1 //===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the SplitAnalysis class as well as mutator functions for
11 // live range splitting.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "SplitKit.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
18 #include "llvm/CodeGen/LiveRangeEdit.h"
19 #include "llvm/CodeGen/MachineDominators.h"
20 #include "llvm/CodeGen/MachineInstrBuilder.h"
21 #include "llvm/CodeGen/MachineLoopInfo.h"
22 #include "llvm/CodeGen/MachineRegisterInfo.h"
23 #include "llvm/CodeGen/VirtRegMap.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/raw_ostream.h"
26 #include "llvm/Target/TargetInstrInfo.h"
27 #include "llvm/Target/TargetMachine.h"
28 
29 using namespace llvm;
30 
31 #define DEBUG_TYPE "regalloc"
32 
33 STATISTIC(NumFinished, "Number of splits finished");
34 STATISTIC(NumSimple,   "Number of splits that were simple");
35 STATISTIC(NumCopies,   "Number of copies inserted for splitting");
36 STATISTIC(NumRemats,   "Number of rematerialized defs for splitting");
37 STATISTIC(NumRepairs,  "Number of invalid live ranges repaired");
38 
39 //===----------------------------------------------------------------------===//
40 //                                 Split Analysis
41 //===----------------------------------------------------------------------===//
42 
43 SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm, const LiveIntervals &lis,
44                              const MachineLoopInfo &mli)
45     : MF(vrm.getMachineFunction()), VRM(vrm), LIS(lis), Loops(mli),
46       TII(*MF.getSubtarget().getInstrInfo()), CurLI(nullptr),
47       LastSplitPoint(MF.getNumBlockIDs()) {}
48 
49 void SplitAnalysis::clear() {
50   UseSlots.clear();
51   UseBlocks.clear();
52   ThroughBlocks.clear();
53   CurLI = nullptr;
54   DidRepairRange = false;
55 }
56 
57 SlotIndex SplitAnalysis::computeLastSplitPoint(unsigned Num) {
58   const MachineBasicBlock *MBB = MF.getBlockNumbered(Num);
59   // FIXME: Handle multiple EH pad successors.
60   const MachineBasicBlock *LPad = MBB->getLandingPadSuccessor();
61   std::pair<SlotIndex, SlotIndex> &LSP = LastSplitPoint[Num];
62   SlotIndex MBBEnd = LIS.getMBBEndIdx(MBB);
63 
64   // Compute split points on the first call. The pair is independent of the
65   // current live interval.
66   if (!LSP.first.isValid()) {
67     MachineBasicBlock::const_iterator FirstTerm = MBB->getFirstTerminator();
68     if (FirstTerm == MBB->end())
69       LSP.first = MBBEnd;
70     else
71       LSP.first = LIS.getInstructionIndex(*FirstTerm);
72 
73     // If there is a landing pad successor, also find the call instruction.
74     if (!LPad)
75       return LSP.first;
76     // There may not be a call instruction (?) in which case we ignore LPad.
77     LSP.second = LSP.first;
78     for (MachineBasicBlock::const_iterator I = MBB->end(), E = MBB->begin();
79          I != E;) {
80       --I;
81       if (I->isCall()) {
82         LSP.second = LIS.getInstructionIndex(*I);
83         break;
84       }
85     }
86   }
87 
88   // If CurLI is live into a landing pad successor, move the last split point
89   // back to the call that may throw.
90   if (!LPad || !LSP.second || !LIS.isLiveInToMBB(*CurLI, LPad))
91     return LSP.first;
92 
93   // Find the value leaving MBB.
94   const VNInfo *VNI = CurLI->getVNInfoBefore(MBBEnd);
95   if (!VNI)
96     return LSP.first;
97 
98   // If the value leaving MBB was defined after the call in MBB, it can't
99   // really be live-in to the landing pad.  This can happen if the landing pad
100   // has a PHI, and this register is undef on the exceptional edge.
101   // <rdar://problem/10664933>
102   if (!SlotIndex::isEarlierInstr(VNI->def, LSP.second) && VNI->def < MBBEnd)
103     return LSP.first;
104 
105   // Value is properly live-in to the landing pad.
106   // Only allow splits before the call.
107   return LSP.second;
108 }
109 
110 MachineBasicBlock::iterator
111 SplitAnalysis::getLastSplitPointIter(MachineBasicBlock *MBB) {
112   SlotIndex LSP = getLastSplitPoint(MBB->getNumber());
113   if (LSP == LIS.getMBBEndIdx(MBB))
114     return MBB->end();
115   return LIS.getInstructionFromIndex(LSP);
116 }
117 
118 /// analyzeUses - Count instructions, basic blocks, and loops using CurLI.
119 void SplitAnalysis::analyzeUses() {
120   assert(UseSlots.empty() && "Call clear first");
121 
122   // First get all the defs from the interval values. This provides the correct
123   // slots for early clobbers.
124   for (const VNInfo *VNI : CurLI->valnos)
125     if (!VNI->isPHIDef() && !VNI->isUnused())
126       UseSlots.push_back(VNI->def);
127 
128   // Get use slots form the use-def chain.
129   const MachineRegisterInfo &MRI = MF.getRegInfo();
130   for (MachineOperand &MO : MRI.use_nodbg_operands(CurLI->reg))
131     if (!MO.isUndef())
132       UseSlots.push_back(LIS.getInstructionIndex(*MO.getParent()).getRegSlot());
133 
134   array_pod_sort(UseSlots.begin(), UseSlots.end());
135 
136   // Remove duplicates, keeping the smaller slot for each instruction.
137   // That is what we want for early clobbers.
138   UseSlots.erase(std::unique(UseSlots.begin(), UseSlots.end(),
139                              SlotIndex::isSameInstr),
140                  UseSlots.end());
141 
142   // Compute per-live block info.
143   if (!calcLiveBlockInfo()) {
144     // FIXME: calcLiveBlockInfo found inconsistencies in the live range.
145     // I am looking at you, RegisterCoalescer!
146     DidRepairRange = true;
147     ++NumRepairs;
148     DEBUG(dbgs() << "*** Fixing inconsistent live interval! ***\n");
149     const_cast<LiveIntervals&>(LIS)
150       .shrinkToUses(const_cast<LiveInterval*>(CurLI));
151     UseBlocks.clear();
152     ThroughBlocks.clear();
153     bool fixed = calcLiveBlockInfo();
154     (void)fixed;
155     assert(fixed && "Couldn't fix broken live interval");
156   }
157 
158   DEBUG(dbgs() << "Analyze counted "
159                << UseSlots.size() << " instrs in "
160                << UseBlocks.size() << " blocks, through "
161                << NumThroughBlocks << " blocks.\n");
162 }
163 
164 /// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks
165 /// where CurLI is live.
166 bool SplitAnalysis::calcLiveBlockInfo() {
167   ThroughBlocks.resize(MF.getNumBlockIDs());
168   NumThroughBlocks = NumGapBlocks = 0;
169   if (CurLI->empty())
170     return true;
171 
172   LiveInterval::const_iterator LVI = CurLI->begin();
173   LiveInterval::const_iterator LVE = CurLI->end();
174 
175   SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE;
176   UseI = UseSlots.begin();
177   UseE = UseSlots.end();
178 
179   // Loop over basic blocks where CurLI is live.
