1 //===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the SplitAnalysis class as well as mutator functions for 11 // live range splitting. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "regalloc" 16 #include "SplitKit.h" 17 #include "LiveRangeEdit.h" 18 #include "VirtRegMap.h" 19 #include "llvm/CodeGen/CalcSpillWeights.h" 20 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 21 #include "llvm/CodeGen/MachineDominators.h" 22 #include "llvm/CodeGen/MachineInstrBuilder.h" 23 #include "llvm/CodeGen/MachineRegisterInfo.h" 24 #include "llvm/Support/CommandLine.h" 25 #include "llvm/Support/Debug.h" 26 #include "llvm/Support/raw_ostream.h" 27 #include "llvm/Target/TargetInstrInfo.h" 28 #include "llvm/Target/TargetMachine.h" 29 30 using namespace llvm; 31 32 static cl::opt<bool> 33 AllowSplit("spiller-splits-edges", 34 cl::desc("Allow critical edge splitting during spilling")); 35 36 //===----------------------------------------------------------------------===// 37 // Split Analysis 38 //===----------------------------------------------------------------------===// 39 40 SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm, 41 const LiveIntervals &lis, 42 const MachineLoopInfo &mli) 43 : MF(vrm.getMachineFunction()), 44 VRM(vrm), 45 LIS(lis), 46 Loops(mli), 47 TII(*MF.getTarget().getInstrInfo()), 48 CurLI(0) {} 49 50 void SplitAnalysis::clear() { 51 UseSlots.clear(); 52 UsingInstrs.clear(); 53 UsingBlocks.clear(); 54 LiveBlocks.clear(); 55 CurLI = 0; 56 } 57 58 bool SplitAnalysis::canAnalyzeBranch(const MachineBasicBlock *MBB) { 59 MachineBasicBlock *T, *F; 60 SmallVector<MachineOperand, 4> Cond; 61 return !TII.AnalyzeBranch(const_cast<MachineBasicBlock&>(*MBB), T, F, Cond); 62 } 63 64 /// analyzeUses - Count instructions, basic blocks, and loops using CurLI. 65 void SplitAnalysis::analyzeUses() { 66 const MachineRegisterInfo &MRI = MF.getRegInfo(); 67 for (MachineRegisterInfo::reg_iterator I = MRI.reg_begin(CurLI->reg), 68 E = MRI.reg_end(); I != E; ++I) { 69 MachineOperand &MO = I.getOperand(); 70 if (MO.isUse() && MO.isUndef()) 71 continue; 72 MachineInstr *MI = MO.getParent(); 73 if (MI->isDebugValue() || !UsingInstrs.insert(MI)) 74 continue; 75 UseSlots.push_back(LIS.getInstructionIndex(MI).getDefIndex()); 76 MachineBasicBlock *MBB = MI->getParent(); 77 UsingBlocks[MBB]++; 78 } 79 array_pod_sort(UseSlots.begin(), UseSlots.end()); 80 calcLiveBlockInfo(); 81 DEBUG(dbgs() << " counted " 82 << UsingInstrs.size() << " instrs, " 83 << UsingBlocks.size() << " blocks.\n"); 84 } 85 86 /// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks 87 /// where CurLI is live. 88 void SplitAnalysis::calcLiveBlockInfo() { 89 if (CurLI->empty()) 90 return; 91 92 LiveInterval::const_iterator LVI = CurLI->begin(); 93 LiveInterval::const_iterator LVE = CurLI->end(); 94 95 SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE; 96 UseI = UseSlots.begin(); 97 UseE = UseSlots.end(); 98 99 // Loop over basic blocks where CurLI is live. 100 MachineFunction::iterator MFI = LIS.getMBBFromIndex(LVI->start); 101 for (;;) { 102 BlockInfo BI; 103 BI.MBB = MFI; 104 SlotIndex Start, Stop; 105 tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); 106 107 // The last split point is the latest possible insertion point that dominates 108 // all successor blocks. If interference reaches LastSplitPoint, it is not 109 // possible to insert a split or reload that makes CurLI live in the 110 // outgoing bundle. 111 MachineBasicBlock::iterator LSP = LIS.getLastSplitPoint(*CurLI, BI.MBB); 112 if (LSP == BI.MBB->end()) 113 BI.LastSplitPoint = Stop; 114 else 115 BI.LastSplitPoint = LIS.getInstructionIndex(LSP); 116 117 // LVI is the first live segment overlapping MBB. 118 BI.LiveIn = LVI->start <= Start; 119 if (!BI.LiveIn) 120 BI.Def = LVI->start; 121 122 // Find the first and last uses in the block. 123 BI.Uses = hasUses(MFI); 124 if (BI.Uses && UseI != UseE) { 125 BI.FirstUse = *UseI; 126 assert(BI.FirstUse >= Start); 127 do ++UseI; 128 while (UseI != UseE && *UseI < Stop); 129 BI.LastUse = UseI[-1]; 130 assert(BI.LastUse < Stop); 131 } 132 133 // Look for gaps in the live range. 