1 //===- SplitKit.cpp - Toolkit for splitting live ranges -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the SplitAnalysis class as well as mutator functions for
10 // live range splitting.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "SplitKit.h"
15 #include "llvm/ADT/None.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/Analysis/AliasAnalysis.h"
19 #include "llvm/CodeGen/LiveRangeEdit.h"
20 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
21 #include "llvm/CodeGen/MachineDominators.h"
22 #include "llvm/CodeGen/MachineInstr.h"
23 #include "llvm/CodeGen/MachineInstrBuilder.h"
24 #include "llvm/CodeGen/MachineLoopInfo.h"
25 #include "llvm/CodeGen/MachineOperand.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/CodeGen/TargetInstrInfo.h"
28 #include "llvm/CodeGen/TargetOpcodes.h"
29 #include "llvm/CodeGen/TargetRegisterInfo.h"
30 #include "llvm/CodeGen/TargetSubtargetInfo.h"
31 #include "llvm/CodeGen/VirtRegMap.h"
32 #include "llvm/Config/llvm-config.h"
33 #include "llvm/IR/DebugLoc.h"
34 #include "llvm/Support/Allocator.h"
35 #include "llvm/Support/BlockFrequency.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include <algorithm>
40 #include <cassert>
41 #include <iterator>
42 #include <limits>
43 #include <tuple>
44 
45 using namespace llvm;
46 
47 #define DEBUG_TYPE "regalloc"
48 
49 STATISTIC(NumFinished, "Number of splits finished");
50 STATISTIC(NumSimple,   "Number of splits that were simple");
51 STATISTIC(NumCopies,   "Number of copies inserted for splitting");
52 STATISTIC(NumRemats,   "Number of rematerialized defs for splitting");
53 STATISTIC(NumRepairs,  "Number of invalid live ranges repaired");
54 
55 //===----------------------------------------------------------------------===//
56 //                     Last Insert Point Analysis
57 //===----------------------------------------------------------------------===//
58 
59 InsertPointAnalysis::InsertPointAnalysis(const LiveIntervals &lis,
60                                          unsigned BBNum)
61     : LIS(lis), LastInsertPoint(BBNum) {}
62 
63 SlotIndex
64 InsertPointAnalysis::computeLastInsertPoint(const LiveInterval &CurLI,
65                                             const MachineBasicBlock &MBB) {
66   unsigned Num = MBB.getNumber();
67   std::pair<SlotIndex, SlotIndex> &LIP = LastInsertPoint[Num];
68   SlotIndex MBBEnd = LIS.getMBBEndIdx(&MBB);
69 
70   SmallVector<const MachineBasicBlock *, 1> ExceptionalSuccessors;
71   bool EHPadSuccessor = false;
72   for (const MachineBasicBlock *SMBB : MBB.successors()) {
73     if (SMBB->isEHPad()) {
74       ExceptionalSuccessors.push_back(SMBB);
75       EHPadSuccessor = true;
76     } else if (SMBB->isInlineAsmBrIndirectTarget())
77       ExceptionalSuccessors.push_back(SMBB);
78   }
79 
80   // Compute insert points on the first call. The pair is independent of the
81   // current live interval.
82   if (!LIP.first.isValid()) {
83     MachineBasicBlock::const_iterator FirstTerm = MBB.getFirstTerminator();
84     if (FirstTerm == MBB.end())
85       LIP.first = MBBEnd;
86     else
87       LIP.first = LIS.getInstructionIndex(*FirstTerm);
88 
89     // If there is a landing pad or inlineasm_br successor, also find the
90     // instruction. If there is no such instruction, we don't need to do
91     // anything special.  We assume there cannot be multiple instructions that
92     // are Calls with EHPad successors or INLINEASM_BR in a block. Further, we
93     // assume that if there are any, they will be after any other call
94     // instructions in the block.
95     if (ExceptionalSuccessors.empty())
96       return LIP.first;
97     for (auto I = MBB.rbegin(), E = MBB.rend(); I != E; ++I) {
98       if ((EHPadSuccessor && I->isCall()) ||
99           I->getOpcode() == TargetOpcode::INLINEASM_BR) {
100         LIP.second = LIS.getInstructionIndex(*I);
101         break;
102       }
103     }
104   }
105 
106   // If CurLI is live into a landing pad successor, move the last insert point
107   // back to the call that may throw.
108   if (!LIP.second)
109     return LIP.first;
110 
111   if (none_of(ExceptionalSuccessors, [&](const MachineBasicBlock *EHPad) {
112         return LIS.isLiveInToMBB(CurLI, EHPad);
113       }))
114     return LIP.first;
115 
116   // Find the value leaving MBB.
117   const VNInfo *VNI = CurLI.getVNInfoBefore(MBBEnd);
118   if (!VNI)
119     return LIP.first;
120 
121   // If the value leaving MBB was defined after the call in MBB, it can't
122   // really be live-in to the landing pad.  This can happen if the landing pad
123   // has a PHI, and this register is undef on the exceptional edge.
124   // <rdar://problem/10664933>
125   if (!SlotIndex::isEarlierInstr(VNI->def, LIP.second) && VNI->def < MBBEnd)
126     return LIP.first;
127 
128   // Value is properly live-in to the landing pad.
129   // Only allow inserts before the call.
130   return LIP.second;
131 }
132 
133 MachineBasicBlock::iterator
134 InsertPointAnalysis::getLastInsertPointIter(const LiveInterval &CurLI,
135                                             MachineBasicBlock &MBB) {
136   SlotIndex LIP = getLastInsertPoint(CurLI, MBB);
137   if (LIP == LIS.getMBBEndIdx(&MBB))
138     return MBB.end();
139   return LIS.getInstructionFromIndex(LIP);
140 }
141 
142 //===----------------------------------------------------------------------===//
143 //                                 Split Analysis
144 //===----------------------------------------------------------------------===//
145 
146 SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm, const LiveIntervals &lis,
147                              const MachineLoopInfo &mli)
148     : MF(vrm.getMachineFunction()), VRM(vrm), LIS(lis), Loops(mli),
149       TII(*MF.getSubtarget().getInstrInfo()), IPA(lis, MF.getNumBlockIDs()) {}
150 
151 void SplitAnalysis::clear() {
152   UseSlots.clear();
153   UseBlocks.clear();
154   ThroughBlocks.clear();
155   CurLI = nullptr;
156   DidRepairRange = false;
157 }
158 
159 /// analyzeUses - Count instructions, basic blocks, and loops using CurLI.
160 void SplitAnalysis::analyzeUses() {
161   assert(UseSlots.empty() && "Call clear first");
162 
163   // First get all the defs from the interval values. This provides the correct
164   // slots for early clobbers.
165   for (const VNInfo *VNI : CurLI->valnos)
166     if (!VNI->isPHIDef() && !VNI->isUnused())
167       UseSlots.push_back(VNI->def);
168 
169   // Get use slots form the use-def chain.
170   const MachineRegisterInfo &MRI = MF.getRegInfo();
171   for (MachineOperand &MO : MRI.use_nodbg_operands(CurLI->reg()))
172     if (!MO.isUndef())
173       UseSlots.push_back(LIS.getInstructionIndex(*MO.getParent()).getRegSlot());
174 
175   array_pod_sort(UseSlots.begin(), UseSlots.end());
176 
177   // Remove duplicates, keeping the smaller slot for each instruction.
178   // That is what we want for early clobbers.
179   UseSlots.erase(std::unique(UseSlots.begin(), UseSlots.end(),
180                              SlotIndex::isSameInstr),
181                  UseSlots.end());
182 
183   // Compute per-live block info.
184   if (!calcLiveBlockInfo()) {
185     // FIXME: calcLiveBlockInfo found inconsistencies in the live range.
186     // I am looking at you, RegisterCoalescer!
187     DidRepairRange = true;
188     ++NumRepairs;
189     LLVM_DEBUG(dbgs() << "*** Fixing inconsistent live interval! ***\n");
190     const_cast<LiveIntervals&>(LIS)
191       .shrinkToUses(const_cast<LiveInterval*>(CurLI));
192     UseBlocks.clear();
193     ThroughBlocks.clear();
194     bool fixed = calcLiveBlockInfo();
195     (void)fixed;
196     assert(fixed && "Couldn't fix broken live interval");
197   }
198 
199   LLVM_DEBUG(dbgs() << "Analyze counted " << UseSlots.size() << " instrs in "
200                     << UseBlocks.size() << " blocks, through "
201                     << NumThroughBlocks << " blocks.\n");
202 }
203 
204 /// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks
205 /// where CurLI is live.
206 bool SplitAnalysis::calcLiveBlockInfo() {
207   ThroughBlocks.resize(MF.getNumBlockIDs());
208   NumThroughBlocks = NumGapBlocks = 0;
209   if (CurLI->empty())
210     return true;
211 
212   LiveInterval::const_iterator LVI = CurLI->begin();
213   LiveInterval::const_iterator LVE = CurLI->end();
214 
215   SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE;
216   UseI = UseSlots.begin();
217   UseE = UseSlots.end();
218 
219   // Loop over basic blocks where CurLI is live.
220   MachineFunction::iterator MFI =
221       LIS.getMBBFromIndex(LVI->start)->getIterator();
222   while (true) {
223     BlockInfo BI;
224     BI.MBB = &*MFI;
225     SlotIndex Start, Stop;
226     std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
227 
228     // If the block contains no uses, the range must be live through. At one
229     // point, RegisterCoalescer could create dangling ranges that ended
230     // mid-block.
231     if (UseI == UseE || *UseI >= Stop) {
232       ++NumThroughBlocks;
233       ThroughBlocks.set(BI.MBB->getNumber());
234       // The range shouldn't end mid-block if there are no uses. This shouldn't
235       // happen.
236       if (LVI->end < Stop)
237         return false;
238     } else {
239       // This block has uses. Find the first and last uses in the block.
