1 //===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the SplitAnalysis class as well as mutator functions for 11 // live range splitting. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "splitter" 16 #include "SplitKit.h" 17 #include "LiveRangeEdit.h" 18 #include "VirtRegMap.h" 19 #include "llvm/CodeGen/CalcSpillWeights.h" 20 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 21 #include "llvm/CodeGen/MachineInstrBuilder.h" 22 #include "llvm/CodeGen/MachineLoopInfo.h" 23 #include "llvm/CodeGen/MachineRegisterInfo.h" 24 #include "llvm/Support/CommandLine.h" 25 #include "llvm/Support/Debug.h" 26 #include "llvm/Support/raw_ostream.h" 27 #include "llvm/Target/TargetInstrInfo.h" 28 #include "llvm/Target/TargetMachine.h" 29 30 using namespace llvm; 31 32 static cl::opt<bool> 33 AllowSplit("spiller-splits-edges", 34 cl::desc("Allow critical edge splitting during spilling")); 35 36 //===----------------------------------------------------------------------===// 37 // Split Analysis 38 //===----------------------------------------------------------------------===// 39 40 SplitAnalysis::SplitAnalysis(const MachineFunction &mf, 41 const LiveIntervals &lis, 42 const MachineLoopInfo &mli) 43 : mf_(mf), 44 lis_(lis), 45 loops_(mli), 46 tii_(*mf.getTarget().getInstrInfo()), 47 curli_(0) {} 48 49 void SplitAnalysis::clear() { 50 usingInstrs_.clear(); 51 usingBlocks_.clear(); 52 usingLoops_.clear(); 53 curli_ = 0; 54 } 55 56 bool SplitAnalysis::canAnalyzeBranch(const MachineBasicBlock *MBB) { 57 MachineBasicBlock *T, *F; 58 SmallVector<MachineOperand, 4> Cond; 59 return !tii_.AnalyzeBranch(const_cast<MachineBasicBlock&>(*MBB), T, F, Cond); 60 } 61 62 /// analyzeUses - Count instructions, basic blocks, and loops using curli. 63 void SplitAnalysis::analyzeUses() { 64 const MachineRegisterInfo &MRI = mf_.getRegInfo(); 65 for (MachineRegisterInfo::reg_iterator I = MRI.reg_begin(curli_->reg); 66 MachineInstr *MI = I.skipInstruction();) { 67 if (MI->isDebugValue() || !usingInstrs_.insert(MI)) 68 continue; 69 MachineBasicBlock *MBB = MI->getParent(); 70 if (usingBlocks_[MBB]++) 71 continue; 72 for (MachineLoop *Loop = loops_.getLoopFor(MBB); Loop; 73 Loop = Loop->getParentLoop()) 74 usingLoops_[Loop]++; 75 } 76 DEBUG(dbgs() << " counted " 77 << usingInstrs_.size() << " instrs, " 78 << usingBlocks_.size() << " blocks, " 79 << usingLoops_.size() << " loops.\n"); 80 } 81 82 void SplitAnalysis::print(const BlockPtrSet &B, raw_ostream &OS) const { 83 for (BlockPtrSet::const_iterator I = B.begin(), E = B.end(); I != E; ++I) { 84 unsigned count = usingBlocks_.lookup(*I); 85 OS << " BB#" << (*I)->getNumber(); 86 if (count) 87 OS << '(' << count << ')'; 88 } 89 } 90 91 // Get three sets of basic blocks surrounding a loop: Blocks inside the loop, 92 // predecessor blocks, and exit blocks. 93 void SplitAnalysis::getLoopBlocks(const MachineLoop *Loop, LoopBlocks &Blocks) { 94 Blocks.clear(); 95 96 // Blocks in the loop. 97 Blocks.Loop.insert(Loop->block_begin(), Loop->block_end()); 98 99 // Predecessor blocks. 100 const MachineBasicBlock *Header = Loop->getHeader(); 101 for (MachineBasicBlock::const_pred_iterator I = Header->pred_begin(), 102 E = Header->pred_end(); I != E; ++I) 103 if (!Blocks.Loop.count(*I)) 104 Blocks.Preds.insert(*I); 105 106 // Exit blocks. 