134 bool hasGap = false; 135 BI.LiveOut = true; 136 while (LVI->end < Stop) { 137 SlotIndex LastStop = LVI->end; 138 if (++LVI == LVE || LVI->start >= Stop) { 139 BI.Kill = LastStop; 140 BI.LiveOut = false; 141 break; 142 } 143 if (LastStop < LVI->start) { 144 hasGap = true; 145 BI.Kill = LastStop; 146 BI.Def = LVI->start; 147 } 148 } 149 150 // Don't set LiveThrough when the block has a gap. 151 BI.LiveThrough = !hasGap && BI.LiveIn && BI.LiveOut; 152 LiveBlocks.push_back(BI); 153 154 // LVI is now at LVE or LVI->end >= Stop. 155 if (LVI == LVE) 156 break; 157 158 // Live segment ends exactly at Stop. Move to the next segment. 159 if (LVI->end == Stop && ++LVI == LVE) 160 break; 161 162 // Pick the next basic block. 163 if (LVI->start < Stop) 164 ++MFI; 165 else 166 MFI = LIS.getMBBFromIndex(LVI->start); 167 } 168 } 169 170 bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const { 171 unsigned OrigReg = VRM.getOriginal(CurLI->reg); 172 const LiveInterval &Orig = LIS.getInterval(OrigReg); 173 assert(!Orig.empty() && "Splitting empty interval?"); 174 LiveInterval::const_iterator I = Orig.find(Idx); 175 176 // Range containing Idx should begin at Idx. 177 if (I != Orig.end() && I->start <= Idx) 178 return I->start == Idx; 179 180 // Range does not contain Idx, previous must end at Idx. 181 return I != Orig.begin() && (--I)->end == Idx; 182 } 183 184 void SplitAnalysis::print(const BlockPtrSet &B, raw_ostream &OS) const { 185 for (BlockPtrSet::const_iterator I = B.begin(), E = B.end(); I != E; ++I) { 186 unsigned count = UsingBlocks.lookup(*I); 187 OS << " BB#" << (*I)->getNumber(); 188 if (count) 189 OS << '(' << count << ')'; 190 } 191 } 192 193 void SplitAnalysis::analyze(const LiveInterval *li) { 194 clear(); 195 CurLI = li; 196 analyzeUses(); 197 } 198 199 200 //===----------------------------------------------------------------------===// 201 // LiveIntervalMap 202 //===----------------------------------------------------------------------===// 203 204 // Work around the fact that the std::pair constructors are broken for pointer 205 // pairs in some implementations. makeVV(x, 0) works. 206 static inline std::pair<const VNInfo*, VNInfo*> 207 makeVV(const VNInfo *a, VNInfo *b) { 208 return std::make_pair(a, b); 209 } 210 211 void LiveIntervalMap::reset(LiveInterval *li) { 212 LI = li; 213 LiveOutCache.clear(); 214 } 215 216 217 // extendRange - Extend the live range to reach Idx. 218 // Potentially create phi-def values. 219 void LiveIntervalMap::extendRange(SlotIndex Idx) { 220 assert(LI && "call reset first"); 221 assert(Idx.isValid() && "Invalid SlotIndex"); 222 MachineBasicBlock *IdxMBB = LIS.getMBBFromIndex(Idx); 223 assert(IdxMBB && "No MBB at Idx"); 224 225 // Is there a def in the same MBB we can extend? 226 if (LI->extendInBlock(LIS.getMBBStartIdx(IdxMBB), Idx)) 227 return; 228 229 // Now for the fun part. We know that ParentVNI potentially has multiple defs, 230 // and we may need to create even more phi-defs to preserve VNInfo SSA form. 231 // Perform a search for all predecessor blocks where we know the dominating 232 // VNInfo. Insert phi-def VNInfos along the path back to IdxMBB. 233 DEBUG(dbgs() << "\n Reaching defs for BB#" << IdxMBB->getNumber() 234 << " at " << Idx << " in " << *LI << '\n'); 235 236 // Blocks where LI should be live-in. 237 SmallVector<MachineDomTreeNode*, 16> LiveIn; 238 LiveIn.push_back(MDT[IdxMBB]); 239 240 // Using LiveOutCache as a visited set, perform a BFS for all reaching defs. 241 for (unsigned i = 0; i != LiveIn.size(); ++i) { 242 MachineBasicBlock *MBB = LiveIn[i]->getBlock(); 243 for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), 244 PE = MBB->pred_end(); PI != PE; ++PI) { 245 MachineBasicBlock *Pred = *PI; 246 // Is this a known live-out block? 247 std::pair<LiveOutMap::iterator,bool> LOIP = 248 LiveOutCache.insert(std::make_pair(Pred, LiveOutPair())); 249 // Yes, we have been here before. 