240       BI.FirstInstr = *UseI;
241       assert(BI.FirstInstr >= Start);
242       do ++UseI;
243       while (UseI != UseE && *UseI < Stop);
244       BI.LastInstr = UseI[-1];
245       assert(BI.LastInstr < Stop);
246 
247       // LVI is the first live segment overlapping MBB.
248       BI.LiveIn = LVI->start <= Start;
249 
250       // When not live in, the first use should be a def.
251       if (!BI.LiveIn) {
252         assert(LVI->start == LVI->valno->def && "Dangling Segment start");
253         assert(LVI->start == BI.FirstInstr && "First instr should be a def");
254         BI.FirstDef = BI.FirstInstr;
255       }
256 
257       // Look for gaps in the live range.
258       BI.LiveOut = true;
259       while (LVI->end < Stop) {
260         SlotIndex LastStop = LVI->end;
261         if (++LVI == LVE || LVI->start >= Stop) {
262           BI.LiveOut = false;
263           BI.LastInstr = LastStop;
264           break;
265         }
266 
267         if (LastStop < LVI->start) {
268           // There is a gap in the live range. Create duplicate entries for the
269           // live-in snippet and the live-out snippet.
270           ++NumGapBlocks;
271 
272           // Push the Live-in part.
273           BI.LiveOut = false;
274           UseBlocks.push_back(BI);
275           UseBlocks.back().LastInstr = LastStop;
276 
277           // Set up BI for the live-out part.
278           BI.LiveIn = false;
279           BI.LiveOut = true;
280           BI.FirstInstr = BI.FirstDef = LVI->start;
281         }
282 
283         // A Segment that starts in the middle of the block must be a def.
284         assert(LVI->start == LVI->valno->def && "Dangling Segment start");
285         if (!BI.FirstDef)
286           BI.FirstDef = LVI->start;
287       }
288 
289       UseBlocks.push_back(BI);
290 
291       // LVI is now at LVE or LVI->end >= Stop.
292       if (LVI == LVE)
293         break;
294     }
295 
296     // Live segment ends exactly at Stop. Move to the next segment.
297     if (LVI->end == Stop && ++LVI == LVE)
298       break;
299 
300     // Pick the next basic block.
301     if (LVI->start < Stop)
302       ++MFI;
303     else
304       MFI = LIS.getMBBFromIndex(LVI->start)->getIterator();
305   }
306 
307   assert(getNumLiveBlocks() == countLiveBlocks(CurLI) && "Bad block count");
308   return true;
309 }
310 
311 unsigned SplitAnalysis::countLiveBlocks(const LiveInterval *cli) const {
312   if (cli->empty())
313     return 0;
314   LiveInterval *li = const_cast<LiveInterval*>(cli);
315   LiveInterval::iterator LVI = li->begin();
316   LiveInterval::iterator LVE = li->end();
317   unsigned Count = 0;
318 
319   // Loop over basic blocks where li is live.
320   MachineFunction::const_iterator MFI =
321       LIS.getMBBFromIndex(LVI->start)->getIterator();
322   SlotIndex Stop = LIS.getMBBEndIdx(&*MFI);
323   while (true) {
324     ++Count;
325     LVI = li->advanceTo(LVI, Stop);
326     if (LVI == LVE)
327       return Count;
328     do {
329       ++MFI;
330       Stop = LIS.getMBBEndIdx(&*MFI);
331     } while (Stop <= LVI->start);
332   }
333 }
334 
335 bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const {
336   unsigned OrigReg = VRM.getOriginal(CurLI->reg());
337   const LiveInterval &Orig = LIS.getInterval(OrigReg);
338   assert(!Orig.empty() && "Splitting empty interval?");
339   LiveInterval::const_iterator I = Orig.find(Idx);
340 
341   // Range containing Idx should begin at Idx.
342   if (I != Orig.end() && I->start <= Idx)
343     return I->start == Idx;
344 
345   // Range does not contain Idx, previous must end at Idx.
346   return I != Orig.begin() && (--I)->end == Idx;
347 }
348 
349 void SplitAnalysis::analyze(const LiveInterval *li) {
350   clear();
351   CurLI = li;
352   analyzeUses();
353 }
354 
355 //===----------------------------------------------------------------------===//
356 //                               Split Editor
357 //===----------------------------------------------------------------------===//
358 
359 /// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
360 SplitEditor::SplitEditor(SplitAnalysis &sa, AliasAnalysis &aa,
361                          LiveIntervals &lis, VirtRegMap &vrm,
362                          MachineDominatorTree &mdt,
363                          MachineBlockFrequencyInfo &mbfi)
364     : SA(sa), AA(aa), LIS(lis), VRM(vrm),
365       MRI(vrm.getMachineFunction().getRegInfo()), MDT(mdt),
366       TII(*vrm.getMachineFunction().getSubtarget().getInstrInfo()),
367       TRI(*vrm.getMachineFunction().getSubtarget().getRegisterInfo()),
368       MBFI(mbfi), RegAssign(Allocator) {}
369 
370 void SplitEditor::reset(LiveRangeEdit &LRE, ComplementSpillMode SM) {
371   Edit = &LRE;
372   SpillMode = SM;
373   OpenIdx = 0;
374   RegAssign.clear();
375   Values.clear();
376 
377   // Reset the LiveIntervalCalc instances needed for this spill mode.
378   LICalc[0].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
379                   &LIS.getVNInfoAllocator());
380   if (SpillMode)
381     LICalc[1].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
382                     &LIS.getVNInfoAllocator());
383 
384   // We don't need an AliasAnalysis since we will only be performing
385   // cheap-as-a-copy remats anyway.
386   Edit->anyRematerializable(nullptr);
387 }
388 
389 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
390 LLVM_DUMP_METHOD void SplitEditor::dump() const {
391   if (RegAssign.empty()) {
392     dbgs() << " empty\n";
393     return;
394   }
395 
396   for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I)
397     dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value();
398   dbgs() << '\n';
399 }
400 #endif
401 
402 LiveInterval::SubRange &SplitEditor::getSubRangeForMaskExact(LaneBitmask LM,
403                                                              LiveInterval &LI) {
404   for (LiveInterval::SubRange &S : LI.subranges())
405     if (S.LaneMask == LM)
406       return S;
407   llvm_unreachable("SubRange for this mask not found");
408 }
409 
410 LiveInterval::SubRange &SplitEditor::getSubRangeForMask(LaneBitmask LM,
411                                                         LiveInterval &LI) {
412   for (LiveInterval::SubRange &S : LI.subranges())
413     if ((S.LaneMask & LM) == LM)
414       return S;
415   llvm_unreachable("SubRange for this mask not found");
416 }
417 
418 void SplitEditor::addDeadDef(LiveInterval &LI, VNInfo *VNI, bool Original) {
419   if (!LI.hasSubRanges()) {
420     LI.createDeadDef(VNI);
421     return;
422   }
423 
424   SlotIndex Def = VNI->def;
425   if (Original) {
426     // If we are transferring a def from the original interval, make sure
427     // to only update the subranges for which the original subranges had
428     // a def at this location.
429     for (LiveInterval::SubRange &S : LI.subranges()) {
430       auto &PS = getSubRangeForMask(S.LaneMask, Edit->getParent());
431       VNInfo *PV = PS.getVNInfoAt(Def);
432       if (PV != nullptr && PV->def == Def)
433         S.createDeadDef(Def, LIS.getVNInfoAllocator());
434     }
435   } else {
436     // This is a new def: either from rematerialization, or from an inserted
437     // copy. Since rematerialization can regenerate a definition of a sub-
438     // register, we need to check which subranges need to be updated.
439     const MachineInstr *DefMI = LIS.getInstructionFromIndex(Def);
440     assert(DefMI != nullptr);
441     LaneBitmask LM;
442     for (const MachineOperand &DefOp : DefMI->defs()) {
443       Register R = DefOp.getReg();
444       if (R != LI.reg())
445         continue;
446       if (unsigned SR = DefOp.getSubReg())
447         LM |= TRI.getSubRegIndexLaneMask(SR);
448       else {
449         LM = MRI.getMaxLaneMaskForVReg(R);
450         break;
451       }
452     }
453     for (LiveInterval::SubRange &S : LI.subranges())
454       if ((S.LaneMask & LM).any())
455         S.createDeadDef(Def, LIS.getVNInfoAllocator());
456   }
457 }
458 
459 VNInfo *SplitEditor::defValue(unsigned RegIdx,
460                               const VNInfo *ParentVNI,
461                               SlotIndex Idx,
462                               bool Original) {
463   assert(ParentVNI && "Mapping  NULL value");
464   assert(Idx.isValid() && "Invalid SlotIndex");
465   assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI");
466   LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
467 
468   // Create a new value.
469   VNInfo *VNI = LI->getNextValue(Idx, LIS.getVNInfoAllocator());
470 
471   bool Force = LI->hasSubRanges();
472   ValueForcePair FP(Force ? nullptr : VNI, Force);
473   // Use insert for lookup, so we can add missing values with a second lookup.
474   std::pair<ValueMap::iterator, bool> InsP =
475     Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id), FP));
476 
477   // This was the first time (RegIdx, ParentVNI) was mapped, and it is not
478   // forced. Keep it as a simple def without any liveness.
479   if (!Force && InsP.second)
480     return VNI;
481 
482   // If the previous value was a simple mapping, add liveness for it now.
483   if (VNInfo *OldVNI = InsP.first->second.getPointer()) {
484     addDeadDef(*LI, OldVNI, Original);
485 
486     // No longer a simple mapping.  Switch to a complex mapping. If the
487     // interval has subranges, make it a forced mapping.
488     InsP.first->second = ValueForcePair(nullptr, Force);
489   }
490 
491   // This is a complex mapping, add liveness for VNI
492   addDeadDef(*LI, VNI, Original);
493   return VNI;
494 }
495 
496 void SplitEditor::forceRecompute(unsigned RegIdx, const VNInfo &ParentVNI) {
497   ValueForcePair &VFP = Values[std::make_pair(RegIdx, ParentVNI.id)];
498   VNInfo *VNI = VFP.getPointer();
499 
500   // ParentVNI was either unmapped or already complex mapped. Either way, just
501   // set the force bit.
