1 //===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the SplitAnalysis class as well as mutator functions for 11 // live range splitting. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "splitter" 16 #include "SplitKit.h" 17 #include "LiveRangeEdit.h" 18 #include "VirtRegMap.h" 19 #include "llvm/CodeGen/CalcSpillWeights.h" 20 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 21 #include "llvm/CodeGen/MachineDominators.h" 22 #include "llvm/CodeGen/MachineInstrBuilder.h" 23 #include "llvm/CodeGen/MachineLoopInfo.h" 24 #include "llvm/CodeGen/MachineRegisterInfo.h" 25 #include "llvm/Support/CommandLine.h" 26 #include "llvm/Support/Debug.h" 27 #include "llvm/Support/raw_ostream.h" 28 #include "llvm/Target/TargetInstrInfo.h" 29 #include "llvm/Target/TargetMachine.h" 30 31 using namespace llvm; 32 33 static cl::opt<bool> 34 AllowSplit("spiller-splits-edges", 35 cl::desc("Allow critical edge splitting during spilling")); 36 37 //===----------------------------------------------------------------------===// 38 // Split Analysis 39 //===----------------------------------------------------------------------===// 40 41 SplitAnalysis::SplitAnalysis(const MachineFunction &mf, 42 const LiveIntervals &lis, 43 const MachineLoopInfo &mli) 44 : mf_(mf), 45 lis_(lis), 46 loops_(mli), 47 tii_(*mf.getTarget().getInstrInfo()), 48 curli_(0) {} 49 50 void SplitAnalysis::clear() { 51 usingInstrs_.clear(); 52 usingBlocks_.clear(); 53 usingLoops_.clear(); 54 curli_ = 0; 55 } 56 57 bool SplitAnalysis::canAnalyzeBranch(const MachineBasicBlock *MBB) { 58 MachineBasicBlock *T, *F; 59 SmallVector<MachineOperand, 4> Cond; 60 return !tii_.AnalyzeBranch(const_cast<MachineBasicBlock&>(*MBB), T, F, Cond); 61 } 62 63 /// analyzeUses - Count instructions, basic blocks, and loops using curli. 64 void SplitAnalysis::analyzeUses() { 65 const MachineRegisterInfo &MRI = mf_.getRegInfo(); 66 for (MachineRegisterInfo::reg_iterator I = MRI.reg_begin(curli_->reg); 67 MachineInstr *MI = I.skipInstruction();) { 68 if (MI->isDebugValue() || !usingInstrs_.insert(MI)) 69 continue; 70 MachineBasicBlock *MBB = MI->getParent(); 71 if (usingBlocks_[MBB]++) 72 continue; 73 for (MachineLoop *Loop = loops_.getLoopFor(MBB); Loop; 74 Loop = Loop->getParentLoop()) 75 usingLoops_[Loop]++; 76 } 77 DEBUG(dbgs() << " counted " 78 << usingInstrs_.size() << " instrs, " 79 << usingBlocks_.size() << " blocks, " 80 << usingLoops_.size() << " loops.\n"); 81 } 82 83 void SplitAnalysis::print(const BlockPtrSet &B, raw_ostream &OS) const { 84 for (BlockPtrSet::const_iterator I = B.begin(), E = B.end(); I != E; ++I) { 85 unsigned count = usingBlocks_.lookup(*I); 86 OS << " BB#" << (*I)->getNumber(); 87 if (count) 88 OS << '(' << count << ')'; 89 } 90 } 91 92 // Get three sets of basic blocks surrounding a loop: Blocks inside the loop, 93 // predecessor blocks, and exit blocks. 94 void SplitAnalysis::getLoopBlocks(const MachineLoop *Loop, LoopBlocks &Blocks) { 95 Blocks.clear(); 96 97 // Blocks in the loop. 98 Blocks.Loop.insert(Loop->block_begin(), Loop->block_end()); 99 100 // Predecessor blocks. 101 const MachineBasicBlock *Header = Loop->getHeader(); 102 for (MachineBasicBlock::const_pred_iterator I = Header->pred_begin(), 103 E = Header->pred_end(); I != E; ++I) 104 if (!Blocks.Loop.count(*I)) 105 Blocks.Preds.insert(*I); 106 107 // Exit blocks. 108 for (MachineLoop::block_iterator I = Loop->block_begin(), 109 E = Loop->block_end(); I != E; ++I) { 110 const MachineBasicBlock *MBB = *I; 111 for (MachineBasicBlock::const_succ_iterator SI = MBB->succ_begin(), 112 SE = MBB->succ_end(); SI != SE; ++SI) 113 if (!Blocks.Loop.count(*SI)) 114 Blocks.Exits.insert(*SI); 115 } 116 } 117 118 void SplitAnalysis::print(const LoopBlocks &B, raw_ostream &OS) const { 119 OS << "Loop:"; 120 print(B.Loop, OS); 121 OS << ", preds:"; 122 print(B.Preds, OS); 123 OS << ", exits:"; 124 print(B.Exits, OS); 125 } 126 127 /// analyzeLoopPeripheralUse - Return an enum describing how curli_ is used in 128 /// and around the Loop. 129 SplitAnalysis::LoopPeripheralUse SplitAnalysis:: 130 analyzeLoopPeripheralUse(const SplitAnalysis::LoopBlocks &Blocks) { 131 LoopPeripheralUse use = ContainedInLoop; 132 for (BlockCountMap::iterator I = usingBlocks_.begin(), E = usingBlocks_.end(); 133 I != E; ++I) { 134 const MachineBasicBlock *MBB = I->first; 135 // Is this a peripheral block? 136 if (use < MultiPeripheral && 137 (Blocks.Preds.count(MBB) || Blocks.Exits.count(MBB))) { 138 if (I->second > 1) use = MultiPeripheral; 139 else use = SinglePeripheral; 140 continue; 141 } 142 // Is it a loop block? 143 if (Blocks.Loop.count(MBB)) 144 continue; 145 // It must be an unrelated block. 146 DEBUG(dbgs() << ", outside: BB#" << MBB->getNumber()); 147 return OutsideLoop; 148 } 149 return use; 150 } 151 152 /// getCriticalExits - It may be necessary to partially break critical edges 153 /// leaving the loop if an exit block has predecessors from outside the loop 154 /// periphery. 155 void SplitAnalysis::getCriticalExits(const SplitAnalysis::LoopBlocks &Blocks, 156 BlockPtrSet &CriticalExits) { 157 CriticalExits.clear(); 158 159 // A critical exit block has curli live-in, and has a predecessor that is not 160 // in the loop nor a loop predecessor. For such an exit block, the edges 161 // carrying the new variable must be moved to a new pre-exit block. 162 for (BlockPtrSet::iterator I = Blocks.Exits.begin(), E = Blocks.Exits.end(); 163 I != E; ++I) { 164 const MachineBasicBlock *Exit = *I; 165 // A single-predecessor exit block is definitely not a critical edge. 166 if (Exit->pred_size() == 1) 167 continue; 168 // This exit may not have curli live in at all. No need to split. 