250 if (!LOIP.second) { 251 DEBUG(if (VNInfo *VNI = LOIP.first->second.first) 252 dbgs() << " known valno #" << VNI->id 253 << " at BB#" << Pred->getNumber() << '\n'); 254 continue; 255 } 256 257 // Does Pred provide a live-out value? 258 SlotIndex Start, Last; 259 tie(Start, Last) = LIS.getSlotIndexes()->getMBBRange(Pred); 260 Last = Last.getPrevSlot(); 261 if (VNInfo *VNI = LI->extendInBlock(Start, Last)) { 262 MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(VNI->def); 263 DEBUG(dbgs() << " found valno #" << VNI->id 264 << " from BB#" << DefMBB->getNumber() 265 << " at BB#" << Pred->getNumber() << '\n'); 266 LiveOutPair &LOP = LOIP.first->second; 267 LOP.first = VNI; 268 LOP.second = MDT[DefMBB]; 269 continue; 270 } 271 // No, we need a live-in value for Pred as well 272 if (Pred != IdxMBB) 273 LiveIn.push_back(MDT[Pred]); 274 } 275 } 276 277 // We may need to add phi-def values to preserve the SSA form. 278 // This is essentially the same iterative algorithm that SSAUpdater uses, 279 // except we already have a dominator tree, so we don't have to recompute it. 280 VNInfo *IdxVNI = 0; 281 unsigned Changes; 282 do { 283 Changes = 0; 284 DEBUG(dbgs() << " Iterating over " << LiveIn.size() << " blocks.\n"); 285 // Propagate live-out values down the dominator tree, inserting phi-defs when 286 // necessary. Since LiveIn was created by a BFS, going backwards makes it more 287 // likely for us to visit immediate dominators before their children. 288 for (unsigned i = LiveIn.size(); i; --i) { 289 MachineDomTreeNode *Node = LiveIn[i-1]; 290 MachineBasicBlock *MBB = Node->getBlock(); 291 MachineDomTreeNode *IDom = Node->getIDom(); 292 LiveOutPair IDomValue; 293 // We need a live-in value to a block with no immediate dominator? 294 // This is probably an unreachable block that has survived somehow. 295 bool needPHI = !IDom; 296 297 // Get the IDom live-out value. 298 if (!needPHI) { 299 LiveOutMap::iterator I = LiveOutCache.find(IDom->getBlock()); 300 if (I != LiveOutCache.end()) 301 IDomValue = I->second; 302 else 303 // If IDom is outside our set of live-out blocks, there must be new 304 // defs, and we need a phi-def here. 305 needPHI = true; 306 } 307 308 // IDom dominates all of our predecessors, but it may not be the immediate 309 // dominator. Check if any of them have live-out values that are properly 310 // dominated by IDom. If so, we need a phi-def here. 311 if (!needPHI) { 312 for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), 313 PE = MBB->pred_end(); PI != PE; ++PI) { 314 LiveOutPair Value = LiveOutCache[*PI]; 315 if (!Value.first || Value.first == IDomValue.first) 316 continue; 317 // This predecessor is carrying something other than IDomValue. 318 // It could be because IDomValue hasn't propagated yet, or it could be 319 // because MBB is in the dominance frontier of that value. 320 if (MDT.dominates(IDom, Value.second)) { 321 needPHI = true; 322 break; 323 } 324 } 325 } 326 327 // Create a phi-def if required. 328 if (needPHI) { 329 ++Changes; 330 SlotIndex Start = LIS.getMBBStartIdx(MBB); 331 VNInfo *VNI = LI->getNextValue(Start, 0, LIS.getVNInfoAllocator()); 332 VNI->setIsPHIDef(true); 333 DEBUG(dbgs() << " - BB#" << MBB->getNumber() 334 << " phi-def #" << VNI->id << " at " << Start << '\n'); 335 // We no longer need LI to be live-in. 336 LiveIn.erase(LiveIn.begin()+(i-1)); 337 // Blocks in LiveIn are either IdxMBB, or have a value live-through. 338 if (MBB == IdxMBB) 339 IdxVNI = VNI; 340 // Check if we need to update live-out info. 341 LiveOutMap::iterator I = LiveOutCache.find(MBB); 342 if (I == LiveOutCache.end() || I->second.second == Node) { 343 // We already have a live-out defined in MBB, so this must be IdxMBB. 344 assert(MBB == IdxMBB && "Adding phi-def to known live-out"); 345 LI->addRange(LiveRange(Start, Idx.getNextSlot(), VNI)); 346 } else { 347 // This phi-def is also live-out, so color the whole block. 348 LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), VNI)); 349 I->second = LiveOutPair(VNI, Node); 350 } 351 } else if (IDomValue.first) { 352 // No phi-def here. Remember incoming value for IdxMBB. 