1 //===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the SplitAnalysis class as well as mutator functions for 11 // live range splitting. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "SplitKit.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 18 #include "llvm/CodeGen/LiveRangeEdit.h" 19 #include "llvm/CodeGen/MachineDominators.h" 20 #include "llvm/CodeGen/MachineInstrBuilder.h" 21 #include "llvm/CodeGen/MachineLoopInfo.h" 22 #include "llvm/CodeGen/MachineRegisterInfo.h" 23 #include "llvm/CodeGen/VirtRegMap.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/raw_ostream.h" 26 #include "llvm/Target/TargetInstrInfo.h" 27 #include "llvm/Target/TargetMachine.h" 28 29 using namespace llvm; 30 31 #define DEBUG_TYPE "regalloc" 32 33 STATISTIC(NumFinished, "Number of splits finished"); 34 STATISTIC(NumSimple, "Number of splits that were simple"); 35 STATISTIC(NumCopies, "Number of copies inserted for splitting"); 36 STATISTIC(NumRemats, "Number of rematerialized defs for splitting"); 37 STATISTIC(NumRepairs, "Number of invalid live ranges repaired"); 38 39 //===----------------------------------------------------------------------===// 40 // Split Analysis 41 //===----------------------------------------------------------------------===// 42 43 SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm, const LiveIntervals &lis, 44 const MachineLoopInfo &mli) 45 : MF(vrm.getMachineFunction()), VRM(vrm), LIS(lis), Loops(mli), 46 TII(*MF.getSubtarget().getInstrInfo()), CurLI(nullptr), 47 LastSplitPoint(MF.getNumBlockIDs()) {} 48 49 void SplitAnalysis::clear() { 50 UseSlots.clear(); 51 UseBlocks.clear(); 52 ThroughBlocks.clear(); 53 CurLI = nullptr; 54 DidRepairRange = false; 55 } 56 57 SlotIndex SplitAnalysis::computeLastSplitPoint(unsigned Num) { 58 const MachineBasicBlock *MBB = MF.getBlockNumbered(Num); 59 // FIXME: Handle multiple EH pad successors. 60 const MachineBasicBlock *LPad = MBB->getLandingPadSuccessor(); 61 std::pair<SlotIndex, SlotIndex> &LSP = LastSplitPoint[Num]; 62 SlotIndex MBBEnd = LIS.getMBBEndIdx(MBB); 63 64 // Compute split points on the first call. The pair is independent of the 65 // current live interval. 66 if (!LSP.first.isValid()) { 67 MachineBasicBlock::const_iterator FirstTerm = MBB->getFirstTerminator(); 68 if (FirstTerm == MBB->end()) 69 LSP.first = MBBEnd; 70 else 71 LSP.first = LIS.getInstructionIndex(FirstTerm); 72 73 // If there is a landing pad successor, also find the call instruction. 74 if (!LPad) 75 return LSP.first; 76 // There may not be a call instruction (?) in which case we ignore LPad. 77 LSP.second = LSP.first; 78 for (MachineBasicBlock::const_iterator I = MBB->end(), E = MBB->begin(); 79 I != E;) { 80 --I; 81 if (I->isCall()) { 82 LSP.second = LIS.getInstructionIndex(I); 83 break; 84 } 85 } 86 } 87 88 // If CurLI is live into a landing pad successor, move the last split point 89 // back to the call that may throw. 90 if (!LPad || !LSP.second || !LIS.isLiveInToMBB(*CurLI, LPad)) 91 return LSP.first; 92 93 // Find the value leaving MBB. 94 const VNInfo *VNI = CurLI->getVNInfoBefore(MBBEnd); 95 if (!VNI) 96 return LSP.first; 97 98 // If the value leaving MBB was defined after the call in MBB, it can't 99 // really be live-in to the landing pad. This can happen if the landing pad 100 // has a PHI, and this register is undef on the exceptional edge. 101 // <rdar://problem/10664933> 102 if (!SlotIndex::isEarlierInstr(VNI->def, LSP.second) && VNI->def < MBBEnd) 103 return LSP.first; 104 105 // Value is properly live-in to the landing pad. 106 // Only allow splits before the call. 107 return LSP.second; 108 } 109 110 MachineBasicBlock::iterator 111 SplitAnalysis::getLastSplitPointIter(MachineBasicBlock *MBB) { 112 SlotIndex LSP = getLastSplitPoint(MBB->getNumber()); 113 if (LSP == LIS.getMBBEndIdx(MBB)) 114 return MBB->end(); 115 return LIS.getInstructionFromIndex(LSP); 116 } 117 118 /// analyzeUses - Count instructions, basic blocks, and loops using CurLI. 119 void SplitAnalysis::analyzeUses() { 120 assert(UseSlots.empty() && "Call clear first"); 121 122 // First get all the defs from the interval values. This provides the correct 123 // slots for early clobbers. 124 for (const VNInfo *VNI : CurLI->valnos) 125 if (!VNI->isPHIDef() && !VNI->isUnused()) 126 UseSlots.push_back(VNI->def); 127 128 // Get use slots form the use-def chain. 129 const MachineRegisterInfo &MRI = MF.getRegInfo(); 130 for (MachineOperand &MO : MRI.use_nodbg_operands(CurLI->reg)) 131 if (!MO.isUndef()) 132 UseSlots.push_back(LIS.getInstructionIndex(MO.getParent()).getRegSlot()); 133 134 array_pod_sort(UseSlots.begin(), UseSlots.end()); 135 136 // Remove duplicates, keeping the smaller slot for each instruction. 137 // That is what we want for early clobbers. 138 UseSlots.erase(std::unique(UseSlots.begin(), UseSlots.end(), 139 SlotIndex::isSameInstr), 140 UseSlots.end()); 141 142 // Compute per-live block info. 143 if (!calcLiveBlockInfo()) { 144 // FIXME: calcLiveBlockInfo found inconsistencies in the live range. 145 // I am looking at you, RegisterCoalescer! 146 DidRepairRange = true; 147 ++NumRepairs; 148 DEBUG(dbgs() << "*** Fixing inconsistent live interval! ***\n"); 149 const_cast<LiveIntervals&>(LIS) 150 .shrinkToUses(const_cast<LiveInterval*>(CurLI)); 151 UseBlocks.clear(); 152 ThroughBlocks.clear(); 153 bool fixed = calcLiveBlockInfo(); 154 (void)fixed; 155 assert(fixed && "Couldn't fix broken live interval"); 156 } 157 158 DEBUG(dbgs() << "Analyze counted " 159 << UseSlots.size() << " instrs in " 160 << UseBlocks.size() << " blocks, through " 161 << NumThroughBlocks << " blocks.\n"); 162 } 163 164 /// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks 165 /// where CurLI is live. 166 bool SplitAnalysis::calcLiveBlockInfo() { 167 ThroughBlocks.resize(MF.getNumBlockIDs()); 168 NumThroughBlocks = NumGapBlocks = 0; 169 if (CurLI->empty()) 170 return true; 171 172 LiveInterval::const_iterator LVI = CurLI->begin(); 173 LiveInterval::const_iterator LVE = CurLI->end(); 174 175 SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE; 176 UseI = UseSlots.begin(); 177 UseE = UseSlots.end(); 178 179 // Loop over basic blocks where CurLI is live. 180 MachineFunction::iterator MFI = LIS.getMBBFromIndex(LVI->start); 181 for (;;) { 182 BlockInfo BI; 183 BI.MBB = MFI; 184 SlotIndex Start, Stop; 185 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); 186 187 // If the block contains no uses, the range must be live through. At one 188 // point, RegisterCoalescer could create dangling ranges that ended 189 // mid-block. 