmptyInterval(); 456 457 // Create the open interval. 458 OpenIdx = Edit->size(); 459 Edit->createEmptyInterval(); 460 return OpenIdx; 461 } 462 463 void SplitEditor::selectIntv(unsigned Idx) { 464 assert(Idx != 0 && "Cannot select the complement interval"); 465 assert(Idx < Edit->size() && "Can only select previously opened interval"); 466 DEBUG(dbgs() << " selectIntv " << OpenIdx << " -> " << Idx << '\n'); 467 OpenIdx = Idx; 468 } 469 470 SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) { 471 assert(OpenIdx && "openIntv not called before enterIntvBefore"); 472 DEBUG(dbgs() << " enterIntvBefore " << Idx); 473 Idx = Idx.getBaseIndex(); 474 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 475 if (!ParentVNI) { 476 DEBUG(dbgs() << ": not live\n"); 477 return Idx; 478 } 479 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 480 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 481 assert(MI && "enterIntvBefore called with invalid index"); 482 483 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI); 484 return VNI->def; 485 } 486 487 SlotIndex SplitEditor::enterIntvAfter(SlotIndex Idx) { 488 assert(OpenIdx && "openIntv not called before enterIntvAfter"); 489 DEBUG(dbgs() << " enterIntvAfter " << Idx); 490 Idx = Idx.getBoundaryIndex(); 491 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 492 if (!ParentVNI) { 493 DEBUG(dbgs() << ": not live\n"); 494 return Idx; 495 } 496 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 497 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 498 assert(MI && "enterIntvAfter called with invalid index"); 499 500 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), 501 std::next(MachineBasicBlock::iterator(MI))); 502 return VNI->def; 503 } 504 505 SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) { 506 assert(OpenIdx && "openIntv not called before enterIntvAtEnd"); 507 SlotIndex End = LIS.getMBBEndIdx(&MBB); 508 SlotIndex Last = End.getPrevSlot(); 509 DEBUG(dbgs() << " enterIntvAtEnd BB#" << MBB.getNumber() << ", " << Last); 510 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last); 511 if (!ParentVNI) { 512 DEBUG(dbgs() << ": not live\n"); 513 return End; 514 } 515 DEBUG(dbgs() << ": valno " << ParentVNI->id); 516 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB, 517 SA.getLastSplitPointIter(&MBB)); 518 RegAssign.insert(VNI->def, End, OpenIdx); 519 DEBUG(dump()); 520 return VNI->def; 521 } 522 523 /// useIntv - indicate that all instructions in MBB should use OpenLI. 524 void SplitEditor::useIntv(const MachineBasicBlock &MBB) { 525 useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB)); 526 } 527 528 void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) { 529 assert(OpenIdx && "openIntv not called before useIntv"); 530 DEBUG(dbgs() << " useIntv [" << Start << ';' << End << "):"); 531 RegAssign.insert(Start, End, OpenIdx); 532 DEBUG(dump()); 533 } 534 535 SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) { 536 assert(OpenIdx && "openIntv not called before leaveIntvAfter"); 537 DEBUG(dbgs() << " leaveIntvAfter " << Idx); 538 539 // The interval must be live beyond the instruction at Idx. 540 SlotIndex Boundary = Idx.getBoundaryIndex(); 541 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Boundary); 542 if (!ParentVNI) { 543 DEBUG(dbgs() << ": not live\n"); 544 return Boundary.getNextSlot(); 545 } 546 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 547 MachineInstr *MI = LIS.getInstructionFromIndex(Boundary); 548 assert(MI && "No instruction at index"); 549 550 // In spill mode, make live ranges as short as possible by inserting the copy 551 // before MI. This is only possible if that instruction doesn't redefine the 552 // value. The inserted COPY is not a kill, and we don't need to recompute 553 // the source live range. The spiller also won't try to hoist this copy. 554 if (SpillMode && !SlotIndex::isSameInstr(ParentVNI->def, Idx) && 555 MI->readsVirtualRegister(Edit->getReg())) { 556 forceRecompute(0, ParentVNI); 557 defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI); 558 return Idx; 559 } 560 561 VNInfo *VNI = defFromParent(0, ParentVNI, Boundary, *MI->getParent(), 562 std::next(MachineBasicBlock::iterator(MI))); 563 return VNI->def; 564 } 565 566 SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) { 567 assert(OpenIdx && "openIntv not called before