1 //===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the SplitAnalysis class as well as mutator functions for 11 // live range splitting. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "regalloc" 16 #include "SplitKit.h" 17 #include "LiveRangeEdit.h" 18 #include "VirtRegMap.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 21 #include "llvm/CodeGen/MachineDominators.h" 22 #include "llvm/CodeGen/MachineInstrBuilder.h" 23 #include "llvm/CodeGen/MachineRegisterInfo.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/raw_ostream.h" 26 #include "llvm/Target/TargetInstrInfo.h" 27 #include "llvm/Target/TargetMachine.h" 28 29 using namespace llvm; 30 31 STATISTIC(NumFinished, "Number of splits finished"); 32 STATISTIC(NumSimple, "Number of splits that were simple"); 33 STATISTIC(NumCopies, "Number of copies inserted for splitting"); 34 STATISTIC(NumRemats, "Number of rematerialized defs for splitting"); 35 STATISTIC(NumRepairs, "Number of invalid live ranges repaired"); 36 37 //===----------------------------------------------------------------------===// 38 // Split Analysis 39 //===----------------------------------------------------------------------===// 40 41 SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm, 42 const LiveIntervals &lis, 43 const MachineLoopInfo &mli) 44 : MF(vrm.getMachineFunction()), 45 VRM(vrm), 46 LIS(lis), 47 Loops(mli), 48 TII(*MF.getTarget().getInstrInfo()), 49 CurLI(0), 50 LastSplitPoint(MF.getNumBlockIDs()) {} 51 52 void SplitAnalysis::clear() { 53 UseSlots.clear(); 54 UseBlocks.clear(); 55 ThroughBlocks.clear(); 56 CurLI = 0; 57 DidRepairRange = false; 58 } 59 60 SlotIndex SplitAnalysis::computeLastSplitPoint(unsigned Num) { 61 const MachineBasicBlock *MBB = MF.getBlockNumbered(Num); 62 const MachineBasicBlock *LPad = MBB->getLandingPadSuccessor(); 63 std::pair<SlotIndex, SlotIndex> &LSP = LastSplitPoint[Num]; 64 65 // Compute split points on the first call. The pair is independent of the 66 // current live interval. 67 if (!LSP.first.isValid()) { 68 MachineBasicBlock::const_iterator FirstTerm = MBB->getFirstTerminator(); 69 if (FirstTerm == MBB->end()) 70 LSP.first = LIS.getMBBEndIdx(MBB); 71 else 72 LSP.first = LIS.getInstructionIndex(FirstTerm); 73 74 // If there is a landing pad successor, also find the call instruction. 75 if (!LPad) 76 return LSP.first; 77 // There may not be a call instruction (?) in which case we ignore LPad. 78 LSP.second = LSP.first; 79 for (MachineBasicBlock::const_iterator I = MBB->end(), E = MBB->begin(); 80 I != E;) { 81 --I; 82 if (I->getDesc().isCall()) { 83 LSP.second = LIS.getInstructionIndex(I); 84 break; 85 } 86 } 87 } 88 89 // If CurLI is live into a landing pad successor, move the last split point 90 // back to the call that may throw. 91 if (LPad && LSP.second.isValid() && LIS.isLiveInToMBB(*CurLI, LPad)) 92 return LSP.second; 93 else 94 return LSP.first; 95 } 96 97 /// analyzeUses - Count instructions, basic blocks, and loops using CurLI. 98 void SplitAnalysis::analyzeUses() { 99 assert(UseSlots.empty() && "Call clear first"); 100 101 // First get all the defs from the interval values. This provides the correct 102 // slots for early clobbers. 103 for (LiveInterval::const_vni_iterator I = CurLI->vni_begin(), 104 E = CurLI->vni_end(); I != E; ++I) 105 if (!(*I)->isPHIDef() && !(*I)->isUnused()) 106 UseSlots.push_back((*I)->def); 107 108 // Get use slots form the use-def chain. 109 const MachineRegisterInfo &MRI = MF.getRegInfo(); 110 for (MachineRegisterInfo::use_nodbg_iterator 111 I = MRI.use_nodbg_begin(CurLI->reg), E = MRI.use_nodbg_end(); I != E; 112 ++I) 113 if (!I.getOperand().isUndef()) 114 UseSlots.push_back(LIS.getInstructionIndex(&*I).getDefIndex()); 115 116 array_pod_sort(UseSlots.begin(), UseSlots.end()); 117 118 // Remove duplicates, keeping the smaller slot for each instruction. 119 // That is what we want for early clobbers. 120 UseSlots.erase(std::unique(UseSlots.begin(), UseSlots.end(), 121 SlotIndex::isSameInstr), 122 UseSlots.end()); 123 124 // Compute per-live block info. 125 if (!calcLiveBlockInfo()) { 126 // FIXME: calcLiveBlockInfo found inconsistencies in the live range. 127 // I am looking at you, RegisterCoalescer! 128 DidRepairRange = true; 129 ++NumRepairs; 130 DEBUG(dbgs() << "*** Fixing inconsistent live interval! ***\n"); 131 const_cast<LiveIntervals&>(LIS) 132 .shrinkToUses(const_cast<LiveInterval*>(CurLI)); 133 UseBlocks.clear(); 134 ThroughBlocks.clear(); 135 bool fixed = calcLiveBlockInfo(); 136 (void)fixed; 137 assert(fixed && "Couldn't fix broken live interval"); 138 } 139 140 DEBUG(dbgs() << "Analyze counted " 141 << UseSlots.size() << " instrs in " 142 << UseBlocks.size() << " blocks, through " 143 << NumThroughBlocks << " blocks.\n"); 144 } 145 146 /// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks 147 /// where CurLI is live. 148 bool SplitAnalysis::calcLiveBlockInfo() { 149 ThroughBlocks.resize(MF.getNumBlockIDs()); 150 NumThroughBlocks = NumGapBlocks = 0; 151 if (CurLI->empty()) 152 return true; 153 154 LiveInterval::const_iterator LVI = CurLI->begin(); 155 LiveInterval::const_iterator LVE = CurLI->end(); 156 157 SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE; 158 UseI = UseSlots.begin(); 159 UseE = UseSlots.end(); 160 161 // Loop over basic blocks where CurLI is live. 162 MachineFunction::iterator MFI = LIS.getMBBFromIndex(LVI->start); 163 for (;;) { 164 BlockInfo BI; 165 BI.MBB = MFI; 166 SlotIndex Start, Stop; 167 tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); 168 169 // If the block contains no uses, the range must be live through. At one 170 // point, RegisterCoalescer could create dangling ranges that ended 171 // mid-block. 172 if (UseI == UseE || *UseI >= Stop) { 173 ++NumThroughBlocks; 174 ThroughBlocks.set(BI.MBB->getNumber()); 175 // The range shouldn't end mid-block if there are no uses. This shouldn't 176 // happen. 