107 for (MachineLoop::block_iterator I = Loop->block_begin(), 108 E = Loop->block_end(); I != E; ++I) { 109 const MachineBasicBlock *MBB = *I; 110 for (MachineBasicBlock::const_succ_iterator SI = MBB->succ_begin(), 111 SE = MBB->succ_end(); SI != SE; ++SI) 112 if (!Blocks.Loop.count(*SI)) 113 Blocks.Exits.insert(*SI); 114 } 115 } 116 117 void SplitAnalysis::print(const LoopBlocks &B, raw_ostream &OS) const { 118 OS << "Loop:"; 119 print(B.Loop, OS); 120 OS << ", preds:"; 121 print(B.Preds, OS); 122 OS << ", exits:"; 123 print(B.Exits, OS); 124 } 125 126 /// analyzeLoopPeripheralUse - Return an enum describing how curli_ is used in 127 /// and around the Loop. 128 SplitAnalysis::LoopPeripheralUse SplitAnalysis:: 129 analyzeLoopPeripheralUse(const SplitAnalysis::LoopBlocks &Blocks) { 130 LoopPeripheralUse use = ContainedInLoop; 131 for (BlockCountMap::iterator I = usingBlocks_.begin(), E = usingBlocks_.end(); 132 I != E; ++I) { 133 const MachineBasicBlock *MBB = I->first; 134 // Is this a peripheral block? 135 if (use < MultiPeripheral && 136 (Blocks.Preds.count(MBB) || Blocks.Exits.count(MBB))) { 137 if (I->second > 1) use = MultiPeripheral; 138 else use = SinglePeripheral; 139 continue; 140 } 141 // Is it a loop block? 142 if (Blocks.Loop.count(MBB)) 143 continue; 144 // It must be an unrelated block. 145 DEBUG(dbgs() << ", outside: BB#" << MBB->getNumber()); 146 return OutsideLoop; 147 } 148 return use; 149 } 150 151 /// getCriticalExits - It may be necessary to partially break critical edges 152 /// leaving the loop if an exit block has phi uses of curli. Collect the exit 153 /// blocks that need special treatment into CriticalExits. 154 void SplitAnalysis::getCriticalExits(const SplitAnalysis::LoopBlocks &Blocks, 155 BlockPtrSet &CriticalExits) { 156 CriticalExits.clear(); 157 158 // A critical exit block contains a phi def of curli, and has a predecessor 159 // that is not in the loop nor a loop predecessor. 160 // For such an exit block, the edges carrying the new variable must be moved 161 // to a new pre-exit block. 162 for (BlockPtrSet::iterator I = Blocks.Exits.begin(), E = Blocks.Exits.end(); 163 I != E; ++I) { 164 const MachineBasicBlock *Succ = *I; 165 SlotIndex SuccIdx = lis_.getMBBStartIdx(Succ); 166 VNInfo *SuccVNI = curli_->getVNInfoAt(SuccIdx); 167 // This exit may not have curli live in at all. No need to split. 168 if (!SuccVNI) 169 continue; 170 // If this is not a PHI def, it is either using a value from before the 171 // loop, or a value defined inside the loop. Both are safe. 172 if (!SuccVNI->isPHIDef() || SuccVNI->def.getBaseIndex() != SuccIdx) 173 continue; 174 // This exit block does have a PHI. Does it also have a predecessor that is 175 // not a loop block or loop predecessor? 176 for (MachineBasicBlock::const_pred_iterator PI = Succ->pred_begin(), 177 PE = Succ->pred_end(); PI != PE; ++PI) { 178 const MachineBasicBlock *Pred = *PI; 179 if (Blocks.Loop.count(Pred) || Blocks.Preds.count(Pred)) 180 continue; 181 // This is a critical exit block, and we need to split the exit edge. 182 CriticalExits.insert(Succ); 183 break; 184 } 185 } 186 } 187 188 /// canSplitCriticalExits - Return true if it is possible to insert new exit 189 /// blocks before the blocks in CriticalExits. 190 bool 191 SplitAnalysis::canSplitCriticalExits(const SplitAnalysis::LoopBlocks &Blocks, 192 BlockPtrSet &CriticalExits) { 193 // If we don't allow critical edge splitting, require no critical exits. 194 if (!AllowSplit) 195 return CriticalExits.empty(); 196 197 for (BlockPtrSet::iterator I = CriticalExits.begin(), E = CriticalExits.end(); 198 I != E; ++I) { 199 const MachineBasicBlock *Succ = *I; 200 // We want to insert a new pre-exit MBB before Succ, and change all the 201 // in-loop blocks to branch to the pre-exit instead of Succ. 202 // Check that all the in-loop predecessors can be changed. 