190 if (UseI == UseE || *UseI >= Stop) { 191 ++NumThroughBlocks; 192 ThroughBlocks.set(BI.MBB->getNumber()); 193 // The range shouldn't end mid-block if there are no uses. This shouldn't 194 // happen. 195 if (LVI->end < Stop) 196 return false; 197 } else { 198 // This block has uses. Find the first and last uses in the block. 199 BI.FirstInstr = *UseI; 200 assert(BI.FirstInstr >= Start); 201 do ++UseI; 202 while (UseI != UseE && *UseI < Stop); 203 BI.LastInstr = UseI[-1]; 204 assert(BI.LastInstr < Stop); 205 206 // LVI is the first live segment overlapping MBB. 207 BI.LiveIn = LVI->start <= Start; 208 209 // When not live in, the first use should be a def. 210 if (!BI.LiveIn) { 211 assert(LVI->start == LVI->valno->def && "Dangling Segment start"); 212 assert(LVI->start == BI.FirstInstr && "First instr should be a def"); 213 BI.FirstDef = BI.FirstInstr; 214 } 215 216 // Look for gaps in the live range. 217 BI.LiveOut = true; 218 while (LVI->end < Stop) { 219 SlotIndex LastStop = LVI->end; 220 if (++LVI == LVE || LVI->start >= Stop) { 221 BI.LiveOut = false; 222 BI.LastInstr = LastStop; 223 break; 224 } 225 226 if (LastStop < LVI->start) { 227 // There is a gap in the live range. Create duplicate entries for the 228 // live-in snippet and the live-out snippet. 229 ++NumGapBlocks; 230 231 // Push the Live-in part. 232 BI.LiveOut = false; 233 UseBlocks.push_back(BI); 234 UseBlocks.back().LastInstr = LastStop; 235 236 // Set up BI for the live-out part. 237 BI.LiveIn = false; 238 BI.LiveOut = true; 239 BI.FirstInstr = BI.FirstDef = LVI->start; 240 } 241 242 // A Segment that starts in the middle of the block must be a def. 243 assert(LVI->start == LVI->valno->def && "Dangling Segment start"); 244 if (!BI.FirstDef) 245 BI.FirstDef = LVI->start; 246 } 247 248 UseBlocks.push_back(BI); 249 250 // LVI is now at LVE or LVI->end >= Stop. 251 if (LVI == LVE) 252 break; 253 } 254 255 // Live segment ends exactly at Stop. Move to the next segment. 256 if (LVI->end == Stop && ++LVI == LVE) 257 break; 258 259 // Pick the next basic block. 260 if (LVI->start < Stop) 261 ++MFI; 262 else 263 MFI = LIS.getMBBFromIndex(LVI->start); 264 } 265 266 assert(getNumLiveBlocks() == countLiveBlocks(CurLI) && "Bad block count"); 267 return true; 268 } 269 270 unsigned SplitAnalysis::countLiveBlocks(const LiveInterval *cli) const { 271 if (cli->empty()) 272 return 0; 273 LiveInterval *li = const_cast<LiveInterval*>(cli); 274 LiveInterval::iterator LVI = li->begin(); 275 LiveInterval::iterator LVE = li->end(); 276 unsigned Count = 0; 277 278 // Loop over basic blocks where li is live. 279 MachineFunction::const_iterator MFI = LIS.getMBBFromIndex(LVI->start); 280 SlotIndex Stop = LIS.getMBBEndIdx(MFI); 281 for (;;) { 282 ++Count; 283 LVI = li->advanceTo(LVI, Stop); 284 if (LVI == LVE) 285 return Count; 286 do { 287 ++MFI; 288 Stop = LIS.getMBBEndIdx(MFI); 289 } while (Stop <= LVI->start); 290 } 291 } 292 293 bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const { 294 unsigned OrigReg = VRM.getOriginal(CurLI->reg); 295 const LiveInterval &Orig = LIS.getInterval(OrigReg); 296 assert(!Orig.empty() && "Splitting empty interval?"); 297 LiveInterval::const_iterator I = Orig.find(Idx); 298 299 // Range containing Idx should begin at Idx. 300 if (I != Orig.end() && I->start <= Idx) 301 return I->start == Idx; 302 303 // Range does not contain Idx, previous must end at Idx. 304 return I != Orig.begin() && (--I)->end == Idx; 305 } 306 307 void SplitAnalysis::analyze(const LiveInterval *li) { 308 clear(); 309 CurLI = li; 310 analyzeUses(); 311 } 312 313 314 //===----------------------------------------------------------------------===// 315 // Split Editor 316 //===----------------------------------------------------------------------===// 317 318 /// Create a new SplitEditor for editing the LiveInterval analyzed by SA. 319 SplitEditor::SplitEditor(SplitAnalysis &sa, LiveIntervals &lis, VirtRegMap &vrm, 320 MachineDominatorTree &mdt, 321 MachineBlockFrequencyInfo &mbfi) 322 : SA(sa), LIS(lis), VRM(vrm), MRI(vrm.getMachineFunction().getRegInfo()), 323 MDT(mdt), TII(*vrm.getMachineFunction().getSubtarget().getInstrInfo()), 324 TRI(*vrm.getMachineFunction().getSubtarget().getRegisterInfo()), 325 MBFI(mbfi), Edit(nullptr), OpenIdx(0), SpillMode(SM_Partition), 326 RegAssign(Allocator) {} 327 328 void SplitEditor::reset(LiveRangeEdit &LRE, ComplementSpillMode SM) { 329 Edit = &LRE; 330 SpillMode = SM; 331 OpenIdx = 0; 332 RegAssign.clear(); 333 Values.clear(); 334 335 // Reset the LiveRangeCalc instances needed for this spill mode. 336 LRCalc[0].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT, 337 &LIS.getVNInfoAllocator()); 338 if (SpillMode) 339 LRCalc[1].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT, 340 &LIS.getVNInfoAllocator()); 341 342 // We don't need an AliasAnalysis since we will only be performing 343 // cheap-as-a-copy remats anyway. 344 Edit->anyRematerializable(nullptr); 345 } 346 347 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 348 void SplitEditor::dump() const { 349 if (RegAssign.empty()) { 350 dbgs() << " empty\n"; 351 return; 352 } 353 354 for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I) 355 dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value(); 356 dbgs() << '\n'; 357 } 358 #endif 359 360 VNInfo *SplitEditor::defValue(unsigned RegIdx, 361 const VNInfo *ParentVNI, 362 SlotIndex Idx) { 363 assert(ParentVNI && "Mapping NULL value"); 364 assert(Idx.isValid() && "Invalid SlotIndex"); 365 assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI"); 366 LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx)); 367 368 // Create a new value. 369 VNInfo *VNI = LI->getNextValue(Idx, LIS.getVNInfoAllocator()); 370 371 // Use insert for lookup, so we can add missing values with a second lookup. 372 std::pair<ValueMap::iterator, bool> InsP = 373 Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id), 374 ValueForcePair(VNI, false))); 375 376 // This was the first time (RegIdx, ParentVNI) was mapped. 