1 //===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the SplitAnalysis class as well as mutator functions for 11 // live range splitting. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "regalloc" 16 #include "SplitKit.h" 17 #include "LiveRangeEdit.h" 18 #include "VirtRegMap.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/CodeGen/CalcSpillWeights.h" 21 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 22 #include "llvm/CodeGen/MachineDominators.h" 23 #include "llvm/CodeGen/MachineInstrBuilder.h" 24 #include "llvm/CodeGen/MachineRegisterInfo.h" 25 #include "llvm/Support/CommandLine.h" 26 #include "llvm/Support/Debug.h" 27 #include "llvm/Support/raw_ostream.h" 28 #include "llvm/Target/TargetInstrInfo.h" 29 #include "llvm/Target/TargetMachine.h" 30 31 using namespace llvm; 32 33 static cl::opt<bool> 34 AllowSplit("spiller-splits-edges", 35 cl::desc("Allow critical edge splitting during spilling")); 36 37 STATISTIC(NumFinished, "Number of splits finished"); 38 STATISTIC(NumSimple, "Number of splits that were simple"); 39 40 //===----------------------------------------------------------------------===// 41 // Split Analysis 42 //===----------------------------------------------------------------------===// 43 44 SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm, 45 const LiveIntervals &lis, 46 const MachineLoopInfo &mli) 47 : MF(vrm.getMachineFunction()), 48 VRM(vrm), 49 LIS(lis), 50 Loops(mli), 51 TII(*MF.getTarget().getInstrInfo()), 52 CurLI(0) {} 53 54 void SplitAnalysis::clear() { 55 UseSlots.clear(); 56 UsingInstrs.clear(); 57 UsingBlocks.clear(); 58 LiveBlocks.clear(); 59 CurLI = 0; 60 } 61 62 bool SplitAnalysis::canAnalyzeBranch(const MachineBasicBlock *MBB) { 63 MachineBasicBlock *T, *F; 64 SmallVector<MachineOperand, 4> Cond; 65 return !TII.AnalyzeBranch(const_cast<MachineBasicBlock&>(*MBB), T, F, Cond); 66 } 67 68 /// analyzeUses - Count instructions, basic blocks, and loops using CurLI. 69 void SplitAnalysis::analyzeUses() { 70 const MachineRegisterInfo &MRI = MF.getRegInfo(); 71 for (MachineRegisterInfo::reg_iterator I = MRI.reg_begin(CurLI->reg), 72 E = MRI.reg_end(); I != E; ++I) { 73 MachineOperand &MO = I.getOperand(); 74 if (MO.isUse() && MO.isUndef()) 75 continue; 76 MachineInstr *MI = MO.getParent(); 77 if (MI->isDebugValue() || !UsingInstrs.insert(MI)) 78 continue; 79 UseSlots.push_back(LIS.getInstructionIndex(MI).getDefIndex()); 80 MachineBasicBlock *MBB = MI->getParent(); 81 UsingBlocks[MBB]++; 82 } 83 array_pod_sort(UseSlots.begin(), UseSlots.end()); 84 calcLiveBlockInfo(); 85 DEBUG(dbgs() << " counted " 86 << UsingInstrs.size() << " instrs, " 87 << UsingBlocks.size() << " blocks.\n"); 88 } 89 90 /// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks 91 /// where CurLI is live. 92 void SplitAnalysis::calcLiveBlockInfo() { 93 if (CurLI->empty()) 94 return; 95 96 LiveInterval::const_iterator LVI = CurLI->begin(); 97 LiveInterval::const_iterator LVE = CurLI->end(); 98 99 SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE; 100 UseI = UseSlots.begin(); 101 UseE = UseSlots.end(); 102 103 // Loop over basic blocks where CurLI is live. 104 MachineFunction::iterator MFI = LIS.getMBBFromIndex(LVI->start); 105 for (;;) { 106 BlockInfo BI; 107 BI.MBB = MFI; 108 SlotIndex Start, Stop; 109 tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); 110 111 // The last split point is the latest possible insertion point that dominates 112 // all successor blocks. If interference reaches LastSplitPoint, it is not 113 // possible to insert a split or reload that makes CurLI live in the 114 // outgoing bundle. 115 MachineBasicBlock::iterator LSP = LIS.getLastSplitPoint(*CurLI, BI.MBB); 116 if (LSP == BI.MBB->end()) 117 BI.LastSplitPoint = Stop; 118 else 119 BI.LastSplitPoint = LIS.getInstructionIndex(LSP); 120 121 // LVI is the first live segment overlapping MBB. 122 BI.LiveIn = LVI->start <= Start; 123 if (!BI.LiveIn) 124 BI.Def = LVI->start; 125 126 // Find the first and last uses in the block. 