180   MachineFunction::iterator MFI =
181       LIS.getMBBFromIndex(LVI->start)->getIterator();
182   for (;;) {
183     BlockInfo BI;
184     BI.MBB = &*MFI;
185     SlotIndex Start, Stop;
186     std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
187 
188     // If the block contains no uses, the range must be live through. At one
189     // point, RegisterCoalescer could create dangling ranges that ended
190     // mid-block.
191     if (UseI == UseE || *UseI >= Stop) {
192       ++NumThroughBlocks;
193       ThroughBlocks.set(BI.MBB->getNumber());
194       // The range shouldn't end mid-block if there are no uses. This shouldn't
195       // happen.
196       if (LVI->end < Stop)
197         return false;
198     } else {
199       // This block has uses. Find the first and last uses in the block.
200       BI.FirstInstr = *UseI;
201       assert(BI.FirstInstr >= Start);
202       do ++UseI;
203       while (UseI != UseE && *UseI < Stop);
204       BI.LastInstr = UseI[-1];
205       assert(BI.LastInstr < Stop);
206 
207       // LVI is the first live segment overlapping MBB.
208       BI.LiveIn = LVI->start <= Start;
209 
210       // When not live in, the first use should be a def.
211       if (!BI.LiveIn) {
212         assert(LVI->start == LVI->valno->def && "Dangling Segment start");
213         assert(LVI->start == BI.FirstInstr && "First instr should be a def");
214         BI.FirstDef = BI.FirstInstr;
215       }
216 
217       // Look for gaps in the live range.
218       BI.LiveOut = true;
219       while (LVI->end < Stop) {
220         SlotIndex LastStop = LVI->end;
221         if (++LVI == LVE || LVI->start >= Stop) {
222           BI.LiveOut = false;
223           BI.LastInstr = LastStop;
224           break;
225         }
226 
227         if (LastStop < LVI->start) {
228           // There is a gap in the live range. Create duplicate entries for the
229           // live-in snippet and the live-out snippet.
230           ++NumGapBlocks;
231 
232           // Push the Live-in part.
233           BI.LiveOut = false;
234           UseBlocks.push_back(BI);
235           UseBlocks.back().LastInstr = LastStop;
236 
237           // Set up BI for the live-out part.
238           BI.LiveIn = false;
239           BI.LiveOut = true;
240           BI.FirstInstr = BI.FirstDef = LVI->start;
241         }
242 
243         // A Segment that starts in the middle of the block must be a def.
244         assert(LVI->start == LVI->valno->def && "Dangling Segment start");
245         if (!BI.FirstDef)
246           BI.FirstDef = LVI->start;
247       }
248 
249       UseBlocks.push_back(BI);
250 
251       // LVI is now at LVE or LVI->end >= Stop.
252       if (LVI == LVE)
253         break;
254     }
255 
256     // Live segment ends exactly at Stop. Move to the next segment.
257     if (LVI->end == Stop && ++LVI == LVE)
258       break;
259 
260     // Pick the next basic block.
261     if (LVI->start < Stop)
262       ++MFI;
263     else
264       MFI = LIS.getMBBFromIndex(LVI->start)->getIterator();
265   }
266 
267   assert(getNumLiveBlocks() == countLiveBlocks(CurLI) && "Bad block count");
268   return true;
269 }
270 
271 unsigned SplitAnalysis::countLiveBlocks(const LiveInterval *cli) const {
272   if (cli->empty())
273     return 0;
274   LiveInterval *li = const_cast<LiveInterval*>(cli);
275   LiveInterval::iterator LVI = li->begin();
276   LiveInterval::iterator LVE = li->end();
277   unsigned Count = 0;
278 
279   // Loop over basic blocks where li is live.
280   MachineFunction::const_iterator MFI =
281       LIS.getMBBFromIndex(LVI->start)->getIterator();
282   SlotIndex Stop = LIS.getMBBEndIdx(&*MFI);
283   for (;;) {
284     ++Count;
285     LVI = li->advanceTo(LVI, Stop);
286     if (LVI == LVE)
287       return Count;
288     do {
289       ++MFI;
290       Stop = LIS.getMBBEndIdx(&*MFI);
291     } while (Stop <= LVI->start);
292   }
293 }
294 
295 bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const {
296   unsigned OrigReg = VRM.getOriginal(CurLI->reg);
297   const LiveInterval &Orig = LIS.getInterval(OrigReg);
298   assert(!Orig.empty() && "Splitting empty interval?");
299   LiveInterval::const_iterator I = Orig.find(Idx);
300 
301   // Range containing Idx should begin at Idx.
302   if (I != Orig.end() && I->start <= Idx)
303     return I->start == Idx;
304 
305   // Range does not contain Idx, previous must end at Idx.
306   return I != Orig.begin() && (--I)->end == Idx;
307 }
308 
309 void SplitAnalysis::analyze(const LiveInterval *li) {
310   clear();
311   CurLI = li;
312   analyzeUses();
313 }
314 
315 
316 //===----------------------------------------------------------------------===//
317 //                               Split Editor
318 //===----------------------------------------------------------------------===//
319 
320 /// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
321 SplitEditor::SplitEditor(SplitAnalysis &sa, LiveIntervals &lis, VirtRegMap &vrm,
322                          MachineDominatorTree &mdt,
323                          MachineBlockFrequencyInfo &mbfi)
324     : SA(sa), LIS(lis), VRM(vrm), MRI(vrm.getMachineFunction().getRegInfo()),
325       MDT(mdt), TII(*vrm.getMachineFunction().getSubtarget().getInstrInfo()),
326       TRI(*vrm.getMachineFunction().getSubtarget().getRegisterInfo()),
327       MBFI(mbfi), Edit(nullptr), OpenIdx(0), SpillMode(SM_Partition),
328       RegAssign(Allocator) {}
329 
330 void SplitEditor::reset(LiveRangeEdit &LRE, ComplementSpillMode SM) {
331   Edit = &LRE;
332   SpillMode = SM;
333   OpenIdx = 0;
334   RegAssign.clear();
335   Values.clear();
336 
337   // Reset the LiveRangeCalc instances needed for this spill mode.
338   LRCalc[0].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
339                   &LIS.getVNInfoAllocator());
340   if (SpillMode)
341     LRCalc[1].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
342                     &LIS.getVNInfoAllocator());
343 
344   // We don't need an AliasAnalysis since we will only be performing
345   // cheap-as-a-copy remats anyway.
346   Edit->anyRematerializable(nullptr);
347 }
348 
349 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
350 LLVM_DUMP_METHOD void SplitEditor::dump() const {
351   if (RegAssign.empty()) {
352     dbgs() << " empty\n";
353     return;
354   }
355 
356   for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I)
357     dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value();
358   dbgs() << '\n';
359 }
360 #endif
361 
362 VNInfo *SplitEditor::defValue(unsigned RegIdx,
363                               const VNInfo *ParentVNI,
364                               SlotIndex Idx) {
365   assert(ParentVNI && "Mapping  NULL value");
366   assert(Idx.isValid() && "Invalid SlotIndex");
367   assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI");
368   LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
369 
370   // Create a new value.
371   VNInfo *VNI = LI->getNextValue(Idx, LIS.getVNInfoAllocator());
372 
373   // Use insert for lookup, so we can add missing values with a second lookup.