377 // Keep it as a simple def without any liveness. 378 if (InsP.second) 379 return VNI; 380 381 // If the previous value was a simple mapping, add liveness for it now. 382 if (VNInfo *OldVNI = InsP.first->second.getPointer()) { 383 SlotIndex Def = OldVNI->def; 384 LI->addSegment(LiveInterval::Segment(Def, Def.getDeadSlot(), OldVNI)); 385 // No longer a simple mapping. Switch to a complex, non-forced mapping. 386 InsP.first->second = ValueForcePair(); 387 } 388 389 // This is a complex mapping, add liveness for VNI 390 SlotIndex Def = VNI->def; 391 LI->addSegment(LiveInterval::Segment(Def, Def.getDeadSlot(), VNI)); 392 393 return VNI; 394 } 395 396 void SplitEditor::forceRecompute(unsigned RegIdx, const VNInfo *ParentVNI) { 397 assert(ParentVNI && "Mapping NULL value"); 398 ValueForcePair &VFP = Values[std::make_pair(RegIdx, ParentVNI->id)]; 399 VNInfo *VNI = VFP.getPointer(); 400 401 // ParentVNI was either unmapped or already complex mapped. Either way, just 402 // set the force bit. 403 if (!VNI) { 404 VFP.setInt(true); 405 return; 406 } 407 408 // This was previously a single mapping. Make sure the old def is represented 409 // by a trivial live range. 410 SlotIndex Def = VNI->def; 411 LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx)); 412 LI->addSegment(LiveInterval::Segment(Def, Def.getDeadSlot(), VNI)); 413 // Mark as complex mapped, forced. 414 VFP = ValueForcePair(nullptr, true); 415 } 416 417 VNInfo *SplitEditor::defFromParent(unsigned RegIdx, 418 VNInfo *ParentVNI, 419 SlotIndex UseIdx, 420 MachineBasicBlock &MBB, 421 MachineBasicBlock::iterator I) { 422 MachineInstr *CopyMI = nullptr; 423 SlotIndex Def; 424 LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx)); 425 426 // We may be trying to avoid interference that ends at a deleted instruction, 427 // so always begin RegIdx 0 early and all others late. 428 bool Late = RegIdx != 0; 429 430 // Attempt cheap-as-a-copy rematerialization. 431 LiveRangeEdit::Remat RM(ParentVNI); 432 if (Edit->canRematerializeAt(RM, UseIdx, true)) { 433 Def = Edit->rematerializeAt(MBB, I, LI->reg, RM, TRI, Late); 434 ++NumRemats; 435 } else { 436 // Can't remat, just insert a copy from parent. 437 CopyMI = BuildMI(MBB, I, DebugLoc(), TII.get(TargetOpcode::COPY), LI->reg) 438 .addReg(Edit->getReg()); 439 Def = LIS.getSlotIndexes()->insertMachineInstrInMaps(CopyMI, Late) 440 .getRegSlot(); 441 ++NumCopies; 442 } 443 444 // Define the value in Reg. 445 return defValue(RegIdx, ParentVNI, Def); 446 } 447 448 /// Create a new virtual register and live interval. 449 unsigned SplitEditor::openIntv() { 450 // Create the complement as index 0. 451 if (Edit->empty()) 452 Edit->createEmptyInterval(); 453 454 // Create the open interval. 455 OpenIdx = Edit->size(); 456 Edit->createEmptyInterval(); 457 return OpenIdx; 458 } 459 460 void SplitEditor::selectIntv(unsigned Idx) { 461 assert(Idx != 0 && "Cannot select the complement interval"); 462 assert(Idx < Edit->size() && "Can only select previously opened interval"); 463 DEBUG(dbgs() << " selectIntv " << OpenIdx << " -> " << Idx << '\n'); 464 OpenIdx = Idx; 465 } 466 467 SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) { 468 assert(OpenIdx && "openIntv not called before enterIntvBefore"); 469 DEBUG(dbgs() << " enterIntvBefore " << Idx); 470 Idx = Idx.getBaseIndex(); 471 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 472 if (!ParentVNI) { 473 DEBUG(dbgs() << ": not live\n"); 474 return Idx; 475 } 476 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 477 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 478 assert(MI && "enterIntvBefore called with invalid index"); 479 480 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI); 481 return VNI->def; 482 } 483 484 SlotIndex SplitEditor::enterIntvAfter(SlotIndex Idx) { 485 assert(OpenIdx && "openIntv not called before enterIntvAfter"); 486 DEBUG(dbgs() << " enterIntvAfter " << Idx); 487 Idx = Idx.getBoundaryIndex(); 488 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 489 if (!ParentVNI) { 490 DEBUG(dbgs() << ": not live\n"); 491 return Idx; 492 } 493 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 494 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 495 assert(MI && "enterIntvAfter called with invalid index"); 496 497 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), 498 std::next(MachineBasicBlock::iterator(MI))); 499 return VNI->def; 500 } 501 502 SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) { 503 assert(OpenIdx && "openIntv not called before enterIntvAtEnd"); 504 SlotIndex End = LIS.getMBBEndIdx(&MBB); 505 SlotIndex Last = End.getPrevSlot(); 506 DEBUG(dbgs() << " enterIntvAtEnd BB#" << MBB.getNumber() << ", " << Last); 507 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last); 508 if (!ParentVNI) { 509 DEBUG(dbgs() << ": not live\n"); 510 return End; 511 } 512 DEBUG(dbgs() << ": valno " << ParentVNI->id); 513 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB, 514 SA.getLastSplitPointIter(&MBB)); 515 RegAssign.insert(VNI->def, End, OpenIdx); 516 DEBUG(dump()); 517 return VNI->def; 518 } 519 520 /// useIntv - indicate that all instructions in MBB should use OpenLI. 521 void SplitEditor::useIntv(const MachineBasicBlock &MBB) { 522 useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB)); 523 } 524 525 void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) { 526 assert(OpenIdx && "openIntv not called before useIntv"); 527 DEBUG(dbgs() << " useIntv [" << Start << ';' << End << "):"); 528 RegAssign.insert(Start, End, OpenIdx); 529 DEBUG(dump()); 530 } 531 532 SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) { 533 assert(OpenIdx && "openIntv not called before leaveIntvAfter"); 534 DEBUG(dbgs() << " leaveIntvAfter " << Idx); 535 536 // The interval must be live beyond the instruction at Idx. 537 SlotIndex Boundary = Idx.getBoundaryIndex(); 538 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Boundary); 539 if (!ParentVNI) { 540 DEBUG(dbgs() << ": not live\n"); 541 return Boundary.getNextSlot(); 542 } 543 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 544 MachineInstr *MI = LIS.getInstructionFromIndex(Boundary); 545 assert(MI && "No instruction at