169 if (!lis_.isLiveInToMBB(*curli_, Exit)) 170 continue; 171 // Does this exit block have a predecessor that is not a loop block or loop 172 // predecessor? 173 for (MachineBasicBlock::const_pred_iterator PI = Exit->pred_begin(), 174 PE = Exit->pred_end(); PI != PE; ++PI) { 175 const MachineBasicBlock *Pred = *PI; 176 if (Blocks.Loop.count(Pred) || Blocks.Preds.count(Pred)) 177 continue; 178 // This is a critical exit block, and we need to split the exit edge. 179 CriticalExits.insert(Exit); 180 break; 181 } 182 } 183 } 184 185 void SplitAnalysis::getCriticalPreds(const SplitAnalysis::LoopBlocks &Blocks, 186 BlockPtrSet &CriticalPreds) { 187 CriticalPreds.clear(); 188 189 // A critical predecessor block has curli live-out, and has a successor that 190 // has curli live-in and is not in the loop nor a loop exit block. For such a 191 // predecessor block, we must carry the value in both the 'inside' and 192 // 'outside' registers. 193 for (BlockPtrSet::iterator I = Blocks.Preds.begin(), E = Blocks.Preds.end(); 194 I != E; ++I) { 195 const MachineBasicBlock *Pred = *I; 196 // Definitely not a critical edge. 197 if (Pred->succ_size() == 1) 198 continue; 199 // This block may not have curli live out at all if there is a PHI. 200 if (!lis_.isLiveOutOfMBB(*curli_, Pred)) 201 continue; 202 // Does this block have a successor outside the loop? 203 for (MachineBasicBlock::const_pred_iterator SI = Pred->succ_begin(), 204 SE = Pred->succ_end(); SI != SE; ++SI) { 205 const MachineBasicBlock *Succ = *SI; 206 if (Blocks.Loop.count(Succ) || Blocks.Exits.count(Succ)) 207 continue; 208 if (!lis_.isLiveInToMBB(*curli_, Succ)) 209 continue; 210 // This is a critical predecessor block. 211 CriticalPreds.insert(Pred); 212 break; 213 } 214 } 215 } 216 217 /// canSplitCriticalExits - Return true if it is possible to insert new exit 218 /// blocks before the blocks in CriticalExits. 219 bool 220 SplitAnalysis::canSplitCriticalExits(const SplitAnalysis::LoopBlocks &Blocks, 221 BlockPtrSet &CriticalExits) { 222 // If we don't allow critical edge splitting, require no critical exits. 223 if (!AllowSplit) 224 return CriticalExits.empty(); 225 226 for (BlockPtrSet::iterator I = CriticalExits.begin(), E = CriticalExits.end(); 227 I != E; ++I) { 228 const MachineBasicBlock *Succ = *I; 229 // We want to insert a new pre-exit MBB before Succ, and change all the 230 // in-loop blocks to branch to the pre-exit instead of Succ. 231 // Check that all the in-loop predecessors can be changed. 232 for (MachineBasicBlock::const_pred_iterator PI = Succ->pred_begin(), 233 PE = Succ->pred_end(); PI != PE; ++PI) { 234 const MachineBasicBlock *Pred = *PI; 235 // The external predecessors won't be altered. 236 if (!Blocks.Loop.count(Pred) && !Blocks.Preds.count(Pred)) 237 continue; 238 if (!canAnalyzeBranch(Pred)) 239 return false; 240 } 241 242 // If Succ's layout predecessor falls through, that too must be analyzable. 243 // We need to insert the pre-exit block in the gap. 244 MachineFunction::const_iterator MFI = Succ; 245 if (MFI == mf_.begin()) 246 continue; 247 if (!canAnalyzeBranch(--MFI)) 248 return false; 249 } 250 // No problems found. 251 return true; 252 } 253 254 void SplitAnalysis::analyze(const LiveInterval *li) { 255 clear(); 256 curli_ = li; 257 analyzeUses(); 258 } 259 260 const MachineLoop *SplitAnalysis::getBestSplitLoop() { 261 assert(curli_ && "Call analyze() before getBestSplitLoop"); 262 if (usingLoops_.empty()) 263 return 0; 264 265 LoopPtrSet Loops; 266 LoopBlocks Blocks; 267 BlockPtrSet CriticalExits; 268 269 // We split around loops where curli is used outside the periphery. 270 for (LoopCountMap::const_iterator I = usingLoops_.begin(), 271 E = usingLoops_.end(); I != E; ++I) { 272 const MachineLoop *Loop = I->first; 273 getLoopBlocks(Loop, Blocks); 274 DEBUG({ dbgs() << " "; print(Blocks, dbgs()); }); 275 276 switch(analyzeLoopPeripheralUse(Blocks)) { 277 case OutsideLoop: 278 break; 279 case MultiPeripheral: 280 // FIXME: We could split a live range with multiple uses in a peripheral 281 // block and still make progress. However, it is possible that splitting 282 // another live range will insert copies into a peripheral block, and 283 // there is a small chance we can enter an infinity loop, inserting copies 284 // forever. 285 // For safety, stick to splitting live ranges with uses outside the 286 // periphery. 287 DEBUG(dbgs() << ": multiple peripheral uses\n"); 288 break; 289 case ContainedInLoop: 290 DEBUG(dbgs() << ": fully contained\n"); 291 continue; 292 case SinglePeripheral: 293 DEBUG(dbgs() << ": single peripheral use\n"); 294 continue; 295 } 296 // Will it be possible to split around this loop? 297 getCriticalExits(Blocks, CriticalExits); 298 DEBUG(dbgs() << ": " << CriticalExits.size() << " critical exits\n"); 299 if (!canSplitCriticalExits(Blocks, CriticalExits)) 300 continue; 301 // This is a possible split. 302 Loops.insert(Loop); 303 } 304 305 DEBUG(dbgs() << " getBestSplitLoop found " << Loops.size() 306 << " candidate loops.\n"); 307 308 if (Loops.empty()) 309 return 0; 310 311 // Pick the earliest loop. 312 // FIXME: Are there other heuristics to consider? 