1 //===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the SplitAnalysis class as well as mutator functions for
11 // live range splitting.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #define DEBUG_TYPE "regalloc"
16 #include "SplitKit.h"
17 #include "LiveRangeEdit.h"
18 #include "VirtRegMap.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
21 #include "llvm/CodeGen/MachineDominators.h"
22 #include "llvm/CodeGen/MachineInstrBuilder.h"
23 #include "llvm/CodeGen/MachineRegisterInfo.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/raw_ostream.h"
26 #include "llvm/Target/TargetInstrInfo.h"
27 #include "llvm/Target/TargetMachine.h"
28 
29 using namespace llvm;
30 
31 STATISTIC(NumFinished, "Number of splits finished");
32 STATISTIC(NumSimple,   "Number of splits that were simple");
33 STATISTIC(NumCopies,   "Number of copies inserted for splitting");
34 STATISTIC(NumRemats,   "Number of rematerialized defs for splitting");
35 STATISTIC(NumRepairs,  "Number of invalid live ranges repaired");
36 
37 //===----------------------------------------------------------------------===//
38 //                                 Split Analysis
39 //===----------------------------------------------------------------------===//
40 
41 SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm,
42                              const LiveIntervals &lis,
43                              const MachineLoopInfo &mli)
44   : MF(vrm.getMachineFunction()),
45     VRM(vrm),
46     LIS(lis),
47     Loops(mli),
48     TII(*MF.getTarget().getInstrInfo()),
49     CurLI(0),
50     LastSplitPoint(MF.getNumBlockIDs()) {}
51 
52 void SplitAnalysis::clear() {
53   UseSlots.clear();
54   UseBlocks.clear();
55   ThroughBlocks.clear();
56   CurLI = 0;
57   DidRepairRange = false;
58 }
59 
60 SlotIndex SplitAnalysis::computeLastSplitPoint(unsigned Num) {
61   const MachineBasicBlock *MBB = MF.getBlockNumbered(Num);
62   const MachineBasicBlock *LPad = MBB->getLandingPadSuccessor();
63   std::pair<SlotIndex, SlotIndex> &LSP = LastSplitPoint[Num];
64 
65   // Compute split points on the first call. The pair is independent of the
66   // current live interval.
67   if (!LSP.first.isValid()) {
68     MachineBasicBlock::const_iterator FirstTerm = MBB->getFirstTerminator();
69     if (FirstTerm == MBB->end())
70       LSP.first = LIS.getMBBEndIdx(MBB);
71     else
72       LSP.first = LIS.getInstructionIndex(FirstTerm);
73 
74     // If there is a landing pad successor, also find the call instruction.
75     if (!LPad)
76       return LSP.first;
77     // There may not be a call instruction (?) in which case we ignore LPad.
78     LSP.second = LSP.first;
79     for (MachineBasicBlock::const_iterator I = MBB->end(), E = MBB->begin();
80          I != E;) {
81       --I;
82       if (I->getDesc().isCall()) {
83         LSP.second = LIS.getInstructionIndex(I);
84         break;
85       }
86     }
87   }
88 
89   // If CurLI is live into a landing pad successor, move the last split point
90   // back to the call that may throw.
91   if (LPad && LSP.second.isValid() && LIS.isLiveInToMBB(*CurLI, LPad))
92     return LSP.second;
93   else
94     return LSP.first;
95 }
96 
97 /// analyzeUses - Count instructions, basic blocks, and loops using CurLI.
98 void SplitAnalysis::analyzeUses() {
99   assert(UseSlots.empty() && "Call clear first");
100 
101   // First get all the defs from the interval values. This provides the correct
102   // slots for early clobbers.
103   for (LiveInterval::const_vni_iterator I = CurLI->vni_begin(),
104        E = CurLI->vni_end(); I != E; ++I)
105     if (!(*I)->isPHIDef() && !(*I)->isUnused())
106       UseSlots.push_back((*I)->def);
107 
108   // Get use slots form the use-def chain.
109   const MachineRegisterInfo &MRI = MF.getRegInfo();
110   for (MachineRegisterInfo::use_nodbg_iterator
111        I = MRI.use_nodbg_begin(CurLI->reg), E = MRI.use_nodbg_end(); I != E;
112        ++I)
113     if (!I.getOperand().isUndef())
114       UseSlots.push_back(LIS.getInstructionIndex(&*I).getDefIndex());
115 
116   array_pod_sort(UseSlots.begin(), UseSlots.end());
117 
118   // Remove duplicates, keeping the smaller slot for each instruction.
119   // That is what we want for early clobbers.
120   UseSlots.erase(std::unique(UseSlots.begin(), UseSlots.end(),
121                              SlotIndex::isSameInstr),
122                  UseSlots.end());
123 
124   // Compute per-live block info.
125   if (!calcLiveBlockInfo()) {
126     // FIXME: calcLiveBlockInfo found inconsistencies in the live range.
127     // I am looking at you, RegisterCoalescer!
128     DidRepairRange = true;
129     ++NumRepairs;
130     DEBUG(dbgs() << "*** Fixing inconsistent live interval! ***\n");
131     const_cast<LiveIntervals&>(LIS)
132       .shrinkToUses(const_cast<LiveInterval*>(CurLI));
133     UseBlocks.clear();
134     ThroughBlocks.clear();
135     bool fixed = calcLiveBlockInfo();
136     (void)fixed;
137     assert(fixed && "Couldn't fix broken live interval");
138   }
139 
140   DEBUG(dbgs() << "Analyze counted "
141                << UseSlots.size() << " instrs in "
142                << UseBlocks.size() << " blocks, through "
143                << NumThroughBlocks << " blocks.\n");
144 }
145 
146 /// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks
147 /// where CurLI is live.
148 bool SplitAnalysis::calcLiveBlockInfo() {
149   ThroughBlocks.resize(MF.getNumBlockIDs());
150   NumThroughBlocks = NumGapBlocks = 0;
151   if (CurLI->empty())
152     return true;
153 
154   LiveInterval::const_iterator LVI = CurLI->begin();
155   LiveInterval::const_iterator LVE = CurLI->end();
156 
157   SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE;
158   UseI = UseSlots.begin();
159   UseE = UseSlots.end();
160 
161   // Loop over basic blocks where CurLI is live.
162   MachineFunction::iterator MFI = LIS.getMBBFromIndex(LVI->start);
163   for (;;) {
164     BlockInfo BI;
165     BI.MBB = MFI;
166     SlotIndex Start, Stop;
167     tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
168 
169     // If the block contains no uses, the range must be live through. At one
170     // point, RegisterCoalescer could create dangling ranges that ended
171     // mid-block.
172     if (UseI == UseE || *UseI >= Stop) {
173       ++NumThroughBlocks;
174       ThroughBlocks.set(BI.MBB->getNumber());
175       // The range shouldn't end mid-block if there are no uses. This shouldn't
176       // happen.