502   if (!VNI) {
503     VFP.setInt(true);
504     return;
505   }
506 
507   // This was previously a single mapping. Make sure the old def is represented
508   // by a trivial live range.
509   addDeadDef(LIS.getInterval(Edit->get(RegIdx)), VNI, false);
510 
511   // Mark as complex mapped, forced.
512   VFP = ValueForcePair(nullptr, true);
513 }
514 
515 SlotIndex SplitEditor::buildSingleSubRegCopy(unsigned FromReg, unsigned ToReg,
516     MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore,
517     unsigned SubIdx, LiveInterval &DestLI, bool Late, SlotIndex Def) {
518   const MCInstrDesc &Desc = TII.get(TargetOpcode::COPY);
519   bool FirstCopy = !Def.isValid();
520   MachineInstr *CopyMI = BuildMI(MBB, InsertBefore, DebugLoc(), Desc)
521       .addReg(ToReg, RegState::Define | getUndefRegState(FirstCopy)
522               | getInternalReadRegState(!FirstCopy), SubIdx)
523       .addReg(FromReg, 0, SubIdx);
524 
525   BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator();
526   SlotIndexes &Indexes = *LIS.getSlotIndexes();
527   if (FirstCopy) {
528     Def = Indexes.insertMachineInstrInMaps(*CopyMI, Late).getRegSlot();
529   } else {
530     CopyMI->bundleWithPred();
531   }
532   LaneBitmask LaneMask = TRI.getSubRegIndexLaneMask(SubIdx);
533   DestLI.refineSubRanges(Allocator, LaneMask,
534                          [Def, &Allocator](LiveInterval::SubRange &SR) {
535                            SR.createDeadDef(Def, Allocator);
536                          },
537                          Indexes, TRI);
538   return Def;
539 }
540 
541 SlotIndex SplitEditor::buildCopy(unsigned FromReg, unsigned ToReg,
542     LaneBitmask LaneMask, MachineBasicBlock &MBB,
543     MachineBasicBlock::iterator InsertBefore, bool Late, unsigned RegIdx) {
544   const MCInstrDesc &Desc = TII.get(TargetOpcode::COPY);
545   if (LaneMask.all() || LaneMask == MRI.getMaxLaneMaskForVReg(FromReg)) {
546     // The full vreg is copied.
547     MachineInstr *CopyMI =
548         BuildMI(MBB, InsertBefore, DebugLoc(), Desc, ToReg).addReg(FromReg);
549     SlotIndexes &Indexes = *LIS.getSlotIndexes();
550     return Indexes.insertMachineInstrInMaps(*CopyMI, Late).getRegSlot();
551   }
552 
553   // Only a subset of lanes needs to be copied. The following is a simple
554   // heuristic to construct a sequence of COPYs. We could add a target
555   // specific callback if this turns out to be suboptimal.
556   LiveInterval &DestLI = LIS.getInterval(Edit->get(RegIdx));
557 
558   // First pass: Try to find a perfectly matching subregister index. If none
559   // exists find the one covering the most lanemask bits.
560   SmallVector<unsigned, 8> PossibleIndexes;
561   unsigned BestIdx = 0;
562   unsigned BestCover = 0;
563   const TargetRegisterClass *RC = MRI.getRegClass(FromReg);
564   assert(RC == MRI.getRegClass(ToReg) && "Should have same reg class");
565   for (unsigned Idx = 1, E = TRI.getNumSubRegIndices(); Idx < E; ++Idx) {
566     // Is this index even compatible with the given class?
567     if (TRI.getSubClassWithSubReg(RC, Idx) != RC)
568       continue;
569     LaneBitmask SubRegMask = TRI.getSubRegIndexLaneMask(Idx);
570     // Early exit if we found a perfect match.
571     if (SubRegMask == LaneMask) {
572       BestIdx = Idx;
573       break;
574     }
575 
576     // The index must not cover any lanes outside \p LaneMask.
577     if ((SubRegMask & ~LaneMask).any())
578       continue;
579 
580     unsigned PopCount = SubRegMask.getNumLanes();
581     PossibleIndexes.push_back(Idx);
582     if (PopCount > BestCover) {
583       BestCover = PopCount;
584       BestIdx = Idx;
585     }
586   }
587 
588   // Abort if we cannot possibly implement the COPY with the given indexes.
589   if (BestIdx == 0)
590     report_fatal_error("Impossible to implement partial COPY");
591 
592   SlotIndex Def = buildSingleSubRegCopy(FromReg, ToReg, MBB, InsertBefore,
593                                         BestIdx, DestLI, Late, SlotIndex());
594 
595   // Greedy heuristic: Keep iterating keeping the best covering subreg index
596   // each time.
597   LaneBitmask LanesLeft = LaneMask & ~(TRI.getSubRegIndexLaneMask(BestIdx));
598   while (LanesLeft.any()) {
599     unsigned BestIdx = 0;
600     int BestCover = std::numeric_limits<int>::min();
601     for (unsigned Idx : PossibleIndexes) {
602       LaneBitmask SubRegMask = TRI.getSubRegIndexLaneMask(Idx);
603       // Early exit if we found a perfect match.
604       if (SubRegMask == LanesLeft) {
605         BestIdx = Idx;
606         break;
607       }
608 
609       // Try to cover as much of the remaining lanes as possible but
610       // as few of the already covered lanes as possible.
611       int Cover = (SubRegMask & LanesLeft).getNumLanes()
612                 - (SubRegMask & ~LanesLeft).getNumLanes();
613       if (Cover > BestCover) {
614         BestCover = Cover;
615         BestIdx = Idx;
616       }
617     }
618 
619     if (BestIdx == 0)
620       report_fatal_error("Impossible to implement partial COPY");
621 
622     buildSingleSubRegCopy(FromReg, ToReg, MBB, InsertBefore, BestIdx,
623                           DestLI, Late, Def);
624     LanesLeft &= ~TRI.getSubRegIndexLaneMask(BestIdx);
625   }
626 
627   return Def;
628 }
629 
630 VNInfo *SplitEditor::defFromParent(unsigned RegIdx,
631                                    VNInfo *ParentVNI,
632                                    SlotIndex UseIdx,
633                                    MachineBasicBlock &MBB,
634                                    MachineBasicBlock::iterator I) {
635   SlotIndex Def;
636   LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
637 
638   // We may be trying to avoid interference that ends at a deleted instruction,
639   // so always begin RegIdx 0 early and all others late.
640   bool Late = RegIdx != 0;
641 
642   // Attempt cheap-as-a-copy rematerialization.
643   unsigned Original = VRM.getOriginal(Edit->get(RegIdx));
644   LiveInterval &OrigLI = LIS.getInterval(Original);
645   VNInfo *OrigVNI = OrigLI.getVNInfoAt(UseIdx);
646 
647   unsigned Reg = LI->reg();
648   bool DidRemat = false;
649   if (OrigVNI) {
650     LiveRangeEdit::Remat RM(ParentVNI);
651     RM.OrigMI = LIS.getInstructionFromIndex(OrigVNI->def);
652     if (Edit->canRematerializeAt(RM, OrigVNI, UseIdx, true)) {
653       Def = Edit->rematerializeAt(MBB, I, Reg, RM, TRI, Late);
654       ++NumRemats;
655       DidRemat = true;
656     }
657   }
658   if (!DidRemat) {
659     LaneBitmask LaneMask;
660     if (OrigLI.hasSubRanges()) {
661       LaneMask = LaneBitmask::getNone();
662       for (LiveInterval::SubRange &S : OrigLI.subranges()) {
663         if (S.liveAt(UseIdx))
664           LaneMask |= S.LaneMask;
665       }
666       assert(LaneMask.any() && "Interval has no live subranges");
667     } else {
668       LaneMask = LaneBitmask::getAll();
669     }
670 
671     ++NumCopies;
672     Def = buildCopy(Edit->getReg(), Reg, LaneMask, MBB, I, Late, RegIdx);
673   }
674 
675   // Define the value in Reg.
676   return defValue(RegIdx, ParentVNI, Def, false);
677 }
678 
679 /// Create a new virtual register and live interval.
680 unsigned SplitEditor::openIntv() {
681   // Create the complement as index 0.
682   if (Edit->empty())
683     Edit->createEmptyInterval();
684 
685   // Create the open interval.
686   OpenIdx = Edit->size();
687   Edit->createEmptyInterval();
688   return OpenIdx;
689 }
690 
691 void SplitEditor::selectIntv(unsigned Idx) {
692   assert(Idx != 0 && "Cannot select the complement interval");
693   assert(Idx < Edit->size() && "Can only select previously opened interval");
694   LLVM_DEBUG(dbgs() << "    selectIntv " << OpenIdx << " -> " << Idx << '\n');
695   OpenIdx = Idx;
696 }
697 
698 SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) {
699   assert(OpenIdx && "openIntv not called before enterIntvBefore");
700   LLVM_DEBUG(dbgs() << "    enterIntvBefore " << Idx);
701   Idx = Idx.getBaseIndex();
702   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
703   if (!ParentVNI) {
704     LLVM_DEBUG(dbgs() << ": not live\n");
705     return Idx;
706   }
707   LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
708   MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
709   assert(MI && "enterIntvBefore called with invalid index");
710 
711   VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI);
712   return VNI->def;
713 }
714 
715 SlotIndex SplitEditor::enterIntvAfter(SlotIndex Idx) {
716   assert(OpenIdx && "openIntv not called before enterIntvAfter");
717   LLVM_DEBUG(dbgs() << "    enterIntvAfter " << Idx);
718   Idx = Idx.getBoundaryIndex();
719   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
720   if (!ParentVNI) {
721     LLVM_DEBUG(dbgs() << ": not live\n");
722     return Idx;
723   }
724   LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
725   MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
726   assert(MI && "enterIntvAfter called with invalid index");
727 
728   VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(),
729                               std::next(MachineBasicBlock::iterator(MI)));
730   return VNI->def;
731 }
732 
733 SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) {
734   assert(OpenIdx && "openIntv not called before enterIntvAtEnd");
735   SlotIndex End = LIS.getMBBEndIdx(&MBB);
736   SlotIndex Last = End.getPrevSlot();
737   LLVM_DEBUG(dbgs() << "    enterIntvAtEnd " << printMBBReference(MBB) << ", "
738                     << Last);
739   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last);
740   if (!ParentVNI) {
741     LLVM_DEBUG(dbgs() << ": not live\n");
742     return End;
743   }
744   LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id);
745   VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB,
746                               SA.getLastSplitPointIter(&MBB));
747   RegAssign.insert(VNI->def, End, OpenIdx);
748   LLVM_DEBUG(dump());
749   return VNI->def;
750 }
751 
752 /// useIntv - indicate that all instructions in MBB should use OpenLI.