203 for (MachineBasicBlock::const_pred_iterator PI = Succ->pred_begin(), 204 PE = Succ->pred_end(); PI != PE; ++PI) { 205 const MachineBasicBlock *Pred = *PI; 206 // The external predecessors won't be altered. 207 if (!Blocks.Loop.count(Pred) && !Blocks.Preds.count(Pred)) 208 continue; 209 if (!canAnalyzeBranch(Pred)) 210 return false; 211 } 212 213 // If Succ's layout predecessor falls through, that too must be analyzable. 214 // We need to insert the pre-exit block in the gap. 215 MachineFunction::const_iterator MFI = Succ; 216 if (MFI == mf_.begin()) 217 continue; 218 if (!canAnalyzeBranch(--MFI)) 219 return false; 220 } 221 // No problems found. 222 return true; 223 } 224 225 void SplitAnalysis::analyze(const LiveInterval *li) { 226 clear(); 227 curli_ = li; 228 analyzeUses(); 229 } 230 231 const MachineLoop *SplitAnalysis::getBestSplitLoop() { 232 assert(curli_ && "Call analyze() before getBestSplitLoop"); 233 if (usingLoops_.empty()) 234 return 0; 235 236 LoopPtrSet Loops; 237 LoopBlocks Blocks; 238 BlockPtrSet CriticalExits; 239 240 // We split around loops where curli is used outside the periphery. 241 for (LoopCountMap::const_iterator I = usingLoops_.begin(), 242 E = usingLoops_.end(); I != E; ++I) { 243 const MachineLoop *Loop = I->first; 244 getLoopBlocks(Loop, Blocks); 245 DEBUG({ dbgs() << " "; print(Blocks, dbgs()); }); 246 247 switch(analyzeLoopPeripheralUse(Blocks)) { 248 case OutsideLoop: 249 break; 250 case MultiPeripheral: 251 // FIXME: We could split a live range with multiple uses in a peripheral 252 // block and still make progress. However, it is possible that splitting 253 // another live range will insert copies into a peripheral block, and 254 // there is a small chance we can enter an infinity loop, inserting copies 255 // forever. 256 // For safety, stick to splitting live ranges with uses outside the 257 // periphery. 258 DEBUG(dbgs() << ": multiple peripheral uses\n"); 259 break; 260 case ContainedInLoop: 261 DEBUG(dbgs() << ": fully contained\n"); 262 continue; 263 case SinglePeripheral: 264 DEBUG(dbgs() << ": single peripheral use\n"); 265 continue; 266 } 267 // Will it be possible to split around this loop? 268 getCriticalExits(Blocks, CriticalExits); 269 DEBUG(dbgs() << ": " << CriticalExits.size() << " critical exits\n"); 270 if (!canSplitCriticalExits(Blocks, CriticalExits)) 271 continue; 272 // This is a possible split. 273 Loops.insert(Loop); 274 } 275 276 DEBUG(dbgs() << " getBestSplitLoop found " << Loops.size() 277 << " candidate loops.\n"); 278 279 if (Loops.empty()) 280 return 0; 281 282 // Pick the earliest loop. 283 // FIXME: Are there other heuristics to consider? 284 const MachineLoop *Best = 0; 285 SlotIndex BestIdx; 286 for (LoopPtrSet::const_iterator I = Loops.begin(), E = Loops.end(); I != E; 287 ++I) { 288 SlotIndex Idx = lis_.getMBBStartIdx((*I)->getHeader()); 289 if (!Best || Idx < BestIdx) 290 Best = *I, BestIdx = Idx; 291 } 292 DEBUG(dbgs() << " getBestSplitLoop found " << *Best); 293 return Best; 294 } 295 296 /// getMultiUseBlocks - if curli has more than one use in a basic block, it 297 /// may be an advantage to split curli for the duration of the block. 298 bool SplitAnalysis::getMultiUseBlocks(BlockPtrSet &Blocks) { 299 // If curli is local to one block, there is no point to splitting it. 300 if (usingBlocks_.size() <= 1) 301 return false; 302 // Add blocks with multiple uses. 303 for (BlockCountMap::iterator I = usingBlocks_.begin(), E = usingBlocks_.end(); 304 I != E; ++I) 305 switch (I->second) { 306 case 0: 307 case 1: 308 continue; 309 case 2: { 310 // It doesn't pay to split a 2-instr block if it redefines curli. 