177       if (LVI->end < Stop)
178         return false;
179     } else {
180       // This block has uses. Find the first and last uses in the block.
181       BI.FirstInstr = *UseI;
182       assert(BI.FirstInstr >= Start);
183       do ++UseI;
184       while (UseI != UseE && *UseI < Stop);
185       BI.LastInstr = UseI[-1];
186       assert(BI.LastInstr < Stop);
187 
188       // LVI is the first live segment overlapping MBB.
189       BI.LiveIn = LVI->start <= Start;
190 
191       // When not live in, the first use should be a def.
192       if (!BI.LiveIn) {
193         assert(LVI->start == LVI->valno->def && "Dangling LiveRange start");
194         assert(LVI->start == BI.FirstInstr && "First instr should be a def");
195         BI.FirstDef = BI.FirstInstr;
196       }
197 
198       // Look for gaps in the live range.
199       BI.LiveOut = true;
200       while (LVI->end < Stop) {
201         SlotIndex LastStop = LVI->end;
202         if (++LVI == LVE || LVI->start >= Stop) {
203           BI.LiveOut = false;
204           BI.LastInstr = LastStop;
205           break;
206         }
207 
208         if (LastStop < LVI->start) {
209           // There is a gap in the live range. Create duplicate entries for the
210           // live-in snippet and the live-out snippet.
211           ++NumGapBlocks;
212 
213           // Push the Live-in part.
214           BI.LiveOut = false;
215           UseBlocks.push_back(BI);
216           UseBlocks.back().LastInstr = LastStop;
217 
218           // Set up BI for the live-out part.
219           BI.LiveIn = false;
220           BI.LiveOut = true;
221           BI.FirstInstr = BI.FirstDef = LVI->start;
222         }
223 
224         // A LiveRange that starts in the middle of the block must be a def.
225         assert(LVI->start == LVI->valno->def && "Dangling LiveRange start");
226         if (!BI.FirstDef)
227           BI.FirstDef = LVI->start;
228       }
229 
230       UseBlocks.push_back(BI);
231 
232       // LVI is now at LVE or LVI->end >= Stop.
233       if (LVI == LVE)
234         break;
235     }
236 
237     // Live segment ends exactly at Stop. Move to the next segment.
238     if (LVI->end == Stop && ++LVI == LVE)
239       break;
240 
241     // Pick the next basic block.
242     if (LVI->start < Stop)
243       ++MFI;
244     else
245       MFI = LIS.getMBBFromIndex(LVI->start);
246   }
247 
248   assert(getNumLiveBlocks() == countLiveBlocks(CurLI) && "Bad block count");
249   return true;
250 }
251 
252 unsigned SplitAnalysis::countLiveBlocks(const LiveInterval *cli) const {
253   if (cli->empty())
254     return 0;
255   LiveInterval *li = const_cast<LiveInterval*>(cli);
256   LiveInterval::iterator LVI = li->begin();
257   LiveInterval::iterator LVE = li->end();
258   unsigned Count = 0;
259 
260   // Loop over basic blocks where li is live.
261   MachineFunction::const_iterator MFI = LIS.getMBBFromIndex(LVI->start);
262   SlotIndex Stop = LIS.getMBBEndIdx(MFI);
263   for (;;) {
264     ++Count;
265     LVI = li->advanceTo(LVI, Stop);
266     if (LVI == LVE)
267       return Count;
268     do {
269       ++MFI;
270       Stop = LIS.getMBBEndIdx(MFI);
271     } while (Stop <= LVI->start);
272   }
273 }
274 
275 bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const {
276   unsigned OrigReg = VRM.getOriginal(CurLI->reg);
277   const LiveInterval &Orig = LIS.getInterval(OrigReg);
278   assert(!Orig.empty() && "Splitting empty interval?");
279   LiveInterval::const_iterator I = Orig.find(Idx);
280 
281   // Range containing Idx should begin at Idx.
282   if (I != Orig.end() && I->start <= Idx)
283     return I->start == Idx;
284 
285   // Range does not contain Idx, previous must end at Idx.
286   return I != Orig.begin() && (--I)->end == Idx;
287 }
288 
289 void SplitAnalysis::analyze(const LiveInterval *li) {
290   clear();
291   CurLI = li;
292   analyzeUses();
293 }
294 
295 
296 //===----------------------------------------------------------------------===//
297 //                               Split Editor
298 //===----------------------------------------------------------------------===//
299 
300 /// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
301 SplitEditor::SplitEditor(SplitAnalysis &sa,
302                          LiveIntervals &lis,
303                          VirtRegMap &vrm,
304                          MachineDominatorTree &mdt)
305   : SA(sa), LIS(lis), VRM(vrm),
306     MRI(vrm.getMachineFunction().getRegInfo()),
307     MDT(mdt),
308     TII(*vrm.getMachineFunction().getTarget().getInstrInfo()),
309     TRI(*vrm.getMachineFunction().getTarget().getRegisterInfo()),
310     Edit(0),
311     OpenIdx(0),
312     SpillMode(SM_Partition),
313     RegAssign(Allocator)
314 {}
315 
316 void SplitEditor::reset(LiveRangeEdit &LRE, ComplementSpillMode SM) {
317   Edit = &LRE;
318   SpillMode = SM;
319   OpenIdx = 0;
320   OverlappedComplement.clear();
321   RegAssign.clear();
322   Values.clear();
323 
324   // Reset the LiveRangeCalc instances needed for this spill mode.
325   LRCalc[0].reset(&VRM.getMachineFunction());
326   if (SpillMode)
327     LRCalc[1].reset(&VRM.getMachineFunction());
328 
329   // We don't need an AliasAnalysis since we will only be performing
330   // cheap-as-a-copy remats anyway.
331   Edit->anyRematerializable(LIS, TII, 0);
332 }
333 
334 void SplitEditor::dump() const {
335   if (RegAssign.empty()) {
336     dbgs() << " empty\n";
337     return;
338   }
339 
340   for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I)
341     dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value();
342   dbgs() << '\n';
343 }
344 
345 VNInfo *SplitEditor::defValue(unsigned RegIdx,
346                               const VNInfo *ParentVNI,
347                               SlotIndex Idx) {
348   assert(ParentVNI && "Mapping  NULL value");
349   assert(Idx.isValid() && "Invalid SlotIndex");
350   assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI");
351   LiveInterval *LI = Edit->get(RegIdx);
352 
353   // Create a new value.
354   VNInfo *VNI = LI->getNextValue(Idx, 0, LIS.getVNInfoAllocator());
355 
356   // Use insert for lookup, so we can add missing values with a second lookup.
357   std::pair<ValueMap::iterator, bool> InsP =
358     Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id), VNI));
359 
360   // This was the first time (RegIdx, ParentVNI) was mapped.
361   // Keep it as a simple def without any liveness.
362   if (InsP.second)
363     return VNI;
364 
365   // If the previous value was a simple mapping, add liveness for it now.