177 if (LVI->end < Stop) 178 return false; 179 } else { 180 // This block has uses. Find the first and last uses in the block. 181 BI.FirstInstr = *UseI; 182 assert(BI.FirstInstr >= Start); 183 do ++UseI; 184 while (UseI != UseE && *UseI < Stop); 185 BI.LastInstr = UseI[-1]; 186 assert(BI.LastInstr < Stop); 187 188 // LVI is the first live segment overlapping MBB. 189 BI.LiveIn = LVI->start <= Start; 190 191 // When not live in, the first use should be a def. 192 if (!BI.LiveIn) { 193 assert(LVI->start == LVI->valno->def && "Dangling LiveRange start"); 194 assert(LVI->start == BI.FirstInstr && "First instr should be a def"); 195 BI.FirstDef = BI.FirstInstr; 196 } 197 198 // Look for gaps in the live range. 199 BI.LiveOut = true; 200 while (LVI->end < Stop) { 201 SlotIndex LastStop = LVI->end; 202 if (++LVI == LVE || LVI->start >= Stop) { 203 BI.LiveOut = false; 204 BI.LastInstr = LastStop; 205 break; 206 } 207 208 if (LastStop < LVI->start) { 209 // There is a gap in the live range. Create duplicate entries for the 210 // live-in snippet and the live-out snippet. 211 ++NumGapBlocks; 212 213 // Push the Live-in part. 214 BI.LiveOut = false; 215 UseBlocks.push_back(BI); 216 UseBlocks.back().LastInstr = LastStop; 217 218 // Set up BI for the live-out part. 219 BI.LiveIn = false; 220 BI.LiveOut = true; 221 BI.FirstInstr = BI.FirstDef = LVI->start; 222 } 223 224 // A LiveRange that starts in the middle of the block must be a def. 225 assert(LVI->start == LVI->valno->def && "Dangling LiveRange start"); 226 if (!BI.FirstDef) 227 BI.FirstDef = LVI->start; 228 } 229 230 UseBlocks.push_back(BI); 231 232 // LVI is now at LVE or LVI->end >= Stop. 233 if (LVI == LVE) 234 break; 235 } 236 237 // Live segment ends exactly at Stop. Move to the next segment. 238 if (LVI->end == Stop && ++LVI == LVE) 239 break; 240 241 // Pick the next basic block. 242 if (LVI->start < Stop) 243 ++MFI; 244 else 245 MFI = LIS.getMBBFromIndex(LVI->start); 246 } 247 248 assert(getNumLiveBlocks() == countLiveBlocks(CurLI) && "Bad block count"); 249 return true; 250 } 251 252 unsigned SplitAnalysis::countLiveBlocks(const LiveInterval *cli) const { 253 if (cli->empty()) 254 return 0; 255 LiveInterval *li = const_cast<LiveInterval*>(cli); 256 LiveInterval::iterator LVI = li->begin(); 257 LiveInterval::iterator LVE = li->end(); 258 unsigned Count = 0; 259 260 // Loop over basic blocks where li is live. 261 MachineFunction::const_iterator MFI = LIS.getMBBFromIndex(LVI->start); 262 SlotIndex Stop = LIS.getMBBEndIdx(MFI); 263 for (;;) { 264 ++Count; 265 LVI = li->advanceTo(LVI, Stop); 266 if (LVI == LVE) 267 return Count; 268 do { 269 ++MFI; 270 Stop = LIS.getMBBEndIdx(MFI); 271 } while (Stop <= LVI->start); 272 } 273 } 274 275 bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const { 276 unsigned OrigReg = VRM.getOriginal(CurLI->reg); 277 const LiveInterval &Orig = LIS.getInterval(OrigReg); 278 assert(!Orig.empty() && "Splitting empty interval?"); 279 LiveInterval::const_iterator I = Orig.find(Idx); 280 281 // Range containing Idx should begin at Idx. 282 if (I != Orig.end() && I->start <= Idx) 283 return I->start == Idx; 284 285 // Range does not contain Idx, previous must end at Idx. 286 return I != Orig.begin() && (--I)->end == Idx; 287 } 288 289 void SplitAnalysis::analyze(const LiveInterval *li) { 290 clear(); 291 CurLI = li; 292 analyzeUses(); 293 } 294 295 296 //===----------------------------------------------------------------------===// 297 // Split Editor 298 //===----------------------------------------------------------------------===// 299 300 /// Create a new SplitEditor for editing the LiveInterval analyzed by SA. 301 SplitEditor::SplitEditor(SplitAnalysis &sa, 302 LiveIntervals &lis, 303 VirtRegMap &vrm, 304 MachineDominatorTree &mdt) 305 : SA(sa), LIS(lis), VRM(vrm), 306 MRI(vrm.getMachineFunction().getRegInfo()), 307 MDT(mdt), 308 TII(*vrm.getMachineFunction().getTarget().getInstrInfo()), 309 TRI(*vrm.getMachineFunction().getTarget().getRegisterInfo()), 310 Edit(0), 311 OpenIdx(0), 312 SpillMode(SM_Partition), 313 RegAssign(Allocator) 314 {} 315 316 void SplitEditor::reset(LiveRangeEdit &LRE, ComplementSpillMode SM) { 317 Edit = &LRE; 318 SpillMode = SM; 319 OpenIdx = 0; 320 OverlappedComplement.clear(); 321 RegAssign.clear(); 322 Values.clear(); 323 324 // Reset the LiveRangeCalc instances needed for this spill mode. 325 LRCalc[0].reset(&VRM.getMachineFunction()); 326 if (SpillMode) 327 LRCalc[1].reset(&VRM.getMachineFunction()); 328 329 // We don't need an AliasAnalysis since we will only be performing 330 // cheap-as-a-copy remats anyway. 331 Edit->anyRematerializable(LIS, TII, 0); 332 } 333 334 void SplitEditor::dump() const { 335 if (RegAssign.empty()) { 336 dbgs() << " empty\n"; 337 return; 338 } 339 340 for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I) 341 dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value(); 342 dbgs() << '\n'; 343 } 344 345 VNInfo *SplitEditor::defValue(unsigned RegIdx, 346 const VNInfo *ParentVNI, 347 SlotIndex Idx) { 348 assert(ParentVNI && "Mapping NULL value"); 349 assert(Idx.isValid() && "Invalid SlotIndex"); 350 assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI"); 351 LiveInterval *LI = Edit->get(RegIdx); 352 353 // Create a new value. 354 VNInfo *VNI = LI->getNextValue(Idx, 0, LIS.getVNInfoAllocator()); 355 356 // Use insert for lookup, so we can add missing values with a second lookup. 357 std::pair<ValueMap::iterator, bool> InsP = 358 Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id), VNI)); 359 360 // This was the first time (RegIdx, ParentVNI) was mapped. 361 // Keep it as a simple def without any liveness. 362 if (InsP.second) 363 return VNI; 364 365 // If the previous value was a simple mapping, add liveness for it now. 366 if (VNInfo *OldVNI = InsP.first->second) { 367 SlotIndex Def = OldVNI->def; 368 LI->addRange(LiveRange(Def, Def.getNextSlot(), OldVNI)); 369 // No longer a simple mapping. 