127 BI.Uses = hasUses(MFI); 128 if (BI.Uses && UseI != UseE) { 129 BI.FirstUse = *UseI; 130 assert(BI.FirstUse >= Start); 131 do ++UseI; 132 while (UseI != UseE && *UseI < Stop); 133 BI.LastUse = UseI[-1]; 134 assert(BI.LastUse < Stop); 135 } 136 137 // Look for gaps in the live range. 138 bool hasGap = false; 139 BI.LiveOut = true; 140 while (LVI->end < Stop) { 141 SlotIndex LastStop = LVI->end; 142 if (++LVI == LVE || LVI->start >= Stop) { 143 BI.Kill = LastStop; 144 BI.LiveOut = false; 145 break; 146 } 147 if (LastStop < LVI->start) { 148 hasGap = true; 149 BI.Kill = LastStop; 150 BI.Def = LVI->start; 151 } 152 } 153 154 // Don't set LiveThrough when the block has a gap. 155 BI.LiveThrough = !hasGap && BI.LiveIn && BI.LiveOut; 156 LiveBlocks.push_back(BI); 157 158 // LVI is now at LVE or LVI->end >= Stop. 159 if (LVI == LVE) 160 break; 161 162 // Live segment ends exactly at Stop. Move to the next segment. 163 if (LVI->end == Stop && ++LVI == LVE) 164 break; 165 166 // Pick the next basic block. 167 if (LVI->start < Stop) 168 ++MFI; 169 else 170 MFI = LIS.getMBBFromIndex(LVI->start); 171 } 172 } 173 174 bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const { 175 unsigned OrigReg = VRM.getOriginal(CurLI->reg); 176 const LiveInterval &Orig = LIS.getInterval(OrigReg); 177 assert(!Orig.empty() && "Splitting empty interval?"); 178 LiveInterval::const_iterator I = Orig.find(Idx); 179 180 // Range containing Idx should begin at Idx. 181 if (I != Orig.end() && I->start <= Idx) 182 return I->start == Idx; 183 184 // Range does not contain Idx, previous must end at Idx. 185 return I != Orig.begin() && (--I)->end == Idx; 186 } 187 188 void SplitAnalysis::print(const BlockPtrSet &B, raw_ostream &OS) const { 189 for (BlockPtrSet::const_iterator I = B.begin(), E = B.end(); I != E; ++I) { 190 unsigned count = UsingBlocks.lookup(*I); 191 OS << " BB#" << (*I)->getNumber(); 192 if (count) 193 OS << '(' << count << ')'; 194 } 195 } 196 197 void SplitAnalysis::analyze(const LiveInterval *li) { 198 clear(); 199 CurLI = li; 200 analyzeUses(); 201 } 202 203 204 //===----------------------------------------------------------------------===// 205 // Split Editor 206 //===----------------------------------------------------------------------===// 207 208 /// Create a new SplitEditor for editing the LiveInterval analyzed by SA. 209 SplitEditor::SplitEditor(SplitAnalysis &sa, 210 LiveIntervals &lis, 211 VirtRegMap &vrm, 212 MachineDominatorTree &mdt) 213 : SA(sa), LIS(lis), VRM(vrm), 214 MRI(vrm.getMachineFunction().getRegInfo()), 215 MDT(mdt), 216 TII(*vrm.getMachineFunction().getTarget().getInstrInfo()), 217 TRI(*vrm.getMachineFunction().getTarget().getRegisterInfo()), 218 Edit(0), 219 OpenIdx(0), 220 RegAssign(Allocator) 221 {} 222 223 void SplitEditor::reset(LiveRangeEdit &lre) { 224 Edit = &lre; 225 OpenIdx = 0; 226 RegAssign.clear(); 227 Values.clear(); 228 LiveOutCache.clear(); 229 230 // We don't need an AliasAnalysis since we will only be performing 231 // cheap-as-a-copy remats anyway. 232 Edit->anyRematerializable(LIS, TII, 0); 233 } 234 235 void SplitEditor::dump() const { 236 if (RegAssign.empty()) { 237 dbgs() << " empty\n"; 238 return; 239 } 240 241 for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I) 242 dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value(); 243 dbgs() << '\n'; 244 } 245 246 VNInfo *SplitEditor::defValue(unsigned RegIdx, 247 const VNInfo *ParentVNI, 248 SlotIndex Idx) { 249 assert(ParentVNI && "Mapping NULL value"); 250 assert(Idx.isValid() && "Invalid SlotIndex"); 251 assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI"); 252 LiveInterval *LI = Edit->get(RegIdx); 253 254 // Create a new value. 255 VNInfo *VNI = LI->getNextValue(Idx, 0, LIS.getVNInfoAllocator()); 256 257 // Preserve the PHIDef bit. 258 if (ParentVNI->isPHIDef() && Idx == ParentVNI->def) 259 VNI->setIsPHIDef(true); 260 261 // Use insert for lookup, so we can add missing values with a second lookup. 262 std::pair<ValueMap::iterator, bool> InsP = 263 Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id), VNI)); 264 265 // This was the first time (RegIdx, ParentVNI) was mapped. 