leaveIntvBefore"); 568 DEBUG(dbgs() << " leaveIntvBefore " << Idx); 569 570 // The interval must be live into the instruction at Idx. 571 Idx = Idx.getBaseIndex(); 572 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 573 if (!ParentVNI) { 574 DEBUG(dbgs() << ": not live\n"); 575 return Idx.getNextSlot(); 576 } 577 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 578 579 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 580 assert(MI && "No instruction at index"); 581 VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI); 582 return VNI->def; 583 } 584 585 SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) { 586 assert(OpenIdx && "openIntv not called before leaveIntvAtTop"); 587 SlotIndex Start = LIS.getMBBStartIdx(&MBB); 588 DEBUG(dbgs() << " leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start); 589 590 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start); 591 if (!ParentVNI) { 592 DEBUG(dbgs() << ": not live\n"); 593 return Start; 594 } 595 596 VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB, 597 MBB.SkipPHIsAndLabels(MBB.begin())); 598 RegAssign.insert(Start, VNI->def, OpenIdx); 599 DEBUG(dump()); 600 return VNI->def; 601 } 602 603 void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) { 604 assert(OpenIdx && "openIntv not called before overlapIntv"); 605 const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start); 606 assert(ParentVNI == Edit->getParent().getVNInfoBefore(End) && 607 "Parent changes value in extended range"); 608 assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) && 609 "Range cannot span basic blocks"); 610 611 // The complement interval will be extended as needed by LRCalc.extend(). 612 if (ParentVNI) 613 forceRecompute(0, ParentVNI); 614 DEBUG(dbgs() << " overlapIntv [" << Start << ';' << End << "):"); 615 RegAssign.insert(Start, End, OpenIdx); 616 DEBUG(dump()); 617 } 618 619 //===----------------------------------------------------------------------===// 620 // Spill modes 621 //===----------------------------------------------------------------------===// 622 623 void SplitEditor::removeBackCopies(SmallVectorImpl<VNInfo*> &Copies) { 624 LiveInterval *LI = &LIS.getInterval(Edit->get(0)); 625 DEBUG(dbgs() << "Removing " << Copies.size() << " back-copies.\n"); 626 RegAssignMap::iterator AssignI; 627 AssignI.setMap(RegAssign); 628 629 for (unsigned i = 0, e = Copies.size(); i != e; ++i) { 630 SlotIndex Def = Copies[i]->def; 631 MachineInstr *MI = LIS.getInstructionFromIndex(Def); 632 assert(MI && "No instruction for back-copy"); 633 634 MachineBasicBlock *MBB = MI->getParent(); 635 MachineBasicBlock::iterator MBBI(MI); 636 bool AtBegin; 637 do AtBegin = MBBI == MBB->begin(); 638 while (!AtBegin && (--MBBI)->isDebugValue()); 639 640 DEBUG(dbgs() << "Removing " << Def << '\t' << *MI); 641 LIS.removeVRegDefAt(*LI, Def); 642 LIS.RemoveMachineInstrFromMaps(*MI); 643 MI->eraseFromParent(); 644 645 // Adjust RegAssign if a register assignment is killed at Def. We want to 646 // avoid calculating the live range of the source register if possible. 647 AssignI.find(Def.getPrevSlot()); 648 if (!AssignI.valid() || AssignI.start() >= Def) 649 continue; 650 // If MI doesn't kill the assigned register, just leave it. 651 if (AssignI.stop() != Def) 652 continue; 653 unsigned RegIdx = AssignI.value(); 654 if (AtBegin || !MBBI->readsVirtualRegister(Edit->getReg())) { 655 DEBUG(dbgs() << " cannot find simple kill of RegIdx " << RegIdx << '\n'); 656 forceRecompute(RegIdx, Edit->getParent().getVNInfoAt(Def)); 657 } else { 658 SlotIndex Kill = LIS.getInstructionIndex(*MBBI).getRegSlot(); 659 DEBUG(dbgs() << " move kill to " << Kill << '\t' << *MBBI); 660 AssignI.setStop(Kill); 661 } 662 } 663 } 664 665 MachineBasicBlock* 666 SplitEditor::findShallowDominator(MachineBasicBlock *MBB, 667 MachineBasicBlock *DefMBB) { 668 if (MBB == DefMBB) 669 return MBB; 670 assert(MDT.dominates(DefMBB, MBB) && "MBB must be dominated by the def."); 671 672 const MachineLoopInfo &Loops = SA.Loops; 673 const MachineLoop *DefLoop = Loops.getLoopFor(DefMBB); 674 MachineDomTreeNode *DefDomNode = MDT[DefMBB]; 675 676 // Best candidate so far. 677 MachineBasicBlock *BestMBB = MBB; 678 unsigned BestDepth = UINT_MAX; 679 680 for (;;) { 681 const MachineLoop *Loop = Loops.getLoopFor(MBB); 682 683 // MBB isn't in a loop, it doesn't get any better. All dominators have a 684 // higher frequency by definition. 