370 InsP.first->second = 0; 371 } 372 373 // This is a complex mapping, add liveness for VNI 374 SlotIndex Def = VNI->def; 375 LI->addRange(LiveRange(Def, Def.getNextSlot(), VNI)); 376 377 return VNI; 378 } 379 380 void SplitEditor::markComplexMapped(unsigned RegIdx, const VNInfo *ParentVNI) { 381 assert(ParentVNI && "Mapping NULL value"); 382 VNInfo *&VNI = Values[std::make_pair(RegIdx, ParentVNI->id)]; 383 384 // ParentVNI was either unmapped or already complex mapped. Either way. 385 if (!VNI) 386 return; 387 388 // This was previously a single mapping. Make sure the old def is represented 389 // by a trivial live range. 390 SlotIndex Def = VNI->def; 391 Edit->get(RegIdx)->addRange(LiveRange(Def, Def.getNextSlot(), VNI)); 392 VNI = 0; 393 } 394 395 void SplitEditor::markOverlappedComplement(const VNInfo *ParentVNI) { 396 if (OverlappedComplement.insert(ParentVNI)) 397 markComplexMapped(0, ParentVNI); 398 } 399 400 bool SplitEditor::needsRecompute(unsigned RegIdx, const VNInfo *ParentVNI) { 401 return (RegIdx == 0 && OverlappedComplement.count(ParentVNI)) || 402 Edit->didRematerialize(ParentVNI); 403 } 404 405 VNInfo *SplitEditor::defFromParent(unsigned RegIdx, 406 VNInfo *ParentVNI, 407 SlotIndex UseIdx, 408 MachineBasicBlock &MBB, 409 MachineBasicBlock::iterator I) { 410 MachineInstr *CopyMI = 0; 411 SlotIndex Def; 412 LiveInterval *LI = Edit->get(RegIdx); 413 414 // We may be trying to avoid interference that ends at a deleted instruction, 415 // so always begin RegIdx 0 early and all others late. 416 bool Late = RegIdx != 0; 417 418 // Attempt cheap-as-a-copy rematerialization. 419 LiveRangeEdit::Remat RM(ParentVNI); 420 if (Edit->canRematerializeAt(RM, UseIdx, true, LIS)) { 421 Def = Edit->rematerializeAt(MBB, I, LI->reg, RM, LIS, TII, TRI, Late); 422 ++NumRemats; 423 } else { 424 // Can't remat, just insert a copy from parent. 425 CopyMI = BuildMI(MBB, I, DebugLoc(), TII.get(TargetOpcode::COPY), LI->reg) 426 .addReg(Edit->getReg()); 427 Def = LIS.getSlotIndexes()->insertMachineInstrInMaps(CopyMI, Late) 428 .getDefIndex(); 429 ++NumCopies; 430 } 431 432 // Define the value in Reg. 433 VNInfo *VNI = defValue(RegIdx, ParentVNI, Def); 434 VNI->setCopy(CopyMI); 435 return VNI; 436 } 437 438 /// Create a new virtual register and live interval. 439 unsigned SplitEditor::openIntv() { 440 // Create the complement as index 0. 441 if (Edit->empty()) 442 Edit->create(LIS, VRM); 443 444 // Create the open interval. 445 OpenIdx = Edit->size(); 446 Edit->create(LIS, VRM); 447 return OpenIdx; 448 } 449 450 void SplitEditor::selectIntv(unsigned Idx) { 451 assert(Idx != 0 && "Cannot select the complement interval"); 452 assert(Idx < Edit->size() && "Can only select previously opened interval"); 453 DEBUG(dbgs() << " selectIntv " << OpenIdx << " -> " << Idx << '\n'); 454 OpenIdx = Idx; 455 } 456 457 SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) { 458 assert(OpenIdx && "openIntv not called before enterIntvBefore"); 459 DEBUG(dbgs() << " enterIntvBefore " << Idx); 460 Idx = Idx.getBaseIndex(); 461 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 462 if (!ParentVNI) { 463 DEBUG(dbgs() << ": not live\n"); 464 return Idx; 465 } 466 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 467 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 468 assert(MI && "enterIntvBefore called with invalid index"); 469 470 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI); 471 return VNI->def; 472 } 473 474 SlotIndex SplitEditor::enterIntvAfter(SlotIndex Idx) { 475 assert(OpenIdx && "openIntv not called before enterIntvAfter"); 476 DEBUG(dbgs() << " enterIntvAfter " << Idx); 477 Idx = Idx.getBoundaryIndex(); 478 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 479 if (!ParentVNI) { 480 DEBUG(dbgs() << ": not live\n"); 481 return Idx; 482 } 483 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 484 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 485 assert(MI && "enterIntvAfter called with invalid index"); 486 487 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), 488 llvm::next(MachineBasicBlock::iterator(MI))); 489 return VNI->def; 490 } 491 492 SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) { 493 assert(OpenIdx && "openIntv not called before enterIntvAtEnd"); 494 SlotIndex End = LIS.getMBBEndIdx(&MBB); 495 SlotIndex Last = End.getPrevSlot(); 496 DEBUG(dbgs() << " enterIntvAtEnd BB#" << MBB.getNumber() << ", " << Last); 497 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last); 498 if (!ParentVNI) { 499 DEBUG(dbgs() << ": not live\n"); 500 return End; 501 } 502 DEBUG(dbgs() << ": valno " << ParentVNI->id); 503 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB, 504 LIS.getLastSplitPoint(Edit->getParent(), &MBB)); 505 RegAssign.insert(VNI->def, End, OpenIdx); 506 DEBUG(dump()); 507 return VNI->def; 508 } 509 510 /// useIntv - indicate that all instructions in MBB should use OpenLI. 511 void SplitEditor::useIntv(const MachineBasicBlock &MBB) { 512 useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB)); 513 } 514 515 void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) { 516 assert(OpenIdx && "openIntv not called before useIntv"); 517 DEBUG(dbgs() << " useIntv [" << Start << ';' << End << "):"); 518 RegAssign.insert(Start, End, OpenIdx); 519 DEBUG(dump()); 520 } 521 522 SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) { 523 assert(OpenIdx && "openIntv not called before leaveIntvAfter"); 524 DEBUG(dbgs() << " leaveIntvAfter " << Idx); 525 526 // The interval must be live beyond the instruction at Idx. 527 Idx = Idx.getBoundaryIndex(); 528 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 529 if (!ParentVNI) { 530 DEBUG(dbgs() << ": not live\n"); 531 return Idx.getNextSlot(); 532 } 533 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 534 535 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 536 assert(MI && "No instruction at index"); 