374   std::pair<ValueMap::iterator, bool> InsP =
375     Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id),
376                                  ValueForcePair(VNI, false)));
377 
378   // This was the first time (RegIdx, ParentVNI) was mapped.
379   // Keep it as a simple def without any liveness.
380   if (InsP.second)
381     return VNI;
382 
383   // If the previous value was a simple mapping, add liveness for it now.
384   if (VNInfo *OldVNI = InsP.first->second.getPointer()) {
385     SlotIndex Def = OldVNI->def;
386     LI->addSegment(LiveInterval::Segment(Def, Def.getDeadSlot(), OldVNI));
387     // No longer a simple mapping.  Switch to a complex, non-forced mapping.
388     InsP.first->second = ValueForcePair();
389   }
390 
391   // This is a complex mapping, add liveness for VNI
392   SlotIndex Def = VNI->def;
393   LI->addSegment(LiveInterval::Segment(Def, Def.getDeadSlot(), VNI));
394 
395   return VNI;
396 }
397 
398 void SplitEditor::forceRecompute(unsigned RegIdx, const VNInfo *ParentVNI) {
399   assert(ParentVNI && "Mapping  NULL value");
400   ValueForcePair &VFP = Values[std::make_pair(RegIdx, ParentVNI->id)];
401   VNInfo *VNI = VFP.getPointer();
402 
403   // ParentVNI was either unmapped or already complex mapped. Either way, just
404   // set the force bit.
405   if (!VNI) {
406     VFP.setInt(true);
407     return;
408   }
409 
410   // This was previously a single mapping. Make sure the old def is represented
411   // by a trivial live range.
412   SlotIndex Def = VNI->def;
413   LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
414   LI->addSegment(LiveInterval::Segment(Def, Def.getDeadSlot(), VNI));
415   // Mark as complex mapped, forced.
416   VFP = ValueForcePair(nullptr, true);
417 }
418 
419 VNInfo *SplitEditor::defFromParent(unsigned RegIdx,
420                                    VNInfo *ParentVNI,
421                                    SlotIndex UseIdx,
422                                    MachineBasicBlock &MBB,
423                                    MachineBasicBlock::iterator I) {
424   MachineInstr *CopyMI = nullptr;
425   SlotIndex Def;
426   LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
427 
428   // We may be trying to avoid interference that ends at a deleted instruction,
429   // so always begin RegIdx 0 early and all others late.
430   bool Late = RegIdx != 0;
431 
432   // Attempt cheap-as-a-copy rematerialization.
433   LiveRangeEdit::Remat RM(ParentVNI);
434   if (Edit->canRematerializeAt(RM, UseIdx, true)) {
435     Def = Edit->rematerializeAt(MBB, I, LI->reg, RM, TRI, Late);
436     ++NumRemats;
437   } else {
438     // Can't remat, just insert a copy from parent.
439     CopyMI = BuildMI(MBB, I, DebugLoc(), TII.get(TargetOpcode::COPY), LI->reg)
440                .addReg(Edit->getReg());
441     Def = LIS.getSlotIndexes()
442               ->insertMachineInstrInMaps(*CopyMI, Late)
443               .getRegSlot();
444     ++NumCopies;
445   }
446 
447   // Define the value in Reg.
448   return defValue(RegIdx, ParentVNI, Def);
449 }
450 
451 /// Create a new virtual register and live interval.
452 unsigned SplitEditor::openIntv() {
453   // Create the complement as index 0.
454   if (Edit->empty())
455     Edit->createEmptyInterval();
456 
457   // Create the open interval.
458   OpenIdx = Edit->size();
459   Edit->createEmptyInterval();
460   return OpenIdx;
461 }
462 
463 void SplitEditor::selectIntv(unsigned Idx) {
464   assert(Idx != 0 && "Cannot select the complement interval");
465   assert(Idx < Edit->size() && "Can only select previously opened interval");
466   DEBUG(dbgs() << "    selectIntv " << OpenIdx << " -> " << Idx << '\n');
467   OpenIdx = Idx;
468 }
469 
470 SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) {
471   assert(OpenIdx && "openIntv not called before enterIntvBefore");
472   DEBUG(dbgs() << "    enterIntvBefore " << Idx);
473   Idx = Idx.getBaseIndex();
474   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
475   if (!ParentVNI) {
476     DEBUG(dbgs() << ": not live\n");
477     return Idx;
478   }
479   DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
480   MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
481   assert(MI && "enterIntvBefore called with invalid index");
482 
483   VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI);
484   return VNI->def;
485 }
486 
487 SlotIndex SplitEditor::enterIntvAfter(SlotIndex Idx) {
488   assert(OpenIdx && "openIntv not called before enterIntvAfter");
489   DEBUG(dbgs() << "    enterIntvAfter " << Idx);
490   Idx = Idx.getBoundaryIndex();
491   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
492   if (!ParentVNI) {
493     DEBUG(dbgs() << ": not live\n");
494     return Idx;
495   }
496   DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
497   MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
498   assert(MI && "enterIntvAfter called with invalid index");
499 
500   VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(),
501                               std::next(MachineBasicBlock::iterator(MI)));
502   return VNI->def;
503 }
504 
505 SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) {
506   assert(OpenIdx && "openIntv not called before enterIntvAtEnd");
507   SlotIndex End = LIS.getMBBEndIdx(&MBB);
508   SlotIndex Last = End.getPrevSlot();
509   DEBUG(dbgs() << "    enterIntvAtEnd BB#" << MBB.getNumber() << ", " << Last);
510   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last);
511   if (!ParentVNI) {
512     DEBUG(dbgs() << ": not live\n");
513     return End;
514   }
515   DEBUG(dbgs() << ": valno " << ParentVNI->id);
516   VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB,
517                               SA.getLastSplitPointIter(&MBB));
518   RegAssign.insert(VNI->def, End, OpenIdx);
519   DEBUG(dump());
520   return VNI->def;
521 }
522 
523 /// useIntv - indicate that all instructions in MBB should use OpenLI.
524 void SplitEditor::useIntv(const MachineBasicBlock &MBB) {
525   useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB));
526 }
527 
528 void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) {
529   assert(OpenIdx && "openIntv not called before useIntv");
530   DEBUG(dbgs() << "    useIntv [" << Start << ';' << End << "):");
531   RegAssign.insert(Start, End, OpenIdx);
532   DEBUG(dump());
533 }
534 
535 SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) {
536   assert(OpenIdx && "openIntv not called before leaveIntvAfter");
537   DEBUG(dbgs() << "    leaveIntvAfter " << Idx);
538 
539   // The interval must be live beyond the instruction at Idx.
540   SlotIndex Boundary = Idx.getBoundaryIndex();
541   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Boundary);
542   if (!ParentVNI) {
543     DEBUG(dbgs() << ": not live\n");
544     return Boundary.getNextSlot();
545   }
546   DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
547   MachineInstr *MI = LIS.getInstructionFromIndex(Boundary);
548   assert(MI && "No instruction at index");
549 
550   // In spill mode, make live ranges as short as possible by inserting the copy
551   // before MI.  This is only possible if that instruction doesn't redefine the
552   // value.  The inserted COPY is not a kill, and we don't need to recompute
553   // the source live range.  The spiller also won't try to hoist this copy.