266 // Keep it as a simple def without any liveness. 267 if (InsP.second) 268 return VNI; 269 270 // If the previous value was a simple mapping, add liveness for it now. 271 if (VNInfo *OldVNI = InsP.first->second) { 272 SlotIndex Def = OldVNI->def; 273 LI->addRange(LiveRange(Def, Def.getNextSlot(), OldVNI)); 274 // No longer a simple mapping. 275 InsP.first->second = 0; 276 } 277 278 // This is a complex mapping, add liveness for VNI 279 SlotIndex Def = VNI->def; 280 LI->addRange(LiveRange(Def, Def.getNextSlot(), VNI)); 281 282 return VNI; 283 } 284 285 void SplitEditor::markComplexMapped(unsigned RegIdx, const VNInfo *ParentVNI) { 286 assert(ParentVNI && "Mapping NULL value"); 287 VNInfo *&VNI = Values[std::make_pair(RegIdx, ParentVNI->id)]; 288 289 // ParentVNI was either unmapped or already complex mapped. Either way. 290 if (!VNI) 291 return; 292 293 // This was previously a single mapping. Make sure the old def is represented 294 // by a trivial live range. 295 SlotIndex Def = VNI->def; 296 Edit->get(RegIdx)->addRange(LiveRange(Def, Def.getNextSlot(), VNI)); 297 VNI = 0; 298 } 299 300 // extendRange - Extend the live range to reach Idx. 301 // Potentially create phi-def values. 302 void SplitEditor::extendRange(unsigned RegIdx, SlotIndex Idx) { 303 assert(Idx.isValid() && "Invalid SlotIndex"); 304 MachineBasicBlock *IdxMBB = LIS.getMBBFromIndex(Idx); 305 assert(IdxMBB && "No MBB at Idx"); 306 LiveInterval *LI = Edit->get(RegIdx); 307 308 // Is there a def in the same MBB we can extend? 309 if (LI->extendInBlock(LIS.getMBBStartIdx(IdxMBB), Idx)) 310 return; 311 312 // Now for the fun part. We know that ParentVNI potentially has multiple defs, 313 // and we may need to create even more phi-defs to preserve VNInfo SSA form. 314 // Perform a search for all predecessor blocks where we know the dominating 315 // VNInfo. Insert phi-def VNInfos along the path back to IdxMBB. 316 DEBUG(dbgs() << "\n Reaching defs for BB#" << IdxMBB->getNumber() 317 << " at " << Idx << " in " << *LI << '\n'); 318 319 // Blocks where LI should be live-in. 320 SmallVector<MachineDomTreeNode*, 16> LiveIn; 321 LiveIn.push_back(MDT[IdxMBB]); 322 323 // Remember if we have seen more than one value. 324 bool UniqueVNI = true; 325 VNInfo *IdxVNI = 0; 326 327 // Using LiveOutCache as a visited set, perform a BFS for all reaching defs. 328 for (unsigned i = 0; i != LiveIn.size(); ++i) { 329 MachineBasicBlock *MBB = LiveIn[i]->getBlock(); 330 for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), 331 PE = MBB->pred_end(); PI != PE; ++PI) { 332 MachineBasicBlock *Pred = *PI; 333 // Is this a known live-out block? 334 std::pair<LiveOutMap::iterator,bool> LOIP = 335 LiveOutCache.insert(std::make_pair(Pred, LiveOutPair())); 336 // Yes, we have been here before. 337 if (!LOIP.second) { 338 if (VNInfo *VNI = LOIP.first->second.first) { 339 if (IdxVNI && IdxVNI != VNI) 340 UniqueVNI = false; 341 IdxVNI = VNI; 342 } 343 continue; 344 } 345 // Does Pred provide a live-out value? 346 SlotIndex Start, Last; 347 tie(Start, Last) = LIS.getSlotIndexes()->getMBBRange(Pred); 348 Last = Last.getPrevSlot(); 349 if (VNInfo *VNI = LI->extendInBlock(Start, Last)) { 350 MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(VNI->def); 351 LiveOutPair &LOP = LOIP.first->second; 352 LOP.first = VNI; 353 LOP.second = MDT[DefMBB]; 354 if (IdxVNI && IdxVNI != VNI) 355 UniqueVNI = false; 356 IdxVNI = VNI; 357 continue; 358 } 359 // No, we need a live-in value for Pred as well 360 if (Pred != IdxMBB) 361 LiveIn.push_back(MDT[Pred]); 362 else 363 UniqueVNI = false; // Loopback to IdxMBB, ask updateSSA() for help. 364 } 365 } 366 367 // We may need to add phi-def values to preserve the SSA form. 368 if (UniqueVNI) { 369 LiveOutPair LOP(IdxVNI, MDT[LIS.getMBBFromIndex(IdxVNI->def)]); 370 // Update LiveOutCache, but skip IdxMBB at LiveIn[0]. 371 for (unsigned i = 1, e = LiveIn.size(); i != e; ++i) 372 LiveOutCache[LiveIn[i]->getBlock()] = LOP; 373 } else 374 IdxVNI = updateSSA(RegIdx, LiveIn, Idx, IdxMBB); 375 376 #ifndef NDEBUG 377 // Check the LiveOutCache invariants. 