537 VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), 538 llvm::next(MachineBasicBlock::iterator(MI))); 539 return VNI->def; 540 } 541 542 SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) { 543 assert(OpenIdx && "openIntv not called before leaveIntvBefore"); 544 DEBUG(dbgs() << " leaveIntvBefore " << Idx); 545 546 // The interval must be live into the instruction at Idx. 547 Idx = Idx.getBaseIndex(); 548 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 549 if (!ParentVNI) { 550 DEBUG(dbgs() << ": not live\n"); 551 return Idx.getNextSlot(); 552 } 553 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 554 555 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 556 assert(MI && "No instruction at index"); 557 VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI); 558 return VNI->def; 559 } 560 561 SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) { 562 assert(OpenIdx && "openIntv not called before leaveIntvAtTop"); 563 SlotIndex Start = LIS.getMBBStartIdx(&MBB); 564 DEBUG(dbgs() << " leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start); 565 566 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start); 567 if (!ParentVNI) { 568 DEBUG(dbgs() << ": not live\n"); 569 return Start; 570 } 571 572 VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB, 573 MBB.SkipPHIsAndLabels(MBB.begin())); 574 RegAssign.insert(Start, VNI->def, OpenIdx); 575 DEBUG(dump()); 576 return VNI->def; 577 } 578 579 void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) { 580 assert(OpenIdx && "openIntv not called before overlapIntv"); 581 const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start); 582 assert(ParentVNI == Edit->getParent().getVNInfoAt(End.getPrevSlot()) && 583 "Parent changes value in extended range"); 584 assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) && 585 "Range cannot span basic blocks"); 586 587 // The complement interval will be extended as needed by LRCalc.extend(). 588 if (ParentVNI) 589 markOverlappedComplement(ParentVNI); 590 DEBUG(dbgs() << " overlapIntv [" << Start << ';' << End << "):"); 591 RegAssign.insert(Start, End, OpenIdx); 592 DEBUG(dump()); 593 } 594 595 //===----------------------------------------------------------------------===// 596 // Spill modes 597 //===----------------------------------------------------------------------===// 598 599 void SplitEditor::removeBackCopies(SmallVectorImpl<VNInfo*> &Copies) { 600 LiveInterval *LI = Edit->get(0); 601 DEBUG(dbgs() << "Removing " << Copies.size() << " back-copies.\n"); 602 RegAssignMap::iterator AssignI; 603 AssignI.setMap(RegAssign); 604 605 for (unsigned i = 0, e = Copies.size(); i != e; ++i) { 606 VNInfo *VNI = Copies[i]; 607 SlotIndex Def = VNI->def; 608 MachineInstr *MI = LIS.getInstructionFromIndex(Def); 609 assert(MI && "No instruction for back-copy"); 610 611 MachineBasicBlock *MBB = MI->getParent(); 612 MachineBasicBlock::iterator MBBI(MI); 613 bool AtBegin; 614 do AtBegin = MBBI == MBB->begin(); 615 while (!AtBegin && (--MBBI)->isDebugValue()); 616 617 DEBUG(dbgs() << "Removing " << Def << '\t' << *MI); 618 LI->removeValNo(VNI); 619 LIS.RemoveMachineInstrFromMaps(MI); 620 MI->eraseFromParent(); 621 622 // Adjust RegAssign if a register assignment is killed at VNI->def. We 623 // want to avoid calculating the live range of the source register if 624 // possible. 625 AssignI.find(VNI->def.getPrevSlot()); 626 if (!AssignI.valid() || AssignI.start() >= Def) 627 continue; 628 // If MI doesn't kill the assigned register, just leave it. 629 if (AssignI.stop() != Def) 630 continue; 631 unsigned RegIdx = AssignI.value(); 632 if (AtBegin || !MBBI->readsVirtualRegister(Edit->getReg())) { 633 DEBUG(dbgs() << " cannot find simple kill of RegIdx " << RegIdx << '\n'); 634 markComplexMapped(RegIdx, Edit->getParent().getVNInfoAt(Def)); 635 } else { 636 SlotIndex Kill = LIS.getInstructionIndex(MBBI).getDefIndex(); 637 DEBUG(dbgs() << " move kill to " << Kill << '\t' << *MBBI); 638 AssignI.setStop(Kill); 639 } 640 } 641 } 642 643 void SplitEditor::hoistCopiesForSize() { 644 // Get the complement interval, always RegIdx 0. 645 LiveInterval *LI = Edit->get(0); 646 LiveInterval *Parent = &Edit->getParent(); 647 648 // Track the nearest common dominator for all back-copies for each ParentVNI, 649 // indexed by ParentVNI->id. 650 typedef std::pair<MachineBasicBlock*, SlotIndex> DomPair; 651 SmallVector<DomPair, 8> NearestDom(Parent->getNumValNums()); 652 653 // Find the nearest common dominator for parent values with multiple 654 // back-copies. If a single back-copy dominates, put it in DomPair.second. 655 for (LiveInterval::vni_iterator VI = LI->vni_begin(), VE = LI->vni_end(); 656 VI != VE; ++VI) { 657 VNInfo *VNI = *VI; 658 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def); 659 assert(ParentVNI && "Parent not live at complement def"); 660 661 // Don't hoist remats. The complement is probably going to disappear 662 // completely anyway. 663 if (Edit->didRematerialize(ParentVNI)) 664 continue; 665 666 MachineBasicBlock *ValMBB = LIS.getMBBFromIndex(VNI->def); 667 DomPair &Dom = NearestDom[ParentVNI->id]; 668 669 // Keep directly defined parent values. This is either a PHI or an 670 // instruction in the complement range. All other copies of ParentVNI 671 // should be eliminated. 672 if (VNI->def == ParentVNI->def) { 673 DEBUG(dbgs() << "Direct complement def at " << VNI->def << '\n'); 674 Dom = DomPair(ValMBB, VNI->def); 675 continue; 676 } 677 // Skip the singly mapped values. There is nothing to gain from hoisting a 678 // single back-copy. 679 if (Values.lookup(std::make_pair(0, ParentVNI->id))) { 680 DEBUG(dbgs() << "Single complement def at " << VNI->def << '\n'); 681 continue; 682 } 683 684 if (!Dom.first) { 685 // First time we see ParentVNI. VNI dominates itself. 