311 VNInfo *VN1 = curli_->getVNInfoAt(lis_.getMBBStartIdx(I->first)); 312 VNInfo *VN2 = 313 curli_->getVNInfoAt(lis_.getMBBEndIdx(I->first).getPrevIndex()); 314 // live-in and live-out with a different value. 315 if (VN1 && VN2 && VN1 != VN2) 316 continue; 317 } // Fall through. 318 default: 319 Blocks.insert(I->first); 320 } 321 return !Blocks.empty(); 322 } 323 324 //===----------------------------------------------------------------------===// 325 // LiveIntervalMap 326 //===----------------------------------------------------------------------===// 327 328 // Work around the fact that the std::pair constructors are broken for pointer 329 // pairs in some implementations. makeVV(x, 0) works. 330 static inline std::pair<const VNInfo*, VNInfo*> 331 makeVV(const VNInfo *a, VNInfo *b) { 332 return std::make_pair(a, b); 333 } 334 335 void LiveIntervalMap::reset(LiveInterval *li) { 336 li_ = li; 337 valueMap_.clear(); 338 } 339 340 bool LiveIntervalMap::isComplexMapped(const VNInfo *ParentVNI) const { 341 ValueMap::const_iterator i = valueMap_.find(ParentVNI); 342 return i != valueMap_.end() && i->second == 0; 343 } 344 345 // defValue - Introduce a li_ def for ParentVNI that could be later than 346 // ParentVNI->def. 347 VNInfo *LiveIntervalMap::defValue(const VNInfo *ParentVNI, SlotIndex Idx) { 348 assert(li_ && "call reset first"); 349 assert(ParentVNI && "Mapping NULL value"); 350 assert(Idx.isValid() && "Invalid SlotIndex"); 351 assert(parentli_.getVNInfoAt(Idx) == ParentVNI && "Bad ParentVNI"); 352 353 // Create a new value. 354 VNInfo *VNI = li_->getNextValue(Idx, 0, lis_.getVNInfoAllocator()); 355 356 // Use insert for lookup, so we can add missing values with a second lookup. 357 std::pair<ValueMap::iterator,bool> InsP = 358 valueMap_.insert(makeVV(ParentVNI, Idx == ParentVNI->def ? VNI : 0)); 359 360 // This is now a complex def. Mark with a NULL in valueMap. 361 if (!InsP.second) 362 InsP.first->second = 0; 363 364 return VNI; 365 } 366 367 368 // mapValue - Find the mapped value for ParentVNI at Idx. 369 // Potentially create phi-def values. 370 VNInfo *LiveIntervalMap::mapValue(const VNInfo *ParentVNI, SlotIndex Idx, 371 bool *simple) { 372 assert(li_ && "call reset first"); 373 assert(ParentVNI && "Mapping NULL value"); 374 assert(Idx.isValid() && "Invalid SlotIndex"); 375 assert(parentli_.getVNInfoAt(Idx) == ParentVNI && "Bad ParentVNI"); 376 377 // Use insert for lookup, so we can add missing values with a second lookup. 378 std::pair<ValueMap::iterator,bool> InsP = 379 valueMap_.insert(makeVV(ParentVNI, 0)); 380 381 // This was an unknown value. Create a simple mapping. 382 if (InsP.second) { 383 if (simple) *simple = true; 384 return InsP.first->second = li_->createValueCopy(ParentVNI, 385 lis_.getVNInfoAllocator()); 386 } 387 388 // This was a simple mapped value. 389 if (InsP.first->second) { 390 if (simple) *simple = true; 391 return InsP.first->second; 392 } 393 394 // This is a complex mapped value. There may be multiple defs, and we may need 395 // to create phi-defs. 396 if (simple) *simple = false; 397 MachineBasicBlock *IdxMBB = lis_.getMBBFromIndex(Idx); 398 assert(IdxMBB && "No MBB at Idx"); 399 400 // Is there a def in the same MBB we can extend? 