685 if (!Loop) { 686 DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#" 687 << MBB->getNumber() << " at depth 0\n"); 688 return MBB; 689 } 690 691 // We'll never be able to exit the DefLoop. 692 if (Loop == DefLoop) { 693 DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#" 694 << MBB->getNumber() << " in the same loop\n"); 695 return MBB; 696 } 697 698 // Least busy dominator seen so far. 699 unsigned Depth = Loop->getLoopDepth(); 700 if (Depth < BestDepth) { 701 BestMBB = MBB; 702 BestDepth = Depth; 703 DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#" 704 << MBB->getNumber() << " at depth " << Depth << '\n'); 705 } 706 707 // Leave loop by going to the immediate dominator of the loop header. 708 // This is a bigger stride than simply walking up the dominator tree. 709 MachineDomTreeNode *IDom = MDT[Loop->getHeader()]->getIDom(); 710 711 // Too far up the dominator tree? 712 if (!IDom || !MDT.dominates(DefDomNode, IDom)) 713 return BestMBB; 714 715 MBB = IDom->getBlock(); 716 } 717 } 718 719 void SplitEditor::hoistCopiesForSize() { 720 // Get the complement interval, always RegIdx 0. 721 LiveInterval *LI = &LIS.getInterval(Edit->get(0)); 722 LiveInterval *Parent = &Edit->getParent(); 723 724 // Track the nearest common dominator for all back-copies for each ParentVNI, 725 // indexed by ParentVNI->id. 726 typedef std::pair<MachineBasicBlock*, SlotIndex> DomPair; 727 SmallVector<DomPair, 8> NearestDom(Parent->getNumValNums()); 728 729 // Find the nearest common dominator for parent values with multiple 730 // back-copies. If a single back-copy dominates, put it in DomPair.second. 731 for (VNInfo *VNI : LI->valnos) { 732 if (VNI->isUnused()) 733 continue; 734 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def); 735 assert(ParentVNI && "Parent not live at complement def"); 736 737 // Don't hoist remats. The complement is probably going to disappear 738 // completely anyway. 739 if (Edit->didRematerialize(ParentVNI)) 740 continue; 741 742 MachineBasicBlock *ValMBB = LIS.getMBBFromIndex(VNI->def); 743 DomPair &Dom = NearestDom[ParentVNI->id]; 744 745 // Keep directly defined parent values. This is either a PHI or an 746 // instruction in the complement range. All other copies of ParentVNI 747 // should be eliminated. 748 if (VNI->def == ParentVNI->def) { 749 DEBUG(dbgs() << "Direct complement def at " << VNI->def << '\n'); 750 Dom = DomPair(ValMBB, VNI->def); 751 continue; 752 } 753 // Skip the singly mapped values. There is nothing to gain from hoisting a 754 // single back-copy. 755 if (Values.lookup(std::make_pair(0, ParentVNI->id)).getPointer()) { 756 DEBUG(dbgs() << "Single complement def at " << VNI->def << '\n'); 757 continue; 758 } 759 760 if (!Dom.first) { 761 // First time we see ParentVNI. VNI dominates itself. 762 Dom = DomPair(ValMBB, VNI->def); 763 } else if (Dom.first == ValMBB) { 764 // Two defs in the same block. Pick the earlier def. 765 if (!Dom.second.isValid() || VNI->def < Dom.second) 766 Dom.second = VNI->def; 767 } else { 768 // Different basic blocks. Check if one dominates. 769 MachineBasicBlock *Near = 770 MDT.findNearestCommonDominator(Dom.first, ValMBB); 771 if (Near == ValMBB) 772 // Def ValMBB dominates. 773 Dom = DomPair(ValMBB, VNI->def); 774 else if (Near != Dom.first) 775 // None dominate. Hoist to common dominator, need new def. 776 Dom = DomPair(Near, SlotIndex()); 777 } 778 779 DEBUG(dbgs() << "Multi-mapped complement " << VNI->id << '@' << VNI->def 780 << " for parent " << ParentVNI->id << '@' << ParentVNI->def 781 << " hoist to BB#" << Dom.first->getNumber() << ' ' 782 << Dom.second << '\n'); 783 } 784 785 // Insert the hoisted copies. 786 for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) { 787 DomPair &Dom = NearestDom[i]; 788 if (!Dom.first || Dom.second.isValid()) 789 continue; 790 // This value needs a hoisted copy inserted at the end of Dom.first. 791 VNInfo *ParentVNI = Parent->getValNumInfo(i); 792 MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(ParentVNI->def); 793 // Get a less loopy dominator than Dom.first. 794 Dom.first = findShallowDominator(Dom.first, DefMBB); 795 SlotIndex Last = LIS.getMBBEndIdx(Dom.first).getPrevSlot(); 796 Dom.second = 797 defFromParent(0, ParentVNI, Last, *Dom.first, 798 SA.getLastSplitPointIter(Dom.first))->def; 799 } 800 801 // Remove redundant back-copies that are now known to be dominated by another 802 // def with the same value. 