686 Dom = DomPair(ValMBB, VNI->def); 687 } else if (Dom.first == ValMBB) { 688 // Two defs in the same block. Pick the earlier def. 689 if (!Dom.second.isValid() || VNI->def < Dom.second) 690 Dom.second = VNI->def; 691 } else { 692 // Different basic blocks. Check if one dominates. 693 MachineBasicBlock *Near = 694 MDT.findNearestCommonDominator(Dom.first, ValMBB); 695 if (Near == ValMBB) 696 // Def ValMBB dominates. 697 Dom = DomPair(ValMBB, VNI->def); 698 else if (Near != Dom.first) 699 // None dominate. Hoist to common dominator, need new def. 700 Dom = DomPair(Near, SlotIndex()); 701 } 702 703 DEBUG(dbgs() << "Multi-mapped complement " << VNI->id << '@' << VNI->def 704 << " for parent " << ParentVNI->id << '@' << ParentVNI->def 705 << " hoist to BB#" << Dom.first->getNumber() << ' ' 706 << Dom.second << '\n'); 707 } 708 709 // Insert the hoisted copies. 710 for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) { 711 DomPair &Dom = NearestDom[i]; 712 if (!Dom.first || Dom.second.isValid()) 713 continue; 714 // This value needs a hoisted copy inserted at the end of Dom.second. 715 SlotIndex Last = LIS.getMBBEndIdx(Dom.first).getPrevSlot(); 716 Dom.second = 717 defFromParent(0, Parent->getValNumInfo(i), Last, *Dom.first, 718 LIS.getLastSplitPoint(Edit->getParent(), Dom.first))->def; 719 } 720 721 // Remove redundant back-copies that are now known to be dominated by another 722 // def with the same value. 723 SmallVector<VNInfo*, 8> BackCopies; 724 for (LiveInterval::vni_iterator VI = LI->vni_begin(), VE = LI->vni_end(); 725 VI != VE; ++VI) { 726 VNInfo *VNI = *VI; 727 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def); 728 const DomPair &Dom = NearestDom[ParentVNI->id]; 729 if (!Dom.first || Dom.second == VNI->def) 730 continue; 731 BackCopies.push_back(VNI); 732 markOverlappedComplement(ParentVNI); 733 } 734 removeBackCopies(BackCopies); 735 } 736 737 738 /// transferValues - Transfer all possible values to the new live ranges. 739 /// Values that were rematerialized are left alone, they need LRCalc.extend(). 740 bool SplitEditor::transferValues() { 741 bool Skipped = false; 742 RegAssignMap::const_iterator AssignI = RegAssign.begin(); 743 for (LiveInterval::const_iterator ParentI = Edit->getParent().begin(), 744 ParentE = Edit->getParent().end(); ParentI != ParentE; ++ParentI) { 745 DEBUG(dbgs() << " blit " << *ParentI << ':'); 746 VNInfo *ParentVNI = ParentI->valno; 747 // RegAssign has holes where RegIdx 0 should be used. 748 SlotIndex Start = ParentI->start; 749 AssignI.advanceTo(Start); 750 do { 751 unsigned RegIdx; 752 SlotIndex End = ParentI->end; 753 if (!AssignI.valid()) { 754 RegIdx = 0; 755 } else if (AssignI.start() <= Start) { 756 RegIdx = AssignI.value(); 757 if (AssignI.stop() < End) { 758 End = AssignI.stop(); 759 ++AssignI; 760 } 761 } else { 762 RegIdx = 0; 763 End = std::min(End, AssignI.start()); 764 } 765 766 // The interval [Start;End) is continuously mapped to RegIdx, ParentVNI. 767 DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx); 768 LiveInterval *LI = Edit->get(RegIdx); 769 770 // Check for a simply defined value that can be blitted directly. 771 if (VNInfo *VNI = Values.lookup(std::make_pair(RegIdx, ParentVNI->id))) { 772 DEBUG(dbgs() << ':' << VNI->id); 773 LI->addRange(LiveRange(Start, End, VNI)); 774 Start = End; 775 continue; 776 } 777 778 // Skip rematerialized values, we need to use LRCalc.extend() and 779 // extendPHIKillRanges() to completely recompute the live ranges. 780 if (needsRecompute(RegIdx, ParentVNI)) { 781 DEBUG(dbgs() << "(remat)"); 782 Skipped = true; 783 Start = End; 784 continue; 785 } 786 787 LiveRangeCalc &LRC = getLRCalc(RegIdx); 788 789 // This value has multiple defs in RegIdx, but it wasn't rematerialized, 790 // so the live range is accurate. Add live-in blocks in [Start;End) to the 791 // LiveInBlocks. 792 MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start); 793 SlotIndex BlockStart, BlockEnd; 794 tie(BlockStart, BlockEnd) = LIS.getSlotIndexes()->getMBBRange(MBB); 795 796 // The first block may be live-in, or it may have its own def. 797 if (Start != BlockStart) { 798 VNInfo *VNI = LI->extendInBlock(BlockStart, std::min(BlockEnd, End)); 799 assert(VNI && "Missing def for complex mapped value"); 800 DEBUG(dbgs() << ':' << VNI->id << "*BB#" << MBB->getNumber()); 801 // MBB has its own def. Is it also live-out? 802 if (BlockEnd <= End) 803 LRC.setLiveOutValue(MBB, VNI); 804 805 // Skip to the next block for live-in. 806 ++MBB; 807 BlockStart = BlockEnd; 808 } 809 810 // Handle the live-in blocks covered by [Start;End). 811 assert(Start <= BlockStart && "Expected live-in block"); 812 while (BlockStart < End) { 813 DEBUG(dbgs() << ">BB#" << MBB->getNumber()); 814 BlockEnd = LIS.getMBBEndIdx(MBB); 815 if (BlockStart == ParentVNI->def) { 816 // This block has the def of a parent PHI, so it isn't live-in. 817 assert(ParentVNI->isPHIDef() && "Non-phi defined at block start?"); 818 VNInfo *VNI = LI->extendInBlock(BlockStart, std::min(BlockEnd, End)); 819 assert(VNI && "Missing def for complex mapped parent PHI"); 820 if (End >= BlockEnd) 821 LRC.setLiveOutValue(MBB, VNI); // Live-out as well. 822 } else { 823 // This block needs a live-in value. The last block covered may not 824 // be live-out. 825 if (End < BlockEnd) 826 LRC.addLiveInBlock(LI, MDT[MBB], End); 827 else { 828 // Live-through, and we don't know the value. 829 LRC.addLiveInBlock(LI, MDT[MBB]); 830 LRC.setLiveOutValue(MBB, 0); 831 } 832 } 833 BlockStart = BlockEnd; 834 ++MBB; 835 } 836 Start = End; 837 } while (Start != ParentI->end); 838 DEBUG(dbgs() << '\n'); 839 } 840 841 LRCalc[0].calculateValues(LIS.getSlotIndexes(), &MDT, 842 &LIS.getVNInfoAllocator()); 843 if (SpillMode) 844 LRCalc[1].calculateValues(LIS.getSlotIndexes(), &MDT, 845 &LIS.getVNInfoAllocator()); 846 847 return Skipped; 848 } 849 850 void SplitEditor::extendPHIKillRanges() { 851 // Extend live ranges to be live-out for successor PHI values. 