401 if (VNInfo *VNI = extendTo(IdxMBB, Idx)) 402 return VNI; 403 404 // Now for the fun part. We know that ParentVNI potentially has multiple defs, 405 // and we may need to create even more phi-defs to preserve VNInfo SSA form. 406 // Perform a depth-first search for predecessor blocks where we know the 407 // dominating VNInfo. Insert phi-def VNInfos along the path back to IdxMBB. 408 409 // Track MBBs where we have created or learned the dominating value. 410 // This may change during the DFS as we create new phi-defs. 411 typedef DenseMap<MachineBasicBlock*, VNInfo*> MBBValueMap; 412 MBBValueMap DomValue; 413 typedef SplitAnalysis::BlockPtrSet BlockPtrSet; 414 BlockPtrSet Visited; 415 416 // Iterate over IdxMBB predecessors in a depth-first order. 417 // Skip begin() since that is always IdxMBB. 418 for (idf_ext_iterator<MachineBasicBlock*, BlockPtrSet> 419 IDFI = llvm::next(idf_ext_begin(IdxMBB, Visited)), 420 IDFE = idf_ext_end(IdxMBB, Visited); IDFI != IDFE;) { 421 MachineBasicBlock *MBB = *IDFI; 422 SlotIndex End = lis_.getMBBEndIdx(MBB).getPrevSlot(); 423 424 // We are operating on the restricted CFG where ParentVNI is live. 425 if (parentli_.getVNInfoAt(End) != ParentVNI) { 426 IDFI.skipChildren(); 427 continue; 428 } 429 430 // Do we have a dominating value in this block? 431 VNInfo *VNI = extendTo(MBB, End); 432 if (!VNI) { 433 ++IDFI; 434 continue; 435 } 436 437 // Yes, VNI dominates MBB. Make sure we visit MBB again from other paths. 438 Visited.erase(MBB); 439 440 // Track the path back to IdxMBB, creating phi-defs 441 // as needed along the way. 442 for (unsigned PI = IDFI.getPathLength()-1; PI != 0; --PI) { 443 // Start from MBB's immediate successor. End at IdxMBB. 444 MachineBasicBlock *Succ = IDFI.getPath(PI-1); 445 std::pair<MBBValueMap::iterator, bool> InsP = 446 DomValue.insert(MBBValueMap::value_type(Succ, VNI)); 447 448 // This is the first time we backtrack to Succ. 449 if (InsP.second) 450 continue; 451 452 // We reached Succ again with the same VNI. Nothing is going to change. 453 VNInfo *OVNI = InsP.first->second; 454 if (OVNI == VNI) 455 break; 456 457 // Succ already has a phi-def. No need to continue. 458 SlotIndex Start = lis_.getMBBStartIdx(Succ); 459 if (OVNI->def == Start) 460 break; 461 462 // We have a collision between the old and new VNI at Succ. That means 463 // neither dominates and we need a new phi-def. 464 VNI = li_->getNextValue(Start, 0, lis_.getVNInfoAllocator()); 465 VNI->setIsPHIDef(true); 466 InsP.first->second = VNI; 467 468 // Replace OVNI with VNI in the remaining path. 469 for (; PI > 1 ; --PI) { 470 MBBValueMap::iterator I = DomValue.find(IDFI.getPath(PI-2)); 471 if (I == DomValue.end() || I->second != OVNI) 472 break; 473 I->second = VNI; 474 } 475 } 476 477 // No need to search the children, we found a dominating value. 478 IDFI.skipChildren(); 479 } 480 481 // The search should at least find a dominating value for IdxMBB. 482 assert(!DomValue.empty() && "Couldn't find a reaching definition"); 483 484 // Since we went through the trouble of a full DFS visiting all reaching defs, 485 // the values in DomValue are now accurate. No more phi-defs are needed for 486 // these blocks, so we can color the live ranges. 487 // This makes the next mapValue call much faster. 488 VNInfo *IdxVNI = 0; 489 for (MBBValueMap::iterator I = DomValue.begin(), E = DomValue.end(); I != E; 490 ++I) { 491 MachineBasicBlock *MBB = I->first; 492 VNInfo *VNI = I->second; 493 SlotIndex Start = lis_.getMBBStartIdx(MBB); 494 if (MBB == IdxMBB) { 495 // Don't add full liveness to IdxMBB, stop at Idx. 496 if (Start != Idx) 497 li_->addRange(LiveRange(Start, Idx.getNextSlot(), VNI)); 498 // The caller had better add some liveness to IdxVNI, or it leaks. 