753 void SplitEditor::useIntv(const MachineBasicBlock &MBB) {
754   useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB));
755 }
756 
757 void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) {
758   assert(OpenIdx && "openIntv not called before useIntv");
759   LLVM_DEBUG(dbgs() << "    useIntv [" << Start << ';' << End << "):");
760   RegAssign.insert(Start, End, OpenIdx);
761   LLVM_DEBUG(dump());
762 }
763 
764 SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) {
765   assert(OpenIdx && "openIntv not called before leaveIntvAfter");
766   LLVM_DEBUG(dbgs() << "    leaveIntvAfter " << Idx);
767 
768   // The interval must be live beyond the instruction at Idx.
769   SlotIndex Boundary = Idx.getBoundaryIndex();
770   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Boundary);
771   if (!ParentVNI) {
772     LLVM_DEBUG(dbgs() << ": not live\n");
773     return Boundary.getNextSlot();
774   }
775   LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
776   MachineInstr *MI = LIS.getInstructionFromIndex(Boundary);
777   assert(MI && "No instruction at index");
778 
779   // In spill mode, make live ranges as short as possible by inserting the copy
780   // before MI.  This is only possible if that instruction doesn't redefine the
781   // value.  The inserted COPY is not a kill, and we don't need to recompute
782   // the source live range.  The spiller also won't try to hoist this copy.
783   if (SpillMode && !SlotIndex::isSameInstr(ParentVNI->def, Idx) &&
784       MI->readsVirtualRegister(Edit->getReg())) {
785     forceRecompute(0, *ParentVNI);
786     defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
787     return Idx;
788   }
789 
790   VNInfo *VNI = defFromParent(0, ParentVNI, Boundary, *MI->getParent(),
791                               std::next(MachineBasicBlock::iterator(MI)));
792   return VNI->def;
793 }
794 
795 SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) {
796   assert(OpenIdx && "openIntv not called before leaveIntvBefore");
797   LLVM_DEBUG(dbgs() << "    leaveIntvBefore " << Idx);
798 
799   // The interval must be live into the instruction at Idx.
800   Idx = Idx.getBaseIndex();
801   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
802   if (!ParentVNI) {
803     LLVM_DEBUG(dbgs() << ": not live\n");
804     return Idx.getNextSlot();
805   }
806   LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
807 
808   MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
809   assert(MI && "No instruction at index");
810   VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
811   return VNI->def;
812 }
813 
814 SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) {
815   assert(OpenIdx && "openIntv not called before leaveIntvAtTop");
816   SlotIndex Start = LIS.getMBBStartIdx(&MBB);
817   LLVM_DEBUG(dbgs() << "    leaveIntvAtTop " << printMBBReference(MBB) << ", "
818                     << Start);
819 
820   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
821   if (!ParentVNI) {
822     LLVM_DEBUG(dbgs() << ": not live\n");
823     return Start;
824   }
825 
826   VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB,
827                               MBB.SkipPHIsLabelsAndDebug(MBB.begin()));
828   RegAssign.insert(Start, VNI->def, OpenIdx);
829   LLVM_DEBUG(dump());
830   return VNI->def;
831 }
832 
833 void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) {
834   assert(OpenIdx && "openIntv not called before overlapIntv");
835   const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
836   assert(ParentVNI == Edit->getParent().getVNInfoBefore(End) &&
837          "Parent changes value in extended range");
838   assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) &&
839          "Range cannot span basic blocks");
840 
841   // The complement interval will be extended as needed by LICalc.extend().
842   if (ParentVNI)
843     forceRecompute(0, *ParentVNI);
844   LLVM_DEBUG(dbgs() << "    overlapIntv [" << Start << ';' << End << "):");
845   RegAssign.insert(Start, End, OpenIdx);
846   LLVM_DEBUG(dump());
847 }
848 
849 //===----------------------------------------------------------------------===//
850 //                                  Spill modes
851 //===----------------------------------------------------------------------===//
852 
853 void SplitEditor::removeBackCopies(SmallVectorImpl<VNInfo*> &Copies) {
854   LiveInterval *LI = &LIS.getInterval(Edit->get(0));
855   LLVM_DEBUG(dbgs() << "Removing " << Copies.size() << " back-copies.\n");
856   RegAssignMap::iterator AssignI;
857   AssignI.setMap(RegAssign);
858 
859   for (unsigned i = 0, e = Copies.size(); i != e; ++i) {
860     SlotIndex Def = Copies[i]->def;
861     MachineInstr *MI = LIS.getInstructionFromIndex(Def);
862     assert(MI && "No instruction for back-copy");
863 
864     MachineBasicBlock *MBB = MI->getParent();
865     MachineBasicBlock::iterator MBBI(MI);
866     bool AtBegin;
867     do AtBegin = MBBI == MBB->begin();
868     while (!AtBegin && (--MBBI)->isDebugInstr());
869 
870     LLVM_DEBUG(dbgs() << "Removing " << Def << '\t' << *MI);
871     LIS.removeVRegDefAt(*LI, Def);
872     LIS.RemoveMachineInstrFromMaps(*MI);
873     MI->eraseFromParent();
874 
875     // Adjust RegAssign if a register assignment is killed at Def. We want to
876     // avoid calculating the live range of the source register if possible.
877     AssignI.find(Def.getPrevSlot());
878     if (!AssignI.valid() || AssignI.start() >= Def)
879       continue;
880     // If MI doesn't kill the assigned register, just leave it.
881     if (AssignI.stop() != Def)
882       continue;
883     unsigned RegIdx = AssignI.value();
884     if (AtBegin || !MBBI->readsVirtualRegister(Edit->getReg())) {
885       LLVM_DEBUG(dbgs() << "  cannot find simple kill of RegIdx " << RegIdx
886                         << '\n');
887       forceRecompute(RegIdx, *Edit->getParent().getVNInfoAt(Def));
888     } else {
889       SlotIndex Kill = LIS.getInstructionIndex(*MBBI).getRegSlot();
890       LLVM_DEBUG(dbgs() << "  move kill to " << Kill << '\t' << *MBBI);
891       AssignI.setStop(Kill);
892     }
893   }
894 }
895 
896 MachineBasicBlock*
897 SplitEditor::findShallowDominator(MachineBasicBlock *MBB,
898                                   MachineBasicBlock *DefMBB) {
899   if (MBB == DefMBB)
900     return MBB;
901   assert(MDT.dominates(DefMBB, MBB) && "MBB must be dominated by the def.");
902 
903   const MachineLoopInfo &Loops = SA.Loops;
904   const MachineLoop *DefLoop = Loops.getLoopFor(DefMBB);
905   MachineDomTreeNode *DefDomNode = MDT[DefMBB];
906 
907   // Best candidate so far.
908   MachineBasicBlock *BestMBB = MBB;
909   unsigned BestDepth = std::numeric_limits<unsigned>::max();
910 
911   while (true) {
912     const MachineLoop *Loop = Loops.getLoopFor(MBB);
913 
914     // MBB isn't in a loop, it doesn't get any better.  All dominators have a
915     // higher frequency by definition.
916     if (!Loop) {
917       LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB)
918                         << " dominates " << printMBBReference(*MBB)
919                         << " at depth 0\n");
920       return MBB;
921     }
922 
923     // We'll never be able to exit the DefLoop.
924     if (Loop == DefLoop) {
925       LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB)
926                         << " dominates " << printMBBReference(*MBB)
927                         << " in the same loop\n");
928       return MBB;
929     }
930 
931     // Least busy dominator seen so far.
932     unsigned Depth = Loop->getLoopDepth();
933     if (Depth < BestDepth) {
934       BestMBB = MBB;
935       BestDepth = Depth;
936       LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB)
937                         << " dominates " << printMBBReference(*MBB)
938                         << " at depth " << Depth << '\n');
939     }
940 
941     // Leave loop by going to the immediate dominator of the loop header.
942     // This is a bigger stride than simply walking up the dominator tree.
943     MachineDomTreeNode *IDom = MDT[Loop->getHeader()]->getIDom();
944 
945     // Too far up the dominator tree?
946     if (!IDom || !MDT.dominates(DefDomNode, IDom))
947       return BestMBB;
948 
949     MBB = IDom->getBlock();
950   }
951 }
952 
953 void SplitEditor::computeRedundantBackCopies(
954     DenseSet<unsigned> &NotToHoistSet, SmallVectorImpl<VNInfo *> &BackCopies) {
955   LiveInterval *LI = &LIS.getInterval(Edit->get(0));
956   LiveInterval *Parent = &Edit->getParent();
957   SmallVector<SmallPtrSet<VNInfo *, 8>, 8> EqualVNs(Parent->getNumValNums());
958   SmallPtrSet<VNInfo *, 8> DominatedVNIs;
959 
960   // Aggregate VNIs having the same value as ParentVNI.
961   for (VNInfo *VNI : LI->valnos) {
962     if (VNI->isUnused())
963       continue;
964     VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
965     EqualVNs[ParentVNI->id].insert(VNI);
966   }
967 
968   // For VNI aggregation of each ParentVNI, collect dominated, i.e.,
969   // redundant VNIs to BackCopies.