index"); 546 547 // In spill mode, make live ranges as short as possible by inserting the copy 548 // before MI. This is only possible if that instruction doesn't redefine the 549 // value. The inserted COPY is not a kill, and we don't need to recompute 550 // the source live range. The spiller also won't try to hoist this copy. 551 if (SpillMode && !SlotIndex::isSameInstr(ParentVNI->def, Idx) && 552 MI->readsVirtualRegister(Edit->getReg())) { 553 forceRecompute(0, ParentVNI); 554 defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI); 555 return Idx; 556 } 557 558 VNInfo *VNI = defFromParent(0, ParentVNI, Boundary, *MI->getParent(), 559 std::next(MachineBasicBlock::iterator(MI))); 560 return VNI->def; 561 } 562 563 SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) { 564 assert(OpenIdx && "openIntv not called before leaveIntvBefore"); 565 DEBUG(dbgs() << " leaveIntvBefore " << Idx); 566 567 // The interval must be live into the instruction at Idx. 568 Idx = Idx.getBaseIndex(); 569 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 570 if (!ParentVNI) { 571 DEBUG(dbgs() << ": not live\n"); 572 return Idx.getNextSlot(); 573 } 574 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 575 576 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 577 assert(MI && "No instruction at index"); 578 VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI); 579 return VNI->def; 580 } 581 582 SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) { 583 assert(OpenIdx && "openIntv not called before leaveIntvAtTop"); 584 SlotIndex Start = LIS.getMBBStartIdx(&MBB); 585 DEBUG(dbgs() << " leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start); 586 587 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start); 588 if (!ParentVNI) { 589 DEBUG(dbgs() << ": not live\n"); 590 return Start; 591 } 592 593 VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB, 594 MBB.SkipPHIsAndLabels(MBB.begin())); 595 RegAssign.insert(Start, VNI->def, OpenIdx); 596 DEBUG(dump()); 597 return VNI->def; 598 } 599 600 void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) { 601 assert(OpenIdx && "openIntv not called before overlapIntv"); 602 const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start); 603 assert(ParentVNI == Edit->getParent().getVNInfoBefore(End) && 604 "Parent changes value in extended range"); 605 assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) && 606 "Range cannot span basic blocks"); 607 608 // The complement interval will be extended as needed by LRCalc.extend(). 609 if (ParentVNI) 610 forceRecompute(0, ParentVNI); 611 DEBUG(dbgs() << " overlapIntv [" << Start << ';' << End << "):"); 612 RegAssign.insert(Start, End, OpenIdx); 613 DEBUG(dump()); 614 } 615 616 //===----------------------------------------------------------------------===// 617 // Spill modes 618 //===----------------------------------------------------------------------===// 619 620 void SplitEditor::removeBackCopies(SmallVectorImpl<VNInfo*> &Copies) { 621 LiveInterval *LI = &LIS.getInterval(Edit->get(0)); 622 DEBUG(dbgs() << "Removing " << Copies.size() << " back-copies.\n"); 623 RegAssignMap::iterator AssignI; 624 AssignI.setMap(RegAssign); 625 626 for (unsigned i = 0, e = Copies.size(); i != e; ++i) { 627 SlotIndex Def = Copies[i]->def; 628 MachineInstr *MI = LIS.getInstructionFromIndex(Def); 629 assert(MI && "No instruction for back-copy"); 630 631 MachineBasicBlock *MBB = MI->getParent(); 632 MachineBasicBlock::iterator MBBI(MI); 633 bool AtBegin; 634 do AtBegin = MBBI == MBB->begin(); 635 while (!AtBegin && (--MBBI)->isDebugValue()); 636 637 DEBUG(dbgs() << "Removing " << Def << '\t' << *MI); 638 LIS.removeVRegDefAt(*LI, Def); 639 LIS.RemoveMachineInstrFromMaps(MI); 640 MI->eraseFromParent(); 641 642 // Adjust RegAssign if a register assignment is killed at Def. We want to 643 // avoid calculating the live range of the source register if possible. 644 AssignI.find(Def.getPrevSlot()); 645 if (!AssignI.valid() || AssignI.start() >= Def) 646 continue; 647 // If MI doesn't kill the assigned register, just leave it. 648 if (AssignI.stop() != Def) 649 continue; 650 unsigned RegIdx = AssignI.value(); 651 if (AtBegin || !MBBI->readsVirtualRegister(Edit->getReg())) { 652 DEBUG(dbgs() << " cannot find simple kill of RegIdx " << RegIdx << '\n'); 653 forceRecompute(RegIdx, Edit->getParent().getVNInfoAt(Def)); 654 } else { 655 SlotIndex Kill = LIS.getInstructionIndex(MBBI).getRegSlot(); 656 DEBUG(dbgs() << " move kill to " << Kill << '\t' << *MBBI); 657 AssignI.setStop(Kill); 658 } 659 } 660 } 661 662 MachineBasicBlock* 663 SplitEditor::findShallowDominator(MachineBasicBlock *MBB, 664 MachineBasicBlock *DefMBB) { 665 if (MBB == DefMBB) 666 return MBB; 667 assert(MDT.dominates(DefMBB, MBB) && "MBB must be dominated by the def."); 668 669 const MachineLoopInfo &Loops = SA.Loops; 670 const MachineLoop *DefLoop = Loops.getLoopFor(DefMBB); 671 MachineDomTreeNode *DefDomNode = MDT[DefMBB]; 672 673 // Best candidate so far. 674 MachineBasicBlock *BestMBB = MBB; 675 unsigned BestDepth = UINT_MAX; 676 677 for (;;) { 678 const MachineLoop *Loop = Loops.getLoopFor(MBB); 679 680 // MBB isn't in a loop, it doesn't get any better. All dominators have a 681 // higher frequency by definition. 682 if (!Loop) { 683 DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#" 684 << MBB->getNumber() << " at depth 0\n"); 685 return MBB; 686 } 687 688 // We'll never be able to exit the DefLoop. 689 if (Loop == DefLoop) { 690 DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#" 691 << MBB->getNumber() << " in the same loop\n"); 692 return MBB; 693 } 694 695 // Least busy dominator seen so far. 696 unsigned Depth = Loop->getLoopDepth(); 697 if (Depth < BestDepth) { 698 BestMBB = MBB; 699 BestDepth = Depth; 700 DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#" 701 << MBB->getNumber() << " at depth " << Depth << '\n'); 702 } 703 704 // Leave loop by going to the immediate dominator of the loop header. 705 // This is a bigger stride than simply walking up the dominator tree. 706 MachineDomTreeNode *IDom = MDT[Loop->getHeader()]->getIDom(); 707 708 // Too far up the dominator tree? 709 if (!IDom || !MDT.dominates(DefDomNode, IDom)) 710 return BestMBB; 711 712 MBB = IDom->getBlock(); 713 } 714 } 715 716 void SplitEditor::hoistCopiesForSize() { 717 // Get the complement interval, always RegIdx 0. 