852 for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(), 853 E = Edit->getParent().vni_end(); I != E; ++I) { 854 const VNInfo *PHIVNI = *I; 855 if (PHIVNI->isUnused() || !PHIVNI->isPHIDef()) 856 continue; 857 unsigned RegIdx = RegAssign.lookup(PHIVNI->def); 858 LiveInterval *LI = Edit->get(RegIdx); 859 LiveRangeCalc &LRC = getLRCalc(RegIdx); 860 MachineBasicBlock *MBB = LIS.getMBBFromIndex(PHIVNI->def); 861 for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), 862 PE = MBB->pred_end(); PI != PE; ++PI) { 863 SlotIndex End = LIS.getMBBEndIdx(*PI); 864 SlotIndex LastUse = End.getPrevSlot(); 865 // The predecessor may not have a live-out value. That is OK, like an 866 // undef PHI operand. 867 if (Edit->getParent().liveAt(LastUse)) { 868 assert(RegAssign.lookup(LastUse) == RegIdx && 869 "Different register assignment in phi predecessor"); 870 LRC.extend(LI, End, 871 LIS.getSlotIndexes(), &MDT, &LIS.getVNInfoAllocator()); 872 } 873 } 874 } 875 } 876 877 /// rewriteAssigned - Rewrite all uses of Edit->getReg(). 878 void SplitEditor::rewriteAssigned(bool ExtendRanges) { 879 for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Edit->getReg()), 880 RE = MRI.reg_end(); RI != RE;) { 881 MachineOperand &MO = RI.getOperand(); 882 MachineInstr *MI = MO.getParent(); 883 ++RI; 884 // LiveDebugVariables should have handled all DBG_VALUE instructions. 885 if (MI->isDebugValue()) { 886 DEBUG(dbgs() << "Zapping " << *MI); 887 MO.setReg(0); 888 continue; 889 } 890 891 // <undef> operands don't really read the register, so it doesn't matter 892 // which register we choose. When the use operand is tied to a def, we must 893 // use the same register as the def, so just do that always. 894 SlotIndex Idx = LIS.getInstructionIndex(MI); 895 if (MO.isDef() || MO.isUndef()) 896 Idx = MO.isEarlyClobber() ? Idx.getUseIndex() : Idx.getDefIndex(); 897 898 // Rewrite to the mapped register at Idx. 899 unsigned RegIdx = RegAssign.lookup(Idx); 900 LiveInterval *LI = Edit->get(RegIdx); 901 MO.setReg(LI->reg); 902 DEBUG(dbgs() << " rewr BB#" << MI->getParent()->getNumber() << '\t' 903 << Idx << ':' << RegIdx << '\t' << *MI); 904 905 // Extend liveness to Idx if the instruction reads reg. 906 if (!ExtendRanges || MO.isUndef()) 907 continue; 908 909 // Skip instructions that don't read Reg. 910 if (MO.isDef()) { 911 if (!MO.getSubReg() && !MO.isEarlyClobber()) 912 continue; 913 // We may wan't to extend a live range for a partial redef, or for a use 914 // tied to an early clobber. 915 Idx = Idx.getPrevSlot(); 916 if (!Edit->getParent().liveAt(Idx)) 917 continue; 918 } else 919 Idx = Idx.getUseIndex(); 920 921 getLRCalc(RegIdx).extend(LI, Idx.getNextSlot(), LIS.getSlotIndexes(), 922 &MDT, &LIS.getVNInfoAllocator()); 923 } 924 } 925 926 void SplitEditor::deleteRematVictims() { 927 SmallVector<MachineInstr*, 8> Dead; 928 for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I){ 929 LiveInterval *LI = *I; 930 for (LiveInterval::const_iterator LII = LI->begin(), LIE = LI->end(); 931 LII != LIE; ++LII) { 932 // Dead defs end at the store slot. 933 if (LII->end != LII->valno->def.getNextSlot()) 934 continue; 935 MachineInstr *MI = LIS.getInstructionFromIndex(LII->valno->def); 936 assert(MI && "Missing instruction for dead def"); 937 MI->addRegisterDead(LI->reg, &TRI); 938 939 if (!MI->allDefsAreDead()) 940 continue; 941 942 DEBUG(dbgs() << "All defs dead: " << *MI); 943 Dead.push_back(MI); 944 } 945 } 946 947 if (Dead.empty()) 948 return; 949 950 Edit->eliminateDeadDefs(Dead, LIS, VRM, TII); 951 } 952 953 void SplitEditor::finish(SmallVectorImpl<unsigned> *LRMap) { 954 ++NumFinished; 955 956 // At this point, the live intervals in Edit contain VNInfos corresponding to 957 // the inserted copies. 958 959 // Add the original defs from the parent interval. 960 for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(), 961 E = Edit->getParent().vni_end(); I != E; ++I) { 962 const VNInfo *ParentVNI = *I; 963 if (ParentVNI->isUnused()) 964 continue; 965 unsigned RegIdx = RegAssign.lookup(ParentVNI->def); 966 VNInfo *VNI = defValue(RegIdx, ParentVNI, ParentVNI->def); 967 VNI->setIsPHIDef(ParentVNI->isPHIDef()); 968 VNI->setCopy(ParentVNI->getCopy()); 969 970 // Mark rematted values as complex everywhere to force liveness computation. 971 // The new live ranges may be truncated. 972 if (Edit->didRematerialize(ParentVNI)) 973 for (unsigned i = 0, e = Edit->size(); i != e; ++i) 974 markComplexMapped(i, ParentVNI); 975 } 976 977 // Hoist back-copies to the complement interval when in spill mode. 978 switch (SpillMode) { 979 case SM_Partition: 980 // Leave all back-copies as is. 981 break; 982 case SM_Size: 983 hoistCopiesForSize(); 984 break; 985 case SM_Speed: 986 llvm_unreachable("Spill mode 'speed' not implemented yet"); 987 break; 988 } 989 990 // Transfer the simply mapped values, check if any are skipped. 991 bool Skipped = transferValues(); 992 if (Skipped) 993 extendPHIKillRanges(); 994 else 995 ++NumSimple; 996 997 // Rewrite virtual registers, possibly extending ranges. 998 rewriteAssigned(Skipped); 999 1000 // Delete defs that were rematted everywhere. 1001 if (Skipped) 1002 deleteRematVictims(); 1003 1004 // Get rid of unused values and set phi-kill flags. 1005 for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I) 1006 (*I)->RenumberValues(LIS); 1007 1008 // Provide a reverse mapping from original indices to Edit ranges. 1009 if (LRMap) { 1010 LRMap->clear(); 1011 for (unsigned i = 0, e = Edit->size(); i != e; ++i) 1012 LRMap->push_back(i); 1013 } 1014 1015 // Now check if any registers were separated into multiple components. 1016 ConnectedVNInfoEqClasses ConEQ(LIS); 1017 for (unsigned i = 0, e = Edit->size(); i != e; ++i) { 1018 // Don't use iterators, they are invalidated by create() below. 