378 for (LiveOutMap::iterator I = LiveOutCache.begin(), E = LiveOutCache.end(); 379 I != E; ++I) { 380 assert(I->first && "Null MBB entry in cache"); 381 assert(I->second.first && "Null VNInfo in cache"); 382 assert(I->second.second && "Null DomTreeNode in cache"); 383 if (I->second.second->getBlock() == I->first) 384 continue; 385 for (MachineBasicBlock::pred_iterator PI = I->first->pred_begin(), 386 PE = I->first->pred_end(); PI != PE; ++PI) 387 assert(LiveOutCache.lookup(*PI) == I->second && "Bad invariant"); 388 } 389 #endif 390 391 // Since we went through the trouble of a full BFS visiting all reaching defs, 392 // the values in LiveIn are now accurate. No more phi-defs are needed 393 // for these blocks, so we can color the live ranges. 394 for (unsigned i = 0, e = LiveIn.size(); i != e; ++i) { 395 MachineBasicBlock *MBB = LiveIn[i]->getBlock(); 396 SlotIndex Start = LIS.getMBBStartIdx(MBB); 397 VNInfo *VNI = LiveOutCache.lookup(MBB).first; 398 399 // Anything in LiveIn other than IdxMBB is live-through. 400 // In IdxMBB, we should stop at Idx unless the same value is live-out. 401 if (MBB == IdxMBB && IdxVNI != VNI) 402 LI->addRange(LiveRange(Start, Idx.getNextSlot(), IdxVNI)); 403 else 404 LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), VNI)); 405 } 406 } 407 408 VNInfo *SplitEditor::updateSSA(unsigned RegIdx, 409 SmallVectorImpl<MachineDomTreeNode*> &LiveIn, 410 SlotIndex Idx, 411 const MachineBasicBlock *IdxMBB) { 412 // This is essentially the same iterative algorithm that SSAUpdater uses, 413 // except we already have a dominator tree, so we don't have to recompute it. 414 LiveInterval *LI = Edit->get(RegIdx); 415 VNInfo *IdxVNI = 0; 416 unsigned Changes; 417 do { 418 Changes = 0; 419 DEBUG(dbgs() << " Iterating over " << LiveIn.size() << " blocks.\n"); 420 // Propagate live-out values down the dominator tree, inserting phi-defs 421 // when necessary. Since LiveIn was created by a BFS, going backwards makes 422 // it more likely for us to visit immediate dominators before their 423 // children. 424 for (unsigned i = LiveIn.size(); i; --i) { 425 MachineDomTreeNode *Node = LiveIn[i-1]; 426 MachineBasicBlock *MBB = Node->getBlock(); 427 MachineDomTreeNode *IDom = Node->getIDom(); 428 LiveOutPair IDomValue; 429 // We need a live-in value to a block with no immediate dominator? 430 // This is probably an unreachable block that has survived somehow. 431 bool needPHI = !IDom; 432 433 // Get the IDom live-out value. 434 if (!needPHI) { 435 LiveOutMap::iterator I = LiveOutCache.find(IDom->getBlock()); 436 if (I != LiveOutCache.end()) 437 IDomValue = I->second; 438 else 439 // If IDom is outside our set of live-out blocks, there must be new 440 // defs, and we need a phi-def here. 441 needPHI = true; 442 } 443 444 // IDom dominates all of our predecessors, but it may not be the immediate 445 // dominator. Check if any of them have live-out values that are properly 446 // dominated by IDom. If so, we need a phi-def here. 447 if (!needPHI) { 448 for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), 449 PE = MBB->pred_end(); PI != PE; ++PI) { 450 LiveOutPair Value = LiveOutCache[*PI]; 451 if (!Value.first || Value.first == IDomValue.first) 452 continue; 453 // This predecessor is carrying something other than IDomValue. 454 // It could be because IDomValue hasn't propagated yet, or it could be 455 // because MBB is in the dominance frontier of that value. 456 if (MDT.dominates(IDom, Value.second)) { 457 needPHI = true; 458 break; 459 } 460 } 461 } 462 463 // Create a phi-def if required. 464 if (needPHI) { 465 ++Changes; 466 SlotIndex Start = LIS.getMBBStartIdx(MBB); 467 VNInfo *VNI = LI->getNextValue(Start, 0, LIS.getVNInfoAllocator()); 468 VNI->setIsPHIDef(true); 469 DEBUG(dbgs() << " - BB#" << MBB->getNumber() 470 << " phi-def #" << VNI->id << " at " << Start << '\n'); 471 // We no longer need LI to be live-in. 472 LiveIn.erase(LiveIn.begin()+(i-1)); 473 // Blocks in LiveIn are either IdxMBB, or have a value live-through. 