366   if (VNInfo *OldVNI = InsP.first->second) {
367     SlotIndex Def = OldVNI->def;
368     LI->addRange(LiveRange(Def, Def.getNextSlot(), OldVNI));
369     // No longer a simple mapping.
370     InsP.first->second = 0;
371   }
372 
373   // This is a complex mapping, add liveness for VNI
374   SlotIndex Def = VNI->def;
375   LI->addRange(LiveRange(Def, Def.getNextSlot(), VNI));
376 
377   return VNI;
378 }
379 
380 void SplitEditor::markComplexMapped(unsigned RegIdx, const VNInfo *ParentVNI) {
381   assert(ParentVNI && "Mapping  NULL value");
382   VNInfo *&VNI = Values[std::make_pair(RegIdx, ParentVNI->id)];
383 
384   // ParentVNI was either unmapped or already complex mapped. Either way.
385   if (!VNI)
386     return;
387 
388   // This was previously a single mapping. Make sure the old def is represented
389   // by a trivial live range.
390   SlotIndex Def = VNI->def;
391   Edit->get(RegIdx)->addRange(LiveRange(Def, Def.getNextSlot(), VNI));
392   VNI = 0;
393 }
394 
395 void SplitEditor::markOverlappedComplement(const VNInfo *ParentVNI) {
396   if (OverlappedComplement.insert(ParentVNI))
397     markComplexMapped(0, ParentVNI);
398 }
399 
400 bool SplitEditor::needsRecompute(unsigned RegIdx, const VNInfo *ParentVNI) {
401   return (RegIdx == 0 && OverlappedComplement.count(ParentVNI)) ||
402     Edit->didRematerialize(ParentVNI);
403 }
404 
405 VNInfo *SplitEditor::defFromParent(unsigned RegIdx,
406                                    VNInfo *ParentVNI,
407                                    SlotIndex UseIdx,
408                                    MachineBasicBlock &MBB,
409                                    MachineBasicBlock::iterator I) {
410   MachineInstr *CopyMI = 0;
411   SlotIndex Def;
412   LiveInterval *LI = Edit->get(RegIdx);
413 
414   // We may be trying to avoid interference that ends at a deleted instruction,
415   // so always begin RegIdx 0 early and all others late.
416   bool Late = RegIdx != 0;
417 
418   // Attempt cheap-as-a-copy rematerialization.
419   LiveRangeEdit::Remat RM(ParentVNI);
420   if (Edit->canRematerializeAt(RM, UseIdx, true, LIS)) {
421     Def = Edit->rematerializeAt(MBB, I, LI->reg, RM, LIS, TII, TRI, Late);
422     ++NumRemats;
423   } else {
424     // Can't remat, just insert a copy from parent.
425     CopyMI = BuildMI(MBB, I, DebugLoc(), TII.get(TargetOpcode::COPY), LI->reg)
426                .addReg(Edit->getReg());
427     Def = LIS.getSlotIndexes()->insertMachineInstrInMaps(CopyMI, Late)
428             .getDefIndex();
429     ++NumCopies;
430   }
431 
432   // Define the value in Reg.
433   VNInfo *VNI = defValue(RegIdx, ParentVNI, Def);
434   VNI->setCopy(CopyMI);
435   return VNI;
436 }
437 
438 /// Create a new virtual register and live interval.
439 unsigned SplitEditor::openIntv() {
440   // Create the complement as index 0.
441   if (Edit->empty())
442     Edit->create(LIS, VRM);
443 
444   // Create the open interval.
445   OpenIdx = Edit->size();
446   Edit->create(LIS, VRM);
447   return OpenIdx;
448 }
449 
450 void SplitEditor::selectIntv(unsigned Idx) {
451   assert(Idx != 0 && "Cannot select the complement interval");
452   assert(Idx < Edit->size() && "Can only select previously opened interval");
453   DEBUG(dbgs() << "    selectIntv " << OpenIdx << " -> " << Idx << '\n');
454   OpenIdx = Idx;
455 }
456 
457 SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) {
458   assert(OpenIdx && "openIntv not called before enterIntvBefore");
459   DEBUG(dbgs() << "    enterIntvBefore " << Idx);
460   Idx = Idx.getBaseIndex();
461   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
462   if (!ParentVNI) {
463     DEBUG(dbgs() << ": not live\n");
464     return Idx;
465   }
466   DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
467   MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
468   assert(MI && "enterIntvBefore called with invalid index");
469 
470   VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI);
471   return VNI->def;
472 }
473 
474 SlotIndex SplitEditor::enterIntvAfter(SlotIndex Idx) {
475   assert(OpenIdx && "openIntv not called before enterIntvAfter");
476   DEBUG(dbgs() << "    enterIntvAfter " << Idx);
477   Idx = Idx.getBoundaryIndex();
478   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
479   if (!ParentVNI) {
480     DEBUG(dbgs() << ": not live\n");
481     return Idx;
482   }
483   DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
484   MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
485   assert(MI && "enterIntvAfter called with invalid index");
486 
487   VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(),
488                               llvm::next(MachineBasicBlock::iterator(MI)));
489   return VNI->def;
490 }
491 
492 SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) {
493   assert(OpenIdx && "openIntv not called before enterIntvAtEnd");
494   SlotIndex End = LIS.getMBBEndIdx(&MBB);
495   SlotIndex Last = End.getPrevSlot();
496   DEBUG(dbgs() << "    enterIntvAtEnd BB#" << MBB.getNumber() << ", " << Last);
497   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last);
498   if (!ParentVNI) {
499     DEBUG(dbgs() << ": not live\n");
500     return End;
501   }
502   DEBUG(dbgs() << ": valno " << ParentVNI->id);
503   VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB,
504                               LIS.getLastSplitPoint(Edit->getParent(), &MBB));
505   RegAssign.insert(VNI->def, End, OpenIdx);
506   DEBUG(dump());
507   return VNI->def;
508 }
509 
510 /// useIntv - indicate that all instructions in MBB should use OpenLI.
511 void SplitEditor::useIntv(const MachineBasicBlock &MBB) {
512   useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB));
513 }
514 
515 void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) {
516   assert(OpenIdx && "openIntv not called before useIntv");
517   DEBUG(dbgs() << "    useIntv [" << Start << ';' << End << "):");
518   RegAssign.insert(Start, End, OpenIdx);
519   DEBUG(dump());
520 }
521 
522 SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) {
523   assert(OpenIdx && "openIntv not called before leaveIntvAfter");
524   DEBUG(dbgs() << "    leaveIntvAfter " << Idx);
525 
526   // The interval must be live beyond the instruction at Idx.
527   Idx = Idx.getBoundaryIndex();
528   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
529   if (!ParentVNI) {
530     DEBUG(dbgs() << ": not live\n");
531     return Idx.getNextSlot();
532   }
533   DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
534 
535   MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
536   assert(MI && "No instruction at index");
537   VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(),
538                               llvm::next(MachineBasicBlock::iterator(MI)));
539   return VNI->def;
540 }
541 
542 SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) {
543   assert(OpenIdx && "openIntv not called before leaveIntvBefore");
544   DEBUG(dbgs() << "    leaveIntvBefore " << Idx);
545 
546   // The interval must be live into the instruction at Idx.