1019 LiveInterval *li = Edit->get(i); 1020 unsigned NumComp = ConEQ.Classify(li); 1021 if (NumComp <= 1) 1022 continue; 1023 DEBUG(dbgs() << " " << NumComp << " components: " << *li << '\n'); 1024 SmallVector<LiveInterval*, 8> dups; 1025 dups.push_back(li); 1026 for (unsigned j = 1; j != NumComp; ++j) 1027 dups.push_back(&Edit->create(LIS, VRM)); 1028 ConEQ.Distribute(&dups[0], MRI); 1029 // The new intervals all map back to i. 1030 if (LRMap) 1031 LRMap->resize(Edit->size(), i); 1032 } 1033 1034 // Calculate spill weight and allocation hints for new intervals. 1035 Edit->calculateRegClassAndHint(VRM.getMachineFunction(), LIS, SA.Loops); 1036 1037 assert(!LRMap || LRMap->size() == Edit->size()); 1038 } 1039 1040 1041 //===----------------------------------------------------------------------===// 1042 // Single Block Splitting 1043 //===----------------------------------------------------------------------===// 1044 1045 bool SplitAnalysis::shouldSplitSingleBlock(const BlockInfo &BI, 1046 bool SingleInstrs) const { 1047 // Always split for multiple instructions. 1048 if (!BI.isOneInstr()) 1049 return true; 1050 // Don't split for single instructions unless explicitly requested. 1051 if (!SingleInstrs) 1052 return false; 1053 // Splitting a live-through range always makes progress. 1054 if (BI.LiveIn && BI.LiveOut) 1055 return true; 1056 // No point in isolating a copy. It has no register class constraints. 1057 if (LIS.getInstructionFromIndex(BI.FirstInstr)->isCopyLike()) 1058 return false; 1059 // Finally, don't isolate an end point that was created by earlier splits. 1060 return isOriginalEndpoint(BI.FirstInstr); 1061 } 1062 1063 void SplitEditor::splitSingleBlock(const SplitAnalysis::BlockInfo &BI) { 1064 openIntv(); 1065 SlotIndex LastSplitPoint = SA.getLastSplitPoint(BI.MBB->getNumber()); 1066 SlotIndex SegStart = enterIntvBefore(std::min(BI.FirstInstr, 1067 LastSplitPoint)); 1068 if (!BI.LiveOut || BI.LastInstr < LastSplitPoint) { 1069 useIntv(SegStart, leaveIntvAfter(BI.LastInstr)); 1070 } else { 1071 // The last use is after the last valid split point. 1072 SlotIndex SegStop = leaveIntvBefore(LastSplitPoint); 1073 useIntv(SegStart, SegStop); 1074 overlapIntv(SegStop, BI.LastInstr); 1075 } 1076 } 1077 1078 1079 //===----------------------------------------------------------------------===// 1080 // Global Live Range Splitting Support 1081 //===----------------------------------------------------------------------===// 1082 1083 // These methods support a method of global live range splitting that uses a 1084 // global algorithm to decide intervals for CFG edges. They will insert split 1085 // points and color intervals in basic blocks while avoiding interference. 1086 // 1087 // Note that splitSingleBlock is also useful for blocks where both CFG edges 1088 // are on the stack. 1089 1090 void SplitEditor::splitLiveThroughBlock(unsigned MBBNum, 1091 unsigned IntvIn, SlotIndex LeaveBefore, 1092 unsigned IntvOut, SlotIndex EnterAfter){ 1093 SlotIndex Start, Stop; 1094 tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(MBBNum); 1095 1096 DEBUG(dbgs() << "BB#" << MBBNum << " [" << Start << ';' << Stop 1097 << ") intf " << LeaveBefore << '-' << EnterAfter 1098 << ", live-through " << IntvIn << " -> " << IntvOut); 1099 1100 assert((IntvIn || IntvOut) && "Use splitSingleBlock for isolated blocks"); 1101 1102 assert((!LeaveBefore || LeaveBefore < Stop) && "Interference after block"); 1103 assert((!IntvIn || !LeaveBefore || LeaveBefore > Start) && "Impossible intf"); 1104 assert((!EnterAfter || EnterAfter >= Start) && "Interference before block"); 1105 1106 MachineBasicBlock *MBB = VRM.getMachineFunction().getBlockNumbered(MBBNum); 1107 1108 if (!IntvOut) { 1109 DEBUG(dbgs() << ", spill on entry.\n"); 1110 // 1111 // <<<<<<<<< Possible LeaveBefore interference. 1112 // |-----------| Live through. 1113 // -____________ Spill on entry. 1114 // 1115 selectIntv(IntvIn); 1116 SlotIndex Idx = leaveIntvAtTop(*MBB); 1117 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1118 (void)Idx; 1119 return; 1120 } 1121 1122 if (!IntvIn) { 1123 DEBUG(dbgs() << ", reload on exit.\n"); 1124 // 1125 // >>>>>>> Possible EnterAfter interference. 1126 // |-----------| Live through. 1127 // ___________-- Reload on exit. 1128 // 1129 selectIntv(IntvOut); 1130 SlotIndex Idx = enterIntvAtEnd(*MBB); 1131 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1132 (void)Idx; 1133 return; 1134 } 1135 1136 if (IntvIn == IntvOut && !LeaveBefore && !EnterAfter) { 1137 DEBUG(dbgs() << ", straight through.\n"); 1138 // 1139 // |-----------| Live through. 1140 // ------------- Straight through, same intv, no interference. 1141 // 1142 selectIntv(IntvOut); 1143 useIntv(Start, Stop); 1144 return; 1145 } 1146 1147 // We cannot legally insert splits after LSP. 1148 SlotIndex LSP = SA.getLastSplitPoint(MBBNum); 1149 assert((!IntvOut || !EnterAfter || EnterAfter < LSP) && "Impossible intf"); 1150 1151 if (IntvIn != IntvOut && (!LeaveBefore || !EnterAfter || 1152 LeaveBefore.getBaseIndex() > EnterAfter.getBoundaryIndex())) { 1153 DEBUG(dbgs() << ", switch avoiding interference.\n"); 1154 // 1155 // >>>> <<<< Non-overlapping EnterAfter/LeaveBefore interference. 1156 // |-----------| Live through. 1157 // ------======= Switch intervals between interference. 1158 // 1159 selectIntv(IntvOut); 1160 SlotIndex Idx; 1161 if (LeaveBefore && LeaveBefore < LSP) { 1162 Idx = enterIntvBefore(LeaveBefore); 1163 useIntv(Idx, Stop); 1164 } else { 1165 Idx = enterIntvAtEnd(*MBB); 1166 } 1167 selectIntv(IntvIn); 1168 useIntv(Start, Idx); 1169 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1170 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1171 return; 1172 } 1173 1174 DEBUG(dbgs() << ", create local intv for interference.\n"); 1175 // 1176 // >>><><><><<<< Overlapping EnterAfter/LeaveBefore interference. 1177 // |-----------| Live through. 1178 // ==---------== Switch intervals before/after interference. 