803 SmallVector<VNInfo*, 8> BackCopies; 804 for (VNInfo *VNI : LI->valnos) { 805 if (VNI->isUnused()) 806 continue; 807 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def); 808 const DomPair &Dom = NearestDom[ParentVNI->id]; 809 if (!Dom.first || Dom.second == VNI->def) 810 continue; 811 BackCopies.push_back(VNI); 812 forceRecompute(0, ParentVNI); 813 } 814 removeBackCopies(BackCopies); 815 } 816 817 818 /// transferValues - Transfer all possible values to the new live ranges. 819 /// Values that were rematerialized are left alone, they need LRCalc.extend(). 820 bool SplitEditor::transferValues() { 821 bool Skipped = false; 822 RegAssignMap::const_iterator AssignI = RegAssign.begin(); 823 for (const LiveRange::Segment &S : Edit->getParent()) { 824 DEBUG(dbgs() << " blit " << S << ':'); 825 VNInfo *ParentVNI = S.valno; 826 // RegAssign has holes where RegIdx 0 should be used. 827 SlotIndex Start = S.start; 828 AssignI.advanceTo(Start); 829 do { 830 unsigned RegIdx; 831 SlotIndex End = S.end; 832 if (!AssignI.valid()) { 833 RegIdx = 0; 834 } else if (AssignI.start() <= Start) { 835 RegIdx = AssignI.value(); 836 if (AssignI.stop() < End) { 837 End = AssignI.stop(); 838 ++AssignI; 839 } 840 } else { 841 RegIdx = 0; 842 End = std::min(End, AssignI.start()); 843 } 844 845 // The interval [Start;End) is continuously mapped to RegIdx, ParentVNI. 846 DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx); 847 LiveRange &LR = LIS.getInterval(Edit->get(RegIdx)); 848 849 // Check for a simply defined value that can be blitted directly. 850 ValueForcePair VFP = Values.lookup(std::make_pair(RegIdx, ParentVNI->id)); 851 if (VNInfo *VNI = VFP.getPointer()) { 852 DEBUG(dbgs() << ':' << VNI->id); 853 LR.addSegment(LiveInterval::Segment(Start, End, VNI)); 854 Start = End; 855 continue; 856 } 857 858 // Skip values with forced recomputation. 859 if (VFP.getInt()) { 860 DEBUG(dbgs() << "(recalc)"); 861 Skipped = true; 862 Start = End; 863 continue; 864 } 865 866 LiveRangeCalc &LRC = getLRCalc(RegIdx); 867 868 // This value has multiple defs in RegIdx, but it wasn't rematerialized, 869 // so the live range is accurate. Add live-in blocks in [Start;End) to the 870 // LiveInBlocks. 871 MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start)->getIterator(); 872 SlotIndex BlockStart, BlockEnd; 873 std::tie(BlockStart, BlockEnd) = LIS.getSlotIndexes()->getMBBRange(&*MBB); 874 875 // The first block may be live-in, or it may have its own def. 876 if (Start != BlockStart) { 877 VNInfo *VNI = LR.extendInBlock(BlockStart, std::min(BlockEnd, End)); 878 assert(VNI && "Missing def for complex mapped value"); 879 DEBUG(dbgs() << ':' << VNI->id << "*BB#" << MBB->getNumber()); 880 // MBB has its own def. Is it also live-out? 881 if (BlockEnd <= End) 882 LRC.setLiveOutValue(&*MBB, VNI); 883 884 // Skip to the next block for live-in. 885 ++MBB; 886 BlockStart = BlockEnd; 887 } 888 889 // Handle the live-in blocks covered by [Start;End). 890 assert(Start <= BlockStart && "Expected live-in block"); 891 while (BlockStart < End) { 892 DEBUG(dbgs() << ">BB#" << MBB->getNumber()); 893 BlockEnd = LIS.getMBBEndIdx(&*MBB); 894 if (BlockStart == ParentVNI->def) { 895 // This block has the def of a parent PHI, so it isn't live-in. 896 assert(ParentVNI->isPHIDef() && "Non-phi defined at block start?"); 897 VNInfo *VNI = LR.extendInBlock(BlockStart, std::min(BlockEnd, End)); 898 assert(VNI && "Missing def for complex mapped parent PHI"); 899 if (End >= BlockEnd) 900 LRC.setLiveOutValue(&*MBB, VNI); // Live-out as well. 901 } else { 902 // This block needs a live-in value. The last block covered may not 903 // be live-out. 904 if (End < BlockEnd) 905 LRC.addLiveInBlock(LR, MDT[&*MBB], End); 906 else { 907 // Live-through, and we don't know the value. 908 LRC.addLiveInBlock(LR, MDT[&*MBB]); 909 LRC.setLiveOutValue(&*MBB, nullptr); 910 } 911 } 912 BlockStart = BlockEnd; 913 ++MBB; 914 } 915 Start = End; 916 } while (Start != S.end); 917 DEBUG(dbgs() << '\n'); 918 } 919 920 LRCalc[0].calculateValues(); 921 if (SpillMode) 922 LRCalc[1].calculateValues(); 923 924 return Skipped; 925 } 926 927 void SplitEditor::extendPHIKillRanges() { 928 // Extend live ranges to be live-out for successor PHI values. 