547   Idx = Idx.getBaseIndex();
548   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
549   if (!ParentVNI) {
550     DEBUG(dbgs() << ": not live\n");
551     return Idx.getNextSlot();
552   }
553   DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
554 
555   MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
556   assert(MI && "No instruction at index");
557   VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
558   return VNI->def;
559 }
560 
561 SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) {
562   assert(OpenIdx && "openIntv not called before leaveIntvAtTop");
563   SlotIndex Start = LIS.getMBBStartIdx(&MBB);
564   DEBUG(dbgs() << "    leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start);
565 
566   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
567   if (!ParentVNI) {
568     DEBUG(dbgs() << ": not live\n");
569     return Start;
570   }
571 
572   VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB,
573                               MBB.SkipPHIsAndLabels(MBB.begin()));
574   RegAssign.insert(Start, VNI->def, OpenIdx);
575   DEBUG(dump());
576   return VNI->def;
577 }
578 
579 void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) {
580   assert(OpenIdx && "openIntv not called before overlapIntv");
581   const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
582   assert(ParentVNI == Edit->getParent().getVNInfoAt(End.getPrevSlot()) &&
583          "Parent changes value in extended range");
584   assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) &&
585          "Range cannot span basic blocks");
586 
587   // The complement interval will be extended as needed by LRCalc.extend().
588   if (ParentVNI)
589     markOverlappedComplement(ParentVNI);
590   DEBUG(dbgs() << "    overlapIntv [" << Start << ';' << End << "):");
591   RegAssign.insert(Start, End, OpenIdx);
592   DEBUG(dump());
593 }
594 
595 //===----------------------------------------------------------------------===//
596 //                                  Spill modes
597 //===----------------------------------------------------------------------===//
598 
599 void SplitEditor::removeBackCopies(SmallVectorImpl<VNInfo*> &Copies) {
600   LiveInterval *LI = Edit->get(0);
601   DEBUG(dbgs() << "Removing " << Copies.size() << " back-copies.\n");
602   RegAssignMap::iterator AssignI;
603   AssignI.setMap(RegAssign);
604 
605   for (unsigned i = 0, e = Copies.size(); i != e; ++i) {
606     VNInfo *VNI = Copies[i];
607     SlotIndex Def = VNI->def;
608     MachineInstr *MI = LIS.getInstructionFromIndex(Def);
609     assert(MI && "No instruction for back-copy");
610 
611     MachineBasicBlock *MBB = MI->getParent();
612     MachineBasicBlock::iterator MBBI(MI);
613     bool AtBegin;
614     do AtBegin = MBBI == MBB->begin();
615     while (!AtBegin && (--MBBI)->isDebugValue());
616 
617     DEBUG(dbgs() << "Removing " << Def << '\t' << *MI);
618     LI->removeValNo(VNI);
619     LIS.RemoveMachineInstrFromMaps(MI);
620     MI->eraseFromParent();
621 
622     // Adjust RegAssign if a register assignment is killed at VNI->def.  We
623     // want to avoid calculating the live range of the source register if
624     // possible.
625     AssignI.find(VNI->def.getPrevSlot());
626     if (!AssignI.valid() || AssignI.start() >= Def)
627       continue;
628     // If MI doesn't kill the assigned register, just leave it.
629     if (AssignI.stop() != Def)
630       continue;
631     unsigned RegIdx = AssignI.value();
632     if (AtBegin || !MBBI->readsVirtualRegister(Edit->getReg())) {
633       DEBUG(dbgs() << "  cannot find simple kill of RegIdx " << RegIdx << '\n');
634       markComplexMapped(RegIdx, Edit->getParent().getVNInfoAt(Def));
635     } else {
636       SlotIndex Kill = LIS.getInstructionIndex(MBBI).getDefIndex();
637       DEBUG(dbgs() << "  move kill to " << Kill << '\t' << *MBBI);
638       AssignI.setStop(Kill);
639     }
640   }
641 }
642 
643 void SplitEditor::hoistCopiesForSize() {
644   // Get the complement interval, always RegIdx 0.
645   LiveInterval *LI = Edit->get(0);
646   LiveInterval *Parent = &Edit->getParent();
647 
648   // Track the nearest common dominator for all back-copies for each ParentVNI,
649   // indexed by ParentVNI->id.
650   typedef std::pair<MachineBasicBlock*, SlotIndex> DomPair;
651   SmallVector<DomPair, 8> NearestDom(Parent->getNumValNums());
652 
653   // Find the nearest common dominator for parent values with multiple
654   // back-copies.  If a single back-copy dominates, put it in DomPair.second.
655   for (LiveInterval::vni_iterator VI = LI->vni_begin(), VE = LI->vni_end();
656        VI != VE; ++VI) {
657     VNInfo *VNI = *VI;
658     VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
659     assert(ParentVNI && "Parent not live at complement def");
660 
661     // Don't hoist remats.  The complement is probably going to disappear
662     // completely anyway.
663     if (Edit->didRematerialize(ParentVNI))
664       continue;
665 
666     MachineBasicBlock *ValMBB = LIS.getMBBFromIndex(VNI->def);
667     DomPair &Dom = NearestDom[ParentVNI->id];
668 
669     // Keep directly defined parent values.  This is either a PHI or an
670     // instruction in the complement range.  All other copies of ParentVNI
671     // should be eliminated.
672     if (VNI->def == ParentVNI->def) {
673       DEBUG(dbgs() << "Direct complement def at " << VNI->def << '\n');
674       Dom = DomPair(ValMBB, VNI->def);
675       continue;
676     }
677     // Skip the singly mapped values.  There is nothing to gain from hoisting a
678     // single back-copy.
679     if (Values.lookup(std::make_pair(0, ParentVNI->id))) {
680       DEBUG(dbgs() << "Single complement def at " << VNI->def << '\n');
681       continue;
682     }
683 
684     if (!Dom.first) {
685       // First time we see ParentVNI.  VNI dominates itself.
686       Dom = DomPair(ValMBB, VNI->def);
687     } else if (Dom.first == ValMBB) {
688       // Two defs in the same block.  Pick the earlier def.
689       if (!Dom.second.isValid() || VNI->def < Dom.second)
690         Dom.second = VNI->def;
691     } else {
692       // Different basic blocks. Check if one dominates.
693       MachineBasicBlock *Near =
694         MDT.findNearestCommonDominator(Dom.first, ValMBB);
695       if (Near == ValMBB)
696         // Def ValMBB dominates.
697         Dom = DomPair(ValMBB, VNI->def);
698       else if (Near != Dom.first)
699         // None dominate. Hoist to common dominator, need new def.