554   if (SpillMode && !SlotIndex::isSameInstr(ParentVNI->def, Idx) &&
555       MI->readsVirtualRegister(Edit->getReg())) {
556     forceRecompute(0, ParentVNI);
557     defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
558     return Idx;
559   }
560 
561   VNInfo *VNI = defFromParent(0, ParentVNI, Boundary, *MI->getParent(),
562                               std::next(MachineBasicBlock::iterator(MI)));
563   return VNI->def;
564 }
565 
566 SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) {
567   assert(OpenIdx && "openIntv not called before leaveIntvBefore");
568   DEBUG(dbgs() << "    leaveIntvBefore " << Idx);
569 
570   // The interval must be live into the instruction at Idx.
571   Idx = Idx.getBaseIndex();
572   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
573   if (!ParentVNI) {
574     DEBUG(dbgs() << ": not live\n");
575     return Idx.getNextSlot();
576   }
577   DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
578 
579   MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
580   assert(MI && "No instruction at index");
581   VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
582   return VNI->def;
583 }
584 
585 SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) {
586   assert(OpenIdx && "openIntv not called before leaveIntvAtTop");
587   SlotIndex Start = LIS.getMBBStartIdx(&MBB);
588   DEBUG(dbgs() << "    leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start);
589 
590   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
591   if (!ParentVNI) {
592     DEBUG(dbgs() << ": not live\n");
593     return Start;
594   }
595 
596   VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB,
597                               MBB.SkipPHIsAndLabels(MBB.begin()));
598   RegAssign.insert(Start, VNI->def, OpenIdx);
599   DEBUG(dump());
600   return VNI->def;
601 }
602 
603 void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) {
604   assert(OpenIdx && "openIntv not called before overlapIntv");
605   const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
606   assert(ParentVNI == Edit->getParent().getVNInfoBefore(End) &&
607          "Parent changes value in extended range");
608   assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) &&
609          "Range cannot span basic blocks");
610 
611   // The complement interval will be extended as needed by LRCalc.extend().
612   if (ParentVNI)
613     forceRecompute(0, ParentVNI);
614   DEBUG(dbgs() << "    overlapIntv [" << Start << ';' << End << "):");
615   RegAssign.insert(Start, End, OpenIdx);
616   DEBUG(dump());
617 }
618 
619 //===----------------------------------------------------------------------===//
620 //                                  Spill modes
621 //===----------------------------------------------------------------------===//
622 
623 void SplitEditor::removeBackCopies(SmallVectorImpl<VNInfo*> &Copies) {
624   LiveInterval *LI = &LIS.getInterval(Edit->get(0));
625   DEBUG(dbgs() << "Removing " << Copies.size() << " back-copies.\n");
626   RegAssignMap::iterator AssignI;
627   AssignI.setMap(RegAssign);
628 
629   for (unsigned i = 0, e = Copies.size(); i != e; ++i) {
630     SlotIndex Def = Copies[i]->def;
631     MachineInstr *MI = LIS.getInstructionFromIndex(Def);
632     assert(MI && "No instruction for back-copy");
633 
634     MachineBasicBlock *MBB = MI->getParent();
635     MachineBasicBlock::iterator MBBI(MI);
636     bool AtBegin;
637     do AtBegin = MBBI == MBB->begin();
638     while (!AtBegin && (--MBBI)->isDebugValue());
639 
640     DEBUG(dbgs() << "Removing " << Def << '\t' << *MI);
641     LIS.removeVRegDefAt(*LI, Def);
642     LIS.RemoveMachineInstrFromMaps(*MI);
643     MI->eraseFromParent();
644 
645     // Adjust RegAssign if a register assignment is killed at Def. We want to
646     // avoid calculating the live range of the source register if possible.
647     AssignI.find(Def.getPrevSlot());
648     if (!AssignI.valid() || AssignI.start() >= Def)
649       continue;
650     // If MI doesn't kill the assigned register, just leave it.
651     if (AssignI.stop() != Def)
652       continue;
653     unsigned RegIdx = AssignI.value();
654     if (AtBegin || !MBBI->readsVirtualRegister(Edit->getReg())) {
655       DEBUG(dbgs() << "  cannot find simple kill of RegIdx " << RegIdx << '\n');
656       forceRecompute(RegIdx, Edit->getParent().getVNInfoAt(Def));
657     } else {
658       SlotIndex Kill = LIS.getInstructionIndex(*MBBI).getRegSlot();
659       DEBUG(dbgs() << "  move kill to " << Kill << '\t' << *MBBI);
660       AssignI.setStop(Kill);
661     }
662   }
663 }
664 
665 MachineBasicBlock*
666 SplitEditor::findShallowDominator(MachineBasicBlock *MBB,
667                                   MachineBasicBlock *DefMBB) {
668   if (MBB == DefMBB)
669     return MBB;
670   assert(MDT.dominates(DefMBB, MBB) && "MBB must be dominated by the def.");
671 
672   const MachineLoopInfo &Loops = SA.Loops;
673   const MachineLoop *DefLoop = Loops.getLoopFor(DefMBB);
674   MachineDomTreeNode *DefDomNode = MDT[DefMBB];
675 
676   // Best candidate so far.
677   MachineBasicBlock *BestMBB = MBB;
678   unsigned BestDepth = UINT_MAX;
679 
680   for (;;) {
681     const MachineLoop *Loop = Loops.getLoopFor(MBB);
682 
683     // MBB isn't in a loop, it doesn't get any better.  All dominators have a
684     // higher frequency by definition.
685     if (!Loop) {
686       DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#"
687                    << MBB->getNumber() << " at depth 0\n");
688       return MBB;
689     }
690 
691     // We'll never be able to exit the DefLoop.
692     if (Loop == DefLoop) {
693       DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#"
694                    << MBB->getNumber() << " in the same loop\n");
695       return MBB;
696     }
697 
698     // Least busy dominator seen so far.
699     unsigned Depth = Loop->getLoopDepth();
700     if (Depth < BestDepth) {
701       BestMBB = MBB;
702       BestDepth = Depth;
703       DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#"
704                    << MBB->getNumber() << " at depth " << Depth << '\n');
705     }
706 
707     // Leave loop by going to the immediate dominator of the loop header.
708     // This is a bigger stride than simply walking up the dominator tree.
709     MachineDomTreeNode *IDom = MDT[Loop->getHeader()]->getIDom();
710 
711     // Too far up the dominator tree?
712     if (!IDom || !MDT.dominates(DefDomNode, IDom))
713       return BestMBB;
714 
715     MBB = IDom->getBlock();
716   }
717 }
718 
719 void SplitEditor::hoistCopiesForSize() {
720   // Get the complement interval, always RegIdx 0.
721   LiveInterval *LI = &LIS.getInterval(Edit->get(0));
722   LiveInterval *Parent = &Edit->getParent();
723 
724   // Track the nearest common dominator for all back-copies for each ParentVNI,
725   // indexed by ParentVNI->id.
726   typedef std::pair<MachineBasicBlock*, SlotIndex> DomPair;
727   SmallVector<DomPair, 8> NearestDom(Parent->getNumValNums());
728 
729   // Find the nearest common dominator for parent values with multiple
730   // back-copies.  If a single back-copy dominates, put it in DomPair.second.