970   for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) {
971     VNInfo *ParentVNI = Parent->getValNumInfo(i);
972     if (!NotToHoistSet.count(ParentVNI->id))
973       continue;
974     SmallPtrSetIterator<VNInfo *> It1 = EqualVNs[ParentVNI->id].begin();
975     SmallPtrSetIterator<VNInfo *> It2 = It1;
976     for (; It1 != EqualVNs[ParentVNI->id].end(); ++It1) {
977       It2 = It1;
978       for (++It2; It2 != EqualVNs[ParentVNI->id].end(); ++It2) {
979         if (DominatedVNIs.count(*It1) || DominatedVNIs.count(*It2))
980           continue;
981 
982         MachineBasicBlock *MBB1 = LIS.getMBBFromIndex((*It1)->def);
983         MachineBasicBlock *MBB2 = LIS.getMBBFromIndex((*It2)->def);
984         if (MBB1 == MBB2) {
985           DominatedVNIs.insert((*It1)->def < (*It2)->def ? (*It2) : (*It1));
986         } else if (MDT.dominates(MBB1, MBB2)) {
987           DominatedVNIs.insert(*It2);
988         } else if (MDT.dominates(MBB2, MBB1)) {
989           DominatedVNIs.insert(*It1);
990         }
991       }
992     }
993     if (!DominatedVNIs.empty()) {
994       forceRecompute(0, *ParentVNI);
995       for (auto VNI : DominatedVNIs) {
996         BackCopies.push_back(VNI);
997       }
998       DominatedVNIs.clear();
999     }
1000   }
1001 }
1002 
1003 /// For SM_Size mode, find a common dominator for all the back-copies for
1004 /// the same ParentVNI and hoist the backcopies to the dominator BB.
1005 /// For SM_Speed mode, if the common dominator is hot and it is not beneficial
1006 /// to do the hoisting, simply remove the dominated backcopies for the same
1007 /// ParentVNI.
1008 void SplitEditor::hoistCopies() {
1009   // Get the complement interval, always RegIdx 0.
1010   LiveInterval *LI = &LIS.getInterval(Edit->get(0));
1011   LiveInterval *Parent = &Edit->getParent();
1012 
1013   // Track the nearest common dominator for all back-copies for each ParentVNI,
1014   // indexed by ParentVNI->id.
1015   using DomPair = std::pair<MachineBasicBlock *, SlotIndex>;
1016   SmallVector<DomPair, 8> NearestDom(Parent->getNumValNums());
1017   // The total cost of all the back-copies for each ParentVNI.
1018   SmallVector<BlockFrequency, 8> Costs(Parent->getNumValNums());
1019   // The ParentVNI->id set for which hoisting back-copies are not beneficial
1020   // for Speed.
1021   DenseSet<unsigned> NotToHoistSet;
1022 
1023   // Find the nearest common dominator for parent values with multiple
1024   // back-copies.  If a single back-copy dominates, put it in DomPair.second.
1025   for (VNInfo *VNI : LI->valnos) {
1026     if (VNI->isUnused())
1027       continue;
1028     VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
1029     assert(ParentVNI && "Parent not live at complement def");
1030 
1031     // Don't hoist remats.  The complement is probably going to disappear
1032     // completely anyway.
1033     if (Edit->didRematerialize(ParentVNI))
1034       continue;
1035 
1036     MachineBasicBlock *ValMBB = LIS.getMBBFromIndex(VNI->def);
1037 
1038     DomPair &Dom = NearestDom[ParentVNI->id];
1039 
1040     // Keep directly defined parent values.  This is either a PHI or an
1041     // instruction in the complement range.  All other copies of ParentVNI
1042     // should be eliminated.
1043     if (VNI->def == ParentVNI->def) {
1044       LLVM_DEBUG(dbgs() << "Direct complement def at " << VNI->def << '\n');
1045       Dom = DomPair(ValMBB, VNI->def);
1046       continue;
1047     }
1048     // Skip the singly mapped values.  There is nothing to gain from hoisting a
1049     // single back-copy.
1050     if (Values.lookup(std::make_pair(0, ParentVNI->id)).getPointer()) {
1051       LLVM_DEBUG(dbgs() << "Single complement def at " << VNI->def << '\n');
1052       continue;
1053     }
1054 
1055     if (!Dom.first) {
1056       // First time we see ParentVNI.  VNI dominates itself.
1057       Dom = DomPair(ValMBB, VNI->def);
1058     } else if (Dom.first == ValMBB) {
1059       // Two defs in the same block.  Pick the earlier def.
1060       if (!Dom.second.isValid() || VNI->def < Dom.second)
1061         Dom.second = VNI->def;
1062     } else {
1063       // Different basic blocks. Check if one dominates.
1064       MachineBasicBlock *Near =
1065         MDT.findNearestCommonDominator(Dom.first, ValMBB);
1066       if (Near == ValMBB)
1067         // Def ValMBB dominates.
1068         Dom = DomPair(ValMBB, VNI->def);
1069       else if (Near != Dom.first)
1070         // None dominate. Hoist to common dominator, need new def.
1071         Dom = DomPair(Near, SlotIndex());
1072       Costs[ParentVNI->id] += MBFI.getBlockFreq(ValMBB);
1073     }
1074 
1075     LLVM_DEBUG(dbgs() << "Multi-mapped complement " << VNI->id << '@'
1076                       << VNI->def << " for parent " << ParentVNI->id << '@'
1077                       << ParentVNI->def << " hoist to "
1078                       << printMBBReference(*Dom.first) << ' ' << Dom.second
1079                       << '\n');
1080   }
1081 
1082   // Insert the hoisted copies.
1083   for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) {
1084     DomPair &Dom = NearestDom[i];
1085     if (!Dom.first || Dom.second.isValid())
1086       continue;
1087     // This value needs a hoisted copy inserted at the end of Dom.first.
1088     VNInfo *ParentVNI = Parent->getValNumInfo(i);
1089     MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(ParentVNI->def);
1090     // Get a less loopy dominator than Dom.first.
1091     Dom.first = findShallowDominator(Dom.first, DefMBB);
1092     if (SpillMode == SM_Speed &&
1093         MBFI.getBlockFreq(Dom.first) > Costs[ParentVNI->id]) {
1094       NotToHoistSet.insert(ParentVNI->id);
1095       continue;
1096     }
1097     SlotIndex Last = LIS.getMBBEndIdx(Dom.first).getPrevSlot();
1098     Dom.second =
1099       defFromParent(0, ParentVNI, Last, *Dom.first,
1100                     SA.getLastSplitPointIter(Dom.first))->def;
1101   }
1102 
1103   // Remove redundant back-copies that are now known to be dominated by another
1104   // def with the same value.
1105   SmallVector<VNInfo*, 8> BackCopies;
1106   for (VNInfo *VNI : LI->valnos) {
1107     if (VNI->isUnused())
1108       continue;
1109     VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
1110     const DomPair &Dom = NearestDom[ParentVNI->id];
1111     if (!Dom.first || Dom.second == VNI->def ||
1112         NotToHoistSet.count(ParentVNI->id))
1113       continue;
1114     BackCopies.push_back(VNI);
1115     forceRecompute(0, *ParentVNI);
1116   }
1117 
1118   // If it is not beneficial to hoist all the BackCopies, simply remove
1119   // redundant BackCopies in speed mode.
1120   if (SpillMode == SM_Speed && !NotToHoistSet.empty())
1121     computeRedundantBackCopies(NotToHoistSet, BackCopies);
1122 
1123   removeBackCopies(BackCopies);
1124 }
1125 
1126 /// transferValues - Transfer all possible values to the new live ranges.
1127 /// Values that were rematerialized are left alone, they need LICalc.extend().
1128 bool SplitEditor::transferValues() {
1129   bool Skipped = false;
1130   RegAssignMap::const_iterator AssignI = RegAssign.begin();
1131   for (const LiveRange::Segment &S : Edit->getParent()) {
1132     LLVM_DEBUG(dbgs() << "  blit " << S << ':');
1133     VNInfo *ParentVNI = S.valno;
1134     // RegAssign has holes where RegIdx 0 should be used.
1135     SlotIndex Start = S.start;
1136     AssignI.advanceTo(Start);
1137     do {
1138       unsigned RegIdx;
1139       SlotIndex End = S.end;
1140       if (!AssignI.valid()) {
1141         RegIdx = 0;
1142       } else if (AssignI.start() <= Start) {
1143         RegIdx = AssignI.value();
1144         if (AssignI.stop() < End) {
1145           End = AssignI.stop();
1146           ++AssignI;
1147         }
1148       } else {
1149         RegIdx = 0;
1150         End = std::min(End, AssignI.start());
1151       }
1152 
1153       // The interval [Start;End) is continuously mapped to RegIdx, ParentVNI.
1154       LLVM_DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx << '('
1155                         << printReg(Edit->get(RegIdx)) << ')');
1156       LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
1157 
1158       // Check for a simply defined value that can be blitted directly.
1159       ValueForcePair VFP = Values.lookup(std::make_pair(RegIdx, ParentVNI->id));
1160       if (VNInfo *VNI = VFP.getPointer()) {
1161         LLVM_DEBUG(dbgs() << ':' << VNI->id);
1162         LI.addSegment(LiveInterval::Segment(Start, End, VNI));
1163         Start = End;
1164         continue;
1165       }
1166 
1167       // Skip values with forced recomputation.
1168       if (VFP.getInt()) {
1169         LLVM_DEBUG(dbgs() << "(recalc)");
1170         Skipped = true;
1171         Start = End;
1172         continue;
1173       }
1174 
1175       LiveIntervalCalc &LIC = getLICalc(RegIdx);
1176 
1177       // This value has multiple defs in RegIdx, but it wasn't rematerialized,
1178       // so the live range is accurate. Add live-in blocks in [Start;End) to the
1179       // LiveInBlocks.
1180       MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start)->getIterator();
1181       SlotIndex BlockStart, BlockEnd;
1182       std::tie(BlockStart, BlockEnd) = LIS.getSlotIndexes()->getMBBRange(&*MBB);
1183 
1184       // The first block may be live-in, or it may have its own def.