929 for (const VNInfo *PHIVNI : Edit->getParent().valnos) { 930 if (PHIVNI->isUnused() || !PHIVNI->isPHIDef()) 931 continue; 932 unsigned RegIdx = RegAssign.lookup(PHIVNI->def); 933 LiveRange &LR = LIS.getInterval(Edit->get(RegIdx)); 934 LiveRangeCalc &LRC = getLRCalc(RegIdx); 935 MachineBasicBlock *MBB = LIS.getMBBFromIndex(PHIVNI->def); 936 for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), 937 PE = MBB->pred_end(); PI != PE; ++PI) { 938 SlotIndex End = LIS.getMBBEndIdx(*PI); 939 SlotIndex LastUse = End.getPrevSlot(); 940 // The predecessor may not have a live-out value. That is OK, like an 941 // undef PHI operand. 942 if (Edit->getParent().liveAt(LastUse)) { 943 assert(RegAssign.lookup(LastUse) == RegIdx && 944 "Different register assignment in phi predecessor"); 945 LRC.extend(LR, End); 946 } 947 } 948 } 949 } 950 951 /// rewriteAssigned - Rewrite all uses of Edit->getReg(). 952 void SplitEditor::rewriteAssigned(bool ExtendRanges) { 953 for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Edit->getReg()), 954 RE = MRI.reg_end(); RI != RE;) { 955 MachineOperand &MO = *RI; 956 MachineInstr *MI = MO.getParent(); 957 ++RI; 958 // LiveDebugVariables should have handled all DBG_VALUE instructions. 959 if (MI->isDebugValue()) { 960 DEBUG(dbgs() << "Zapping " << *MI); 961 MO.setReg(0); 962 continue; 963 } 964 965 // <undef> operands don't really read the register, so it doesn't matter 966 // which register we choose. When the use operand is tied to a def, we must 967 // use the same register as the def, so just do that always. 968 SlotIndex Idx = LIS.getInstructionIndex(*MI); 969 if (MO.isDef() || MO.isUndef()) 970 Idx = Idx.getRegSlot(MO.isEarlyClobber()); 971 972 // Rewrite to the mapped register at Idx. 973 unsigned RegIdx = RegAssign.lookup(Idx); 974 LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx)); 975 MO.setReg(LI->reg); 976 DEBUG(dbgs() << " rewr BB#" << MI->getParent()->getNumber() << '\t' 977 << Idx << ':' << RegIdx << '\t' << *MI); 978 979 // Extend liveness to Idx if the instruction reads reg. 980 if (!ExtendRanges || MO.isUndef()) 981 continue; 982 983 // Skip instructions that don't read Reg. 984 if (MO.isDef()) { 985 if (!MO.getSubReg() && !MO.isEarlyClobber()) 986 continue; 987 // We may wan't to extend a live range for a partial redef, or for a use 988 // tied to an early clobber. 989 Idx = Idx.getPrevSlot(); 990 if (!Edit->getParent().liveAt(Idx)) 991 continue; 992 } else 993 Idx = Idx.getRegSlot(true); 994 995 getLRCalc(RegIdx).extend(*LI, Idx.getNextSlot()); 996 } 997 } 998 999 void SplitEditor::deleteRematVictims() { 1000 SmallVector<MachineInstr*, 8> Dead; 1001 for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I){ 1002 LiveInterval *LI = &LIS.getInterval(*I); 1003 for (const LiveRange::Segment &S : LI->segments) { 1004 // Dead defs end at the dead slot. 1005 if (S.end != S.valno->def.getDeadSlot()) 1006 continue; 1007 MachineInstr *MI = LIS.getInstructionFromIndex(S.valno->def); 1008 assert(MI && "Missing instruction for dead def"); 1009 MI->addRegisterDead(LI->reg, &TRI); 1010 1011 if (!MI->allDefsAreDead()) 1012 continue; 1013 1014 DEBUG(dbgs() << "All defs dead: " << *MI); 1015 Dead.push_back(MI); 1016 } 1017 } 1018 1019 if (Dead.empty()) 1020 return; 1021 1022 Edit->eliminateDeadDefs(Dead); 1023 } 1024 1025 void SplitEditor::finish(SmallVectorImpl<unsigned> *LRMap) { 1026 ++NumFinished; 1027 1028 // At this point, the live intervals in Edit contain VNInfos corresponding to 1029 // the inserted copies. 1030 1031 // Add the original defs from the parent interval. 1032 for (const VNInfo *ParentVNI : Edit->getParent().valnos) { 1033 if (ParentVNI->isUnused()) 1034 continue; 1035 unsigned RegIdx = RegAssign.lookup(ParentVNI->def); 1036 defValue(RegIdx, ParentVNI, ParentVNI->def); 1037 1038 // Force rematted values to be recomputed everywhere. 1039 // The new live ranges may be truncated. 1040 if (Edit->didRematerialize(ParentVNI)) 1041 for (unsigned i = 0, e = Edit->size(); i != e; ++i) 1042 forceRecompute(i, ParentVNI); 1043 } 1044 1045 // Hoist back-copies to the complement interval when in spill mode. 1046 switch (SpillMode) { 1047 case SM_Partition: 1048 // Leave all back-copies as is. 1049 break; 1050 case SM_Size: 1051 hoistCopiesForSize(); 1052 break; 1053 case SM_Speed: 1054 llvm_unreachable("Spill mode 'speed' not implemented yet"); 1055 } 1056 1057 // Transfer the simply mapped values, check if any are skipped. 