731   for (VNInfo *VNI : LI->valnos) {
732     if (VNI->isUnused())
733       continue;
734     VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
735     assert(ParentVNI && "Parent not live at complement def");
736 
737     // Don't hoist remats.  The complement is probably going to disappear
738     // completely anyway.
739     if (Edit->didRematerialize(ParentVNI))
740       continue;
741 
742     MachineBasicBlock *ValMBB = LIS.getMBBFromIndex(VNI->def);
743     DomPair &Dom = NearestDom[ParentVNI->id];
744 
745     // Keep directly defined parent values.  This is either a PHI or an
746     // instruction in the complement range.  All other copies of ParentVNI
747     // should be eliminated.
748     if (VNI->def == ParentVNI->def) {
749       DEBUG(dbgs() << "Direct complement def at " << VNI->def << '\n');
750       Dom = DomPair(ValMBB, VNI->def);
751       continue;
752     }
753     // Skip the singly mapped values.  There is nothing to gain from hoisting a
754     // single back-copy.
755     if (Values.lookup(std::make_pair(0, ParentVNI->id)).getPointer()) {
756       DEBUG(dbgs() << "Single complement def at " << VNI->def << '\n');
757       continue;
758     }
759 
760     if (!Dom.first) {
761       // First time we see ParentVNI.  VNI dominates itself.
762       Dom = DomPair(ValMBB, VNI->def);
763     } else if (Dom.first == ValMBB) {
764       // Two defs in the same block.  Pick the earlier def.
765       if (!Dom.second.isValid() || VNI->def < Dom.second)
766         Dom.second = VNI->def;
767     } else {
768       // Different basic blocks. Check if one dominates.
769       MachineBasicBlock *Near =
770         MDT.findNearestCommonDominator(Dom.first, ValMBB);
771       if (Near == ValMBB)
772         // Def ValMBB dominates.
773         Dom = DomPair(ValMBB, VNI->def);
774       else if (Near != Dom.first)
775         // None dominate. Hoist to common dominator, need new def.
776         Dom = DomPair(Near, SlotIndex());
777     }
778 
779     DEBUG(dbgs() << "Multi-mapped complement " << VNI->id << '@' << VNI->def
780                  << " for parent " << ParentVNI->id << '@' << ParentVNI->def
781                  << " hoist to BB#" << Dom.first->getNumber() << ' '
782                  << Dom.second << '\n');
783   }
784 
785   // Insert the hoisted copies.
786   for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) {
787     DomPair &Dom = NearestDom[i];
788     if (!Dom.first || Dom.second.isValid())
789       continue;
790     // This value needs a hoisted copy inserted at the end of Dom.first.
791     VNInfo *ParentVNI = Parent->getValNumInfo(i);
792     MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(ParentVNI->def);
793     // Get a less loopy dominator than Dom.first.
794     Dom.first = findShallowDominator(Dom.first, DefMBB);
795     SlotIndex Last = LIS.getMBBEndIdx(Dom.first).getPrevSlot();
796     Dom.second =
797       defFromParent(0, ParentVNI, Last, *Dom.first,
798                     SA.getLastSplitPointIter(Dom.first))->def;
799   }
800 
801   // Remove redundant back-copies that are now known to be dominated by another
802   // def with the same value.
803   SmallVector<VNInfo*, 8> BackCopies;
804   for (VNInfo *VNI : LI->valnos) {
805     if (VNI->isUnused())
806       continue;
807     VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
808     const DomPair &Dom = NearestDom[ParentVNI->id];
809     if (!Dom.first || Dom.second == VNI->def)
810       continue;
811     BackCopies.push_back(VNI);
812     forceRecompute(0, ParentVNI);
813   }
814   removeBackCopies(BackCopies);
815 }
816 
817 
818 /// transferValues - Transfer all possible values to the new live ranges.
819 /// Values that were rematerialized are left alone, they need LRCalc.extend().
820 bool SplitEditor::transferValues() {
821   bool Skipped = false;
822   RegAssignMap::const_iterator AssignI = RegAssign.begin();
823   for (const LiveRange::Segment &S : Edit->getParent()) {
824     DEBUG(dbgs() << "  blit " << S << ':');
825     VNInfo *ParentVNI = S.valno;
826     // RegAssign has holes where RegIdx 0 should be used.
827     SlotIndex Start = S.start;
828     AssignI.advanceTo(Start);
829     do {
830       unsigned RegIdx;
831       SlotIndex End = S.end;
832       if (!AssignI.valid()) {
833         RegIdx = 0;
834       } else if (AssignI.start() <= Start) {
835         RegIdx = AssignI.value();
836         if (AssignI.stop() < End) {
837           End = AssignI.stop();
838           ++AssignI;
839         }
840       } else {
841         RegIdx = 0;
842         End = std::min(End, AssignI.start());
843       }
844 
845       // The interval [Start;End) is continuously mapped to RegIdx, ParentVNI.
846       DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx);
847       LiveRange &LR = LIS.getInterval(Edit->get(RegIdx));
848 
849       // Check for a simply defined value that can be blitted directly.
850       ValueForcePair VFP = Values.lookup(std::make_pair(RegIdx, ParentVNI->id));
851       if (VNInfo *VNI = VFP.getPointer()) {
852         DEBUG(dbgs() << ':' << VNI->id);
853         LR.addSegment(LiveInterval::Segment(Start, End, VNI));
854         Start = End;
855         continue;
856       }
857 
858       // Skip values with forced recomputation.
859       if (VFP.getInt()) {
860         DEBUG(dbgs() << "(recalc)");
861         Skipped = true;
862         Start = End;
863         continue;
864       }
865 
866       LiveRangeCalc &LRC = getLRCalc(RegIdx);
867 
868       // This value has multiple defs in RegIdx, but it wasn't rematerialized,
869       // so the live range is accurate. Add live-in blocks in [Start;End) to the
870       // LiveInBlocks.
871       MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start)->getIterator();
872       SlotIndex BlockStart, BlockEnd;
873       std::tie(BlockStart, BlockEnd) = LIS.getSlotIndexes()->getMBBRange(&*MBB);
874 
875       // The first block may be live-in, or it may have its own def.
876       if (Start != BlockStart) {
877         VNInfo *VNI = LR.extendInBlock(BlockStart, std::min(BlockEnd, End));
878         assert(VNI && "Missing def for complex mapped value");
879         DEBUG(dbgs() << ':' << VNI->id << "*BB#" << MBB->getNumber());
880         // MBB has its own def. Is it also live-out?
881         if (BlockEnd <= End)
882           LRC.setLiveOutValue(&*MBB, VNI);
883 
884         // Skip to the next block for live-in.
885         ++MBB;
886         BlockStart = BlockEnd;
887       }
888 
889       // Handle the live-in blocks covered by [Start;End).
890       assert(Start <= BlockStart && "Expected live-in block");
891       while (BlockStart < End) {
892         DEBUG(dbgs() << ">BB#" << MBB->getNumber());
893         BlockEnd = LIS.getMBBEndIdx(&*MBB);
894         if (BlockStart == ParentVNI->def) {
895           // This block has the def of a parent PHI, so it isn't live-in.