1179 // 1180 assert(LeaveBefore <= EnterAfter && "Missed case"); 1181 1182 selectIntv(IntvOut); 1183 SlotIndex Idx = enterIntvAfter(EnterAfter); 1184 useIntv(Idx, Stop); 1185 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1186 1187 selectIntv(IntvIn); 1188 Idx = leaveIntvBefore(LeaveBefore); 1189 useIntv(Start, Idx); 1190 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1191 } 1192 1193 1194 void SplitEditor::splitRegInBlock(const SplitAnalysis::BlockInfo &BI, 1195 unsigned IntvIn, SlotIndex LeaveBefore) { 1196 SlotIndex Start, Stop; 1197 tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); 1198 1199 DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " [" << Start << ';' << Stop 1200 << "), uses " << BI.FirstInstr << '-' << BI.LastInstr 1201 << ", reg-in " << IntvIn << ", leave before " << LeaveBefore 1202 << (BI.LiveOut ? ", stack-out" : ", killed in block")); 1203 1204 assert(IntvIn && "Must have register in"); 1205 assert(BI.LiveIn && "Must be live-in"); 1206 assert((!LeaveBefore || LeaveBefore > Start) && "Bad interference"); 1207 1208 if (!BI.LiveOut && (!LeaveBefore || LeaveBefore >= BI.LastInstr)) { 1209 DEBUG(dbgs() << " before interference.\n"); 1210 // 1211 // <<< Interference after kill. 1212 // |---o---x | Killed in block. 1213 // ========= Use IntvIn everywhere. 1214 // 1215 selectIntv(IntvIn); 1216 useIntv(Start, BI.LastInstr); 1217 return; 1218 } 1219 1220 SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber()); 1221 1222 if (!LeaveBefore || LeaveBefore > BI.LastInstr.getBoundaryIndex()) { 1223 // 1224 // <<< Possible interference after last use. 1225 // |---o---o---| Live-out on stack. 1226 // =========____ Leave IntvIn after last use. 1227 // 1228 // < Interference after last use. 1229 // |---o---o--o| Live-out on stack, late last use. 1230 // ============ Copy to stack after LSP, overlap IntvIn. 1231 // \_____ Stack interval is live-out. 1232 // 1233 if (BI.LastInstr < LSP) { 1234 DEBUG(dbgs() << ", spill after last use before interference.\n"); 1235 selectIntv(IntvIn); 1236 SlotIndex Idx = leaveIntvAfter(BI.LastInstr); 1237 useIntv(Start, Idx); 1238 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1239 } else { 1240 DEBUG(dbgs() << ", spill before last split point.\n"); 1241 selectIntv(IntvIn); 1242 SlotIndex Idx = leaveIntvBefore(LSP); 1243 overlapIntv(Idx, BI.LastInstr); 1244 useIntv(Start, Idx); 1245 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1246 } 1247 return; 1248 } 1249 1250 // The interference is overlapping somewhere we wanted to use IntvIn. That 1251 // means we need to create a local interval that can be allocated a 1252 // different register. 1253 unsigned LocalIntv = openIntv(); 1254 (void)LocalIntv; 1255 DEBUG(dbgs() << ", creating local interval " << LocalIntv << ".\n"); 1256 1257 if (!BI.LiveOut || BI.LastInstr < LSP) { 1258 // 1259 // <<<<<<< Interference overlapping uses. 1260 // |---o---o---| Live-out on stack. 1261 // =====----____ Leave IntvIn before interference, then spill. 1262 // 1263 SlotIndex To = leaveIntvAfter(BI.LastInstr); 1264 SlotIndex From = enterIntvBefore(LeaveBefore); 1265 useIntv(From, To); 1266 selectIntv(IntvIn); 1267 useIntv(Start, From); 1268 assert((!LeaveBefore || From <= LeaveBefore) && "Interference"); 1269 return; 1270 } 1271 1272 // <<<<<<< Interference overlapping uses. 1273 // |---o---o--o| Live-out on stack, late last use. 1274 // =====------- Copy to stack before LSP, overlap LocalIntv. 1275 // \_____ Stack interval is live-out. 1276 // 1277 SlotIndex To = leaveIntvBefore(LSP); 1278 overlapIntv(To, BI.LastInstr); 1279 SlotIndex From = enterIntvBefore(std::min(To, LeaveBefore)); 1280 useIntv(From, To); 1281 selectIntv(IntvIn); 1282 useIntv(Start, From); 1283 assert((!LeaveBefore || From <= LeaveBefore) && "Interference"); 1284 } 1285 1286 void SplitEditor::splitRegOutBlock(const SplitAnalysis::BlockInfo &BI, 1287 unsigned IntvOut, SlotIndex EnterAfter) { 1288 SlotIndex Start, Stop; 1289 tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); 1290 1291 DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " [" << Start << ';' << Stop 1292 << "), uses " << BI.FirstInstr << '-' << BI.LastInstr 1293 << ", reg-out " << IntvOut << ", enter after " << EnterAfter 1294 << (BI.LiveIn ? ", stack-in" : ", defined in block")); 1295 1296 SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber()); 1297 1298 assert(IntvOut && "Must have register out"); 1299 assert(BI.LiveOut && "Must be live-out"); 1300 assert((!EnterAfter || EnterAfter < LSP) && "Bad interference"); 1301 1302 if (!BI.LiveIn && (!EnterAfter || EnterAfter <= BI.FirstInstr)) { 1303 DEBUG(dbgs() << " after interference.\n"); 1304 // 1305 // >>>> Interference before def. 1306 // | o---o---| Defined in block. 1307 // ========= Use IntvOut everywhere. 1308 // 1309 selectIntv(IntvOut); 1310 useIntv(BI.FirstInstr, Stop); 1311 return; 1312 } 1313 1314 if (!EnterAfter || EnterAfter < BI.FirstInstr.getBaseIndex()) { 1315 DEBUG(dbgs() << ", reload after interference.\n"); 1316 // 1317 // >>>> Interference before def. 1318 // |---o---o---| Live-through, stack-in. 1319 // ____========= Enter IntvOut before first use. 1320 // 1321 selectIntv(IntvOut); 1322 SlotIndex Idx = enterIntvBefore(std::min(LSP, BI.FirstInstr)); 1323 useIntv(Idx, Stop); 1324 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1325 return; 1326 } 1327 1328 // The interference is overlapping somewhere we wanted to use IntvOut. That 1329 // means we need to create a local interval that can be allocated a 1330 // different register. 1331 DEBUG(dbgs() << ", interference overlaps uses.\n"); 1332 // 1333 // >>>>>>> Interference overlapping uses. 1334 // |---o---o---| Live-through, stack-in. 1335 // ____---====== Create local interval for interference range. 1336 // 1337 selectIntv(IntvOut); 1338 SlotIndex Idx = enterIntvAfter(EnterAfter); 1339 useIntv(Idx, Stop); 1340 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1341 1342 openIntv(); 1343 SlotIndex From = enterIntvBefore(std::min(Idx, BI.FirstInstr)); 1344 useIntv(From, Idx); 1345 } 1346