1185       if (Start != BlockStart) {
1186         VNInfo *VNI = LI.extendInBlock(BlockStart, std::min(BlockEnd, End));
1187         assert(VNI && "Missing def for complex mapped value");
1188         LLVM_DEBUG(dbgs() << ':' << VNI->id << "*" << printMBBReference(*MBB));
1189         // MBB has its own def. Is it also live-out?
1190         if (BlockEnd <= End)
1191           LIC.setLiveOutValue(&*MBB, VNI);
1192 
1193         // Skip to the next block for live-in.
1194         ++MBB;
1195         BlockStart = BlockEnd;
1196       }
1197 
1198       // Handle the live-in blocks covered by [Start;End).
1199       assert(Start <= BlockStart && "Expected live-in block");
1200       while (BlockStart < End) {
1201         LLVM_DEBUG(dbgs() << ">" << printMBBReference(*MBB));
1202         BlockEnd = LIS.getMBBEndIdx(&*MBB);
1203         if (BlockStart == ParentVNI->def) {
1204           // This block has the def of a parent PHI, so it isn't live-in.
1205           assert(ParentVNI->isPHIDef() && "Non-phi defined at block start?");
1206           VNInfo *VNI = LI.extendInBlock(BlockStart, std::min(BlockEnd, End));
1207           assert(VNI && "Missing def for complex mapped parent PHI");
1208           if (End >= BlockEnd)
1209             LIC.setLiveOutValue(&*MBB, VNI); // Live-out as well.
1210         } else {
1211           // This block needs a live-in value.  The last block covered may not
1212           // be live-out.
1213           if (End < BlockEnd)
1214             LIC.addLiveInBlock(LI, MDT[&*MBB], End);
1215           else {
1216             // Live-through, and we don't know the value.
1217             LIC.addLiveInBlock(LI, MDT[&*MBB]);
1218             LIC.setLiveOutValue(&*MBB, nullptr);
1219           }
1220         }
1221         BlockStart = BlockEnd;
1222         ++MBB;
1223       }
1224       Start = End;
1225     } while (Start != S.end);
1226     LLVM_DEBUG(dbgs() << '\n');
1227   }
1228 
1229   LICalc[0].calculateValues();
1230   if (SpillMode)
1231     LICalc[1].calculateValues();
1232 
1233   return Skipped;
1234 }
1235 
1236 static bool removeDeadSegment(SlotIndex Def, LiveRange &LR) {
1237   const LiveRange::Segment *Seg = LR.getSegmentContaining(Def);
1238   if (Seg == nullptr)
1239     return true;
1240   if (Seg->end != Def.getDeadSlot())
1241     return false;
1242   // This is a dead PHI. Remove it.
1243   LR.removeSegment(*Seg, true);
1244   return true;
1245 }
1246 
1247 void SplitEditor::extendPHIRange(MachineBasicBlock &B, LiveIntervalCalc &LIC,
1248                                  LiveRange &LR, LaneBitmask LM,
1249                                  ArrayRef<SlotIndex> Undefs) {
1250   for (MachineBasicBlock *P : B.predecessors()) {
1251     SlotIndex End = LIS.getMBBEndIdx(P);
1252     SlotIndex LastUse = End.getPrevSlot();
1253     // The predecessor may not have a live-out value. That is OK, like an
1254     // undef PHI operand.
1255     LiveInterval &PLI = Edit->getParent();
1256     // Need the cast because the inputs to ?: would otherwise be deemed
1257     // "incompatible": SubRange vs LiveInterval.
1258     LiveRange &PSR = !LM.all() ? getSubRangeForMaskExact(LM, PLI)
1259                                : static_cast<LiveRange &>(PLI);
1260     if (PSR.liveAt(LastUse))
1261       LIC.extend(LR, End, /*PhysReg=*/0, Undefs);
1262   }
1263 }
1264 
1265 void SplitEditor::extendPHIKillRanges() {
1266   // Extend live ranges to be live-out for successor PHI values.
1267 
1268   // Visit each PHI def slot in the parent live interval. If the def is dead,
1269   // remove it. Otherwise, extend the live interval to reach the end indexes
1270   // of all predecessor blocks.
1271 
1272   LiveInterval &ParentLI = Edit->getParent();
1273   for (const VNInfo *V : ParentLI.valnos) {
1274     if (V->isUnused() || !V->isPHIDef())
1275       continue;
1276 
1277     unsigned RegIdx = RegAssign.lookup(V->def);
1278     LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
1279     LiveIntervalCalc &LIC = getLICalc(RegIdx);
1280     MachineBasicBlock &B = *LIS.getMBBFromIndex(V->def);
1281     if (!removeDeadSegment(V->def, LI))
1282       extendPHIRange(B, LIC, LI, LaneBitmask::getAll(), /*Undefs=*/{});
1283   }
1284 
1285   SmallVector<SlotIndex, 4> Undefs;
1286   LiveIntervalCalc SubLIC;
1287 
1288   for (LiveInterval::SubRange &PS : ParentLI.subranges()) {
1289     for (const VNInfo *V : PS.valnos) {
1290       if (V->isUnused() || !V->isPHIDef())
1291         continue;
1292       unsigned RegIdx = RegAssign.lookup(V->def);
1293       LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
1294       LiveInterval::SubRange &S = getSubRangeForMaskExact(PS.LaneMask, LI);
1295       if (removeDeadSegment(V->def, S))
1296         continue;
1297 
1298       MachineBasicBlock &B = *LIS.getMBBFromIndex(V->def);
1299       SubLIC.reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
1300                    &LIS.getVNInfoAllocator());
1301       Undefs.clear();
1302       LI.computeSubRangeUndefs(Undefs, PS.LaneMask, MRI, *LIS.getSlotIndexes());
1303       extendPHIRange(B, SubLIC, S, PS.LaneMask, Undefs);
1304     }
1305   }
1306 }
1307 
1308 /// rewriteAssigned - Rewrite all uses of Edit->getReg().
1309 void SplitEditor::rewriteAssigned(bool ExtendRanges) {
1310   struct ExtPoint {
1311     ExtPoint(const MachineOperand &O, unsigned R, SlotIndex N)
1312       : MO(O), RegIdx(R), Next(N) {}
1313 
1314     MachineOperand MO;
1315     unsigned RegIdx;
1316     SlotIndex Next;
1317   };
1318 
1319   SmallVector<ExtPoint,4> ExtPoints;
1320 
1321   for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Edit->getReg()),
1322        RE = MRI.reg_end(); RI != RE;) {
1323     MachineOperand &MO = *RI;
1324     MachineInstr *MI = MO.getParent();
1325     ++RI;
1326     // LiveDebugVariables should have handled all DBG_VALUE instructions.
1327     if (MI->isDebugValue()) {
1328       LLVM_DEBUG(dbgs() << "Zapping " << *MI);
1329       MO.setReg(0);
1330       continue;
1331     }
1332 
1333     // <undef> operands don't really read the register, so it doesn't matter
1334     // which register we choose.  When the use operand is tied to a def, we must
1335     // use the same register as the def, so just do that always.
1336     SlotIndex Idx = LIS.getInstructionIndex(*MI);
1337     if (MO.isDef() || MO.isUndef())
1338       Idx = Idx.getRegSlot(MO.isEarlyClobber());
1339 
1340     // Rewrite to the mapped register at Idx.
1341     unsigned RegIdx = RegAssign.lookup(Idx);
1342     LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
1343     MO.setReg(LI.reg());
1344     LLVM_DEBUG(dbgs() << "  rewr " << printMBBReference(*MI->getParent())
1345                       << '\t' << Idx << ':' << RegIdx << '\t' << *MI);
1346 
1347     // Extend liveness to Idx if the instruction reads reg.
1348     if (!ExtendRanges || MO.isUndef())
1349       continue;
1350 
1351     // Skip instructions that don't read Reg.
1352     if (MO.isDef()) {
1353       if (!MO.getSubReg() && !MO.isEarlyClobber())
1354         continue;
1355       // We may want to extend a live range for a partial redef, or for a use
1356       // tied to an early clobber.
1357       Idx = Idx.getPrevSlot();
1358       if (!Edit->getParent().liveAt(Idx))
1359         continue;
1360     } else
1361       Idx = Idx.getRegSlot(true);
1362 
1363     SlotIndex Next = Idx.getNextSlot();
1364     if (LI.hasSubRanges()) {
1365       // We have to delay extending subranges until we have seen all operands
1366       // defining the register. This is because a <def,read-undef> operand
1367       // will create an "undef" point, and we cannot extend any subranges
1368       // until all of them have been accounted for.
1369       if (MO.isUse())
1370         ExtPoints.push_back(ExtPoint(MO, RegIdx, Next));
1371     } else {
1372       LiveIntervalCalc &LIC = getLICalc(RegIdx);
1373       LIC.extend(LI, Next, 0, ArrayRef<SlotIndex>());
1374     }
1375   }
1376 
1377   for (ExtPoint &EP : ExtPoints) {
1378     LiveInterval &LI = LIS.getInterval(Edit->get(EP.RegIdx));
1379     assert(LI.hasSubRanges());
1380 
1381     LiveIntervalCalc SubLIC;
1382     Register Reg = EP.MO.getReg(), Sub = EP.MO.getSubReg();
1383     LaneBitmask LM = Sub != 0 ? TRI.getSubRegIndexLaneMask(Sub)
1384                               : MRI.getMaxLaneMaskForVReg(Reg);
1385     for (LiveInterval::SubRange &S : LI.subranges()) {
1386       if ((S.LaneMask & LM).none())
1387         continue;
1388       // The problem here can be that the new register may have been created
1389       // for a partially defined original register. For example:
1390       //   %0:subreg_hireg<def,read-undef> = ...
1391       //   ...