896           assert(ParentVNI->isPHIDef() && "Non-phi defined at block start?");
897           VNInfo *VNI = LR.extendInBlock(BlockStart, std::min(BlockEnd, End));
898           assert(VNI && "Missing def for complex mapped parent PHI");
899           if (End >= BlockEnd)
900             LRC.setLiveOutValue(&*MBB, VNI); // Live-out as well.
901         } else {
902           // This block needs a live-in value.  The last block covered may not
903           // be live-out.
904           if (End < BlockEnd)
905             LRC.addLiveInBlock(LR, MDT[&*MBB], End);
906           else {
907             // Live-through, and we don't know the value.
908             LRC.addLiveInBlock(LR, MDT[&*MBB]);
909             LRC.setLiveOutValue(&*MBB, nullptr);
910           }
911         }
912         BlockStart = BlockEnd;
913         ++MBB;
914       }
915       Start = End;
916     } while (Start != S.end);
917     DEBUG(dbgs() << '\n');
918   }
919 
920   LRCalc[0].calculateValues();
921   if (SpillMode)
922     LRCalc[1].calculateValues();
923 
924   return Skipped;
925 }
926 
927 void SplitEditor::extendPHIKillRanges() {
928     // Extend live ranges to be live-out for successor PHI values.
929   for (const VNInfo *PHIVNI : Edit->getParent().valnos) {
930     if (PHIVNI->isUnused() || !PHIVNI->isPHIDef())
931       continue;
932     unsigned RegIdx = RegAssign.lookup(PHIVNI->def);
933     LiveRange &LR = LIS.getInterval(Edit->get(RegIdx));
934     LiveRangeCalc &LRC = getLRCalc(RegIdx);
935     MachineBasicBlock *MBB = LIS.getMBBFromIndex(PHIVNI->def);
936     for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
937          PE = MBB->pred_end(); PI != PE; ++PI) {
938       SlotIndex End = LIS.getMBBEndIdx(*PI);
939       SlotIndex LastUse = End.getPrevSlot();
940       // The predecessor may not have a live-out value. That is OK, like an
941       // undef PHI operand.
942       if (Edit->getParent().liveAt(LastUse)) {
943         assert(RegAssign.lookup(LastUse) == RegIdx &&
944                "Different register assignment in phi predecessor");
945         LRC.extend(LR, End);
946       }
947     }
948   }
949 }
950 
951 /// rewriteAssigned - Rewrite all uses of Edit->getReg().
952 void SplitEditor::rewriteAssigned(bool ExtendRanges) {
953   for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Edit->getReg()),
954        RE = MRI.reg_end(); RI != RE;) {
955     MachineOperand &MO = *RI;
956     MachineInstr *MI = MO.getParent();
957     ++RI;
958     // LiveDebugVariables should have handled all DBG_VALUE instructions.
959     if (MI->isDebugValue()) {
960       DEBUG(dbgs() << "Zapping " << *MI);
961       MO.setReg(0);
962       continue;
963     }
964 
965     // <undef> operands don't really read the register, so it doesn't matter
966     // which register we choose.  When the use operand is tied to a def, we must
967     // use the same register as the def, so just do that always.
968     SlotIndex Idx = LIS.getInstructionIndex(*MI);
969     if (MO.isDef() || MO.isUndef())
970       Idx = Idx.getRegSlot(MO.isEarlyClobber());
971 
972     // Rewrite to the mapped register at Idx.
973     unsigned RegIdx = RegAssign.lookup(Idx);
974     LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
975     MO.setReg(LI->reg);
976     DEBUG(dbgs() << "  rewr BB#" << MI->getParent()->getNumber() << '\t'
977                  << Idx << ':' << RegIdx << '\t' << *MI);
978 
979     // Extend liveness to Idx if the instruction reads reg.
980     if (!ExtendRanges || MO.isUndef())
981       continue;
982 
983     // Skip instructions that don't read Reg.
984     if (MO.isDef()) {
985       if (!MO.getSubReg() && !MO.isEarlyClobber())
986         continue;
987       // We may wan't to extend a live range for a partial redef, or for a use
988       // tied to an early clobber.
989       Idx = Idx.getPrevSlot();
990       if (!Edit->getParent().liveAt(Idx))
991         continue;
992     } else
993       Idx = Idx.getRegSlot(true);
994 
995     getLRCalc(RegIdx).extend(*LI, Idx.getNextSlot());
996   }
997 }
998 
999 void SplitEditor::deleteRematVictims() {
1000   SmallVector<MachineInstr*, 8> Dead;
1001   for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I){
1002     LiveInterval *LI = &LIS.getInterval(*I);
1003     for (const LiveRange::Segment &S : LI->segments) {
1004       // Dead defs end at the dead slot.
1005       if (S.end != S.valno->def.getDeadSlot())
1006         continue;
1007       MachineInstr *MI = LIS.getInstructionFromIndex(S.valno->def);
1008       assert(MI && "Missing instruction for dead def");
1009       MI->addRegisterDead(LI->reg, &TRI);
1010 
1011       if (!MI->allDefsAreDead())
1012         continue;
1013 
1014       DEBUG(dbgs() << "All defs dead: " << *MI);
1015       Dead.push_back(MI);
1016     }
1017   }
1018 
1019   if (Dead.empty())
1020     return;
1021 
1022   Edit->eliminateDeadDefs(Dead);
1023 }
1024 
1025 void SplitEditor::finish(SmallVectorImpl<unsigned> *LRMap) {
1026   ++NumFinished;
1027 
1028   // At this point, the live intervals in Edit contain VNInfos corresponding to
1029   // the inserted copies.
1030 
1031   // Add the original defs from the parent interval.
1032   for (const VNInfo *ParentVNI : Edit->getParent().valnos) {
1033     if (ParentVNI->isUnused())
1034       continue;
1035     unsigned RegIdx = RegAssign.lookup(ParentVNI->def);
1036     defValue(RegIdx, ParentVNI, ParentVNI->def);
1037 
1038     // Force rematted values to be recomputed everywhere.
1039     // The new live ranges may be truncated.
1040     if (Edit->didRematerialize(ParentVNI))
1041       for (unsigned i = 0, e = Edit->size(); i != e; ++i)
1042         forceRecompute(i, ParentVNI);
1043   }
1044 
1045   // Hoist back-copies to the complement interval when in spill mode.
1046   switch (SpillMode) {
1047   case SM_Partition:
1048     // Leave all back-copies as is.
1049     break;
1050   case SM_Size:
1051     hoistCopiesForSize();
1052     break;
1053   case SM_Speed:
1054     llvm_unreachable("Spill mode 'speed' not implemented yet");
1055   }
1056 
1057   // Transfer the simply mapped values, check if any are skipped.
1058   bool Skipped = transferValues();
1059   if (Skipped)
1060     extendPHIKillRanges();
1061   else
1062     ++NumSimple;
1063 
1064   // Rewrite virtual registers, possibly extending ranges.
1065   rewriteAssigned(Skipped);
1066 
1067   // Delete defs that were rematted everywhere.
1068   if (Skipped)
1069     deleteRematVictims();
1070 
1071   // Get rid of unused values and set phi-kill flags.
1072   for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I) {
1073     LiveInterval &LI = LIS.getInterval(*I);
1074     LI.RenumberValues();
1075   }
1076 
1077   // Provide a reverse mapping from original indices to Edit ranges.