700         Dom = DomPair(Near, SlotIndex());
701     }
702 
703     DEBUG(dbgs() << "Multi-mapped complement " << VNI->id << '@' << VNI->def
704                  << " for parent " << ParentVNI->id << '@' << ParentVNI->def
705                  << " hoist to BB#" << Dom.first->getNumber() << ' '
706                  << Dom.second << '\n');
707   }
708 
709   // Insert the hoisted copies.
710   for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) {
711     DomPair &Dom = NearestDom[i];
712     if (!Dom.first || Dom.second.isValid())
713       continue;
714     // This value needs a hoisted copy inserted at the end of Dom.second.
715     SlotIndex Last = LIS.getMBBEndIdx(Dom.first).getPrevSlot();
716     Dom.second =
717       defFromParent(0, Parent->getValNumInfo(i), Last, *Dom.first,
718                     LIS.getLastSplitPoint(Edit->getParent(), Dom.first))->def;
719   }
720 
721   // Remove redundant back-copies that are now known to be dominated by another
722   // def with the same value.
723   SmallVector<VNInfo*, 8> BackCopies;
724   for (LiveInterval::vni_iterator VI = LI->vni_begin(), VE = LI->vni_end();
725        VI != VE; ++VI) {
726     VNInfo *VNI = *VI;
727     VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
728     const DomPair &Dom = NearestDom[ParentVNI->id];
729     if (!Dom.first || Dom.second == VNI->def)
730       continue;
731     BackCopies.push_back(VNI);
732     markOverlappedComplement(ParentVNI);
733   }
734   removeBackCopies(BackCopies);
735 }
736 
737 
738 /// transferValues - Transfer all possible values to the new live ranges.
739 /// Values that were rematerialized are left alone, they need LRCalc.extend().
740 bool SplitEditor::transferValues() {
741   bool Skipped = false;
742   RegAssignMap::const_iterator AssignI = RegAssign.begin();
743   for (LiveInterval::const_iterator ParentI = Edit->getParent().begin(),
744          ParentE = Edit->getParent().end(); ParentI != ParentE; ++ParentI) {
745     DEBUG(dbgs() << "  blit " << *ParentI << ':');
746     VNInfo *ParentVNI = ParentI->valno;
747     // RegAssign has holes where RegIdx 0 should be used.
748     SlotIndex Start = ParentI->start;
749     AssignI.advanceTo(Start);
750     do {
751       unsigned RegIdx;
752       SlotIndex End = ParentI->end;
753       if (!AssignI.valid()) {
754         RegIdx = 0;
755       } else if (AssignI.start() <= Start) {
756         RegIdx = AssignI.value();
757         if (AssignI.stop() < End) {
758           End = AssignI.stop();
759           ++AssignI;
760         }
761       } else {
762         RegIdx = 0;
763         End = std::min(End, AssignI.start());
764       }
765 
766       // The interval [Start;End) is continuously mapped to RegIdx, ParentVNI.
767       DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx);
768       LiveInterval *LI = Edit->get(RegIdx);
769 
770       // Check for a simply defined value that can be blitted directly.
771       if (VNInfo *VNI = Values.lookup(std::make_pair(RegIdx, ParentVNI->id))) {
772         DEBUG(dbgs() << ':' << VNI->id);
773         LI->addRange(LiveRange(Start, End, VNI));
774         Start = End;
775         continue;
776       }
777 
778       // Skip rematerialized values, we need to use LRCalc.extend() and
779       // extendPHIKillRanges() to completely recompute the live ranges.
780       if (needsRecompute(RegIdx, ParentVNI)) {
781         DEBUG(dbgs() << "(remat)");
782         Skipped = true;
783         Start = End;
784         continue;
785       }
786 
787       LiveRangeCalc &LRC = getLRCalc(RegIdx);
788 
789       // This value has multiple defs in RegIdx, but it wasn't rematerialized,
790       // so the live range is accurate. Add live-in blocks in [Start;End) to the
791       // LiveInBlocks.
792       MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start);
793       SlotIndex BlockStart, BlockEnd;
794       tie(BlockStart, BlockEnd) = LIS.getSlotIndexes()->getMBBRange(MBB);
795 
796       // The first block may be live-in, or it may have its own def.
797       if (Start != BlockStart) {
798         VNInfo *VNI = LI->extendInBlock(BlockStart, std::min(BlockEnd, End));
799         assert(VNI && "Missing def for complex mapped value");
800         DEBUG(dbgs() << ':' << VNI->id << "*BB#" << MBB->getNumber());
801         // MBB has its own def. Is it also live-out?
802         if (BlockEnd <= End)
803           LRC.setLiveOutValue(MBB, VNI);
804 
805         // Skip to the next block for live-in.
806         ++MBB;
807         BlockStart = BlockEnd;
808       }
809 
810       // Handle the live-in blocks covered by [Start;End).
811       assert(Start <= BlockStart && "Expected live-in block");
812       while (BlockStart < End) {
813         DEBUG(dbgs() << ">BB#" << MBB->getNumber());
814         BlockEnd = LIS.getMBBEndIdx(MBB);
815         if (BlockStart == ParentVNI->def) {
816           // This block has the def of a parent PHI, so it isn't live-in.
817           assert(ParentVNI->isPHIDef() && "Non-phi defined at block start?");
818           VNInfo *VNI = LI->extendInBlock(BlockStart, std::min(BlockEnd, End));
819           assert(VNI && "Missing def for complex mapped parent PHI");
820           if (End >= BlockEnd)
821             LRC.setLiveOutValue(MBB, VNI); // Live-out as well.
822         } else {
823           // This block needs a live-in value.  The last block covered may not
824           // be live-out.
825           if (End < BlockEnd)
826             LRC.addLiveInBlock(LI, MDT[MBB], End);
827           else {
828             // Live-through, and we don't know the value.
829             LRC.addLiveInBlock(LI, MDT[MBB]);
830             LRC.setLiveOutValue(MBB, 0);
831           }
832         }
833         BlockStart = BlockEnd;
834         ++MBB;
835       }
836       Start = End;
837     } while (Start != ParentI->end);
838     DEBUG(dbgs() << '\n');
839   }
840 
841   LRCalc[0].calculateValues(LIS.getSlotIndexes(), &MDT,
842                             &LIS.getVNInfoAllocator());
843   if (SpillMode)
844     LRCalc[1].calculateValues(LIS.getSlotIndexes(), &MDT,
845                               &LIS.getVNInfoAllocator());
846 
847   return Skipped;
848 }
849 
850 void SplitEditor::extendPHIKillRanges() {
851     // Extend live ranges to be live-out for successor PHI values.