1392       //   %1 = COPY %0
1393       if (S.empty())
1394         continue;
1395       SubLIC.reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
1396                    &LIS.getVNInfoAllocator());
1397       SmallVector<SlotIndex, 4> Undefs;
1398       LI.computeSubRangeUndefs(Undefs, S.LaneMask, MRI, *LIS.getSlotIndexes());
1399       SubLIC.extend(S, EP.Next, 0, Undefs);
1400     }
1401   }
1402 
1403   for (unsigned R : *Edit) {
1404     LiveInterval &LI = LIS.getInterval(R);
1405     if (!LI.hasSubRanges())
1406       continue;
1407     LI.clear();
1408     LI.removeEmptySubRanges();
1409     LIS.constructMainRangeFromSubranges(LI);
1410   }
1411 }
1412 
1413 void SplitEditor::deleteRematVictims() {
1414   SmallVector<MachineInstr*, 8> Dead;
1415   for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I){
1416     LiveInterval *LI = &LIS.getInterval(*I);
1417     for (const LiveRange::Segment &S : LI->segments) {
1418       // Dead defs end at the dead slot.
1419       if (S.end != S.valno->def.getDeadSlot())
1420         continue;
1421       if (S.valno->isPHIDef())
1422         continue;
1423       MachineInstr *MI = LIS.getInstructionFromIndex(S.valno->def);
1424       assert(MI && "Missing instruction for dead def");
1425       MI->addRegisterDead(LI->reg(), &TRI);
1426 
1427       if (!MI->allDefsAreDead())
1428         continue;
1429 
1430       LLVM_DEBUG(dbgs() << "All defs dead: " << *MI);
1431       Dead.push_back(MI);
1432     }
1433   }
1434 
1435   if (Dead.empty())
1436     return;
1437 
1438   Edit->eliminateDeadDefs(Dead, None, &AA);
1439 }
1440 
1441 void SplitEditor::forceRecomputeVNI(const VNInfo &ParentVNI) {
1442   // Fast-path for common case.
1443   if (!ParentVNI.isPHIDef()) {
1444     for (unsigned I = 0, E = Edit->size(); I != E; ++I)
1445       forceRecompute(I, ParentVNI);
1446     return;
1447   }
1448 
1449   // Trace value through phis.
1450   SmallPtrSet<const VNInfo *, 8> Visited; ///< whether VNI was/is in worklist.
1451   SmallVector<const VNInfo *, 4> WorkList;
1452   Visited.insert(&ParentVNI);
1453   WorkList.push_back(&ParentVNI);
1454 
1455   const LiveInterval &ParentLI = Edit->getParent();
1456   const SlotIndexes &Indexes = *LIS.getSlotIndexes();
1457   do {
1458     const VNInfo &VNI = *WorkList.back();
1459     WorkList.pop_back();
1460     for (unsigned I = 0, E = Edit->size(); I != E; ++I)
1461       forceRecompute(I, VNI);
1462     if (!VNI.isPHIDef())
1463       continue;
1464 
1465     MachineBasicBlock &MBB = *Indexes.getMBBFromIndex(VNI.def);
1466     for (const MachineBasicBlock *Pred : MBB.predecessors()) {
1467       SlotIndex PredEnd = Indexes.getMBBEndIdx(Pred);
1468       VNInfo *PredVNI = ParentLI.getVNInfoBefore(PredEnd);
1469       assert(PredVNI && "Value available in PhiVNI predecessor");
1470       if (Visited.insert(PredVNI).second)
1471         WorkList.push_back(PredVNI);
1472     }
1473   } while(!WorkList.empty());
1474 }
1475 
1476 void SplitEditor::finish(SmallVectorImpl<unsigned> *LRMap) {
1477   ++NumFinished;
1478 
1479   // At this point, the live intervals in Edit contain VNInfos corresponding to
1480   // the inserted copies.
1481 
1482   // Add the original defs from the parent interval.
1483   for (const VNInfo *ParentVNI : Edit->getParent().valnos) {
1484     if (ParentVNI->isUnused())
1485       continue;
1486     unsigned RegIdx = RegAssign.lookup(ParentVNI->def);
1487     defValue(RegIdx, ParentVNI, ParentVNI->def, true);
1488 
1489     // Force rematted values to be recomputed everywhere.
1490     // The new live ranges may be truncated.
1491     if (Edit->didRematerialize(ParentVNI))
1492       forceRecomputeVNI(*ParentVNI);
1493   }
1494 
1495   // Hoist back-copies to the complement interval when in spill mode.
1496   switch (SpillMode) {
1497   case SM_Partition:
1498     // Leave all back-copies as is.
1499     break;
1500   case SM_Size:
1501   case SM_Speed:
1502     // hoistCopies will behave differently between size and speed.
1503     hoistCopies();
1504   }
1505 
1506   // Transfer the simply mapped values, check if any are skipped.
1507   bool Skipped = transferValues();
1508 
1509   // Rewrite virtual registers, possibly extending ranges.
1510   rewriteAssigned(Skipped);
1511 
1512   if (Skipped)
1513     extendPHIKillRanges();
1514   else
1515     ++NumSimple;
1516 
1517   // Delete defs that were rematted everywhere.
1518   if (Skipped)
1519     deleteRematVictims();
1520 
1521   // Get rid of unused values and set phi-kill flags.
1522   for (unsigned Reg : *Edit) {
1523     LiveInterval &LI = LIS.getInterval(Reg);
1524     LI.removeEmptySubRanges();
1525     LI.RenumberValues();
1526   }
1527 
1528   // Provide a reverse mapping from original indices to Edit ranges.
1529   if (LRMap) {
1530     LRMap->clear();
1531     for (unsigned i = 0, e = Edit->size(); i != e; ++i)
1532       LRMap->push_back(i);
1533   }
1534 
1535   // Now check if any registers were separated into multiple components.
1536   ConnectedVNInfoEqClasses ConEQ(LIS);
1537   for (unsigned i = 0, e = Edit->size(); i != e; ++i) {
1538     // Don't use iterators, they are invalidated by create() below.
1539     unsigned VReg = Edit->get(i);
1540     LiveInterval &LI = LIS.getInterval(VReg);
1541     SmallVector<LiveInterval*, 8> SplitLIs;
1542     LIS.splitSeparateComponents(LI, SplitLIs);
1543     unsigned Original = VRM.getOriginal(VReg);
1544     for (LiveInterval *SplitLI : SplitLIs)
1545       VRM.setIsSplitFromReg(SplitLI->reg(), Original);
1546 
1547     // The new intervals all map back to i.
1548     if (LRMap)
1549       LRMap->resize(Edit->size(), i);
1550   }
1551 
1552   // Calculate spill weight and allocation hints for new intervals.
1553   Edit->calculateRegClassAndHint(VRM.getMachineFunction(), SA.Loops, MBFI);
1554 
1555   assert(!LRMap || LRMap->size() == Edit->size());
1556 }
1557 
1558 //===----------------------------------------------------------------------===//
1559 //                            Single Block Splitting
1560 //===----------------------------------------------------------------------===//
1561 
1562 bool SplitAnalysis::shouldSplitSingleBlock(const BlockInfo &BI,
1563                                            bool SingleInstrs) const {
1564   // Always split for multiple instructions.
1565   if (!BI.isOneInstr())
1566     return true;
1567   // Don't split for single instructions unless explicitly requested.
1568   if (!SingleInstrs)
1569     return false;
1570   // Splitting a live-through range always makes progress.
1571   if (BI.LiveIn && BI.LiveOut)
1572     return true;
1573   // No point in isolating a copy. It has no register class constraints.
1574   if (LIS.getInstructionFromIndex(BI.FirstInstr)->isCopyLike())
1575     return false;
1576   // Finally, don't isolate an end point that was created by earlier splits.
1577   return isOriginalEndpoint(BI.FirstInstr);
1578 }
1579 
1580 void SplitEditor::splitSingleBlock(const SplitAnalysis::BlockInfo &BI) {
1581   openIntv();
1582   SlotIndex LastSplitPoint = SA.getLastSplitPoint(BI.MBB->getNumber());
1583   SlotIndex SegStart = enterIntvBefore(std::min(BI.FirstInstr,
1584     LastSplitPoint));
1585   if (!BI.LiveOut || BI.LastInstr < LastSplitPoint) {
1586     useIntv(SegStart, leaveIntvAfter(BI.LastInstr));
1587   } else {
1588       // The last use is after the last valid split point.
1589     SlotIndex SegStop = leaveIntvBefore(LastSplitPoint);
1590     useIntv(SegStart, SegStop);
1591     overlapIntv(SegStop, BI.LastInstr);
1592   }
1593 }
1594 
1595 //===----------------------------------------------------------------------===//
1596 //                    Global Live Range Splitting Support
1597 //===----------------------------------------------------------------------===//
1598 
1599 // These methods support a method of global live range splitting that uses a
1600 // global algorithm to decide intervals for CFG edges. They will insert split
1601 // points and color intervals in basic blocks while avoiding interference.
1602 //
1603 // Note that splitSingleBlock is also useful for blocks where both CFG edges
1604 // are on the stack.
1605 
1606 void SplitEditor::splitLiveThroughBlock(unsigned MBBNum,
1607                                         unsigned IntvIn, SlotIndex LeaveBefore,
1608                                         unsigned IntvOut, SlotIndex EnterAfter){
1609   SlotIndex Start, Stop;
1610   std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(MBBNum);
1611 
1612   LLVM_DEBUG(dbgs() << "%bb." << MBBNum << " [" << Start << ';' << Stop
1613                     << ") intf " << LeaveBefore << '-' << EnterAfter
1614                     << ", live-through " << IntvIn << " -> " << IntvOut);
1615 
1616   assert((IntvIn || IntvOut) && "Use splitSingleBlock for isolated blocks");
1617 
1618   assert((!LeaveBefore || LeaveBefore < Stop) && "Interference after block");
1619   assert((!IntvIn || !LeaveBefore || LeaveBefore > Start) && "Impossible intf");
1620   assert((!EnterAfter || EnterAfter >= Start) && "Interference before block");
1621 
1622   MachineBasicBlock *MBB = VRM.getMachineFunction().getBlockNumbered(MBBNum);
1623 
1624   if (!IntvOut) {
1625     LLVM_DEBUG(dbgs() << ", spill on entry.\n");
1626     //
1627     //        <<<<<<<<<    Possible LeaveBefore interference.