1078   if (LRMap) {
1079     LRMap->clear();
1080     for (unsigned i = 0, e = Edit->size(); i != e; ++i)
1081       LRMap->push_back(i);
1082   }
1083 
1084   // Now check if any registers were separated into multiple components.
1085   ConnectedVNInfoEqClasses ConEQ(LIS);
1086   for (unsigned i = 0, e = Edit->size(); i != e; ++i) {
1087     // Don't use iterators, they are invalidated by create() below.
1088     unsigned VReg = Edit->get(i);
1089     LiveInterval &LI = LIS.getInterval(VReg);
1090     SmallVector<LiveInterval*, 8> SplitLIs;
1091     LIS.splitSeparateComponents(LI, SplitLIs);
1092     unsigned Original = VRM.getOriginal(VReg);
1093     for (LiveInterval *SplitLI : SplitLIs)
1094       VRM.setIsSplitFromReg(SplitLI->reg, Original);
1095 
1096     // The new intervals all map back to i.
1097     if (LRMap)
1098       LRMap->resize(Edit->size(), i);
1099   }
1100 
1101   // Calculate spill weight and allocation hints for new intervals.
1102   Edit->calculateRegClassAndHint(VRM.getMachineFunction(), SA.Loops, MBFI);
1103 
1104   assert(!LRMap || LRMap->size() == Edit->size());
1105 }
1106 
1107 
1108 //===----------------------------------------------------------------------===//
1109 //                            Single Block Splitting
1110 //===----------------------------------------------------------------------===//
1111 
1112 bool SplitAnalysis::shouldSplitSingleBlock(const BlockInfo &BI,
1113                                            bool SingleInstrs) const {
1114   // Always split for multiple instructions.
1115   if (!BI.isOneInstr())
1116     return true;
1117   // Don't split for single instructions unless explicitly requested.
1118   if (!SingleInstrs)
1119     return false;
1120   // Splitting a live-through range always makes progress.
1121   if (BI.LiveIn && BI.LiveOut)
1122     return true;
1123   // No point in isolating a copy. It has no register class constraints.
1124   if (LIS.getInstructionFromIndex(BI.FirstInstr)->isCopyLike())
1125     return false;
1126   // Finally, don't isolate an end point that was created by earlier splits.
1127   return isOriginalEndpoint(BI.FirstInstr);
1128 }
1129 
1130 void SplitEditor::splitSingleBlock(const SplitAnalysis::BlockInfo &BI) {
1131   openIntv();
1132   SlotIndex LastSplitPoint = SA.getLastSplitPoint(BI.MBB->getNumber());
1133   SlotIndex SegStart = enterIntvBefore(std::min(BI.FirstInstr,
1134     LastSplitPoint));
1135   if (!BI.LiveOut || BI.LastInstr < LastSplitPoint) {
1136     useIntv(SegStart, leaveIntvAfter(BI.LastInstr));
1137   } else {
1138       // The last use is after the last valid split point.
1139     SlotIndex SegStop = leaveIntvBefore(LastSplitPoint);
1140     useIntv(SegStart, SegStop);
1141     overlapIntv(SegStop, BI.LastInstr);
1142   }
1143 }
1144 
1145 
1146 //===----------------------------------------------------------------------===//
1147 //                    Global Live Range Splitting Support
1148 //===----------------------------------------------------------------------===//
1149 
1150 // These methods support a method of global live range splitting that uses a
1151 // global algorithm to decide intervals for CFG edges. They will insert split
1152 // points and color intervals in basic blocks while avoiding interference.
1153 //
1154 // Note that splitSingleBlock is also useful for blocks where both CFG edges
1155 // are on the stack.
1156 
1157 void SplitEditor::splitLiveThroughBlock(unsigned MBBNum,
1158                                         unsigned IntvIn, SlotIndex LeaveBefore,
1159                                         unsigned IntvOut, SlotIndex EnterAfter){
1160   SlotIndex Start, Stop;
1161   std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(MBBNum);
1162 
1163   DEBUG(dbgs() << "BB#" << MBBNum << " [" << Start << ';' << Stop
1164                << ") intf " << LeaveBefore << '-' << EnterAfter
1165                << ", live-through " << IntvIn << " -> " << IntvOut);
1166 
1167   assert((IntvIn || IntvOut) && "Use splitSingleBlock for isolated blocks");
1168 
1169   assert((!LeaveBefore || LeaveBefore < Stop) && "Interference after block");
1170   assert((!IntvIn || !LeaveBefore || LeaveBefore > Start) && "Impossible intf");
1171   assert((!EnterAfter || EnterAfter >= Start) && "Interference before block");
1172 
1173   MachineBasicBlock *MBB = VRM.getMachineFunction().getBlockNumbered(MBBNum);
1174 
1175   if (!IntvOut) {
1176     DEBUG(dbgs() << ", spill on entry.\n");
1177     //
1178     //        <<<<<<<<<    Possible LeaveBefore interference.
1179     //    |-----------|    Live through.
1180     //    -____________    Spill on entry.
1181     //
1182     selectIntv(IntvIn);
1183     SlotIndex Idx = leaveIntvAtTop(*MBB);
1184     assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1185     (void)Idx;
1186     return;
1187   }
1188 
1189   if (!IntvIn) {
1190     DEBUG(dbgs() << ", reload on exit.\n");
1191     //
1192     //    >>>>>>>          Possible EnterAfter interference.
1193     //    |-----------|    Live through.
1194     //    ___________--    Reload on exit.
1195     //
1196     selectIntv(IntvOut);
1197     SlotIndex Idx = enterIntvAtEnd(*MBB);
1198     assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1199     (void)Idx;
1200     return;
1201   }
1202 
1203   if (IntvIn == IntvOut && !LeaveBefore && !EnterAfter) {
1204     DEBUG(dbgs() << ", straight through.\n");
1205     //
1206     //    |-----------|    Live through.
1207     //    -------------    Straight through, same intv, no interference.
1208     //
1209     selectIntv(IntvOut);
1210     useIntv(Start, Stop);
1211     return;
1212   }
1213 
1214   // We cannot legally insert splits after LSP.
1215   SlotIndex LSP = SA.getLastSplitPoint(MBBNum);
1216   assert((!IntvOut || !EnterAfter || EnterAfter < LSP) && "Impossible intf");
1217 
1218   if (IntvIn != IntvOut && (!LeaveBefore || !EnterAfter ||
1219                   LeaveBefore.getBaseIndex() > EnterAfter.getBoundaryIndex())) {
1220     DEBUG(dbgs() << ", switch avoiding interference.\n");
1221     //
1222     //    >>>>     <<<<    Non-overlapping EnterAfter/LeaveBefore interference.
1223     //    |-----------|    Live through.
1224     //    ------=======    Switch intervals between interference.
1225     //
1226     selectIntv(IntvOut);
1227     SlotIndex Idx;
1228     if (LeaveBefore && LeaveBefore < LSP) {
1229       Idx = enterIntvBefore(LeaveBefore);
1230       useIntv(Idx, Stop);
1231     } else {
1232       Idx = enterIntvAtEnd(*MBB);
1233     }
1234     selectIntv(IntvIn);
1235     useIntv(Start, Idx);
1236     assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1237     assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1238     return;
1239   }
1240 
1241   DEBUG(dbgs() << ", create local intv for interference.\n");
1242   //
1243   //    >>><><><><<<<    Overlapping EnterAfter/LeaveBefore interference.