852   for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(),
853        E = Edit->getParent().vni_end(); I != E; ++I) {
854     const VNInfo *PHIVNI = *I;
855     if (PHIVNI->isUnused() || !PHIVNI->isPHIDef())
856       continue;
857     unsigned RegIdx = RegAssign.lookup(PHIVNI->def);
858     LiveInterval *LI = Edit->get(RegIdx);
859     LiveRangeCalc &LRC = getLRCalc(RegIdx);
860     MachineBasicBlock *MBB = LIS.getMBBFromIndex(PHIVNI->def);
861     for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
862          PE = MBB->pred_end(); PI != PE; ++PI) {
863       SlotIndex End = LIS.getMBBEndIdx(*PI);
864       SlotIndex LastUse = End.getPrevSlot();
865       // The predecessor may not have a live-out value. That is OK, like an
866       // undef PHI operand.
867       if (Edit->getParent().liveAt(LastUse)) {
868         assert(RegAssign.lookup(LastUse) == RegIdx &&
869                "Different register assignment in phi predecessor");
870         LRC.extend(LI, End,
871                    LIS.getSlotIndexes(), &MDT, &LIS.getVNInfoAllocator());
872       }
873     }
874   }
875 }
876 
877 /// rewriteAssigned - Rewrite all uses of Edit->getReg().
878 void SplitEditor::rewriteAssigned(bool ExtendRanges) {
879   for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Edit->getReg()),
880        RE = MRI.reg_end(); RI != RE;) {
881     MachineOperand &MO = RI.getOperand();
882     MachineInstr *MI = MO.getParent();
883     ++RI;
884     // LiveDebugVariables should have handled all DBG_VALUE instructions.
885     if (MI->isDebugValue()) {
886       DEBUG(dbgs() << "Zapping " << *MI);
887       MO.setReg(0);
888       continue;
889     }
890 
891     // <undef> operands don't really read the register, so it doesn't matter
892     // which register we choose.  When the use operand is tied to a def, we must
893     // use the same register as the def, so just do that always.
894     SlotIndex Idx = LIS.getInstructionIndex(MI);
895     if (MO.isDef() || MO.isUndef())
896       Idx = MO.isEarlyClobber() ? Idx.getUseIndex() : Idx.getDefIndex();
897 
898     // Rewrite to the mapped register at Idx.
899     unsigned RegIdx = RegAssign.lookup(Idx);
900     LiveInterval *LI = Edit->get(RegIdx);
901     MO.setReg(LI->reg);
902     DEBUG(dbgs() << "  rewr BB#" << MI->getParent()->getNumber() << '\t'
903                  << Idx << ':' << RegIdx << '\t' << *MI);
904 
905     // Extend liveness to Idx if the instruction reads reg.
906     if (!ExtendRanges || MO.isUndef())
907       continue;
908 
909     // Skip instructions that don't read Reg.
910     if (MO.isDef()) {
911       if (!MO.getSubReg() && !MO.isEarlyClobber())
912         continue;
913       // We may wan't to extend a live range for a partial redef, or for a use
914       // tied to an early clobber.
915       Idx = Idx.getPrevSlot();
916       if (!Edit->getParent().liveAt(Idx))
917         continue;
918     } else
919       Idx = Idx.getUseIndex();
920 
921     getLRCalc(RegIdx).extend(LI, Idx.getNextSlot(), LIS.getSlotIndexes(),
922                              &MDT, &LIS.getVNInfoAllocator());
923   }
924 }
925 
926 void SplitEditor::deleteRematVictims() {
927   SmallVector<MachineInstr*, 8> Dead;
928   for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I){
929     LiveInterval *LI = *I;
930     for (LiveInterval::const_iterator LII = LI->begin(), LIE = LI->end();
931            LII != LIE; ++LII) {
932       // Dead defs end at the store slot.
933       if (LII->end != LII->valno->def.getNextSlot())
934         continue;
935       MachineInstr *MI = LIS.getInstructionFromIndex(LII->valno->def);
936       assert(MI && "Missing instruction for dead def");
937       MI->addRegisterDead(LI->reg, &TRI);
938 
939       if (!MI->allDefsAreDead())
940         continue;
941 
942       DEBUG(dbgs() << "All defs dead: " << *MI);
943       Dead.push_back(MI);
944     }
945   }
946 
947   if (Dead.empty())
948     return;
949 
950   Edit->eliminateDeadDefs(Dead, LIS, VRM, TII);
951 }
952 
953 void SplitEditor::finish(SmallVectorImpl<unsigned> *LRMap) {
954   ++NumFinished;
955 
956   // At this point, the live intervals in Edit contain VNInfos corresponding to
957   // the inserted copies.
958 
959   // Add the original defs from the parent interval.
960   for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(),
961          E = Edit->getParent().vni_end(); I != E; ++I) {
962     const VNInfo *ParentVNI = *I;
963     if (ParentVNI->isUnused())
964       continue;
965     unsigned RegIdx = RegAssign.lookup(ParentVNI->def);
966     VNInfo *VNI = defValue(RegIdx, ParentVNI, ParentVNI->def);
967     VNI->setIsPHIDef(ParentVNI->isPHIDef());
968     VNI->setCopy(ParentVNI->getCopy());
969 
970     // Mark rematted values as complex everywhere to force liveness computation.
971     // The new live ranges may be truncated.
972     if (Edit->didRematerialize(ParentVNI))
973       for (unsigned i = 0, e = Edit->size(); i != e; ++i)
974         markComplexMapped(i, ParentVNI);
975   }
976 
977   // Hoist back-copies to the complement interval when in spill mode.
978   switch (SpillMode) {
979   case SM_Partition:
980     // Leave all back-copies as is.
981     break;
982   case SM_Size:
983     hoistCopiesForSize();
984     break;
985   case SM_Speed:
986     llvm_unreachable("Spill mode 'speed' not implemented yet");
987     break;
988   }
989 
990   // Transfer the simply mapped values, check if any are skipped.
991   bool Skipped = transferValues();
992   if (Skipped)
993     extendPHIKillRanges();
994   else
995     ++NumSimple;
996 
997   // Rewrite virtual registers, possibly extending ranges.
998   rewriteAssigned(Skipped);
999 
1000   // Delete defs that were rematted everywhere.
1001   if (Skipped)
1002     deleteRematVictims();
1003 
1004   // Get rid of unused values and set phi-kill flags.
1005   for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I)
1006     (*I)->RenumberValues(LIS);
1007 
1008   // Provide a reverse mapping from original indices to Edit ranges.
1009   if (LRMap) {
1010     LRMap->clear();
1011     for (unsigned i = 0, e = Edit->size(); i != e; ++i)
1012       LRMap->push_back(i);
1013   }
1014 
1015   // Now check if any registers were separated into multiple components.
1016   ConnectedVNInfoEqClasses ConEQ(LIS);
1017   for (unsigned i = 0, e = Edit->size(); i != e; ++i) {
1018     // Don't use iterators, they are invalidated by create() below.
1019     LiveInterval *li = Edit->get(i);
1020     unsigned NumComp = ConEQ.Classify(li);
1021     if (NumComp <= 1)
1022       continue;
1023     DEBUG(dbgs() << "  " << NumComp << " components: " << *li << '\n');
1024     SmallVector<LiveInterval*, 8> dups;
1025     dups.push_back(li);
1026     for (unsigned j = 1; j != NumComp; ++j)
1027       dups.push_back(&Edit->create(LIS, VRM));
1028     ConEQ.Distribute(&dups[0], MRI);
1029     // The new intervals all map back to i.