474 if (MBB == IdxMBB) 475 IdxVNI = VNI; 476 // Check if we need to update live-out info. 477 LiveOutMap::iterator I = LiveOutCache.find(MBB); 478 if (I == LiveOutCache.end() || I->second.second == Node) { 479 // We already have a live-out defined in MBB, so this must be IdxMBB. 480 assert(MBB == IdxMBB && "Adding phi-def to known live-out"); 481 LI->addRange(LiveRange(Start, Idx.getNextSlot(), VNI)); 482 } else { 483 // This phi-def is also live-out, so color the whole block. 484 LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), VNI)); 485 I->second = LiveOutPair(VNI, Node); 486 } 487 } else if (IDomValue.first) { 488 // No phi-def here. Remember incoming value for IdxMBB. 489 if (MBB == IdxMBB) 490 IdxVNI = IDomValue.first; 491 // Propagate IDomValue if needed: 492 // MBB is live-out and doesn't define its own value. 493 LiveOutMap::iterator I = LiveOutCache.find(MBB); 494 if (I != LiveOutCache.end() && I->second.second != Node && 495 I->second.first != IDomValue.first) { 496 ++Changes; 497 I->second = IDomValue; 498 DEBUG(dbgs() << " - BB#" << MBB->getNumber() 499 << " idom valno #" << IDomValue.first->id 500 << " from BB#" << IDom->getBlock()->getNumber() << '\n'); 501 } 502 } 503 } 504 DEBUG(dbgs() << " - made " << Changes << " changes.\n"); 505 } while (Changes); 506 507 assert(IdxVNI && "Didn't find value for Idx"); 508 return IdxVNI; 509 } 510 511 VNInfo *SplitEditor::defFromParent(unsigned RegIdx, 512 VNInfo *ParentVNI, 513 SlotIndex UseIdx, 514 MachineBasicBlock &MBB, 515 MachineBasicBlock::iterator I) { 516 MachineInstr *CopyMI = 0; 517 SlotIndex Def; 518 LiveInterval *LI = Edit->get(RegIdx); 519 520 // Attempt cheap-as-a-copy rematerialization. 521 LiveRangeEdit::Remat RM(ParentVNI); 522 if (Edit->canRematerializeAt(RM, UseIdx, true, LIS)) { 523 Def = Edit->rematerializeAt(MBB, I, LI->reg, RM, LIS, TII, TRI); 524 } else { 525 // Can't remat, just insert a copy from parent. 526 CopyMI = BuildMI(MBB, I, DebugLoc(), TII.get(TargetOpcode::COPY), LI->reg) 527 .addReg(Edit->getReg()); 528 Def = LIS.InsertMachineInstrInMaps(CopyMI).getDefIndex(); 529 } 530 531 // Define the value in Reg. 532 VNInfo *VNI = defValue(RegIdx, ParentVNI, Def); 533 VNI->setCopy(CopyMI); 534 return VNI; 535 } 536 537 /// Create a new virtual register and live interval. 538 void SplitEditor::openIntv() { 539 assert(!OpenIdx && "Previous LI not closed before openIntv"); 540 541 // Create the complement as index 0. 542 if (Edit->empty()) 543 Edit->create(MRI, LIS, VRM); 544 545 // Create the open interval. 546 OpenIdx = Edit->size(); 547 Edit->create(MRI, LIS, VRM); 548 } 549 550 SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) { 551 assert(OpenIdx && "openIntv not called before enterIntvBefore"); 552 DEBUG(dbgs() << " enterIntvBefore " << Idx); 553 Idx = Idx.getBaseIndex(); 554 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 555 if (!ParentVNI) { 556 DEBUG(dbgs() << ": not live\n"); 557 return Idx; 558 } 559 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 560 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 561 assert(MI && "enterIntvBefore called with invalid index"); 562 563 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI); 564 return VNI->def; 565 } 566 567 SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) { 568 assert(OpenIdx && "openIntv not called before enterIntvAtEnd"); 569 SlotIndex End = LIS.getMBBEndIdx(&MBB); 570 SlotIndex Last = End.getPrevSlot(); 571 DEBUG(dbgs() << " enterIntvAtEnd BB#" << MBB.getNumber() << ", " << Last); 572 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last); 573 if (!ParentVNI) { 574 DEBUG(dbgs() << ": not live\n"); 575 return End; 576 } 577 DEBUG(dbgs() << ": valno " << ParentVNI->id); 578 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB, 579 LIS.getLastSplitPoint(Edit->getParent(), &MBB)); 580 RegAssign.insert(VNI->def, End, OpenIdx); 581 DEBUG(dump()); 582 return VNI->def; 583 } 584 585 /// useIntv - indicate that all instructions in MBB should use OpenLI. 