1058 bool Skipped = transferValues(); 1059 if (Skipped) 1060 extendPHIKillRanges(); 1061 else 1062 ++NumSimple; 1063 1064 // Rewrite virtual registers, possibly extending ranges. 1065 rewriteAssigned(Skipped); 1066 1067 // Delete defs that were rematted everywhere. 1068 if (Skipped) 1069 deleteRematVictims(); 1070 1071 // Get rid of unused values and set phi-kill flags. 1072 for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I) { 1073 LiveInterval &LI = LIS.getInterval(*I); 1074 LI.RenumberValues(); 1075 } 1076 1077 // Provide a reverse mapping from original indices to Edit ranges. 1078 if (LRMap) { 1079 LRMap->clear(); 1080 for (unsigned i = 0, e = Edit->size(); i != e; ++i) 1081 LRMap->push_back(i); 1082 } 1083 1084 // Now check if any registers were separated into multiple components. 1085 ConnectedVNInfoEqClasses ConEQ(LIS); 1086 for (unsigned i = 0, e = Edit->size(); i != e; ++i) { 1087 // Don't use iterators, they are invalidated by create() below. 1088 unsigned VReg = Edit->get(i); 1089 LiveInterval &LI = LIS.getInterval(VReg); 1090 SmallVector<LiveInterval*, 8> SplitLIs; 1091 LIS.splitSeparateComponents(LI, SplitLIs); 1092 unsigned Original = VRM.getOriginal(VReg); 1093 for (LiveInterval *SplitLI : SplitLIs) 1094 VRM.setIsSplitFromReg(SplitLI->reg, Original); 1095 1096 // The new intervals all map back to i. 1097 if (LRMap) 1098 LRMap->resize(Edit->size(), i); 1099 } 1100 1101 // Calculate spill weight and allocation hints for new intervals. 1102 Edit->calculateRegClassAndHint(VRM.getMachineFunction(), SA.Loops, MBFI); 1103 1104 assert(!LRMap || LRMap->size() == Edit->size()); 1105 } 1106 1107 1108 //===----------------------------------------------------------------------===// 1109 // Single Block Splitting 1110 //===----------------------------------------------------------------------===// 1111 1112 bool SplitAnalysis::shouldSplitSingleBlock(const BlockInfo &BI, 1113 bool SingleInstrs) const { 1114 // Always split for multiple instructions. 1115 if (!BI.isOneInstr()) 1116 return true; 1117 // Don't split for single instructions unless explicitly requested. 1118 if (!SingleInstrs) 1119 return false; 1120 // Splitting a live-through range always makes progress. 1121 if (BI.LiveIn && BI.LiveOut) 1122 return true; 1123 // No point in isolating a copy. It has no register class constraints. 1124 if (LIS.getInstructionFromIndex(BI.FirstInstr)->isCopyLike()) 1125 return false; 1126 // Finally, don't isolate an end point that was created by earlier splits. 1127 return isOriginalEndpoint(BI.FirstInstr); 1128 } 1129 1130 void SplitEditor::splitSingleBlock(const SplitAnalysis::BlockInfo &BI) { 1131 openIntv(); 1132 SlotIndex LastSplitPoint = SA.getLastSplitPoint(BI.MBB->getNumber()); 1133 SlotIndex SegStart = enterIntvBefore(std::min(BI.FirstInstr, 1134 LastSplitPoint)); 1135 if (!BI.LiveOut || BI.LastInstr < LastSplitPoint) { 1136 useIntv(SegStart, leaveIntvAfter(BI.LastInstr)); 1137 } else { 1138 // The last use is after the last valid split point. 1139 SlotIndex SegStop = leaveIntvBefore(LastSplitPoint); 1140 useIntv(SegStart, SegStop); 1141 overlapIntv(SegStop, BI.LastInstr); 1142 } 1143 } 1144 1145 1146 //===----------------------------------------------------------------------===// 1147 // Global Live Range Splitting Support 1148 //===----------------------------------------------------------------------===// 1149 1150 // These methods support a method of global live range splitting that uses a 1151 // global algorithm to decide intervals for CFG edges. They will insert split 1152 // points and color intervals in basic blocks while avoiding interference. 1153 // 1154 // Note that splitSingleBlock is also useful for blocks where both CFG edges 1155 // are on the stack. 1156 1157 void SplitEditor::splitLiveThroughBlock(unsigned MBBNum, 1158 unsigned IntvIn, SlotIndex LeaveBefore, 1159 unsigned IntvOut, SlotIndex EnterAfter){ 1160 SlotIndex Start, Stop; 1161 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(MBBNum); 1162 1163 DEBUG(dbgs() << "BB#" << MBBNum << " [" << Start << ';' << Stop 1164 << ") intf " << LeaveBefore << '-' << EnterAfter 1165 << ", live-through " << IntvIn << " -> " << IntvOut); 1166 1167 assert((IntvIn || IntvOut) && "Use splitSingleBlock for isolated blocks"); 1168 1169 assert((!LeaveBefore || LeaveBefore < Stop) && "Interference after block"); 1170 assert((!IntvIn || !LeaveBefore || LeaveBefore > Start) && "Impossible intf"); 1171 assert((!EnterAfter || EnterAfter >= Start) && "Interference before block"); 1172 1173 MachineBasicBlock *MBB = VRM.getMachineFunction().getBlockNumbered(MBBNum); 1174 1175 if (!IntvOut) { 1176 DEBUG(dbgs() << ", spill on entry.