353 if (MBB == IdxMBB) 354 IdxVNI = IDomValue.first; 355 // Propagate IDomValue if needed: 356 // MBB is live-out and doesn't define its own value. 357 LiveOutMap::iterator I = LiveOutCache.find(MBB); 358 if (I != LiveOutCache.end() && I->second.second != Node && 359 I->second.first != IDomValue.first) { 360 ++Changes; 361 I->second = IDomValue; 362 DEBUG(dbgs() << " - BB#" << MBB->getNumber() 363 << " idom valno #" << IDomValue.first->id 364 << " from BB#" << IDom->getBlock()->getNumber() << '\n'); 365 } 366 } 367 } 368 DEBUG(dbgs() << " - made " << Changes << " changes.\n"); 369 } while (Changes); 370 371 assert(IdxVNI && "Didn't find value for Idx"); 372 373 #ifndef NDEBUG 374 // Check the LiveOutCache invariants. 375 for (LiveOutMap::iterator I = LiveOutCache.begin(), E = LiveOutCache.end(); 376 I != E; ++I) { 377 assert(I->first && "Null MBB entry in cache"); 378 assert(I->second.first && "Null VNInfo in cache"); 379 assert(I->second.second && "Null DomTreeNode in cache"); 380 if (I->second.second->getBlock() == I->first) 381 continue; 382 for (MachineBasicBlock::pred_iterator PI = I->first->pred_begin(), 383 PE = I->first->pred_end(); PI != PE; ++PI) 384 assert(LiveOutCache.lookup(*PI) == I->second && "Bad invariant"); 385 } 386 #endif 387 388 // Since we went through the trouble of a full BFS visiting all reaching defs, 389 // the values in LiveIn are now accurate. No more phi-defs are needed 390 // for these blocks, so we can color the live ranges. 391 for (unsigned i = 0, e = LiveIn.size(); i != e; ++i) { 392 MachineBasicBlock *MBB = LiveIn[i]->getBlock(); 393 SlotIndex Start = LIS.getMBBStartIdx(MBB); 394 VNInfo *VNI = LiveOutCache.lookup(MBB).first; 395 396 // Anything in LiveIn other than IdxMBB is live-through. 397 // In IdxMBB, we should stop at Idx unless the same value is live-out. 398 if (MBB == IdxMBB && IdxVNI != VNI) 399 LI->addRange(LiveRange(Start, Idx.getNextSlot(), IdxVNI)); 400 else 401 LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), VNI)); 402 } 403 } 404 405 #ifndef NDEBUG 406 void LiveIntervalMap::dumpCache() { 407 for (LiveOutMap::iterator I = LiveOutCache.begin(), E = LiveOutCache.end(); 408 I != E; ++I) { 409 assert(I->first && "Null MBB entry in cache"); 410 assert(I->second.first && "Null VNInfo in cache"); 411 assert(I->second.second && "Null DomTreeNode in cache"); 412 dbgs() << " cache: BB#" << I->first->getNumber() 413 << " has valno #" << I->second.first->id << " from BB#" 414 << I->second.second->getBlock()->getNumber() << ", preds"; 415 for (MachineBasicBlock::pred_iterator PI = I->first->pred_begin(), 416 PE = I->first->pred_end(); PI != PE; ++PI) 417 dbgs() << " BB#" << (*PI)->getNumber(); 418 dbgs() << '\n'; 419 } 420 dbgs() << " cache: " << LiveOutCache.size() << " entries.\n"; 421 } 422 #endif 423 424 425 //===----------------------------------------------------------------------===// 426 // Split Editor 427 //===----------------------------------------------------------------------===// 428 429 /// Create a new SplitEditor for editing the LiveInterval analyzed by SA. 430 SplitEditor::SplitEditor(SplitAnalysis &sa, 431 LiveIntervals &lis, 432 VirtRegMap &vrm, 433 MachineDominatorTree &mdt, 434 LiveRangeEdit &edit) 435 : SA(sa), LIS(lis), VRM(vrm), 436 MRI(vrm.getMachineFunction().getRegInfo()), 437 MDT(mdt), 438 TII(*vrm.getMachineFunction().getTarget().getInstrInfo()), 439 TRI(*vrm.getMachineFunction().getTarget().getRegisterInfo()), 440 Edit(edit), 441 OpenIdx(0), 442 RegAssign(Allocator) 443 { 444 // We don't need an AliasAnalysis since we will only be performing 445 // cheap-as-a-copy remats anyway. 446 Edit.anyRematerializable(LIS, TII, 0); 447 } 448 449 void SplitEditor::dump() const { 450 if (RegAssign.empty()) { 451 dbgs() << " empty\n"; 452 return; 453 } 454 455 for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I) 456 dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value(); 457 dbgs() << '\n'; 458 } 459 460 VNInfo *SplitEditor::defValue(unsigned RegIdx, 461 const VNInfo *ParentVNI, 462 SlotIndex Idx) { 463 assert(ParentVNI && "Mapping NULL value"); 464 assert(Idx.isValid() && "Invalid SlotIndex"); 465 assert(Edit.getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI"); 466 LiveInterval *LI = Edit.get(RegIdx); 467 468 // Create a new value. 