718 LiveInterval *LI = &LIS.getInterval(Edit->get(0)); 719 LiveInterval *Parent = &Edit->getParent(); 720 721 // Track the nearest common dominator for all back-copies for each ParentVNI, 722 // indexed by ParentVNI->id. 723 typedef std::pair<MachineBasicBlock*, SlotIndex> DomPair; 724 SmallVector<DomPair, 8> NearestDom(Parent->getNumValNums()); 725 726 // Find the nearest common dominator for parent values with multiple 727 // back-copies. If a single back-copy dominates, put it in DomPair.second. 728 for (VNInfo *VNI : LI->valnos) { 729 if (VNI->isUnused()) 730 continue; 731 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def); 732 assert(ParentVNI && "Parent not live at complement def"); 733 734 // Don't hoist remats. The complement is probably going to disappear 735 // completely anyway. 736 if (Edit->didRematerialize(ParentVNI)) 737 continue; 738 739 MachineBasicBlock *ValMBB = LIS.getMBBFromIndex(VNI->def); 740 DomPair &Dom = NearestDom[ParentVNI->id]; 741 742 // Keep directly defined parent values. This is either a PHI or an 743 // instruction in the complement range. All other copies of ParentVNI 744 // should be eliminated. 745 if (VNI->def == ParentVNI->def) { 746 DEBUG(dbgs() << "Direct complement def at " << VNI->def << '\n'); 747 Dom = DomPair(ValMBB, VNI->def); 748 continue; 749 } 750 // Skip the singly mapped values. There is nothing to gain from hoisting a 751 // single back-copy. 752 if (Values.lookup(std::make_pair(0, ParentVNI->id)).getPointer()) { 753 DEBUG(dbgs() << "Single complement def at " << VNI->def << '\n'); 754 continue; 755 } 756 757 if (!Dom.first) { 758 // First time we see ParentVNI. VNI dominates itself. 759 Dom = DomPair(ValMBB, VNI->def); 760 } else if (Dom.first == ValMBB) { 761 // Two defs in the same block. Pick the earlier def. 762 if (!Dom.second.isValid() || VNI->def < Dom.second) 763 Dom.second = VNI->def; 764 } else { 765 // Different basic blocks. Check if one dominates. 766 MachineBasicBlock *Near = 767 MDT.findNearestCommonDominator(Dom.first, ValMBB); 768 if (Near == ValMBB) 769 // Def ValMBB dominates. 770 Dom = DomPair(ValMBB, VNI->def); 771 else if (Near != Dom.first) 772 // None dominate. Hoist to common dominator, need new def. 773 Dom = DomPair(Near, SlotIndex()); 774 } 775 776 DEBUG(dbgs() << "Multi-mapped complement " << VNI->id << '@' << VNI->def 777 << " for parent " << ParentVNI->id << '@' << ParentVNI->def 778 << " hoist to BB#" << Dom.first->getNumber() << ' ' 779 << Dom.second << '\n'); 780 } 781 782 // Insert the hoisted copies. 783 for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) { 784 DomPair &Dom = NearestDom[i]; 785 if (!Dom.first || Dom.second.isValid()) 786 continue; 787 // This value needs a hoisted copy inserted at the end of Dom.first. 788 VNInfo *ParentVNI = Parent->getValNumInfo(i); 789 MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(ParentVNI->def); 790 // Get a less loopy dominator than Dom.first. 791 Dom.first = findShallowDominator(Dom.first, DefMBB); 792 SlotIndex Last = LIS.getMBBEndIdx(Dom.first).getPrevSlot(); 793 Dom.second = 794 defFromParent(0, ParentVNI, Last, *Dom.first, 795 SA.getLastSplitPointIter(Dom.first))->def; 796 } 797 798 // Remove redundant back-copies that are now known to be dominated by another 799 // def with the same value. 800 SmallVector<VNInfo*, 8> BackCopies; 801 for (VNInfo *VNI : LI->valnos) { 802 if (VNI->isUnused()) 803 continue; 804 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def); 805 const DomPair &Dom = NearestDom[ParentVNI->id]; 806 if (!Dom.first || Dom.second == VNI->def) 807 continue; 808 BackCopies.push_back(VNI); 809 forceRecompute(0, ParentVNI); 810 } 811 removeBackCopies(BackCopies); 812 } 813 814 815 /// transferValues - Transfer all possible values to the new live ranges. 816 /// Values that were rematerialized are left alone, they need LRCalc.extend(). 817 bool SplitEditor::transferValues() { 818 bool Skipped = false; 819 RegAssignMap::const_iterator AssignI = RegAssign.begin(); 820 for (const LiveRange::Segment &S : Edit->getParent()) { 821 DEBUG(dbgs() << " blit " << S << ':'); 822 VNInfo *ParentVNI = S.valno; 823 // RegAssign has holes where RegIdx 0 should be used. 824 SlotIndex Start = S.start; 825 AssignI.advanceTo(Start); 826 do { 827 unsigned RegIdx; 828 SlotIndex End = S.end; 829 if (!AssignI.valid()) { 830 RegIdx = 0; 831 } else if (AssignI.start() <= Start) { 832 RegIdx = AssignI.value(); 833 if (AssignI.stop() < End) { 834 End = AssignI.stop(); 835 ++AssignI; 836 } 837 } else { 838 RegIdx = 0; 839 End = std::min(End, AssignI.start()); 840 } 841 842 // The interval [Start;End) is continuously mapped to RegIdx, ParentVNI. 843 DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx); 844 LiveRange &LR = LIS.getInterval(Edit->get(RegIdx)); 845 846 // Check for a simply defined value that can be blitted directly. 847 ValueForcePair VFP = Values.lookup(std::make_pair(RegIdx, ParentVNI->id)); 848 if (VNInfo *VNI = VFP.getPointer()) { 849 DEBUG(dbgs() << ':' << VNI->id); 850 LR.addSegment(LiveInterval::Segment(Start, End, VNI)); 851 Start = End; 852 continue; 853 } 854 855 // Skip values with forced recomputation. 856 if (VFP.getInt()) { 857 DEBUG(dbgs() << "(recalc)"); 858 Skipped = true; 859 Start = End; 860 continue; 861 } 862 863 LiveRangeCalc &LRC = getLRCalc(RegIdx); 864 865 // This value has multiple defs in RegIdx, but it wasn't rematerialized, 866 // so the live range is accurate. Add live-in blocks in [Start;End) to the 867 // LiveInBlocks. 868 MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start); 869 SlotIndex BlockStart, BlockEnd; 870 std::tie(BlockStart, BlockEnd) = LIS.getSlotIndexes()->getMBBRange(MBB); 871 872 // The first block may be live-in, or it may have its own def. 873 if (Start != BlockStart) { 874 VNInfo *VNI = LR.extendInBlock(BlockStart, std::min(BlockEnd, End)); 875 assert(VNI && "Missing def for complex mapped value"); 876 DEBUG(dbgs() << ':' << VNI->id << "*BB#" << MBB->getNumber()); 877 // MBB has its own def. Is it also live-out? 878 if (BlockEnd <= End) 879 LRC.setLiveOutValue(MBB, VNI); 880 881 // Skip to the next block for live-in. 882 ++MBB; 883 BlockStart = BlockEnd; 884 } 885 886 // Handle the live-in blocks covered by [Start;End). 