586 void SplitEditor::useIntv(const MachineBasicBlock &MBB) { 587 useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB)); 588 } 589 590 void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) { 591 assert(OpenIdx && "openIntv not called before useIntv"); 592 DEBUG(dbgs() << " useIntv [" << Start << ';' << End << "):"); 593 RegAssign.insert(Start, End, OpenIdx); 594 DEBUG(dump()); 595 } 596 597 SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) { 598 assert(OpenIdx && "openIntv not called before leaveIntvAfter"); 599 DEBUG(dbgs() << " leaveIntvAfter " << Idx); 600 601 // The interval must be live beyond the instruction at Idx. 602 Idx = Idx.getBoundaryIndex(); 603 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 604 if (!ParentVNI) { 605 DEBUG(dbgs() << ": not live\n"); 606 return Idx.getNextSlot(); 607 } 608 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 609 610 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 611 assert(MI && "No instruction at index"); 612 VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), 613 llvm::next(MachineBasicBlock::iterator(MI))); 614 return VNI->def; 615 } 616 617 SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) { 618 assert(OpenIdx && "openIntv not called before leaveIntvBefore"); 619 DEBUG(dbgs() << " leaveIntvBefore " << Idx); 620 621 // The interval must be live into the instruction at Idx. 622 Idx = Idx.getBoundaryIndex(); 623 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 624 if (!ParentVNI) { 625 DEBUG(dbgs() << ": not live\n"); 626 return Idx.getNextSlot(); 627 } 628 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 629 630 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 631 assert(MI && "No instruction at index"); 632 VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI); 633 return VNI->def; 634 } 635 636 SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) { 637 assert(OpenIdx && "openIntv not called before leaveIntvAtTop"); 638 SlotIndex Start = LIS.getMBBStartIdx(&MBB); 639 DEBUG(dbgs() << " leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start); 640 641 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start); 642 if (!ParentVNI) { 643 DEBUG(dbgs() << ": not live\n"); 644 return Start; 645 } 646 647 VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB, 648 MBB.SkipPHIsAndLabels(MBB.begin())); 649 RegAssign.insert(Start, VNI->def, OpenIdx); 650 DEBUG(dump()); 651 return VNI->def; 652 } 653 654 void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) { 655 assert(OpenIdx && "openIntv not called before overlapIntv"); 656 const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start); 657 assert(ParentVNI == Edit->getParent().getVNInfoAt(End.getPrevSlot()) && 658 "Parent changes value in extended range"); 659 assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) && 660 "Range cannot span basic blocks"); 661 662 // The complement interval will be extended as needed by extendRange(). 663 markComplexMapped(0, ParentVNI); 664 DEBUG(dbgs() << " overlapIntv [" << Start << ';' << End << "):"); 665 RegAssign.insert(Start, End, OpenIdx); 666 DEBUG(dump()); 667 } 668 669 /// closeIntv - Indicate that we are done editing the currently open 670 /// LiveInterval, and ranges can be trimmed. 671 void SplitEditor::closeIntv() { 672 assert(OpenIdx && "openIntv not called before closeIntv"); 673 OpenIdx = 0; 674 } 675 676 /// transferSimpleValues - Transfer all simply defined values to the new live 677 /// ranges. 678 /// Values that were rematerialized or that have multiple defs are left alone. 679 bool SplitEditor::transferSimpleValues() { 680 bool Skipped = false; 681 RegAssignMap::const_iterator AssignI = RegAssign.begin(); 682 for (LiveInterval::const_iterator ParentI = Edit->getParent().begin(), 683 ParentE = Edit->getParent().end(); ParentI != ParentE; ++ParentI) { 684 DEBUG(dbgs() << " blit " << *ParentI << ':'); 685 VNInfo *ParentVNI = ParentI->valno; 686 // RegAssign has holes where RegIdx 0 should be used. 687 SlotIndex Start = ParentI->start; 688 AssignI.advanceTo(Start); 689 do { 690 unsigned RegIdx; 691 SlotIndex End = ParentI->end; 692 if (!AssignI.valid()) { 693 RegIdx = 0; 694 } else if (AssignI.start() <= Start) { 