499 IdxVNI = VNI; 500 } else 501 li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), VNI)); 502 } 503 504 assert(IdxVNI && "Didn't find value for Idx"); 505 return IdxVNI; 506 } 507 508 // extendTo - Find the last li_ value defined in MBB at or before Idx. The 509 // parentli_ is assumed to be live at Idx. Extend the live range to Idx. 510 // Return the found VNInfo, or NULL. 511 VNInfo *LiveIntervalMap::extendTo(MachineBasicBlock *MBB, SlotIndex Idx) { 512 assert(li_ && "call reset first"); 513 LiveInterval::iterator I = std::upper_bound(li_->begin(), li_->end(), Idx); 514 if (I == li_->begin()) 515 return 0; 516 --I; 517 if (I->end <= lis_.getMBBStartIdx(MBB)) 518 return 0; 519 if (I->end <= Idx) 520 I->end = Idx.getNextSlot(); 521 return I->valno; 522 } 523 524 // addSimpleRange - Add a simple range from parentli_ to li_. 525 // ParentVNI must be live in the [Start;End) interval. 526 void LiveIntervalMap::addSimpleRange(SlotIndex Start, SlotIndex End, 527 const VNInfo *ParentVNI) { 528 assert(li_ && "call reset first"); 529 bool simple; 530 VNInfo *VNI = mapValue(ParentVNI, Start, &simple); 531 // A simple mapping is easy. 532 if (simple) { 533 li_->addRange(LiveRange(Start, End, VNI)); 534 return; 535 } 536 537 // ParentVNI is a complex value. We must map per MBB. 538 MachineFunction::iterator MBB = lis_.getMBBFromIndex(Start); 539 MachineFunction::iterator MBBE = lis_.getMBBFromIndex(End.getPrevSlot()); 540 541 if (MBB == MBBE) { 542 li_->addRange(LiveRange(Start, End, VNI)); 543 return; 544 } 545 546 // First block. 547 li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), VNI)); 548 549 // Run sequence of full blocks. 550 for (++MBB; MBB != MBBE; ++MBB) { 551 Start = lis_.getMBBStartIdx(MBB); 552 li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), 553 mapValue(ParentVNI, Start))); 554 } 555 556 // Final block. 557 Start = lis_.getMBBStartIdx(MBB); 558 if (Start != End) 559 li_->addRange(LiveRange(Start, End, mapValue(ParentVNI, Start))); 560 } 561 562 /// addRange - Add live ranges to li_ where [Start;End) intersects parentli_. 563 /// All needed values whose def is not inside [Start;End) must be defined 564 /// beforehand so mapValue will work. 565 void LiveIntervalMap::addRange(SlotIndex Start, SlotIndex End) { 566 assert(li_ && "call reset first"); 567 LiveInterval::const_iterator B = parentli_.begin(), E = parentli_.end(); 568 LiveInterval::const_iterator I = std::lower_bound(B, E, Start); 569 570 // Check if --I begins before Start and overlaps. 571 if (I != B) { 572 --I; 573 if (I->end > Start) 574 addSimpleRange(Start, std::min(End, I->end), I->valno); 575 ++I; 576 } 577 578 // The remaining ranges begin after Start. 579 for (;I != E && I->start < End; ++I) 580 addSimpleRange(I->start, std::min(End, I->end), I->valno); 581 } 582 583 VNInfo *LiveIntervalMap::defByCopyFrom(unsigned Reg, 584 const VNInfo *ParentVNI, 585 MachineBasicBlock &MBB, 586 MachineBasicBlock::iterator I) { 587 const TargetInstrDesc &TID = MBB.getParent()->getTarget().getInstrInfo()-> 588 get(TargetOpcode::COPY); 589 MachineInstr *MI = BuildMI(MBB, I, DebugLoc(), TID, li_->reg).addReg(Reg); 590 SlotIndex DefIdx = lis_.InsertMachineInstrInMaps(MI).getDefIndex(); 591 VNInfo *VNI = defValue(ParentVNI, DefIdx); 592 VNI->setCopy(MI); 593 li_->addRange(LiveRange(DefIdx, DefIdx.getNextSlot(), VNI)); 594 return VNI; 595 } 596 597 //===----------------------------------------------------------------------===// 598 // Split Editor 