\n"); 1177 // 1178 // <<<<<<<<< Possible LeaveBefore interference. 1179 // |-----------| Live through. 1180 // -____________ Spill on entry. 1181 // 1182 selectIntv(IntvIn); 1183 SlotIndex Idx = leaveIntvAtTop(*MBB); 1184 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1185 (void)Idx; 1186 return; 1187 } 1188 1189 if (!IntvIn) { 1190 DEBUG(dbgs() << ", reload on exit.\n"); 1191 // 1192 // >>>>>>> Possible EnterAfter interference. 1193 // |-----------| Live through. 1194 // ___________-- Reload on exit. 1195 // 1196 selectIntv(IntvOut); 1197 SlotIndex Idx = enterIntvAtEnd(*MBB); 1198 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1199 (void)Idx; 1200 return; 1201 } 1202 1203 if (IntvIn == IntvOut && !LeaveBefore && !EnterAfter) { 1204 DEBUG(dbgs() << ", straight through.\n"); 1205 // 1206 // |-----------| Live through. 1207 // ------------- Straight through, same intv, no interference. 1208 // 1209 selectIntv(IntvOut); 1210 useIntv(Start, Stop); 1211 return; 1212 } 1213 1214 // We cannot legally insert splits after LSP. 1215 SlotIndex LSP = SA.getLastSplitPoint(MBBNum); 1216 assert((!IntvOut || !EnterAfter || EnterAfter < LSP) && "Impossible intf"); 1217 1218 if (IntvIn != IntvOut && (!LeaveBefore || !EnterAfter || 1219 LeaveBefore.getBaseIndex() > EnterAfter.getBoundaryIndex())) { 1220 DEBUG(dbgs() << ", switch avoiding interference.\n"); 1221 // 1222 // >>>> <<<< Non-overlapping EnterAfter/LeaveBefore interference. 1223 // |-----------| Live through. 1224 // ------======= Switch intervals between interference. 1225 // 1226 selectIntv(IntvOut); 1227 SlotIndex Idx; 1228 if (LeaveBefore && LeaveBefore < LSP) { 1229 Idx = enterIntvBefore(LeaveBefore); 1230 useIntv(Idx, Stop); 1231 } else { 1232 Idx = enterIntvAtEnd(*MBB); 1233 } 1234 selectIntv(IntvIn); 1235 useIntv(Start, Idx); 1236 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1237 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1238 return; 1239 } 1240 1241 DEBUG(dbgs() << ", create local intv for interference.\n"); 1242 // 1243 // >>><><><><<<< Overlapping EnterAfter/LeaveBefore interference. 1244 // |-----------| Live through. 1245 // ==---------== Switch intervals before/after interference. 1246 // 1247 assert(LeaveBefore <= EnterAfter && "Missed case"); 1248 1249 selectIntv(IntvOut); 1250 SlotIndex Idx = enterIntvAfter(EnterAfter); 1251 useIntv(Idx, Stop); 1252 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1253 1254 selectIntv(IntvIn); 1255 Idx = leaveIntvBefore(LeaveBefore); 1256 useIntv(Start, Idx); 1257 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1258 } 1259 1260 1261 void SplitEditor::splitRegInBlock(const SplitAnalysis::BlockInfo &BI, 1262 unsigned IntvIn, SlotIndex LeaveBefore) { 1263 SlotIndex Start, Stop; 1264 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); 1265 1266 DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " [" << Start << ';' << Stop 1267 << "), uses " << BI.FirstInstr << '-' << BI.LastInstr 1268 << ", reg-in " << IntvIn << ", leave before " << LeaveBefore 1269 << (BI.LiveOut ? ", stack-out" : ", killed in block")); 1270 1271 assert(IntvIn && "Must have register in"); 1272 assert(BI.LiveIn && "Must be live-in"); 1273 assert((!LeaveBefore || LeaveBefore > Start) && "Bad interference"); 1274 1275 if (!BI.LiveOut && (!LeaveBefore || LeaveBefore >= BI.LastInstr)) { 1276 DEBUG(dbgs() << " before interference.\n"); 1277 // 1278 // <<< Interference after kill. 1279 // |---o---x | Killed in block. 1280 // ========= Use IntvIn everywhere. 1281 // 1282 selectIntv(IntvIn); 1283 useIntv(Start, BI.LastInstr); 1284 return; 1285 } 1286 1287 SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber()); 1288 1289 if (!LeaveBefore || LeaveBefore > BI.LastInstr.getBoundaryIndex()) { 1290 // 1291 // <<< Possible interference after last use. 1292 // |---o---o---| Live-out on stack. 