313 const MachineLoop *Best = 0; 314 SlotIndex BestIdx; 315 for (LoopPtrSet::const_iterator I = Loops.begin(), E = Loops.end(); I != E; 316 ++I) { 317 SlotIndex Idx = lis_.getMBBStartIdx((*I)->getHeader()); 318 if (!Best || Idx < BestIdx) 319 Best = *I, BestIdx = Idx; 320 } 321 DEBUG(dbgs() << " getBestSplitLoop found " << *Best); 322 return Best; 323 } 324 325 //===----------------------------------------------------------------------===// 326 // LiveIntervalMap 327 //===----------------------------------------------------------------------===// 328 329 // Work around the fact that the std::pair constructors are broken for pointer 330 // pairs in some implementations. makeVV(x, 0) works. 331 static inline std::pair<const VNInfo*, VNInfo*> 332 makeVV(const VNInfo *a, VNInfo *b) { 333 return std::make_pair(a, b); 334 } 335 336 void LiveIntervalMap::reset(LiveInterval *li) { 337 li_ = li; 338 valueMap_.clear(); 339 liveOutCache_.clear(); 340 } 341 342 bool LiveIntervalMap::isComplexMapped(const VNInfo *ParentVNI) const { 343 ValueMap::const_iterator i = valueMap_.find(ParentVNI); 344 return i != valueMap_.end() && i->second == 0; 345 } 346 347 // defValue - Introduce a li_ def for ParentVNI that could be later than 348 // ParentVNI->def. 349 VNInfo *LiveIntervalMap::defValue(const VNInfo *ParentVNI, SlotIndex Idx) { 350 assert(li_ && "call reset first"); 351 assert(ParentVNI && "Mapping NULL value"); 352 assert(Idx.isValid() && "Invalid SlotIndex"); 353 assert(parentli_.getVNInfoAt(Idx) == ParentVNI && "Bad ParentVNI"); 354 355 // Create a new value. 356 VNInfo *VNI = li_->getNextValue(Idx, 0, lis_.getVNInfoAllocator()); 357 358 // Preserve the PHIDef bit. 359 if (ParentVNI->isPHIDef() && Idx == ParentVNI->def) 360 VNI->setIsPHIDef(true); 361 362 // Use insert for lookup, so we can add missing values with a second lookup. 363 std::pair<ValueMap::iterator,bool> InsP = 364 valueMap_.insert(makeVV(ParentVNI, Idx == ParentVNI->def ? VNI : 0)); 365 366 // This is now a complex def. Mark with a NULL in valueMap. 367 if (!InsP.second) 368 InsP.first->second = 0; 369 370 return VNI; 371 } 372 373 374 // mapValue - Find the mapped value for ParentVNI at Idx. 375 // Potentially create phi-def values. 376 VNInfo *LiveIntervalMap::mapValue(const VNInfo *ParentVNI, SlotIndex Idx, 377 bool *simple) { 378 assert(li_ && "call reset first"); 379 assert(ParentVNI && "Mapping NULL value"); 380 assert(Idx.isValid() && "Invalid SlotIndex"); 381 assert(parentli_.getVNInfoAt(Idx) == ParentVNI && "Bad ParentVNI"); 382 383 // Use insert for lookup, so we can add missing values with a second lookup. 384 std::pair<ValueMap::iterator,bool> InsP = 385 valueMap_.insert(makeVV(ParentVNI, 0)); 386 387 // This was an unknown value. Create a simple mapping. 388 if (InsP.second) { 389 if (simple) *simple = true; 390 return InsP.first->second = li_->createValueCopy(ParentVNI, 391 lis_.getVNInfoAllocator()); 392 } 393 394 // This was a simple mapped value. 395 if (InsP.first->second) { 396 if (simple) *simple = true; 397 return InsP.first->second; 398 } 399 400 // This is a complex mapped value. There may be multiple defs, and we may need 401 // to create phi-defs. 402 if (simple) *simple = false; 403 MachineBasicBlock *IdxMBB = lis_.getMBBFromIndex(Idx); 404 assert(IdxMBB && "No MBB at Idx"); 405 406 // Is there a def in the same MBB we can extend? 407 if (VNInfo *VNI = extendTo(IdxMBB, Idx)) 408 return VNI; 409 410 // Now for the fun part. We know that ParentVNI potentially has multiple defs, 411 // and we may need to create even more phi-defs to preserve VNInfo SSA form. 412 // Perform a search for all predecessor blocks where we know the dominating 413 // VNInfo. Insert phi-def VNInfos along the path back to IdxMBB. 414 DEBUG(dbgs() << "\n Reaching defs for BB#" << IdxMBB->getNumber() 415 << " at " << Idx << " in " << *li_ << '\n'); 416 417 // Blocks where li_ should be live-in. 418 SmallVector<MachineDomTreeNode*, 16> LiveIn; 419 LiveIn.push_back(mdt_[IdxMBB]); 420 421 // Using liveOutCache_ as a visited set, perform a BFS for all reaching defs. 422 for (unsigned i = 0; i != LiveIn.size(); ++i) { 423 MachineBasicBlock *MBB = LiveIn[i]->getBlock(); 424 for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), 425 PE = MBB->pred_end(); PI != PE; ++PI) { 426 MachineBasicBlock *Pred = *PI; 427 // Is this a known live-out block? 428 std::pair<LiveOutMap::iterator,bool> LOIP = 429 liveOutCache_.insert(std::make_pair(Pred, LiveOutPair())); 430 // Yes, we have been here before. 431 if (!LOIP.second) { 432 if (VNInfo *VNI = LOIP.first->second.first) { 433 DEBUG(dbgs() << " known valno #" << VNI->id 434 << " at BB#" << Pred->getNumber() << '\n'); 435 } 436 continue; 437 } 438 439 // Does Pred provide a live-out value? 440 SlotIndex Last = lis_.getMBBEndIdx(Pred).getPrevSlot(); 441 if (VNInfo *VNI = extendTo(Pred, Last)) { 442 MachineBasicBlock *DefMBB = lis_.getMBBFromIndex(VNI->def); 443 DEBUG(dbgs() << " found valno #" << VNI->id 444 << " at BB#" << DefMBB->getNumber() << '\n'); 445 LiveOutPair &LOP = LOIP.first->second; 446 LOP.first = VNI; 447 LOP.second = mdt_[lis_.getMBBFromIndex(VNI->def)]; 448 continue; 449 } 450 // No, we need a live-in value for Pred as well 451 if (Pred != IdxMBB) 452 LiveIn.push_back(mdt_[Pred]); 453 } 454 } 455 456 // We may need to add phi-def values to preserve the SSA form. 457 // This is essentially the same iterative algorithm that SSAUpdater uses, 458 // except we already have a dominator tree, so we don't have to recompute it. 459 VNInfo *IdxVNI = 0; 460 unsigned Changes; 461 do { 462 Changes = 0; 463 DEBUG(dbgs() << " Iterating over " << LiveIn.size() << " blocks.