469 VNInfo *VNI = LI->getNextValue(Idx, 0, LIS.getVNInfoAllocator()); 470 471 // Preserve the PHIDef bit. 472 if (ParentVNI->isPHIDef() && Idx == ParentVNI->def) 473 VNI->setIsPHIDef(true); 474 475 // Use insert for lookup, so we can add missing values with a second lookup. 476 std::pair<ValueMap::iterator, bool> InsP = 477 Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id), VNI)); 478 479 // This was the first time (RegIdx, ParentVNI) was mapped. 480 // Keep it as a simple def without any liveness. 481 if (InsP.second) 482 return VNI; 483 484 // If the previous value was a simple mapping, add liveness for it now. 485 if (VNInfo *OldVNI = InsP.first->second) { 486 SlotIndex Def = OldVNI->def; 487 LI->addRange(LiveRange(Def, Def.getNextSlot(), OldVNI)); 488 // No longer a simple mapping. 489 InsP.first->second = 0; 490 } 491 492 // This is a complex mapping, add liveness for VNI 493 SlotIndex Def = VNI->def; 494 LI->addRange(LiveRange(Def, Def.getNextSlot(), VNI)); 495 496 return VNI; 497 } 498 499 void SplitEditor::markComplexMapped(unsigned RegIdx, const VNInfo *ParentVNI) { 500 assert(ParentVNI && "Mapping NULL value"); 501 VNInfo *&VNI = Values[std::make_pair(RegIdx, ParentVNI->id)]; 502 503 // ParentVNI was either unmapped or already complex mapped. Either way. 504 if (!VNI) 505 return; 506 507 // This was previously a single mapping. Make sure the old def is represented 508 // by a trivial live range. 509 SlotIndex Def = VNI->def; 510 Edit.get(RegIdx)->addRange(LiveRange(Def, Def.getNextSlot(), VNI)); 511 VNI = 0; 512 } 513 514 VNInfo *SplitEditor::defFromParent(unsigned RegIdx, 515 VNInfo *ParentVNI, 516 SlotIndex UseIdx, 517 MachineBasicBlock &MBB, 518 MachineBasicBlock::iterator I) { 519 MachineInstr *CopyMI = 0; 520 SlotIndex Def; 521 LiveInterval *LI = Edit.get(RegIdx); 522 523 // Attempt cheap-as-a-copy rematerialization. 524 LiveRangeEdit::Remat RM(ParentVNI); 525 if (Edit.canRematerializeAt(RM, UseIdx, true, LIS)) { 526 Def = Edit.rematerializeAt(MBB, I, LI->reg, RM, LIS, TII, TRI); 527 } else { 528 // Can't remat, just insert a copy from parent. 529 CopyMI = BuildMI(MBB, I, DebugLoc(), TII.get(TargetOpcode::COPY), LI->reg) 530 .addReg(Edit.getReg()); 531 Def = LIS.InsertMachineInstrInMaps(CopyMI).getDefIndex(); 532 } 533 534 // Temporarily mark all values as complex mapped. 535 markComplexMapped(RegIdx, ParentVNI); 536 537 // Define the value in Reg. 538 VNInfo *VNI = defValue(RegIdx, ParentVNI, Def); 539 VNI->setCopy(CopyMI); 540 return VNI; 541 } 542 543 /// Create a new virtual register and live interval. 544 void SplitEditor::openIntv() { 545 assert(!OpenIdx && "Previous LI not closed before openIntv"); 546 547 // Create the complement as index 0. 548 if (Edit.empty()) { 549 Edit.create(MRI, LIS, VRM); 550 LIMappers.push_back(LiveIntervalMap(LIS, MDT, Edit.getParent())); 551 LIMappers.back().reset(Edit.get(0)); 552 } 553 554 // Create the open interval. 555 OpenIdx = Edit.size(); 556 Edit.create(MRI, LIS, VRM); 557 LIMappers.push_back(LiveIntervalMap(LIS, MDT, Edit.getParent())); 558 LIMappers[OpenIdx].reset(Edit.get(OpenIdx)); 559 } 560 561 SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) { 562 assert(OpenIdx && "openIntv not called before enterIntvBefore"); 563 DEBUG(dbgs() << " enterIntvBefore " << Idx); 564 Idx = Idx.getBaseIndex(); 565 VNInfo *ParentVNI = Edit.getParent().getVNInfoAt(Idx); 566 if (!ParentVNI) { 567 DEBUG(dbgs() << ": not live\n"); 568 return Idx; 569 } 570 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 571 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 572 assert(MI && "enterIntvBefore called with invalid index"); 573 574 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI); 575 return VNI->def; 576 } 577 578 SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) { 579 assert(OpenIdx && "openIntv not called before enterIntvAtEnd"); 580 SlotIndex End = LIS.getMBBEndIdx(&MBB); 581 SlotIndex Last = End.getPrevSlot(); 582 DEBUG(dbgs() << " enterIntvAtEnd BB#" << MBB.getNumber() << ", " << Last); 583 VNInfo *ParentVNI = Edit.getParent().getVNInfoAt(Last); 584 if (!ParentVNI) { 585 DEBUG(dbgs() << ": not live\n"); 586 return End; 587 } 588 DEBUG(dbgs() << ": valno " << ParentVNI->id); 589 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB, 590 LIS.getLastSplitPoint(Edit.getParent(), &MBB)); 591 RegAssign.insert(VNI->def, End, OpenIdx); 592 DEBUG(dump()); 593 return VNI->def; 594 } 595 596 /// useIntv - indicate that all instructions in MBB should use OpenLI. 