887 assert(Start <= BlockStart && "Expected live-in block"); 888 while (BlockStart < End) { 889 DEBUG(dbgs() << ">BB#" << MBB->getNumber()); 890 BlockEnd = LIS.getMBBEndIdx(MBB); 891 if (BlockStart == ParentVNI->def) { 892 // This block has the def of a parent PHI, so it isn't live-in. 893 assert(ParentVNI->isPHIDef() && "Non-phi defined at block start?"); 894 VNInfo *VNI = LR.extendInBlock(BlockStart, std::min(BlockEnd, End)); 895 assert(VNI && "Missing def for complex mapped parent PHI"); 896 if (End >= BlockEnd) 897 LRC.setLiveOutValue(MBB, VNI); // Live-out as well. 898 } else { 899 // This block needs a live-in value. The last block covered may not 900 // be live-out. 901 if (End < BlockEnd) 902 LRC.addLiveInBlock(LR, MDT[MBB], End); 903 else { 904 // Live-through, and we don't know the value. 905 LRC.addLiveInBlock(LR, MDT[MBB]); 906 LRC.setLiveOutValue(MBB, nullptr); 907 } 908 } 909 BlockStart = BlockEnd; 910 ++MBB; 911 } 912 Start = End; 913 } while (Start != S.end); 914 DEBUG(dbgs() << '\n'); 915 } 916 917 LRCalc[0].calculateValues(); 918 if (SpillMode) 919 LRCalc[1].calculateValues(); 920 921 return Skipped; 922 } 923 924 void SplitEditor::extendPHIKillRanges() { 925 // Extend live ranges to be live-out for successor PHI values. 926 for (const VNInfo *PHIVNI : Edit->getParent().valnos) { 927 if (PHIVNI->isUnused() || !PHIVNI->isPHIDef()) 928 continue; 929 unsigned RegIdx = RegAssign.lookup(PHIVNI->def); 930 LiveRange &LR = LIS.getInterval(Edit->get(RegIdx)); 931 LiveRangeCalc &LRC = getLRCalc(RegIdx); 932 MachineBasicBlock *MBB = LIS.getMBBFromIndex(PHIVNI->def); 933 for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), 934 PE = MBB->pred_end(); PI != PE; ++PI) { 935 SlotIndex End = LIS.getMBBEndIdx(*PI); 936 SlotIndex LastUse = End.getPrevSlot(); 937 // The predecessor may not have a live-out value. That is OK, like an 938 // undef PHI operand. 939 if (Edit->getParent().liveAt(LastUse)) { 940 assert(RegAssign.lookup(LastUse) == RegIdx && 941 "Different register assignment in phi predecessor"); 942 LRC.extend(LR, End); 943 } 944 } 945 } 946 } 947 948 /// rewriteAssigned - Rewrite all uses of Edit->getReg(). 949 void SplitEditor::rewriteAssigned(bool ExtendRanges) { 950 for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Edit->getReg()), 951 RE = MRI.reg_end(); RI != RE;) { 952 MachineOperand &MO = *RI; 953 MachineInstr *MI = MO.getParent(); 954 ++RI; 955 // LiveDebugVariables should have handled all DBG_VALUE instructions. 956 if (MI->isDebugValue()) { 957 DEBUG(dbgs() << "Zapping " << *MI); 958 MO.setReg(0); 959 continue; 960 } 961 962 // <undef> operands don't really read the register, so it doesn't matter 963 // which register we choose. When the use operand is tied to a def, we must 964 // use the same register as the def, so just do that always. 965 SlotIndex Idx = LIS.getInstructionIndex(MI); 966 if (MO.isDef() || MO.isUndef()) 967 Idx = Idx.getRegSlot(MO.isEarlyClobber()); 968 969 // Rewrite to the mapped register at Idx. 970 unsigned RegIdx = RegAssign.lookup(Idx); 971 LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx)); 972 MO.setReg(LI->reg); 973 DEBUG(dbgs() << " rewr BB#" << MI->getParent()->getNumber() << '\t' 974 << Idx << ':' << RegIdx << '\t' << *MI); 975 976 // Extend liveness to Idx if the instruction reads reg. 977 if (!ExtendRanges || MO.isUndef()) 978 continue; 979 980 // Skip instructions that don't read Reg. 981 if (MO.isDef()) { 982 if (!MO.getSubReg() && !MO.isEarlyClobber()) 983 continue; 984 // We may wan't to extend a live range for a partial redef, or for a use 985 // tied to an early clobber. 986 Idx = Idx.getPrevSlot(); 987 if (!Edit->getParent().liveAt(Idx)) 988 continue; 989 } else 990 Idx = Idx.getRegSlot(true); 991 992 getLRCalc(RegIdx).extend(*LI, Idx.getNextSlot()); 993 } 994 } 995 996 void SplitEditor::deleteRematVictims() { 997 SmallVector<MachineInstr*, 8> Dead; 998 for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I){ 999 LiveInterval *LI = &LIS.getInterval(*I); 1000 for (const LiveRange::Segment &S : LI->segments) { 1001 // Dead defs end at the dead slot. 1002 if (S.end != S.valno->def.getDeadSlot()) 1003 continue; 1004 MachineInstr *MI = LIS.getInstructionFromIndex(S.valno->def); 1005 assert(MI && "Missing instruction for dead def"); 1006 MI->addRegisterDead(LI->reg, &TRI); 1007 1008 if (!MI->allDefsAreDead()) 1009 continue; 1010 1011 DEBUG(dbgs() << "All defs dead: " << *MI); 1012 Dead.push_back(MI); 1013 } 1014 } 1015 1016 if (Dead.empty()) 1017 return; 1018 1019 Edit->eliminateDeadDefs(Dead); 1020 } 1021 1022 void SplitEditor::finish(SmallVectorImpl<unsigned> *LRMap) { 1023 ++NumFinished; 1024 1025 // At this point, the live intervals in Edit contain VNInfos corresponding to 1026 // the inserted copies. 1027 1028 // Add the original defs from the parent interval. 1029 for (const VNInfo *ParentVNI : Edit->getParent().valnos) { 1030 if (ParentVNI->isUnused()) 1031 continue; 1032 unsigned RegIdx = RegAssign.lookup(ParentVNI->def); 1033 defValue(RegIdx, ParentVNI, ParentVNI->def); 1034 1035 // Force rematted values to be recomputed everywhere. 1036 // The new live ranges may be truncated. 1037 if (Edit->didRematerialize(ParentVNI)) 1038 for (unsigned i = 0, e = Edit->size(); i != e; ++i) 1039 forceRecompute(i, ParentVNI); 1040 } 1041 1042 // Hoist back-copies to the complement interval when in spill mode. 1043 switch (SpillMode) { 1044 case SM_Partition: 1045 // Leave all back-copies as is. 1046 break; 1047 case SM_Size: 1048 hoistCopiesForSize(); 1049 break; 1050 case SM_Speed: 1051 llvm_unreachable("Spill mode 'speed' not implemented yet"); 1052 } 1053 1054 // Transfer the simply mapped values, check if any are skipped. 1055 bool Skipped = transferValues(); 1056 if (Skipped) 1057 extendPHIKillRanges(); 1058 else 1059 ++NumSimple; 1060 1061 // Rewrite virtual registers, possibly extending ranges. 1062 rewriteAssigned(Skipped); 1063 1064 // Delete defs that were rematted everywhere. 1065 if (Skipped) 1066 deleteRematVictims(); 1067 1068 // Get rid of unused values and set phi-kill flags. 