1244   //    |-----------|    Live through.
1245   //    ==---------==    Switch intervals before/after interference.
1246   //
1247   assert(LeaveBefore <= EnterAfter && "Missed case");
1248 
1249   selectIntv(IntvOut);
1250   SlotIndex Idx = enterIntvAfter(EnterAfter);
1251   useIntv(Idx, Stop);
1252   assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1253 
1254   selectIntv(IntvIn);
1255   Idx = leaveIntvBefore(LeaveBefore);
1256   useIntv(Start, Idx);
1257   assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1258 }
1259 
1260 
1261 void SplitEditor::splitRegInBlock(const SplitAnalysis::BlockInfo &BI,
1262                                   unsigned IntvIn, SlotIndex LeaveBefore) {
1263   SlotIndex Start, Stop;
1264   std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
1265 
1266   DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " [" << Start << ';' << Stop
1267                << "), uses " << BI.FirstInstr << '-' << BI.LastInstr
1268                << ", reg-in " << IntvIn << ", leave before " << LeaveBefore
1269                << (BI.LiveOut ? ", stack-out" : ", killed in block"));
1270 
1271   assert(IntvIn && "Must have register in");
1272   assert(BI.LiveIn && "Must be live-in");
1273   assert((!LeaveBefore || LeaveBefore > Start) && "Bad interference");
1274 
1275   if (!BI.LiveOut && (!LeaveBefore || LeaveBefore >= BI.LastInstr)) {
1276     DEBUG(dbgs() << " before interference.\n");
1277     //
1278     //               <<<    Interference after kill.
1279     //     |---o---x   |    Killed in block.
1280     //     =========        Use IntvIn everywhere.
1281     //
1282     selectIntv(IntvIn);
1283     useIntv(Start, BI.LastInstr);
1284     return;
1285   }
1286 
1287   SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber());
1288 
1289   if (!LeaveBefore || LeaveBefore > BI.LastInstr.getBoundaryIndex()) {
1290     //
1291     //               <<<    Possible interference after last use.
1292     //     |---o---o---|    Live-out on stack.
1293     //     =========____    Leave IntvIn after last use.
1294     //
1295     //                 <    Interference after last use.
1296     //     |---o---o--o|    Live-out on stack, late last use.
1297     //     ============     Copy to stack after LSP, overlap IntvIn.
1298     //            \_____    Stack interval is live-out.
1299     //
1300     if (BI.LastInstr < LSP) {
1301       DEBUG(dbgs() << ", spill after last use before interference.\n");
1302       selectIntv(IntvIn);
1303       SlotIndex Idx = leaveIntvAfter(BI.LastInstr);
1304       useIntv(Start, Idx);
1305       assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1306     } else {
1307       DEBUG(dbgs() << ", spill before last split point.\n");
1308       selectIntv(IntvIn);
1309       SlotIndex Idx = leaveIntvBefore(LSP);
1310       overlapIntv(Idx, BI.LastInstr);
1311       useIntv(Start, Idx);
1312       assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1313     }
1314     return;
1315   }
1316 
1317   // The interference is overlapping somewhere we wanted to use IntvIn. That
1318   // means we need to create a local interval that can be allocated a
1319   // different register.
1320   unsigned LocalIntv = openIntv();
1321   (void)LocalIntv;
1322   DEBUG(dbgs() << ", creating local interval " << LocalIntv << ".\n");
1323 
1324   if (!BI.LiveOut || BI.LastInstr < LSP) {
1325     //
1326     //           <<<<<<<    Interference overlapping uses.
1327     //     |---o---o---|    Live-out on stack.
1328     //     =====----____    Leave IntvIn before interference, then spill.
1329     //
1330     SlotIndex To = leaveIntvAfter(BI.LastInstr);
1331     SlotIndex From = enterIntvBefore(LeaveBefore);
1332     useIntv(From, To);
1333     selectIntv(IntvIn);
1334     useIntv(Start, From);
1335     assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
1336     return;
1337   }
1338 
1339   //           <<<<<<<    Interference overlapping uses.
1340   //     |---o---o--o|    Live-out on stack, late last use.
1341   //     =====-------     Copy to stack before LSP, overlap LocalIntv.
1342   //            \_____    Stack interval is live-out.
1343   //
1344   SlotIndex To = leaveIntvBefore(LSP);
1345   overlapIntv(To, BI.LastInstr);
1346   SlotIndex From = enterIntvBefore(std::min(To, LeaveBefore));
1347   useIntv(From, To);
1348   selectIntv(IntvIn);
1349   useIntv(Start, From);
1350   assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
1351 }
1352 
1353 void SplitEditor::splitRegOutBlock(const SplitAnalysis::BlockInfo &BI,
1354                                    unsigned IntvOut, SlotIndex EnterAfter) {
1355   SlotIndex Start, Stop;
1356   std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
1357 
1358   DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " [" << Start << ';' << Stop
1359                << "), uses " << BI.FirstInstr << '-' << BI.LastInstr
1360                << ", reg-out " << IntvOut << ", enter after " << EnterAfter
1361                << (BI.LiveIn ? ", stack-in" : ", defined in block"));
1362 
1363   SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber());
1364 
1365   assert(IntvOut && "Must have register out");
1366   assert(BI.LiveOut && "Must be live-out");
1367   assert((!EnterAfter || EnterAfter < LSP) && "Bad interference");
1368 
1369   if (!BI.LiveIn && (!EnterAfter || EnterAfter <= BI.FirstInstr)) {
1370     DEBUG(dbgs() << " after interference.\n");
1371     //
1372     //    >>>>             Interference before def.
1373     //    |   o---o---|    Defined in block.
1374     //        =========    Use IntvOut everywhere.
1375     //
1376     selectIntv(IntvOut);
1377     useIntv(BI.FirstInstr, Stop);
1378     return;
1379   }
1380 
1381   if (!EnterAfter || EnterAfter < BI.FirstInstr.getBaseIndex()) {
1382     DEBUG(dbgs() << ", reload after interference.\n");
1383     //
1384     //    >>>>             Interference before def.
1385     //    |---o---o---|    Live-through, stack-in.
1386     //    ____=========    Enter IntvOut before first use.
1387     //
1388     selectIntv(IntvOut);
1389     SlotIndex Idx = enterIntvBefore(std::min(LSP, BI.FirstInstr));
1390     useIntv(Idx, Stop);
1391     assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1392     return;
1393   }
1394 
1395   // The interference is overlapping somewhere we wanted to use IntvOut. That
1396   // means we need to create a local interval that can be allocated a
1397   // different register.
1398   DEBUG(dbgs() << ", interference overlaps uses.\n");
1399   //
1400   //    >>>>>>>          Interference overlapping uses.
1401   //    |---o---o---|    Live-through, stack-in.
1402   //    ____---======    Create local interval for interference range.
1403   //
1404   selectIntv(IntvOut);
1405   SlotIndex Idx = enterIntvAfter(EnterAfter);
1406   useIntv(Idx, Stop);
1407   assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1408 
1409   openIntv();
1410   SlotIndex From = enterIntvBefore(std::min(Idx, BI.FirstInstr));
1411   useIntv(From, Idx);
1412 }
1413