\n"); 464 // Propagate live-out values down the dominator tree, inserting phi-defs when 465 // necessary. Since LiveIn was created by a BFS, going backwards makes it more 466 // likely for us to visit immediate dominators before their children. 467 for (unsigned i = LiveIn.size(); i; --i) { 468 MachineDomTreeNode *Node = LiveIn[i-1]; 469 MachineBasicBlock *MBB = Node->getBlock(); 470 MachineDomTreeNode *IDom = Node->getIDom(); 471 LiveOutPair IDomValue; 472 // We need a live-in value to a block with no immediate dominator? 473 // This is probably an unreachable block that has survived somehow. 474 bool needPHI = !IDom; 475 476 // Get the IDom live-out value. 477 if (!needPHI) { 478 LiveOutMap::iterator I = liveOutCache_.find(IDom->getBlock()); 479 if (I != liveOutCache_.end()) 480 IDomValue = I->second; 481 else 482 // If IDom is outside our set of live-out blocks, there must be new 483 // defs, and we need a phi-def here. 484 needPHI = true; 485 } 486 487 // IDom dominates all of our predecessors, but it may not be the immediate 488 // dominator. Check if any of them have live-out values that are properly 489 // dominated by IDom. If so, we need a phi-def here. 490 if (!needPHI) { 491 for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), 492 PE = MBB->pred_end(); PI != PE; ++PI) { 493 LiveOutPair Value = liveOutCache_[*PI]; 494 if (!Value.first || Value.first == IDomValue.first) 495 continue; 496 // This predecessor is carrying something other than IDomValue. 497 // It could be because IDomValue hasn't propagated yet, or it could be 498 // because MBB is in the dominance frontier of that value. 499 if (mdt_.dominates(IDom, Value.second)) { 500 needPHI = true; 501 break; 502 } 503 } 504 } 505 506 // Create a phi-def if required. 507 if (needPHI) { 508 ++Changes; 509 SlotIndex Start = lis_.getMBBStartIdx(MBB); 510 VNInfo *VNI = li_->getNextValue(Start, 0, lis_.getVNInfoAllocator()); 511 VNI->setIsPHIDef(true); 512 DEBUG(dbgs() << " - BB#" << MBB->getNumber() 513 << " phi-def #" << VNI->id << " at " << Start << '\n'); 514 // We no longer need li_ to be live-in. 515 LiveIn.erase(LiveIn.begin()+(i-1)); 516 // Blocks in LiveIn are either IdxMBB, or have a value live-through. 517 if (MBB == IdxMBB) 518 IdxVNI = VNI; 519 // Check if we need to update live-out info. 520 LiveOutMap::iterator I = liveOutCache_.find(MBB); 521 if (I == liveOutCache_.end() || I->second.second == Node) { 522 // We already have a live-out defined in MBB, so this must be IdxMBB. 523 assert(MBB == IdxMBB && "Adding phi-def to known live-out"); 524 li_->addRange(LiveRange(Start, Idx.getNextSlot(), VNI)); 525 } else { 526 // This phi-def is also live-out, so color the whole block. 527 li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), VNI)); 528 I->second = LiveOutPair(VNI, Node); 529 } 530 } else if (IDomValue.first) { 531 // No phi-def here. Propagate IDomValue if needed. 532 if (MBB == IdxMBB) 533 IdxVNI = IDomValue.first; 534 LiveOutMap::iterator I = liveOutCache_.find(MBB); 535 if (I != liveOutCache_.end() && I->second.first != IDomValue.first) { 536 ++Changes; 537 I->second = IDomValue; 538 DEBUG(dbgs() << " - BB#" << MBB->getNumber() 539 << " idom valno #" << IDomValue.first->id 540 << " from BB#" << IDom->getBlock()->getNumber() << '\n'); 541 } 542 } 543 } 544 DEBUG(dbgs() << " - made " << Changes << " changes.\n"); 545 } while (Changes); 546 547 assert(IdxVNI && "Didn't find value for Idx"); 548 549 #ifndef NDEBUG 550 // Check the liveOutCache_ invariants. 551 for (LiveOutMap::iterator I = liveOutCache_.begin(), E = liveOutCache_.end(); 552 I != E; ++I) { 553 assert(I->first && "Null MBB entry in cache"); 554 assert(I->second.first && "Null VNInfo in cache"); 555 assert(I->second.second && "Null DomTreeNode in cache"); 556 if (I->second.second->getBlock() == I->first) 557 continue; 558 for (MachineBasicBlock::pred_iterator PI = I->first->pred_begin(), 559 PE = I->first->pred_end(); PI != PE; ++PI) 560 assert(liveOutCache_.lookup(*PI) == I->second && "Bad invariant"); 561 } 562 #endif 563 564 // Since we went through the trouble of a full BFS visiting all reaching defs, 565 // the values in LiveIn are now accurate. No more phi-defs are needed 566 // for these blocks, so we can color the live ranges. 567 // This makes the next mapValue call much faster. 568 for (unsigned i = 0, e = LiveIn.size(); i != e; ++i) { 569 MachineBasicBlock *MBB = LiveIn[i]->getBlock(); 570 SlotIndex Start = lis_.getMBBStartIdx(MBB); 571 if (MBB == IdxMBB) { 572 li_->addRange(LiveRange(Start, Idx.getNextSlot(), IdxVNI)); 573 continue; 574 } 575 // Anything in LiveIn other than IdxMBB is live-through. 576 VNInfo *VNI = liveOutCache_.lookup(MBB).first; 577 assert(VNI && "Missing block value"); 578 li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), VNI)); 579 } 580 581 return IdxVNI; 582 } 583 584 // extendTo - Find the last li_ value defined in MBB at or before Idx. The 585 // parentli_ is assumed to be live at Idx. Extend the live range to Idx. 586 // Return the found VNInfo, or NULL. 587 VNInfo *LiveIntervalMap::extendTo(const MachineBasicBlock *MBB, SlotIndex Idx) { 588 assert(li_ && "call reset first"); 589 LiveInterval::iterator I = std::upper_bound(li_->begin(), li_->end(), Idx); 590 if (I == li_->begin()) 591 return 0; 592 --I; 593 if (I->end <= lis_.getMBBStartIdx(MBB)) 594 return 0; 595 if (I->end <= Idx) 596 I->end = Idx.getNextSlot(); 597 return I->valno; 598 } 599 600 // addSimpleRange - Add a simple range from parentli_ to li_. 601 // ParentVNI must be live in the [Start;End) interval. 