1069 for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I) { 1070 LiveInterval &LI = LIS.getInterval(*I); 1071 LI.RenumberValues(); 1072 } 1073 1074 // Provide a reverse mapping from original indices to Edit ranges. 1075 if (LRMap) { 1076 LRMap->clear(); 1077 for (unsigned i = 0, e = Edit->size(); i != e; ++i) 1078 LRMap->push_back(i); 1079 } 1080 1081 // Now check if any registers were separated into multiple components. 1082 ConnectedVNInfoEqClasses ConEQ(LIS); 1083 for (unsigned i = 0, e = Edit->size(); i != e; ++i) { 1084 // Don't use iterators, they are invalidated by create() below. 1085 unsigned VReg = Edit->get(i); 1086 LiveInterval &LI = LIS.getInterval(VReg); 1087 SmallVector<LiveInterval*, 8> SplitLIs; 1088 LIS.splitSeparateComponents(LI, SplitLIs); 1089 unsigned Original = VRM.getOriginal(VReg); 1090 for (LiveInterval *SplitLI : SplitLIs) 1091 VRM.setIsSplitFromReg(SplitLI->reg, Original); 1092 1093 // The new intervals all map back to i. 1094 if (LRMap) 1095 LRMap->resize(Edit->size(), i); 1096 } 1097 1098 // Calculate spill weight and allocation hints for new intervals. 1099 Edit->calculateRegClassAndHint(VRM.getMachineFunction(), SA.Loops, MBFI); 1100 1101 assert(!LRMap || LRMap->size() == Edit->size()); 1102 } 1103 1104 1105 //===----------------------------------------------------------------------===// 1106 // Single Block Splitting 1107 //===----------------------------------------------------------------------===// 1108 1109 bool SplitAnalysis::shouldSplitSingleBlock(const BlockInfo &BI, 1110 bool SingleInstrs) const { 1111 // Always split for multiple instructions. 1112 if (!BI.isOneInstr()) 1113 return true; 1114 // Don't split for single instructions unless explicitly requested. 1115 if (!SingleInstrs) 1116 return false; 1117 // Splitting a live-through range always makes progress. 1118 if (BI.LiveIn && BI.LiveOut) 1119 return true; 1120 // No point in isolating a copy. It has no register class constraints. 1121 if (LIS.getInstructionFromIndex(BI.FirstInstr)->isCopyLike()) 1122 return false; 1123 // Finally, don't isolate an end point that was created by earlier splits. 1124 return isOriginalEndpoint(BI.FirstInstr); 1125 } 1126 1127 void SplitEditor::splitSingleBlock(const SplitAnalysis::BlockInfo &BI) { 1128 openIntv(); 1129 SlotIndex LastSplitPoint = SA.getLastSplitPoint(BI.MBB->getNumber()); 1130 SlotIndex SegStart = enterIntvBefore(std::min(BI.FirstInstr, 1131 LastSplitPoint)); 1132 if (!BI.LiveOut || BI.LastInstr < LastSplitPoint) { 1133 useIntv(SegStart, leaveIntvAfter(BI.LastInstr)); 1134 } else { 1135 // The last use is after the last valid split point. 1136 SlotIndex SegStop = leaveIntvBefore(LastSplitPoint); 1137 useIntv(SegStart, SegStop); 1138 overlapIntv(SegStop, BI.LastInstr); 1139 } 1140 } 1141 1142 1143 //===----------------------------------------------------------------------===// 1144 // Global Live Range Splitting Support 1145 //===----------------------------------------------------------------------===// 1146 1147 // These methods support a method of global live range splitting that uses a 1148 // global algorithm to decide intervals for CFG edges. They will insert split 1149 // points and color intervals in basic blocks while avoiding interference. 1150 // 1151 // Note that splitSingleBlock is also useful for blocks where both CFG edges 1152 // are on the stack. 1153 1154 void SplitEditor::splitLiveThroughBlock(unsigned MBBNum, 1155 unsigned IntvIn, SlotIndex LeaveBefore, 1156 unsigned IntvOut, SlotIndex EnterAfter){ 1157 SlotIndex Start, Stop; 1158 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(MBBNum); 1159 1160 DEBUG(dbgs() << "BB#" << MBBNum << " [" << Start << ';' << Stop 1161 << ") intf " << LeaveBefore << '-' << EnterAfter 1162 << ", live-through " << IntvIn << " -> " << IntvOut); 1163 1164 assert((IntvIn || IntvOut) && "Use splitSingleBlock for isolated blocks"); 1165 1166 assert((!LeaveBefore || LeaveBefore < Stop) && "Interference after block"); 1167 assert((!IntvIn || !LeaveBefore || LeaveBefore > Start) && "Impossible intf"); 1168 assert((!EnterAfter || EnterAfter >= Start) && "Interference before block"); 1169 1170 MachineBasicBlock *MBB = VRM.getMachineFunction().getBlockNumbered(MBBNum); 1171 1172 if (!IntvOut) { 1173 DEBUG(dbgs() << ", spill on entry.\n"); 1174 // 1175 // <<<<<<<<< Possible LeaveBefore interference. 1176 // |-----------| Live through. 1177 // -____________ Spill on entry. 1178 // 1179 selectIntv(IntvIn); 1180 SlotIndex Idx = leaveIntvAtTop(*MBB); 1181 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1182 (void)Idx; 1183 return; 1184 } 1185 1186 if (!IntvIn) { 1187 DEBUG(dbgs() << ", reload on exit.\n"); 1188 // 1189 // >>>>>>> Possible EnterAfter interference. 1190 // |-----------| Live through. 1191 // ___________-- Reload on exit. 1192 // 1193 selectIntv(IntvOut); 1194 SlotIndex Idx = enterIntvAtEnd(*MBB); 1195 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1196 (void)Idx; 1197 return; 1198 } 1199 1200 if (IntvIn == IntvOut && !LeaveBefore && !EnterAfter) { 1201 DEBUG(dbgs() << ", straight through.\n"); 1202 // 1203 // |-----------| Live through. 1204 // ------------- Straight through, same intv, no interference. 1205 // 1206 selectIntv(IntvOut); 1207 useIntv(Start, Stop); 1208 return; 1209 } 1210 1211 // We cannot legally insert splits after LSP. 1212 SlotIndex LSP = SA.getLastSplitPoint(MBBNum); 1213 assert((!IntvOut || !EnterAfter || EnterAfter < LSP) && "Impossible intf"); 1214 1215 if (IntvIn != IntvOut && (!LeaveBefore || !EnterAfter || 1216 LeaveBefore.getBaseIndex() > EnterAfter.getBoundaryIndex())) { 1217 DEBUG(dbgs() << ", switch avoiding interference.\n"); 1218 // 1219 // >>>> <<<< Non-overlapping EnterAfter/LeaveBefore interference. 1220 // |-----------| Live through. 1221 // ------======= Switch intervals between interference. 1222 // 1223 selectIntv(IntvOut); 1224 SlotIndex Idx; 1225 if (LeaveBefore && LeaveBefore < LSP) { 1226 Idx = enterIntvBefore(LeaveBefore); 1227 useIntv(Idx, Stop); 1228 } else { 1229 Idx = enterIntvAtEnd(*MBB); 1230 } 1231 selectIntv(IntvIn); 1232 useIntv(Start, Idx); 1233 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1234 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1235 return; 1236 } 1237 1238 DEBUG(dbgs() << ", create local intv for interference.