1628     //    |-----------|    Live through.
1629     //    -____________    Spill on entry.
1630     //
1631     selectIntv(IntvIn);
1632     SlotIndex Idx = leaveIntvAtTop(*MBB);
1633     assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1634     (void)Idx;
1635     return;
1636   }
1637 
1638   if (!IntvIn) {
1639     LLVM_DEBUG(dbgs() << ", reload on exit.\n");
1640     //
1641     //    >>>>>>>          Possible EnterAfter interference.
1642     //    |-----------|    Live through.
1643     //    ___________--    Reload on exit.
1644     //
1645     selectIntv(IntvOut);
1646     SlotIndex Idx = enterIntvAtEnd(*MBB);
1647     assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1648     (void)Idx;
1649     return;
1650   }
1651 
1652   if (IntvIn == IntvOut && !LeaveBefore && !EnterAfter) {
1653     LLVM_DEBUG(dbgs() << ", straight through.\n");
1654     //
1655     //    |-----------|    Live through.
1656     //    -------------    Straight through, same intv, no interference.
1657     //
1658     selectIntv(IntvOut);
1659     useIntv(Start, Stop);
1660     return;
1661   }
1662 
1663   // We cannot legally insert splits after LSP.
1664   SlotIndex LSP = SA.getLastSplitPoint(MBBNum);
1665   assert((!IntvOut || !EnterAfter || EnterAfter < LSP) && "Impossible intf");
1666 
1667   if (IntvIn != IntvOut && (!LeaveBefore || !EnterAfter ||
1668                   LeaveBefore.getBaseIndex() > EnterAfter.getBoundaryIndex())) {
1669     LLVM_DEBUG(dbgs() << ", switch avoiding interference.\n");
1670     //
1671     //    >>>>     <<<<    Non-overlapping EnterAfter/LeaveBefore interference.
1672     //    |-----------|    Live through.
1673     //    ------=======    Switch intervals between interference.
1674     //
1675     selectIntv(IntvOut);
1676     SlotIndex Idx;
1677     if (LeaveBefore && LeaveBefore < LSP) {
1678       Idx = enterIntvBefore(LeaveBefore);
1679       useIntv(Idx, Stop);
1680     } else {
1681       Idx = enterIntvAtEnd(*MBB);
1682     }
1683     selectIntv(IntvIn);
1684     useIntv(Start, Idx);
1685     assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1686     assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1687     return;
1688   }
1689 
1690   LLVM_DEBUG(dbgs() << ", create local intv for interference.\n");
1691   //
1692   //    >>><><><><<<<    Overlapping EnterAfter/LeaveBefore interference.
1693   //    |-----------|    Live through.
1694   //    ==---------==    Switch intervals before/after interference.
1695   //
1696   assert(LeaveBefore <= EnterAfter && "Missed case");
1697 
1698   selectIntv(IntvOut);
1699   SlotIndex Idx = enterIntvAfter(EnterAfter);
1700   useIntv(Idx, Stop);
1701   assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1702 
1703   selectIntv(IntvIn);
1704   Idx = leaveIntvBefore(LeaveBefore);
1705   useIntv(Start, Idx);
1706   assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1707 }
1708 
1709 void SplitEditor::splitRegInBlock(const SplitAnalysis::BlockInfo &BI,
1710                                   unsigned IntvIn, SlotIndex LeaveBefore) {
1711   SlotIndex Start, Stop;
1712   std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
1713 
1714   LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " [" << Start << ';'
1715                     << Stop << "), uses " << BI.FirstInstr << '-'
1716                     << BI.LastInstr << ", reg-in " << IntvIn
1717                     << ", leave before " << LeaveBefore
1718                     << (BI.LiveOut ? ", stack-out" : ", killed in block"));
1719 
1720   assert(IntvIn && "Must have register in");
1721   assert(BI.LiveIn && "Must be live-in");
1722   assert((!LeaveBefore || LeaveBefore > Start) && "Bad interference");
1723 
1724   if (!BI.LiveOut && (!LeaveBefore || LeaveBefore >= BI.LastInstr)) {
1725     LLVM_DEBUG(dbgs() << " before interference.\n");
1726     //
1727     //               <<<    Interference after kill.
1728     //     |---o---x   |    Killed in block.
1729     //     =========        Use IntvIn everywhere.
1730     //
1731     selectIntv(IntvIn);
1732     useIntv(Start, BI.LastInstr);
1733     return;
1734   }
1735 
1736   SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber());
1737 
1738   if (!LeaveBefore || LeaveBefore > BI.LastInstr.getBoundaryIndex()) {
1739     //
1740     //               <<<    Possible interference after last use.
1741     //     |---o---o---|    Live-out on stack.
1742     //     =========____    Leave IntvIn after last use.
1743     //
1744     //                 <    Interference after last use.
1745     //     |---o---o--o|    Live-out on stack, late last use.
1746     //     ============     Copy to stack after LSP, overlap IntvIn.
1747     //            \_____    Stack interval is live-out.
1748     //
1749     if (BI.LastInstr < LSP) {
1750       LLVM_DEBUG(dbgs() << ", spill after last use before interference.\n");
1751       selectIntv(IntvIn);
1752       SlotIndex Idx = leaveIntvAfter(BI.LastInstr);
1753       useIntv(Start, Idx);
1754       assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1755     } else {
1756       LLVM_DEBUG(dbgs() << ", spill before last split point.\n");
1757       selectIntv(IntvIn);
1758       SlotIndex Idx = leaveIntvBefore(LSP);
1759       overlapIntv(Idx, BI.LastInstr);
1760       useIntv(Start, Idx);
1761       assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1762     }
1763     return;
1764   }
1765 
1766   // The interference is overlapping somewhere we wanted to use IntvIn. That
1767   // means we need to create a local interval that can be allocated a
1768   // different register.
1769   unsigned LocalIntv = openIntv();
1770   (void)LocalIntv;
1771   LLVM_DEBUG(dbgs() << ", creating local interval " << LocalIntv << ".\n");
1772 
1773   if (!BI.LiveOut || BI.LastInstr < LSP) {
1774     //
1775     //           <<<<<<<    Interference overlapping uses.
1776     //     |---o---o---|    Live-out on stack.
1777     //     =====----____    Leave IntvIn before interference, then spill.
1778     //
1779     SlotIndex To = leaveIntvAfter(BI.LastInstr);
1780     SlotIndex From = enterIntvBefore(LeaveBefore);
1781     useIntv(From, To);
1782     selectIntv(IntvIn);
1783     useIntv(Start, From);
1784     assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
1785     return;
1786   }
1787 
1788   //           <<<<<<<    Interference overlapping uses.
1789   //     |---o---o--o|    Live-out on stack, late last use.
1790   //     =====-------     Copy to stack before LSP, overlap LocalIntv.
1791   //            \_____    Stack interval is live-out.
1792   //
1793   SlotIndex To = leaveIntvBefore(LSP);
1794   overlapIntv(To, BI.LastInstr);
1795   SlotIndex From = enterIntvBefore(std::min(To, LeaveBefore));
1796   useIntv(From, To);
1797   selectIntv(IntvIn);
1798   useIntv(Start, From);
1799   assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
1800 }
1801 
1802 void SplitEditor::splitRegOutBlock(const SplitAnalysis::BlockInfo &BI,
1803                                    unsigned IntvOut, SlotIndex EnterAfter) {
1804   SlotIndex Start, Stop;
1805   std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
1806 
1807   LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " [" << Start << ';'
1808                     << Stop << "), uses " << BI.FirstInstr << '-'
1809                     << BI.LastInstr << ", reg-out " << IntvOut
1810                     << ", enter after " << EnterAfter
1811                     << (BI.LiveIn ? ", stack-in" : ", defined in block"));
1812 
1813   SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber());
1814 
1815   assert(IntvOut && "Must have register out");
1816   assert(BI.LiveOut && "Must be live-out");
1817   assert((!EnterAfter || EnterAfter < LSP) && "Bad interference");
1818 
1819   if (!BI.LiveIn && (!EnterAfter || EnterAfter <= BI.FirstInstr)) {
1820     LLVM_DEBUG(dbgs() << " after interference.\n");
1821     //
1822     //    >>>>             Interference before def.
1823     //    |   o---o---|    Defined in block.
1824     //        =========    Use IntvOut everywhere.
1825     //
1826     selectIntv(IntvOut);
1827     useIntv(BI.FirstInstr, Stop);
1828     return;
1829   }
1830 
1831   if (!EnterAfter || EnterAfter < BI.FirstInstr.getBaseIndex()) {
1832     LLVM_DEBUG(dbgs() << ", reload after interference.\n");
1833     //
1834     //    >>>>             Interference before def.
1835     //    |---o---o---|    Live-through, stack-in.
1836     //    ____=========    Enter IntvOut before first use.
1837     //
1838     selectIntv(IntvOut);
1839     SlotIndex Idx = enterIntvBefore(std::min(LSP, BI.FirstInstr));
1840     useIntv(Idx, Stop);
1841     assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1842     return;
1843   }
1844 
1845   // The interference is overlapping somewhere we wanted to use IntvOut. That
1846   // means we need to create a local interval that can be allocated a
1847   // different register.
1848   LLVM_DEBUG(dbgs() << ", interference overlaps uses.\n");
1849   //
1850   //    >>>>>>>          Interference overlapping uses.
1851   //    |---o---o---|    Live-through, stack-in.
1852   //    ____---======    Create local interval for interference range.
1853   //
1854   selectIntv(IntvOut);
1855   SlotIndex Idx = enterIntvAfter(EnterAfter);
1856   useIntv(Idx, Stop);
1857   assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1858 
1859   openIntv();
1860   SlotIndex From = enterIntvBefore(std::min(Idx, BI.FirstInstr));
1861   useIntv(From, Idx);
1862 }
1863