1293 // =========____ Leave IntvIn after last use. 1294 // 1295 // < Interference after last use. 1296 // |---o---o--o| Live-out on stack, late last use. 1297 // ============ Copy to stack after LSP, overlap IntvIn. 1298 // \_____ Stack interval is live-out. 1299 // 1300 if (BI.LastInstr < LSP) { 1301 DEBUG(dbgs() << ", spill after last use before interference.\n"); 1302 selectIntv(IntvIn); 1303 SlotIndex Idx = leaveIntvAfter(BI.LastInstr); 1304 useIntv(Start, Idx); 1305 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1306 } else { 1307 DEBUG(dbgs() << ", spill before last split point.\n"); 1308 selectIntv(IntvIn); 1309 SlotIndex Idx = leaveIntvBefore(LSP); 1310 overlapIntv(Idx, BI.LastInstr); 1311 useIntv(Start, Idx); 1312 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1313 } 1314 return; 1315 } 1316 1317 // The interference is overlapping somewhere we wanted to use IntvIn. That 1318 // means we need to create a local interval that can be allocated a 1319 // different register. 1320 unsigned LocalIntv = openIntv(); 1321 (void)LocalIntv; 1322 DEBUG(dbgs() << ", creating local interval " << LocalIntv << ".\n"); 1323 1324 if (!BI.LiveOut || BI.LastInstr < LSP) { 1325 // 1326 // <<<<<<< Interference overlapping uses. 1327 // |---o---o---| Live-out on stack. 1328 // =====----____ Leave IntvIn before interference, then spill. 1329 // 1330 SlotIndex To = leaveIntvAfter(BI.LastInstr); 1331 SlotIndex From = enterIntvBefore(LeaveBefore); 1332 useIntv(From, To); 1333 selectIntv(IntvIn); 1334 useIntv(Start, From); 1335 assert((!LeaveBefore || From <= LeaveBefore) && "Interference"); 1336 return; 1337 } 1338 1339 // <<<<<<< Interference overlapping uses. 1340 // |---o---o--o| Live-out on stack, late last use. 1341 // =====------- Copy to stack before LSP, overlap LocalIntv. 1342 // \_____ Stack interval is live-out. 1343 // 1344 SlotIndex To = leaveIntvBefore(LSP); 1345 overlapIntv(To, BI.LastInstr); 1346 SlotIndex From = enterIntvBefore(std::min(To, LeaveBefore)); 1347 useIntv(From, To); 1348 selectIntv(IntvIn); 1349 useIntv(Start, From); 1350 assert((!LeaveBefore || From <= LeaveBefore) && "Interference"); 1351 } 1352 1353 void SplitEditor::splitRegOutBlock(const SplitAnalysis::BlockInfo &BI, 1354 unsigned IntvOut, SlotIndex EnterAfter) { 1355 SlotIndex Start, Stop; 1356 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); 1357 1358 DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " [" << Start << ';' << Stop 1359 << "), uses " << BI.FirstInstr << '-' << BI.LastInstr 1360 << ", reg-out " << IntvOut << ", enter after " << EnterAfter 1361 << (BI.LiveIn ? ", stack-in" : ", defined in block")); 1362 1363 SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber()); 1364 1365 assert(IntvOut && "Must have register out"); 1366 assert(BI.LiveOut && "Must be live-out"); 1367 assert((!EnterAfter || EnterAfter < LSP) && "Bad interference"); 1368 1369 if (!BI.LiveIn && (!EnterAfter || EnterAfter <= BI.FirstInstr)) { 1370 DEBUG(dbgs() << " after interference.\n"); 1371 // 1372 // >>>> Interference before def. 1373 // | o---o---| Defined in block. 1374 // ========= Use IntvOut everywhere. 1375 // 1376 selectIntv(IntvOut); 1377 useIntv(BI.FirstInstr, Stop); 1378 return; 1379 } 1380 1381 if (!EnterAfter || EnterAfter < BI.FirstInstr.getBaseIndex()) { 1382 DEBUG(dbgs() << ", reload after interference.\n"); 1383 // 1384 // >>>> Interference before def. 1385 // |---o---o---| Live-through, stack-in. 1386 // ____========= Enter IntvOut before first use. 1387 // 1388 selectIntv(IntvOut); 1389 SlotIndex Idx = enterIntvBefore(std::min(LSP, BI.FirstInstr)); 1390 useIntv(Idx, Stop); 1391 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1392 return; 1393 } 1394 1395 // The interference is overlapping somewhere we wanted to use IntvOut. That 1396 // means we need to create a local interval that can be allocated a 1397 // different register. 1398 DEBUG(dbgs() << ", interference overlaps uses.\n"); 1399 // 1400 // >>>>>>> Interference overlapping uses. 1401 // |---o---o---| Live-through, stack-in. 1402 // ____---====== Create local interval for interference range. 1403 // 1404 selectIntv(IntvOut); 1405 SlotIndex Idx = enterIntvAfter(EnterAfter); 1406 useIntv(Idx, Stop); 1407 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1408 1409 openIntv(); 1410 SlotIndex From = enterIntvBefore(std::min(Idx, BI.FirstInstr)); 1411 useIntv(From, Idx); 1412 } 1413