\n"); 1239 // 1240 // >>><><><><<<< Overlapping EnterAfter/LeaveBefore interference. 1241 // |-----------| Live through. 1242 // ==---------== Switch intervals before/after interference. 1243 // 1244 assert(LeaveBefore <= EnterAfter && "Missed case"); 1245 1246 selectIntv(IntvOut); 1247 SlotIndex Idx = enterIntvAfter(EnterAfter); 1248 useIntv(Idx, Stop); 1249 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1250 1251 selectIntv(IntvIn); 1252 Idx = leaveIntvBefore(LeaveBefore); 1253 useIntv(Start, Idx); 1254 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1255 } 1256 1257 1258 void SplitEditor::splitRegInBlock(const SplitAnalysis::BlockInfo &BI, 1259 unsigned IntvIn, SlotIndex LeaveBefore) { 1260 SlotIndex Start, Stop; 1261 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); 1262 1263 DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " [" << Start << ';' << Stop 1264 << "), uses " << BI.FirstInstr << '-' << BI.LastInstr 1265 << ", reg-in " << IntvIn << ", leave before " << LeaveBefore 1266 << (BI.LiveOut ? ", stack-out" : ", killed in block")); 1267 1268 assert(IntvIn && "Must have register in"); 1269 assert(BI.LiveIn && "Must be live-in"); 1270 assert((!LeaveBefore || LeaveBefore > Start) && "Bad interference"); 1271 1272 if (!BI.LiveOut && (!LeaveBefore || LeaveBefore >= BI.LastInstr)) { 1273 DEBUG(dbgs() << " before interference.\n"); 1274 // 1275 // <<< Interference after kill. 1276 // |---o---x | Killed in block. 1277 // ========= Use IntvIn everywhere. 1278 // 1279 selectIntv(IntvIn); 1280 useIntv(Start, BI.LastInstr); 1281 return; 1282 } 1283 1284 SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber()); 1285 1286 if (!LeaveBefore || LeaveBefore > BI.LastInstr.getBoundaryIndex()) { 1287 // 1288 // <<< Possible interference after last use. 1289 // |---o---o---| Live-out on stack. 1290 // =========____ Leave IntvIn after last use. 1291 // 1292 // < Interference after last use. 1293 // |---o---o--o| Live-out on stack, late last use. 1294 // ============ Copy to stack after LSP, overlap IntvIn. 1295 // \_____ Stack interval is live-out. 1296 // 1297 if (BI.LastInstr < LSP) { 1298 DEBUG(dbgs() << ", spill after last use before interference.\n"); 1299 selectIntv(IntvIn); 1300 SlotIndex Idx = leaveIntvAfter(BI.LastInstr); 1301 useIntv(Start, Idx); 1302 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1303 } else { 1304 DEBUG(dbgs() << ", spill before last split point.\n"); 1305 selectIntv(IntvIn); 1306 SlotIndex Idx = leaveIntvBefore(LSP); 1307 overlapIntv(Idx, BI.LastInstr); 1308 useIntv(Start, Idx); 1309 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1310 } 1311 return; 1312 } 1313 1314 // The interference is overlapping somewhere we wanted to use IntvIn. That 1315 // means we need to create a local interval that can be allocated a 1316 // different register. 1317 unsigned LocalIntv = openIntv(); 1318 (void)LocalIntv; 1319 DEBUG(dbgs() << ", creating local interval " << LocalIntv << ".\n"); 1320 1321 if (!BI.LiveOut || BI.LastInstr < LSP) { 1322 // 1323 // <<<<<<< Interference overlapping uses. 1324 // |---o---o---| Live-out on stack. 1325 // =====----____ Leave IntvIn before interference, then spill. 1326 // 1327 SlotIndex To = leaveIntvAfter(BI.LastInstr); 1328 SlotIndex From = enterIntvBefore(LeaveBefore); 1329 useIntv(From, To); 1330 selectIntv(IntvIn); 1331 useIntv(Start, From); 1332 assert((!LeaveBefore || From <= LeaveBefore) && "Interference"); 1333 return; 1334 } 1335 1336 // <<<<<<< Interference overlapping uses. 1337 // |---o---o--o| Live-out on stack, late last use. 1338 // =====------- Copy to stack before LSP, overlap LocalIntv. 1339 // \_____ Stack interval is live-out. 1340 // 1341 SlotIndex To = leaveIntvBefore(LSP); 1342 overlapIntv(To, BI.LastInstr); 1343 SlotIndex From = enterIntvBefore(std::min(To, LeaveBefore)); 1344 useIntv(From, To); 1345 selectIntv(IntvIn); 1346 useIntv(Start, From); 1347 assert((!LeaveBefore || From <= LeaveBefore) && "Interference"); 1348 } 1349 1350 void SplitEditor::splitRegOutBlock(const SplitAnalysis::BlockInfo &BI, 1351 unsigned IntvOut, SlotIndex EnterAfter) { 1352 SlotIndex Start, Stop; 1353 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); 1354 1355 DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " [" << Start << ';' << Stop 1356 << "), uses " << BI.FirstInstr << '-' << BI.LastInstr 1357 << ", reg-out " << IntvOut << ", enter after " << EnterAfter 1358 << (BI.LiveIn ? ", stack-in" : ", defined in block")); 1359 1360 SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber()); 1361 1362 assert(IntvOut && "Must have register out"); 1363 assert(BI.LiveOut && "Must be live-out"); 1364 assert((!EnterAfter || EnterAfter < LSP) && "Bad interference"); 1365 1366 if (!BI.LiveIn && (!EnterAfter || EnterAfter <= BI.FirstInstr)) { 1367 DEBUG(dbgs() << " after interference.\n"); 1368 // 1369 // >>>> Interference before def. 1370 // | o---o---| Defined in block. 1371 // ========= Use IntvOut everywhere. 1372 // 1373 selectIntv(IntvOut); 1374 useIntv(BI.FirstInstr, Stop); 1375 return; 1376 } 1377 1378 if (!EnterAfter || EnterAfter < BI.FirstInstr.getBaseIndex()) { 1379 DEBUG(dbgs() << ", reload after interference.\n"); 1380 // 1381 // >>>> Interference before def. 1382 // |---o---o---| Live-through, stack-in. 1383 // ____========= Enter IntvOut before first use. 1384 // 1385 selectIntv(IntvOut); 1386 SlotIndex Idx = enterIntvBefore(std::min(LSP, BI.FirstInstr)); 1387 useIntv(Idx, Stop); 1388 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1389 return; 1390 } 1391 1392 // The interference is overlapping somewhere we wanted to use IntvOut. That 1393 // means we need to create a local interval that can be allocated a 1394 // different register. 1395 DEBUG(dbgs() << ", interference overlaps uses.\n"); 1396 // 1397 // >>>>>>> Interference overlapping uses. 1398 // |---o---o---| Live-through, stack-in. 1399 // ____---====== Create local interval for interference range. 1400 // 1401 selectIntv(IntvOut); 1402 SlotIndex Idx = enterIntvAfter(EnterAfter); 1403 useIntv(Idx, Stop); 1404 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1405 1406 openIntv(); 1407 SlotIndex From = enterIntvBefore(std::min(Idx, BI.FirstInstr)); 1408 useIntv(From, Idx); 1409 } 1410