602 void LiveIntervalMap::addSimpleRange(SlotIndex Start, SlotIndex End, 603 const VNInfo *ParentVNI) { 604 assert(li_ && "call reset first"); 605 bool simple; 606 VNInfo *VNI = mapValue(ParentVNI, Start, &simple); 607 // A simple mapping is easy. 608 if (simple) { 609 li_->addRange(LiveRange(Start, End, VNI)); 610 return; 611 } 612 613 // ParentVNI is a complex value. We must map per MBB. 614 MachineFunction::iterator MBB = lis_.getMBBFromIndex(Start); 615 MachineFunction::iterator MBBE = lis_.getMBBFromIndex(End.getPrevSlot()); 616 617 if (MBB == MBBE) { 618 li_->addRange(LiveRange(Start, End, VNI)); 619 return; 620 } 621 622 // First block. 623 li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), VNI)); 624 625 // Run sequence of full blocks. 626 for (++MBB; MBB != MBBE; ++MBB) { 627 Start = lis_.getMBBStartIdx(MBB); 628 li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), 629 mapValue(ParentVNI, Start))); 630 } 631 632 // Final block. 633 Start = lis_.getMBBStartIdx(MBB); 634 if (Start != End) 635 li_->addRange(LiveRange(Start, End, mapValue(ParentVNI, Start))); 636 } 637 638 /// addRange - Add live ranges to li_ where [Start;End) intersects parentli_. 639 /// All needed values whose def is not inside [Start;End) must be defined 640 /// beforehand so mapValue will work. 641 void LiveIntervalMap::addRange(SlotIndex Start, SlotIndex End) { 642 assert(li_ && "call reset first"); 643 LiveInterval::const_iterator B = parentli_.begin(), E = parentli_.end(); 644 LiveInterval::const_iterator I = std::lower_bound(B, E, Start); 645 646 // Check if --I begins before Start and overlaps. 647 if (I != B) { 648 --I; 649 if (I->end > Start) 650 addSimpleRange(Start, std::min(End, I->end), I->valno); 651 ++I; 652 } 653 654 // The remaining ranges begin after Start. 655 for (;I != E && I->start < End; ++I) 656 addSimpleRange(I->start, std::min(End, I->end), I->valno); 657 } 658 659 VNInfo *LiveIntervalMap::defByCopyFrom(unsigned Reg, 660 const VNInfo *ParentVNI, 661 MachineBasicBlock &MBB, 662 MachineBasicBlock::iterator I) { 663 const TargetInstrDesc &TID = MBB.getParent()->getTarget().getInstrInfo()-> 664 get(TargetOpcode::COPY); 665 MachineInstr *MI = BuildMI(MBB, I, DebugLoc(), TID, li_->reg).addReg(Reg); 666 SlotIndex DefIdx = lis_.InsertMachineInstrInMaps(MI).getDefIndex(); 667 VNInfo *VNI = defValue(ParentVNI, DefIdx); 668 VNI->setCopy(MI); 669 li_->addRange(LiveRange(DefIdx, DefIdx.getNextSlot(), VNI)); 670 return VNI; 671 } 672 673 //===----------------------------------------------------------------------===// 674 // Split Editor 675 //===----------------------------------------------------------------------===// 676 677 /// Create a new SplitEditor for editing the LiveInterval analyzed by SA. 678 SplitEditor::SplitEditor(SplitAnalysis &sa, 679 LiveIntervals &lis, 680 VirtRegMap &vrm, 681 MachineDominatorTree &mdt, 682 LiveRangeEdit &edit) 683 : sa_(sa), lis_(lis), vrm_(vrm), 684 mri_(vrm.getMachineFunction().getRegInfo()), 685 tii_(*vrm.getMachineFunction().getTarget().getInstrInfo()), 686 edit_(edit), 687 dupli_(lis_, mdt, edit.getParent()), 688 openli_(lis_, mdt, edit.getParent()) 689 { 690 } 691 692 bool SplitEditor::intervalsLiveAt(SlotIndex Idx) const { 693 for (LiveRangeEdit::iterator I = edit_.begin(), E = edit_.end(); I != E; ++I) 694 if (*I != dupli_.getLI() && (*I)->liveAt(Idx)) 695 return true; 696 return false; 697 } 698 699 /// Create a new virtual register and live interval. 700 void SplitEditor::openIntv() { 701 assert(!openli_.getLI() && "Previous LI not closed before openIntv"); 702 703 if (!dupli_.getLI()) 704 dupli_.reset(&edit_.create(mri_, lis_, vrm_)); 705 706 openli_.reset(&edit_.create(mri_, lis_, vrm_)); 707 } 708 709 /// enterIntvBefore - Enter openli before the instruction at Idx. If curli is 710 /// not live before Idx, a COPY is not inserted. 711 void SplitEditor::enterIntvBefore(SlotIndex Idx) { 712 assert(openli_.getLI() && "openIntv not called before enterIntvBefore"); 713 DEBUG(dbgs() << " enterIntvBefore " << Idx); 714 VNInfo *ParentVNI = edit_.getParent().getVNInfoAt(Idx.getUseIndex()); 715 if (!ParentVNI) { 716 DEBUG(dbgs() << ": not live\n"); 717 return; 718 } 719 DEBUG(dbgs() << ": valno " << ParentVNI->id); 720 truncatedValues.insert(ParentVNI); 721 MachineInstr *MI = lis_.getInstructionFromIndex(Idx); 722 assert(MI && "enterIntvBefore called with invalid index"); 723 VNInfo *VNI = openli_.defByCopyFrom(edit_.getReg(), ParentVNI, 724 *MI->getParent(), MI); 725 openli_.getLI()->addRange(LiveRange(VNI->def, Idx.getDefIndex(), VNI)); 726 DEBUG(dbgs() << ": " << *openli_.getLI() << '\n'); 727 } 728 729 /// enterIntvAtEnd - Enter openli at the end of MBB. 730 void SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) { 731 assert(openli_.getLI() && "openIntv not called before enterIntvAtEnd"); 732 SlotIndex End = lis_.getMBBEndIdx(&MBB); 733 DEBUG(dbgs() << " enterIntvAtEnd BB#" << MBB.getNumber() << ", " << End); 734 VNInfo *ParentVNI = edit_.getParent().getVNInfoAt(End.getPrevSlot()); 735 if (!ParentVNI) { 736 DEBUG(dbgs() << ": not live\n"); 737 return; 738 } 739 DEBUG(dbgs() << ": valno " << ParentVNI->id); 740 truncatedValues.insert(ParentVNI); 741 VNInfo *VNI = openli_.defByCopyFrom(edit_.getReg(), ParentVNI, 742 MBB, MBB.getFirstTerminator()); 743 // Make sure openli is live out of MBB. 744 openli_.getLI()->addRange(LiveRange(VNI->def, End, VNI)); 745 DEBUG(dbgs() << ": " << *openli_.getLI() << '\n'); 746 } 747 748 /// useIntv - indicate that all instructions in MBB should use openli. 