695 RegIdx = AssignI.value(); 696 if (AssignI.stop() < End) { 697 End = AssignI.stop(); 698 ++AssignI; 699 } 700 } else { 701 RegIdx = 0; 702 End = std::min(End, AssignI.start()); 703 } 704 DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx); 705 if (VNInfo *VNI = Values.lookup(std::make_pair(RegIdx, ParentVNI->id))) { 706 DEBUG(dbgs() << ':' << VNI->id); 707 Edit->get(RegIdx)->addRange(LiveRange(Start, End, VNI)); 708 } else 709 Skipped = true; 710 Start = End; 711 } while (Start != ParentI->end); 712 DEBUG(dbgs() << '\n'); 713 } 714 return Skipped; 715 } 716 717 void SplitEditor::extendPHIKillRanges() { 718 // Extend live ranges to be live-out for successor PHI values. 719 for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(), 720 E = Edit->getParent().vni_end(); I != E; ++I) { 721 const VNInfo *PHIVNI = *I; 722 if (PHIVNI->isUnused() || !PHIVNI->isPHIDef()) 723 continue; 724 unsigned RegIdx = RegAssign.lookup(PHIVNI->def); 725 MachineBasicBlock *MBB = LIS.getMBBFromIndex(PHIVNI->def); 726 for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), 727 PE = MBB->pred_end(); PI != PE; ++PI) { 728 SlotIndex End = LIS.getMBBEndIdx(*PI).getPrevSlot(); 729 // The predecessor may not have a live-out value. That is OK, like an 730 // undef PHI operand. 731 if (Edit->getParent().liveAt(End)) { 732 assert(RegAssign.lookup(End) == RegIdx && 733 "Different register assignment in phi predecessor"); 734 extendRange(RegIdx, End); 735 } 736 } 737 } 738 } 739 740 /// rewriteAssigned - Rewrite all uses of Edit->getReg(). 741 void SplitEditor::rewriteAssigned(bool ExtendRanges) { 742 for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Edit->getReg()), 743 RE = MRI.reg_end(); RI != RE;) { 744 MachineOperand &MO = RI.getOperand(); 745 MachineInstr *MI = MO.getParent(); 746 ++RI; 747 // LiveDebugVariables should have handled all DBG_VALUE instructions. 748 if (MI->isDebugValue()) { 749 DEBUG(dbgs() << "Zapping " << *MI); 750 MO.setReg(0); 751 continue; 752 } 753 754 // <undef> operands don't really read the register, so just assign them to 755 // the complement. 756 if (MO.isUse() && MO.isUndef()) { 757 MO.setReg(Edit->get(0)->reg); 758 continue; 759 } 760 761 SlotIndex Idx = LIS.getInstructionIndex(MI); 762 Idx = MO.isUse() ? Idx.getUseIndex() : Idx.getDefIndex(); 763 764 // Rewrite to the mapped register at Idx. 765 unsigned RegIdx = RegAssign.lookup(Idx); 766 MO.setReg(Edit->get(RegIdx)->reg); 767 DEBUG(dbgs() << " rewr BB#" << MI->getParent()->getNumber() << '\t' 768 << Idx << ':' << RegIdx << '\t' << *MI); 769 770 // Extend liveness to Idx. 771 if (ExtendRanges) 772 extendRange(RegIdx, Idx); 773 } 774 } 775 776 /// rewriteSplit - Rewrite uses of Intvs[0] according to the ConEQ mapping. 777 void SplitEditor::rewriteComponents(const SmallVectorImpl<LiveInterval*> &Intvs, 778 const ConnectedVNInfoEqClasses &ConEq) { 779 for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Intvs[0]->reg), 780 RE = MRI.reg_end(); RI != RE;) { 781 MachineOperand &MO = RI.getOperand(); 782 MachineInstr *MI = MO.getParent(); 783 ++RI; 784 if (MO.isUse() && MO.isUndef()) 785 continue; 786 // DBG_VALUE instructions should have been eliminated earlier. 787 SlotIndex Idx = LIS.getInstructionIndex(MI); 788 Idx = MO.isUse() ? Idx.getUseIndex() : Idx.getDefIndex(); 789 DEBUG(dbgs() << " rewr BB#" << MI->getParent()->getNumber() << '\t' 790 << Idx << ':'); 791 const VNInfo *VNI = Intvs[0]->getVNInfoAt(Idx); 792 assert(VNI && "Interval not live at use."); 793 MO.setReg(Intvs[ConEq.getEqClass(VNI)]->reg); 794 DEBUG(dbgs() << VNI->id << '\t' << *MI); 795 } 796 } 797 798 void SplitEditor::finish() { 799 assert(OpenIdx == 0 && "Previous LI not closed before rewrite"); 800 ++NumFinished; 801 802 // At this point, the live intervals in Edit contain VNInfos corresponding to 803 // the inserted copies. 804 805 // Add the original defs from the parent interval. 