597 void SplitEditor::useIntv(const MachineBasicBlock &MBB) { 598 useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB)); 599 } 600 601 void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) { 602 assert(OpenIdx && "openIntv not called before useIntv"); 603 DEBUG(dbgs() << " useIntv [" << Start << ';' << End << "):"); 604 RegAssign.insert(Start, End, OpenIdx); 605 DEBUG(dump()); 606 } 607 608 SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) { 609 assert(OpenIdx && "openIntv not called before leaveIntvAfter"); 610 DEBUG(dbgs() << " leaveIntvAfter " << Idx); 611 612 // The interval must be live beyond the instruction at Idx. 613 Idx = Idx.getBoundaryIndex(); 614 VNInfo *ParentVNI = Edit.getParent().getVNInfoAt(Idx); 615 if (!ParentVNI) { 616 DEBUG(dbgs() << ": not live\n"); 617 return Idx.getNextSlot(); 618 } 619 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 620 621 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 622 assert(MI && "No instruction at index"); 623 VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), 624 llvm::next(MachineBasicBlock::iterator(MI))); 625 return VNI->def; 626 } 627 628 SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) { 629 assert(OpenIdx && "openIntv not called before leaveIntvBefore"); 630 DEBUG(dbgs() << " leaveIntvBefore " << Idx); 631 632 // The interval must be live into the instruction at Idx. 633 Idx = Idx.getBoundaryIndex(); 634 VNInfo *ParentVNI = Edit.getParent().getVNInfoAt(Idx); 635 if (!ParentVNI) { 636 DEBUG(dbgs() << ": not live\n"); 637 return Idx.getNextSlot(); 638 } 639 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 640 641 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 642 assert(MI && "No instruction at index"); 643 VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI); 644 return VNI->def; 645 } 646 647 SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) { 648 assert(OpenIdx && "openIntv not called before leaveIntvAtTop"); 649 SlotIndex Start = LIS.getMBBStartIdx(&MBB); 650 DEBUG(dbgs() << " leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start); 651 652 VNInfo *ParentVNI = Edit.getParent().getVNInfoAt(Start); 653 if (!ParentVNI) { 654 DEBUG(dbgs() << ": not live\n"); 655 return Start; 656 } 657 658 VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB, 659 MBB.SkipPHIsAndLabels(MBB.begin())); 660 RegAssign.insert(Start, VNI->def, OpenIdx); 661 DEBUG(dump()); 662 return VNI->def; 663 } 664 665 void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) { 666 assert(OpenIdx && "openIntv not called before overlapIntv"); 667 assert(Edit.getParent().getVNInfoAt(Start) == 668 Edit.getParent().getVNInfoAt(End.getPrevSlot()) && 669 "Parent changes value in extended range"); 670 assert(Edit.get(0)->getVNInfoAt(Start) && "Start must come from leaveIntv*"); 671 assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) && 672 "Range cannot span basic blocks"); 673 674 // Treat this as useIntv() for now. 675 // The complement interval will be extended as needed by extendRange(). 676 DEBUG(dbgs() << " overlapIntv [" << Start << ';' << End << "):"); 677 RegAssign.insert(Start, End, OpenIdx); 678 DEBUG(dump()); 679 } 680 681 /// closeIntv - Indicate that we are done editing the currently open 682 /// LiveInterval, and ranges can be trimmed. 683 void SplitEditor::closeIntv() { 684 assert(OpenIdx && "openIntv not called before closeIntv"); 685 OpenIdx = 0; 686 } 687 688 /// rewriteAssigned - Rewrite all uses of Edit.getReg(). 