1030     if (LRMap)
1031       LRMap->resize(Edit->size(), i);
1032   }
1033 
1034   // Calculate spill weight and allocation hints for new intervals.
1035   Edit->calculateRegClassAndHint(VRM.getMachineFunction(), LIS, SA.Loops);
1036 
1037   assert(!LRMap || LRMap->size() == Edit->size());
1038 }
1039 
1040 
1041 //===----------------------------------------------------------------------===//
1042 //                            Single Block Splitting
1043 //===----------------------------------------------------------------------===//
1044 
1045 bool SplitAnalysis::shouldSplitSingleBlock(const BlockInfo &BI,
1046                                            bool SingleInstrs) const {
1047   // Always split for multiple instructions.
1048   if (!BI.isOneInstr())
1049     return true;
1050   // Don't split for single instructions unless explicitly requested.
1051   if (!SingleInstrs)
1052     return false;
1053   // Splitting a live-through range always makes progress.
1054   if (BI.LiveIn && BI.LiveOut)
1055     return true;
1056   // No point in isolating a copy. It has no register class constraints.
1057   if (LIS.getInstructionFromIndex(BI.FirstInstr)->isCopyLike())
1058     return false;
1059   // Finally, don't isolate an end point that was created by earlier splits.
1060   return isOriginalEndpoint(BI.FirstInstr);
1061 }
1062 
1063 void SplitEditor::splitSingleBlock(const SplitAnalysis::BlockInfo &BI) {
1064   openIntv();
1065   SlotIndex LastSplitPoint = SA.getLastSplitPoint(BI.MBB->getNumber());
1066   SlotIndex SegStart = enterIntvBefore(std::min(BI.FirstInstr,
1067     LastSplitPoint));
1068   if (!BI.LiveOut || BI.LastInstr < LastSplitPoint) {
1069     useIntv(SegStart, leaveIntvAfter(BI.LastInstr));
1070   } else {
1071       // The last use is after the last valid split point.
1072     SlotIndex SegStop = leaveIntvBefore(LastSplitPoint);
1073     useIntv(SegStart, SegStop);
1074     overlapIntv(SegStop, BI.LastInstr);
1075   }
1076 }
1077 
1078 
1079 //===----------------------------------------------------------------------===//
1080 //                    Global Live Range Splitting Support
1081 //===----------------------------------------------------------------------===//
1082 
1083 // These methods support a method of global live range splitting that uses a
1084 // global algorithm to decide intervals for CFG edges. They will insert split
1085 // points and color intervals in basic blocks while avoiding interference.
1086 //
1087 // Note that splitSingleBlock is also useful for blocks where both CFG edges
1088 // are on the stack.
1089 
1090 void SplitEditor::splitLiveThroughBlock(unsigned MBBNum,
1091                                         unsigned IntvIn, SlotIndex LeaveBefore,
1092                                         unsigned IntvOut, SlotIndex EnterAfter){
1093   SlotIndex Start, Stop;
1094   tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(MBBNum);
1095 
1096   DEBUG(dbgs() << "BB#" << MBBNum << " [" << Start << ';' << Stop
1097                << ") intf " << LeaveBefore << '-' << EnterAfter
1098                << ", live-through " << IntvIn << " -> " << IntvOut);
1099 
1100   assert((IntvIn || IntvOut) && "Use splitSingleBlock for isolated blocks");
1101 
1102   assert((!LeaveBefore || LeaveBefore < Stop) && "Interference after block");
1103   assert((!IntvIn || !LeaveBefore || LeaveBefore > Start) && "Impossible intf");
1104   assert((!EnterAfter || EnterAfter >= Start) && "Interference before block");
1105 
1106   MachineBasicBlock *MBB = VRM.getMachineFunction().getBlockNumbered(MBBNum);
1107 
1108   if (!IntvOut) {
1109     DEBUG(dbgs() << ", spill on entry.\n");
1110     //
1111     //        <<<<<<<<<    Possible LeaveBefore interference.
1112     //    |-----------|    Live through.
1113     //    -____________    Spill on entry.
1114     //
1115     selectIntv(IntvIn);
1116     SlotIndex Idx = leaveIntvAtTop(*MBB);
1117     assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1118     (void)Idx;
1119     return;
1120   }
1121 
1122   if (!IntvIn) {
1123     DEBUG(dbgs() << ", reload on exit.\n");
1124     //
1125     //    >>>>>>>          Possible EnterAfter interference.
1126     //    |-----------|    Live through.
1127     //    ___________--    Reload on exit.
1128     //
1129     selectIntv(IntvOut);
1130     SlotIndex Idx = enterIntvAtEnd(*MBB);
1131     assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1132     (void)Idx;
1133     return;
1134   }
1135 
1136   if (IntvIn == IntvOut && !LeaveBefore && !EnterAfter) {
1137     DEBUG(dbgs() << ", straight through.\n");
1138     //
1139     //    |-----------|    Live through.
1140     //    -------------    Straight through, same intv, no interference.
1141     //
1142     selectIntv(IntvOut);
1143     useIntv(Start, Stop);
1144     return;
1145   }
1146 
1147   // We cannot legally insert splits after LSP.
1148   SlotIndex LSP = SA.getLastSplitPoint(MBBNum);
1149   assert((!IntvOut || !EnterAfter || EnterAfter < LSP) && "Impossible intf");
1150 
1151   if (IntvIn != IntvOut && (!LeaveBefore || !EnterAfter ||
1152                   LeaveBefore.getBaseIndex() > EnterAfter.getBoundaryIndex())) {
1153     DEBUG(dbgs() << ", switch avoiding interference.\n");
1154     //
1155     //    >>>>     <<<<    Non-overlapping EnterAfter/LeaveBefore interference.
1156     //    |-----------|    Live through.
1157     //    ------=======    Switch intervals between interference.
1158     //
1159     selectIntv(IntvOut);
1160     SlotIndex Idx;
1161     if (LeaveBefore && LeaveBefore < LSP) {
1162       Idx = enterIntvBefore(LeaveBefore);
1163       useIntv(Idx, Stop);
1164     } else {
1165       Idx = enterIntvAtEnd(*MBB);
1166     }
1167     selectIntv(IntvIn);
1168     useIntv(Start, Idx);
1169     assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1170     assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1171     return;
1172   }
1173 
1174   DEBUG(dbgs() << ", create local intv for interference.\n");
1175   //
1176   //    >>><><><><<<<    Overlapping EnterAfter/LeaveBefore interference.
1177   //    |-----------|    Live through.
1178   //    ==---------==    Switch intervals before/after interference.