749 void SplitEditor::useIntv(const MachineBasicBlock &MBB) { 750 useIntv(lis_.getMBBStartIdx(&MBB), lis_.getMBBEndIdx(&MBB)); 751 } 752 753 void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) { 754 assert(openli_.getLI() && "openIntv not called before useIntv"); 755 openli_.addRange(Start, End); 756 DEBUG(dbgs() << " use [" << Start << ';' << End << "): " 757 << *openli_.getLI() << '\n'); 758 } 759 760 /// leaveIntvAfter - Leave openli after the instruction at Idx. 761 void SplitEditor::leaveIntvAfter(SlotIndex Idx) { 762 assert(openli_.getLI() && "openIntv not called before leaveIntvAfter"); 763 DEBUG(dbgs() << " leaveIntvAfter " << Idx); 764 765 // The interval must be live beyond the instruction at Idx. 766 VNInfo *ParentVNI = edit_.getParent().getVNInfoAt(Idx.getBoundaryIndex()); 767 if (!ParentVNI) { 768 DEBUG(dbgs() << ": not live\n"); 769 return; 770 } 771 DEBUG(dbgs() << ": valno " << ParentVNI->id); 772 773 MachineBasicBlock::iterator MII = lis_.getInstructionFromIndex(Idx); 774 MachineBasicBlock *MBB = MII->getParent(); 775 VNInfo *VNI = dupli_.defByCopyFrom(openli_.getLI()->reg, ParentVNI, *MBB, 776 llvm::next(MII)); 777 778 // Finally we must make sure that openli is properly extended from Idx to the 779 // new copy. 780 openli_.addSimpleRange(Idx.getBoundaryIndex(), VNI->def, ParentVNI); 781 DEBUG(dbgs() << ": " << *openli_.getLI() << '\n'); 782 } 783 784 /// leaveIntvAtTop - Leave the interval at the top of MBB. 785 /// Currently, only one value can leave the interval. 786 void SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) { 787 assert(openli_.getLI() && "openIntv not called before leaveIntvAtTop"); 788 SlotIndex Start = lis_.getMBBStartIdx(&MBB); 789 DEBUG(dbgs() << " leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start); 790 791 VNInfo *ParentVNI = edit_.getParent().getVNInfoAt(Start); 792 if (!ParentVNI) { 793 DEBUG(dbgs() << ": not live\n"); 794 return; 795 } 796 797 // We are going to insert a back copy, so we must have a dupli_. 798 VNInfo *VNI = dupli_.defByCopyFrom(openli_.getLI()->reg, ParentVNI, 799 MBB, MBB.begin()); 800 801 // Finally we must make sure that openli is properly extended from Start to 802 // the new copy. 803 openli_.addSimpleRange(Start, VNI->def, ParentVNI); 804 DEBUG(dbgs() << ": " << *openli_.getLI() << '\n'); 805 } 806 807 /// closeIntv - Indicate that we are done editing the currently open 808 /// LiveInterval, and ranges can be trimmed. 809 void SplitEditor::closeIntv() { 810 assert(openli_.getLI() && "openIntv not called before closeIntv"); 811 812 DEBUG(dbgs() << " closeIntv cleaning up\n"); 813 DEBUG(dbgs() << " open " << *openli_.getLI() << '\n'); 814 openli_.reset(0); 815 } 816 817 /// rewrite - Rewrite all uses of reg to use the new registers. 818 void SplitEditor::rewrite(unsigned reg) { 819 for (MachineRegisterInfo::reg_iterator RI = mri_.reg_begin(reg), 820 RE = mri_.reg_end(); RI != RE;) { 821 MachineOperand &MO = RI.getOperand(); 822 MachineInstr *MI = MO.getParent(); 823 ++RI; 824 if (MI->isDebugValue()) { 825 DEBUG(dbgs() << "Zapping " << *MI); 826 // FIXME: We can do much better with debug values. 827 MO.setReg(0); 828 continue; 829 } 830 SlotIndex Idx = lis_.getInstructionIndex(MI); 831 Idx = MO.isUse() ? Idx.getUseIndex() : Idx.getDefIndex(); 832 LiveInterval *LI = 0; 833 for (LiveRangeEdit::iterator I = edit_.begin(), E = edit_.end(); I != E; 834 ++I) { 835 LiveInterval *testli = *I; 836 if (testli->liveAt(Idx)) { 837 LI = testli; 838 break; 839 } 840 } 841 DEBUG(dbgs() << " rewr BB#" << MI->getParent()->getNumber() << '\t'<< Idx); 842 assert(LI && "No register was live at use"); 843 MO.setReg(LI->reg); 844 DEBUG(dbgs() << '\t' << *MI); 845 } 846 } 847 848 void 849 SplitEditor::addTruncSimpleRange(SlotIndex Start, SlotIndex End, VNInfo *VNI) { 850 // Build vector of iterator pairs from the intervals. 851 typedef std::pair<LiveInterval::const_iterator, 852 LiveInterval::const_iterator> IIPair; 853 SmallVector<IIPair, 8> Iters; 854 for (LiveRangeEdit::iterator LI = edit_.begin(), LE = edit_.end(); LI != LE; 855 ++LI) { 856 if (*LI == dupli_.getLI()) 857 continue; 858 LiveInterval::const_iterator I = (*LI)->find(Start); 859 LiveInterval::const_iterator E = (*LI)->end(); 860 if (I != E) 861 Iters.push_back(std::make_pair(I, E)); 862 } 863 864 SlotIndex sidx = Start; 865 // Break [Start;End) into segments that don't overlap any intervals. 866 for (;;) { 867 SlotIndex next = sidx, eidx = End; 868 // Find overlapping intervals. 869 for (unsigned i = 0; i != Iters.size() && sidx < eidx; ++i) { 870 LiveInterval::const_iterator I = Iters[i].first; 871 // Interval I is overlapping [sidx;eidx). Trim sidx. 872 if (I->start <= sidx) { 873 sidx = I->end; 874 // Move to the next run, remove iters when all are consumed. 875 I = ++Iters[i].first; 876 if (I == Iters[i].second) { 877 Iters.erase(Iters.begin() + i); 878 --i; 879 continue; 880 } 881 } 882 // Trim eidx too if needed. 883 if (I->start >= eidx) 884 continue; 885 eidx = I->start; 886 next = I->end; 887 } 888 // Now, [sidx;eidx) doesn't overlap anything in intervals_. 889 if (sidx < eidx) 890 dupli_.addSimpleRange(sidx, eidx, VNI); 891 // If the interval end was truncated, we can try again from next. 892 if (next <= sidx) 893 break; 894 sidx = next; 895 } 896 } 897 898 void SplitEditor::computeRemainder() { 899 // First we need to fill in the live ranges in dupli. 900 // If values were redefined, we need a full recoloring with SSA update. 901 // If values were truncated, we only need to truncate the ranges. 