806 for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(), 807 E = Edit->getParent().vni_end(); I != E; ++I) { 808 const VNInfo *ParentVNI = *I; 809 if (ParentVNI->isUnused()) 810 continue; 811 unsigned RegIdx = RegAssign.lookup(ParentVNI->def); 812 defValue(RegIdx, ParentVNI, ParentVNI->def); 813 // Mark rematted values as complex everywhere to force liveness computation. 814 // The new live ranges may be truncated. 815 if (Edit->didRematerialize(ParentVNI)) 816 for (unsigned i = 0, e = Edit->size(); i != e; ++i) 817 markComplexMapped(i, ParentVNI); 818 } 819 820 #ifndef NDEBUG 821 // Every new interval must have a def by now, otherwise the split is bogus. 822 for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I) 823 assert((*I)->hasAtLeastOneValue() && "Split interval has no value"); 824 #endif 825 826 // Transfer the simply mapped values, check if any are complex. 827 bool Complex = transferSimpleValues(); 828 if (Complex) 829 extendPHIKillRanges(); 830 else 831 ++NumSimple; 832 833 // Rewrite virtual registers, possibly extending ranges. 834 rewriteAssigned(Complex); 835 836 // FIXME: Delete defs that were rematted everywhere. 837 838 // Get rid of unused values and set phi-kill flags. 839 for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I) 840 (*I)->RenumberValues(LIS); 841 842 // Now check if any registers were separated into multiple components. 843 ConnectedVNInfoEqClasses ConEQ(LIS); 844 for (unsigned i = 0, e = Edit->size(); i != e; ++i) { 845 // Don't use iterators, they are invalidated by create() below. 846 LiveInterval *li = Edit->get(i); 847 unsigned NumComp = ConEQ.Classify(li); 848 if (NumComp <= 1) 849 continue; 850 DEBUG(dbgs() << " " << NumComp << " components: " << *li << '\n'); 851 SmallVector<LiveInterval*, 8> dups; 852 dups.push_back(li); 853 for (unsigned i = 1; i != NumComp; ++i) 854 dups.push_back(&Edit->create(MRI, LIS, VRM)); 855 rewriteComponents(dups, ConEQ); 856 ConEQ.Distribute(&dups[0]); 857 } 858 859 // Calculate spill weight and allocation hints for new intervals. 860 VirtRegAuxInfo vrai(VRM.getMachineFunction(), LIS, SA.Loops); 861 for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I){ 862 LiveInterval &li = **I; 863 vrai.CalculateRegClass(li.reg); 864 vrai.CalculateWeightAndHint(li); 865 DEBUG(dbgs() << " new interval " << MRI.getRegClass(li.reg)->getName() 866 << ":" << li << '\n'); 867 } 868 } 869 870 871 //===----------------------------------------------------------------------===// 872 // Single Block Splitting 873 //===----------------------------------------------------------------------===// 874 875 /// getMultiUseBlocks - if CurLI has more than one use in a basic block, it 876 /// may be an advantage to split CurLI for the duration of the block. 877 bool SplitAnalysis::getMultiUseBlocks(BlockPtrSet &Blocks) { 878 // If CurLI is local to one block, there is no point to splitting it. 879 if (LiveBlocks.size() <= 1) 880 return false; 881 // Add blocks with multiple uses. 882 for (unsigned i = 0, e = LiveBlocks.size(); i != e; ++i) { 883 const BlockInfo &BI = LiveBlocks[i]; 884 if (!BI.Uses) 885 continue; 886 unsigned Instrs = UsingBlocks.lookup(BI.MBB); 887 if (Instrs <= 1) 888 continue; 889 if (Instrs == 2 && BI.LiveIn && BI.LiveOut && !BI.LiveThrough) 890 continue; 891 Blocks.insert(BI.MBB); 892 } 893 return !Blocks.empty(); 894 } 895 896 /// splitSingleBlocks - Split CurLI into a separate live interval inside each 897 /// basic block in Blocks. 898 void SplitEditor::splitSingleBlocks(const SplitAnalysis::BlockPtrSet &Blocks) { 899 DEBUG(dbgs() << " splitSingleBlocks for " << Blocks.size() << " blocks.\n"); 900 901 for (unsigned i = 0, e = SA.LiveBlocks.size(); i != e; ++i) { 902 const SplitAnalysis::BlockInfo &BI = SA.LiveBlocks[i]; 903 if (!BI.Uses || !Blocks.count(BI.MBB)) 904 continue; 905 906 openIntv(); 907 SlotIndex SegStart = enterIntvBefore(BI.FirstUse); 908 if (!BI.LiveOut || BI.LastUse < BI.LastSplitPoint) { 909 useIntv(SegStart, leaveIntvAfter(BI.LastUse)); 910 } else { 911 // The last use is after the last valid split point. 912 SlotIndex SegStop = leaveIntvBefore(BI.LastSplitPoint); 913 useIntv(SegStart, SegStop); 914 overlapIntv(SegStop, BI.LastUse); 915 } 916 closeIntv(); 917 } 918 finish(); 919 } 920