689 void SplitEditor::rewriteAssigned() { 690 for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Edit.getReg()), 691 RE = MRI.reg_end(); RI != RE;) { 692 MachineOperand &MO = RI.getOperand(); 693 MachineInstr *MI = MO.getParent(); 694 ++RI; 695 // LiveDebugVariables should have handled all DBG_VALUE instructions. 696 if (MI->isDebugValue()) { 697 DEBUG(dbgs() << "Zapping " << *MI); 698 MO.setReg(0); 699 continue; 700 } 701 702 // <undef> operands don't really read the register, so just assign them to 703 // the complement. 704 if (MO.isUse() && MO.isUndef()) { 705 MO.setReg(Edit.get(0)->reg); 706 continue; 707 } 708 709 SlotIndex Idx = LIS.getInstructionIndex(MI); 710 Idx = MO.isUse() ? Idx.getUseIndex() : Idx.getDefIndex(); 711 712 // Rewrite to the mapped register at Idx. 713 unsigned RegIdx = RegAssign.lookup(Idx); 714 MO.setReg(Edit.get(RegIdx)->reg); 715 DEBUG(dbgs() << " rewr BB#" << MI->getParent()->getNumber() << '\t' 716 << Idx << ':' << RegIdx << '\t' << *MI); 717 718 // Extend liveness to Idx. 719 LIMappers[RegIdx].extendRange(Idx); 720 } 721 } 722 723 /// rewriteSplit - Rewrite uses of Intvs[0] according to the ConEQ mapping. 724 void SplitEditor::rewriteComponents(const SmallVectorImpl<LiveInterval*> &Intvs, 725 const ConnectedVNInfoEqClasses &ConEq) { 726 for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Intvs[0]->reg), 727 RE = MRI.reg_end(); RI != RE;) { 728 MachineOperand &MO = RI.getOperand(); 729 MachineInstr *MI = MO.getParent(); 730 ++RI; 731 if (MO.isUse() && MO.isUndef()) 732 continue; 733 // DBG_VALUE instructions should have been eliminated earlier. 734 SlotIndex Idx = LIS.getInstructionIndex(MI); 735 Idx = MO.isUse() ? Idx.getUseIndex() : Idx.getDefIndex(); 736 DEBUG(dbgs() << " rewr BB#" << MI->getParent()->getNumber() << '\t' 737 << Idx << ':'); 738 const VNInfo *VNI = Intvs[0]->getVNInfoAt(Idx); 739 assert(VNI && "Interval not live at use."); 740 MO.setReg(Intvs[ConEq.getEqClass(VNI)]->reg); 741 DEBUG(dbgs() << VNI->id << '\t' << *MI); 742 } 743 } 744 745 void SplitEditor::finish() { 746 assert(OpenIdx == 0 && "Previous LI not closed before rewrite"); 747 748 // At this point, the live intervals in Edit contain VNInfos corresponding to 749 // the inserted copies. 750 751 // Add the original defs from the parent interval. 752 for (LiveInterval::const_vni_iterator I = Edit.getParent().vni_begin(), 753 E = Edit.getParent().vni_end(); I != E; ++I) { 754 const VNInfo *ParentVNI = *I; 755 if (ParentVNI->isUnused()) 756 continue; 757 unsigned RegIdx = RegAssign.lookup(ParentVNI->def); 758 // Mark all values as complex to force liveness computation. 759 // This should really only be necessary for remat victims, but we are lazy. 760 markComplexMapped(RegIdx, ParentVNI); 761 defValue(RegIdx, ParentVNI, ParentVNI->def); 762 } 763 764 #ifndef NDEBUG 765 // Every new interval must have a def by now, otherwise the split is bogus. 766 for (LiveRangeEdit::iterator I = Edit.begin(), E = Edit.end(); I != E; ++I) 767 assert((*I)->hasAtLeastOneValue() && "Split interval has no value"); 768 #endif 769 770 // FIXME: Don't recompute the liveness of all values, infer it from the 771 // overlaps between the parent live interval and RegAssign. 772 // The extendRange algorithm is only necessary when: 773 // - The parent value maps to multiple defs, and new phis are needed, or 774 // - The value has been rematerialized before some uses, and we want to 775 // minimize the live range so it only reaches the remaining uses. 776 // All other values have simple liveness that can be computed from RegAssign 777 // and the parent live interval. 778 779 // Extend live ranges to be live-out for successor PHI values. 