902 // If values were partially rematted, we should shrink to uses. 903 // If values were fully rematted, they should be omitted. 904 // FIXME: If a single value is redefined, just move the def and truncate. 905 LiveInterval &parent = edit_.getParent(); 906 907 // Values that are fully contained in the split intervals. 908 SmallPtrSet<const VNInfo*, 8> deadValues; 909 // Map all curli values that should have live defs in dupli. 910 for (LiveInterval::const_vni_iterator I = parent.vni_begin(), 911 E = parent.vni_end(); I != E; ++I) { 912 const VNInfo *VNI = *I; 913 // Original def is contained in the split intervals. 914 if (intervalsLiveAt(VNI->def)) { 915 // Did this value escape? 916 if (dupli_.isMapped(VNI)) 917 truncatedValues.insert(VNI); 918 else 919 deadValues.insert(VNI); 920 continue; 921 } 922 // Add minimal live range at the definition. 923 VNInfo *DVNI = dupli_.defValue(VNI, VNI->def); 924 dupli_.getLI()->addRange(LiveRange(VNI->def, VNI->def.getNextSlot(), DVNI)); 925 } 926 927 // Add all ranges to dupli. 928 for (LiveInterval::const_iterator I = parent.begin(), E = parent.end(); 929 I != E; ++I) { 930 const LiveRange &LR = *I; 931 if (truncatedValues.count(LR.valno)) { 932 // recolor after removing intervals_. 933 addTruncSimpleRange(LR.start, LR.end, LR.valno); 934 } else if (!deadValues.count(LR.valno)) { 935 // recolor without truncation. 936 dupli_.addSimpleRange(LR.start, LR.end, LR.valno); 937 } 938 } 939 940 // Extend dupli_ to be live out of any critical loop predecessors. 941 // This means we have multiple registers live out of those blocks. 942 // The alternative would be to split the critical edges. 943 if (criticalPreds_.empty()) 944 return; 945 for (SplitAnalysis::BlockPtrSet::iterator I = criticalPreds_.begin(), 946 E = criticalPreds_.end(); I != E; ++I) 947 dupli_.extendTo(*I, lis_.getMBBEndIdx(*I).getPrevSlot()); 948 criticalPreds_.clear(); 949 } 950 951 void SplitEditor::finish() { 952 assert(!openli_.getLI() && "Previous LI not closed before rewrite"); 953 assert(dupli_.getLI() && "No dupli for rewrite. Noop spilt?"); 954 955 // Complete dupli liveness. 956 computeRemainder(); 957 958 // Get rid of unused values and set phi-kill flags. 959 for (LiveRangeEdit::iterator I = edit_.begin(), E = edit_.end(); I != E; ++I) 960 (*I)->RenumberValues(lis_); 961 962 // Rewrite instructions. 963 rewrite(edit_.getReg()); 964 965 // Now check if any registers were separated into multiple components. 966 ConnectedVNInfoEqClasses ConEQ(lis_); 967 for (unsigned i = 0, e = edit_.size(); i != e; ++i) { 968 // Don't use iterators, they are invalidated by create() below. 969 LiveInterval *li = edit_.get(i); 970 unsigned NumComp = ConEQ.Classify(li); 971 if (NumComp <= 1) 972 continue; 973 DEBUG(dbgs() << " " << NumComp << " components: " << *li << '\n'); 974 SmallVector<LiveInterval*, 8> dups; 975 dups.push_back(li); 976 for (unsigned i = 1; i != NumComp; ++i) 977 dups.push_back(&edit_.create(mri_, lis_, vrm_)); 978 ConEQ.Distribute(&dups[0]); 979 // Rewrite uses to the new regs. 980 rewrite(li->reg); 981 } 982 983 // Calculate spill weight and allocation hints for new intervals. 984 VirtRegAuxInfo vrai(vrm_.getMachineFunction(), lis_, sa_.loops_); 985 for (LiveRangeEdit::iterator I = edit_.begin(), E = edit_.end(); I != E; ++I){ 986 LiveInterval &li = **I; 987 vrai.CalculateRegClass(li.reg); 988 vrai.CalculateWeightAndHint(li); 989 DEBUG(dbgs() << " new interval " << mri_.getRegClass(li.reg)->getName() 990 << ":" << li << '\n'); 991 } 992 } 993 994 995 //===----------------------------------------------------------------------===// 996 // Loop Splitting 997 //===----------------------------------------------------------------------===// 998 999 void SplitEditor::splitAroundLoop(const MachineLoop *Loop) { 1000 SplitAnalysis::LoopBlocks Blocks; 1001 sa_.getLoopBlocks(Loop, Blocks); 1002 1003 DEBUG({ 1004 dbgs() << " splitAround"; sa_.print(Blocks, dbgs()); dbgs() << '\n'; 1005 }); 1006 1007 // Break critical edges as needed. 1008 SplitAnalysis::BlockPtrSet CriticalExits; 1009 sa_.getCriticalExits(Blocks, CriticalExits); 1010 assert(CriticalExits.empty() && "Cannot break critical exits yet"); 1011 1012 // Get critical predecessors so computeRemainder can deal with them. 1013 sa_.getCriticalPreds(Blocks, criticalPreds_); 1014 1015 // Create new live interval for the loop. 1016 openIntv(); 1017 1018 // Insert copies in the predecessors. 1019 for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Preds.begin(), 1020 E = Blocks.Preds.end(); I != E; ++I) { 1021 MachineBasicBlock &MBB = const_cast<MachineBasicBlock&>(**I); 1022 enterIntvAtEnd(MBB); 1023 } 1024 1025 // Switch all loop blocks. 1026 for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Loop.begin(), 1027 E = Blocks.Loop.end(); I != E; ++I) 1028 useIntv(**I); 1029 1030 // Insert back copies in the exit blocks. 1031 for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Exits.begin(), 1032 E = Blocks.Exits.end(); I != E; ++I) { 1033 MachineBasicBlock &MBB = const_cast<MachineBasicBlock&>(**I); 1034 leaveIntvAtTop(MBB); 1035 } 1036 1037 // Done. 1038 closeIntv(); 1039 finish(); 1040 } 1041 1042 1043 //===----------------------------------------------------------------------===// 1044 // Single Block Splitting 1045 //===----------------------------------------------------------------------===// 1046 1047 /// getMultiUseBlocks - if curli has more than one use in a basic block, it 1048 /// may be an advantage to split curli for the duration of the block. 