1179   //
1180   assert(LeaveBefore <= EnterAfter && "Missed case");
1181 
1182   selectIntv(IntvOut);
1183   SlotIndex Idx = enterIntvAfter(EnterAfter);
1184   useIntv(Idx, Stop);
1185   assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1186 
1187   selectIntv(IntvIn);
1188   Idx = leaveIntvBefore(LeaveBefore);
1189   useIntv(Start, Idx);
1190   assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1191 }
1192 
1193 
1194 void SplitEditor::splitRegInBlock(const SplitAnalysis::BlockInfo &BI,
1195                                   unsigned IntvIn, SlotIndex LeaveBefore) {
1196   SlotIndex Start, Stop;
1197   tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
1198 
1199   DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " [" << Start << ';' << Stop
1200                << "), uses " << BI.FirstInstr << '-' << BI.LastInstr
1201                << ", reg-in " << IntvIn << ", leave before " << LeaveBefore
1202                << (BI.LiveOut ? ", stack-out" : ", killed in block"));
1203 
1204   assert(IntvIn && "Must have register in");
1205   assert(BI.LiveIn && "Must be live-in");
1206   assert((!LeaveBefore || LeaveBefore > Start) && "Bad interference");
1207 
1208   if (!BI.LiveOut && (!LeaveBefore || LeaveBefore >= BI.LastInstr)) {
1209     DEBUG(dbgs() << " before interference.\n");
1210     //
1211     //               <<<    Interference after kill.
1212     //     |---o---x   |    Killed in block.
1213     //     =========        Use IntvIn everywhere.
1214     //
1215     selectIntv(IntvIn);
1216     useIntv(Start, BI.LastInstr);
1217     return;
1218   }
1219 
1220   SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber());
1221 
1222   if (!LeaveBefore || LeaveBefore > BI.LastInstr.getBoundaryIndex()) {
1223     //
1224     //               <<<    Possible interference after last use.
1225     //     |---o---o---|    Live-out on stack.
1226     //     =========____    Leave IntvIn after last use.
1227     //
1228     //                 <    Interference after last use.
1229     //     |---o---o--o|    Live-out on stack, late last use.
1230     //     ============     Copy to stack after LSP, overlap IntvIn.
1231     //            \_____    Stack interval is live-out.
1232     //
1233     if (BI.LastInstr < LSP) {
1234       DEBUG(dbgs() << ", spill after last use before interference.\n");
1235       selectIntv(IntvIn);
1236       SlotIndex Idx = leaveIntvAfter(BI.LastInstr);
1237       useIntv(Start, Idx);
1238       assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1239     } else {
1240       DEBUG(dbgs() << ", spill before last split point.\n");
1241       selectIntv(IntvIn);
1242       SlotIndex Idx = leaveIntvBefore(LSP);
1243       overlapIntv(Idx, BI.LastInstr);
1244       useIntv(Start, Idx);
1245       assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1246     }
1247     return;
1248   }
1249 
1250   // The interference is overlapping somewhere we wanted to use IntvIn. That
1251   // means we need to create a local interval that can be allocated a
1252   // different register.
1253   unsigned LocalIntv = openIntv();
1254   (void)LocalIntv;
1255   DEBUG(dbgs() << ", creating local interval " << LocalIntv << ".\n");
1256 
1257   if (!BI.LiveOut || BI.LastInstr < LSP) {
1258     //
1259     //           <<<<<<<    Interference overlapping uses.
1260     //     |---o---o---|    Live-out on stack.
1261     //     =====----____    Leave IntvIn before interference, then spill.
1262     //
1263     SlotIndex To = leaveIntvAfter(BI.LastInstr);
1264     SlotIndex From = enterIntvBefore(LeaveBefore);
1265     useIntv(From, To);
1266     selectIntv(IntvIn);
1267     useIntv(Start, From);
1268     assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
1269     return;
1270   }
1271 
1272   //           <<<<<<<    Interference overlapping uses.
1273   //     |---o---o--o|    Live-out on stack, late last use.
1274   //     =====-------     Copy to stack before LSP, overlap LocalIntv.
1275   //            \_____    Stack interval is live-out.
1276   //
1277   SlotIndex To = leaveIntvBefore(LSP);
1278   overlapIntv(To, BI.LastInstr);
1279   SlotIndex From = enterIntvBefore(std::min(To, LeaveBefore));
1280   useIntv(From, To);
1281   selectIntv(IntvIn);
1282   useIntv(Start, From);
1283   assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
1284 }
1285 
1286 void SplitEditor::splitRegOutBlock(const SplitAnalysis::BlockInfo &BI,
1287                                    unsigned IntvOut, SlotIndex EnterAfter) {
1288   SlotIndex Start, Stop;
1289   tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
1290 
1291   DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " [" << Start << ';' << Stop
1292                << "), uses " << BI.FirstInstr << '-' << BI.LastInstr
1293                << ", reg-out " << IntvOut << ", enter after " << EnterAfter
1294                << (BI.LiveIn ? ", stack-in" : ", defined in block"));
1295 
1296   SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber());
1297 
1298   assert(IntvOut && "Must have register out");
1299   assert(BI.LiveOut && "Must be live-out");
1300   assert((!EnterAfter || EnterAfter < LSP) && "Bad interference");
1301 
1302   if (!BI.LiveIn && (!EnterAfter || EnterAfter <= BI.FirstInstr)) {
1303     DEBUG(dbgs() << " after interference.\n");
1304     //
1305     //    >>>>             Interference before def.
1306     //    |   o---o---|    Defined in block.
1307     //        =========    Use IntvOut everywhere.
1308     //
1309     selectIntv(IntvOut);
1310     useIntv(BI.FirstInstr, Stop);
1311     return;
1312   }
1313 
1314   if (!EnterAfter || EnterAfter < BI.FirstInstr.getBaseIndex()) {
1315     DEBUG(dbgs() << ", reload after interference.\n");
1316     //
1317     //    >>>>             Interference before def.
1318     //    |---o---o---|    Live-through, stack-in.
1319     //    ____=========    Enter IntvOut before first use.
1320     //
1321     selectIntv(IntvOut);
1322     SlotIndex Idx = enterIntvBefore(std::min(LSP, BI.FirstInstr));
1323     useIntv(Idx, Stop);
1324     assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1325     return;
1326   }
1327 
1328   // The interference is overlapping somewhere we wanted to use IntvOut. That
1329   // means we need to create a local interval that can be allocated a
1330   // different register.
1331   DEBUG(dbgs() << ", interference overlaps uses.\n");
1332   //
1333   //    >>>>>>>          Interference overlapping uses.
1334   //    |---o---o---|    Live-through, stack-in.
1335   //    ____---======    Create local interval for interference range.
1336   //
1337   selectIntv(IntvOut);
1338   SlotIndex Idx = enterIntvAfter(EnterAfter);
1339   useIntv(Idx, Stop);
1340   assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1341 
1342   openIntv();
1343   SlotIndex From = enterIntvBefore(std::min(Idx, BI.FirstInstr));
1344   useIntv(From, Idx);
1345 }
1346