780 for (LiveInterval::const_vni_iterator I = Edit.getParent().vni_begin(), 781 E = Edit.getParent().vni_end(); I != E; ++I) { 782 const VNInfo *PHIVNI = *I; 783 if (PHIVNI->isUnused() || !PHIVNI->isPHIDef()) 784 continue; 785 unsigned RegIdx = RegAssign.lookup(PHIVNI->def); 786 LiveIntervalMap &LIM = LIMappers[RegIdx]; 787 MachineBasicBlock *MBB = LIS.getMBBFromIndex(PHIVNI->def); 788 DEBUG(dbgs() << " map phi in BB#" << MBB->getNumber() << '@' << PHIVNI->def 789 << " -> " << RegIdx << '\n'); 790 for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), 791 PE = MBB->pred_end(); PI != PE; ++PI) { 792 SlotIndex End = LIS.getMBBEndIdx(*PI).getPrevSlot(); 793 DEBUG(dbgs() << " pred BB#" << (*PI)->getNumber() << '@' << End); 794 // The predecessor may not have a live-out value. That is OK, like an 795 // undef PHI operand. 796 if (VNInfo *VNI = Edit.getParent().getVNInfoAt(End)) { 797 DEBUG(dbgs() << " has parent valno #" << VNI->id << " live out\n"); 798 assert(RegAssign.lookup(End) == RegIdx && 799 "Different register assignment in phi predecessor"); 800 LIM.extendRange(End); 801 } 802 else 803 DEBUG(dbgs() << " is not live-out\n"); 804 } 805 DEBUG(dbgs() << " " << *LIM.getLI() << '\n'); 806 } 807 808 // Rewrite instructions. 809 rewriteAssigned(); 810 811 // FIXME: Delete defs that were rematted everywhere. 812 813 // Get rid of unused values and set phi-kill flags. 814 for (LiveRangeEdit::iterator I = Edit.begin(), E = Edit.end(); I != E; ++I) 815 (*I)->RenumberValues(LIS); 816 817 // Now check if any registers were separated into multiple components. 818 ConnectedVNInfoEqClasses ConEQ(LIS); 819 for (unsigned i = 0, e = Edit.size(); i != e; ++i) { 820 // Don't use iterators, they are invalidated by create() below. 821 LiveInterval *li = Edit.get(i); 822 unsigned NumComp = ConEQ.Classify(li); 823 if (NumComp <= 1) 824 continue; 825 DEBUG(dbgs() << " " << NumComp << " components: " << *li << '\n'); 826 SmallVector<LiveInterval*, 8> dups; 827 dups.push_back(li); 828 for (unsigned i = 1; i != NumComp; ++i) 829 dups.push_back(&Edit.create(MRI, LIS, VRM)); 830 rewriteComponents(dups, ConEQ); 831 ConEQ.Distribute(&dups[0]); 832 } 833 834 // Calculate spill weight and allocation hints for new intervals. 835 VirtRegAuxInfo vrai(VRM.getMachineFunction(), LIS, SA.Loops); 836 for (LiveRangeEdit::iterator I = Edit.begin(), E = Edit.end(); I != E; ++I){ 837 LiveInterval &li = **I; 838 vrai.CalculateRegClass(li.reg); 839 vrai.CalculateWeightAndHint(li); 840 DEBUG(dbgs() << " new interval " << MRI.getRegClass(li.reg)->getName() 841 << ":" << li << '\n'); 842 } 843 } 844 845 846 //===----------------------------------------------------------------------===// 847 // Single Block Splitting 848 //===----------------------------------------------------------------------===// 849 850 /// getMultiUseBlocks - if CurLI has more than one use in a basic block, it 851 /// may be an advantage to split CurLI for the duration of the block. 852 bool SplitAnalysis::getMultiUseBlocks(BlockPtrSet &Blocks) { 853 // If CurLI is local to one block, there is no point to splitting it. 854 if (LiveBlocks.size() <= 1) 855 return false; 856 // Add blocks with multiple uses. 857 for (unsigned i = 0, e = LiveBlocks.size(); i != e; ++i) { 858 const BlockInfo &BI = LiveBlocks[i]; 859 if (!BI.Uses) 860 continue; 861 unsigned Instrs = UsingBlocks.lookup(BI.MBB); 862 if (Instrs <= 1) 863 continue; 864 if (Instrs == 2 && BI.LiveIn && BI.LiveOut && !BI.LiveThrough) 865 continue; 866 Blocks.insert(BI.MBB); 867 } 868 return !Blocks.empty(); 869 } 870 871 /// splitSingleBlocks - Split CurLI into a separate live interval inside each 872 /// basic block in Blocks. 873 void SplitEditor::splitSingleBlocks(const SplitAnalysis::BlockPtrSet &Blocks) { 874 DEBUG(dbgs() << " splitSingleBlocks for " << Blocks.size() << " blocks.\n"); 875 876 for (unsigned i = 0, e = SA.LiveBlocks.size(); i != e; ++i) { 877 const SplitAnalysis::BlockInfo &BI = SA.LiveBlocks[i]; 878 if (!BI.Uses || !Blocks.count(BI.MBB)) 879 continue; 880 881 openIntv(); 882 SlotIndex SegStart = enterIntvBefore(BI.FirstUse); 883 if (!BI.LiveOut || BI.LastUse < BI.LastSplitPoint) { 884 useIntv(SegStart, leaveIntvAfter(BI.LastUse)); 885 } else { 886 // The last use is after the last valid split point. 887 SlotIndex SegStop = leaveIntvBefore(BI.LastSplitPoint); 888 useIntv(SegStart, SegStop); 889 overlapIntv(SegStop, BI.LastUse); 890 } 891 closeIntv(); 892 } 893 finish(); 894 } 895