1049 bool SplitAnalysis::getMultiUseBlocks(BlockPtrSet &Blocks) { 1050 // If curli is local to one block, there is no point to splitting it. 1051 if (usingBlocks_.size() <= 1) 1052 return false; 1053 // Add blocks with multiple uses. 1054 for (BlockCountMap::iterator I = usingBlocks_.begin(), E = usingBlocks_.end(); 1055 I != E; ++I) 1056 switch (I->second) { 1057 case 0: 1058 case 1: 1059 continue; 1060 case 2: { 1061 // When there are only two uses and curli is both live in and live out, 1062 // we don't really win anything by isolating the block since we would be 1063 // inserting two copies. 1064 // The remaing register would still have two uses in the block. (Unless it 1065 // separates into disconnected components). 1066 if (lis_.isLiveInToMBB(*curli_, I->first) && 1067 lis_.isLiveOutOfMBB(*curli_, I->first)) 1068 continue; 1069 } // Fall through. 1070 default: 1071 Blocks.insert(I->first); 1072 } 1073 return !Blocks.empty(); 1074 } 1075 1076 /// splitSingleBlocks - Split curli into a separate live interval inside each 1077 /// basic block in Blocks. 1078 void SplitEditor::splitSingleBlocks(const SplitAnalysis::BlockPtrSet &Blocks) { 1079 DEBUG(dbgs() << " splitSingleBlocks for " << Blocks.size() << " blocks.\n"); 1080 // Determine the first and last instruction using curli in each block. 1081 typedef std::pair<SlotIndex,SlotIndex> IndexPair; 1082 typedef DenseMap<const MachineBasicBlock*,IndexPair> IndexPairMap; 1083 IndexPairMap MBBRange; 1084 for (SplitAnalysis::InstrPtrSet::const_iterator I = sa_.usingInstrs_.begin(), 1085 E = sa_.usingInstrs_.end(); I != E; ++I) { 1086 const MachineBasicBlock *MBB = (*I)->getParent(); 1087 if (!Blocks.count(MBB)) 1088 continue; 1089 SlotIndex Idx = lis_.getInstructionIndex(*I); 1090 DEBUG(dbgs() << " BB#" << MBB->getNumber() << '\t' << Idx << '\t' << **I); 1091 IndexPair &IP = MBBRange[MBB]; 1092 if (!IP.first.isValid() || Idx < IP.first) 1093 IP.first = Idx; 1094 if (!IP.second.isValid() || Idx > IP.second) 1095 IP.second = Idx; 1096 } 1097 1098 // Create a new interval for each block. 1099 for (SplitAnalysis::BlockPtrSet::const_iterator I = Blocks.begin(), 1100 E = Blocks.end(); I != E; ++I) { 1101 IndexPair &IP = MBBRange[*I]; 1102 DEBUG(dbgs() << " splitting for BB#" << (*I)->getNumber() << ": [" 1103 << IP.first << ';' << IP.second << ")\n"); 1104 assert(IP.first.isValid() && IP.second.isValid()); 1105 1106 openIntv(); 1107 enterIntvBefore(IP.first); 1108 useIntv(IP.first.getBaseIndex(), IP.second.getBoundaryIndex()); 1109 leaveIntvAfter(IP.second); 1110 closeIntv(); 1111 } 1112 finish(); 1113 } 1114 1115 1116 //===----------------------------------------------------------------------===// 1117 // Sub Block Splitting 1118 //===----------------------------------------------------------------------===// 1119 1120 /// getBlockForInsideSplit - If curli is contained inside a single basic block, 1121 /// and it wou pay to subdivide the interval inside that block, return it. 1122 /// Otherwise return NULL. The returned block can be passed to 1123 /// SplitEditor::splitInsideBlock. 1124 const MachineBasicBlock *SplitAnalysis::getBlockForInsideSplit() { 1125 // The interval must be exclusive to one block. 1126 if (usingBlocks_.size() != 1) 1127 return 0; 1128 // Don't to this for less than 4 instructions. We want to be sure that 1129 // splitting actually reduces the instruction count per interval. 1130 if (usingInstrs_.size() < 4) 1131 return 0; 1132 return usingBlocks_.begin()->first; 1133 } 1134 1135 /// splitInsideBlock - Split curli into multiple intervals inside MBB. 1136 void SplitEditor::splitInsideBlock(const MachineBasicBlock *MBB) { 1137 SmallVector<SlotIndex, 32> Uses; 1138 Uses.reserve(sa_.usingInstrs_.size()); 1139 for (SplitAnalysis::InstrPtrSet::const_iterator I = sa_.usingInstrs_.begin(), 1140 E = sa_.usingInstrs_.end(); I != E; ++I) 1141 if ((*I)->getParent() == MBB) 1142 Uses.push_back(lis_.getInstructionIndex(*I)); 1143 DEBUG(dbgs() << " splitInsideBlock BB#" << MBB->getNumber() << " for " 1144 << Uses.size() << " instructions.\n"); 1145 assert(Uses.size() >= 3 && "Need at least 3 instructions"); 1146 array_pod_sort(Uses.begin(), Uses.end()); 1147 1148 // Simple algorithm: Find the largest gap between uses as determined by slot 1149 // indices. Create new intervals for instructions before the gap and after the 1150 // gap. 1151 unsigned bestPos = 0; 1152 int bestGap = 0; 1153 DEBUG(dbgs() << " dist (" << Uses[0]); 1154 for (unsigned i = 1, e = Uses.size(); i != e; ++i) { 1155 int g = Uses[i-1].distance(Uses[i]); 1156 DEBUG(dbgs() << ") -" << g << "- (" << Uses[i]); 1157 if (g > bestGap) 1158 bestPos = i, bestGap = g; 1159 } 1160 DEBUG(dbgs() << "), best: -" << bestGap << "-\n"); 1161 1162 // bestPos points to the first use after the best gap. 1163 assert(bestPos > 0 && "Invalid gap"); 1164 1165 // FIXME: Don't create intervals for low densities. 1166 1167 // First interval before the gap. Don't create single-instr intervals. 1168 if (bestPos > 1) { 1169 openIntv(); 1170 enterIntvBefore(Uses.front()); 1171 useIntv(Uses.front().getBaseIndex(), Uses[bestPos-1].getBoundaryIndex()); 1172 leaveIntvAfter(Uses[bestPos-1]); 1173 closeIntv(); 1174 } 1175 1176 // Second interval after the gap. 1177 if (bestPos < Uses.size()-1) { 1178 openIntv(); 1179 enterIntvBefore(Uses[bestPos]); 1180 useIntv(Uses[bestPos].getBaseIndex(), Uses.back().getBoundaryIndex()); 1181 leaveIntvAfter(Uses.back()); 1182 closeIntv(); 1183 } 1184 1185 finish(); 1186 } 1187