599 //===----------------------------------------------------------------------===// 600 601 /// Create a new SplitEditor for editing the LiveInterval analyzed by SA. 602 SplitEditor::SplitEditor(SplitAnalysis &sa, LiveIntervals &lis, VirtRegMap &vrm, 603 LiveRangeEdit &edit) 604 : sa_(sa), lis_(lis), vrm_(vrm), 605 mri_(vrm.getMachineFunction().getRegInfo()), 606 tii_(*vrm.getMachineFunction().getTarget().getInstrInfo()), 607 edit_(edit), 608 dupli_(lis_, edit.getParent()), 609 openli_(lis_, edit.getParent()) 610 { 611 } 612 613 bool SplitEditor::intervalsLiveAt(SlotIndex Idx) const { 614 for (LiveRangeEdit::iterator I = edit_.begin(), E = edit_.end(); I != E; ++I) 615 if (*I != dupli_.getLI() && (*I)->liveAt(Idx)) 616 return true; 617 return false; 618 } 619 620 /// Create a new virtual register and live interval. 621 void SplitEditor::openIntv() { 622 assert(!openli_.getLI() && "Previous LI not closed before openIntv"); 623 624 if (!dupli_.getLI()) 625 dupli_.reset(&edit_.create(mri_, lis_, vrm_)); 626 627 openli_.reset(&edit_.create(mri_, lis_, vrm_)); 628 } 629 630 /// enterIntvBefore - Enter openli before the instruction at Idx. If curli is 631 /// not live before Idx, a COPY is not inserted. 632 void SplitEditor::enterIntvBefore(SlotIndex Idx) { 633 assert(openli_.getLI() && "openIntv not called before enterIntvBefore"); 634 DEBUG(dbgs() << " enterIntvBefore " << Idx); 635 VNInfo *ParentVNI = edit_.getParent().getVNInfoAt(Idx.getUseIndex()); 636 if (!ParentVNI) { 637 DEBUG(dbgs() << ": not live\n"); 638 return; 639 } 640 DEBUG(dbgs() << ": valno " << ParentVNI->id); 641 truncatedValues.insert(ParentVNI); 642 MachineInstr *MI = lis_.getInstructionFromIndex(Idx); 643 assert(MI && "enterIntvBefore called with invalid index"); 644 VNInfo *VNI = openli_.defByCopyFrom(edit_.getReg(), ParentVNI, 645 *MI->getParent(), MI); 646 openli_.getLI()->addRange(LiveRange(VNI->def, Idx.getDefIndex(), VNI)); 647 DEBUG(dbgs() << ": " << *openli_.getLI() << '\n'); 648 } 649 650 /// enterIntvAtEnd - Enter openli at the end of MBB. 651 void SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) { 652 assert(openli_.getLI() && "openIntv not called before enterIntvAtEnd"); 653 SlotIndex End = lis_.getMBBEndIdx(&MBB); 654 DEBUG(dbgs() << " enterIntvAtEnd BB#" << MBB.getNumber() << ", " << End); 655 VNInfo *ParentVNI = edit_.getParent().getVNInfoAt(End.getPrevSlot()); 656 if (!ParentVNI) { 657 DEBUG(dbgs() << ": not live\n"); 658 return; 659 } 660 DEBUG(dbgs() << ": valno " << ParentVNI->id); 661 truncatedValues.insert(ParentVNI); 662 VNInfo *VNI = openli_.defByCopyFrom(edit_.getReg(), ParentVNI, 663 MBB, MBB.getFirstTerminator()); 664 // Make sure openli is live out of MBB. 665 openli_.getLI()->addRange(LiveRange(VNI->def, End, VNI)); 666 DEBUG(dbgs() << ": " << *openli_.getLI() << '\n'); 667 } 668 669 /// useIntv - indicate that all instructions in MBB should use openli. 670 void SplitEditor::useIntv(const MachineBasicBlock &MBB) { 671 useIntv(lis_.getMBBStartIdx(&MBB), lis_.getMBBEndIdx(&MBB)); 672 } 673 674 void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) { 675 assert(openli_.getLI() && "openIntv not called before useIntv"); 676 openli_.addRange(Start, End); 677 DEBUG(dbgs() << " use [" << Start << ';' << End << "): " 678 << *openli_.getLI() << '\n'); 679 } 680 681 /// leaveIntvAfter - Leave openli after the instruction at Idx. 682 void SplitEditor::leaveIntvAfter(SlotIndex Idx) { 683 assert(openli_.getLI() && "openIntv not called before leaveIntvAfter"); 684 DEBUG(dbgs() << " leaveIntvAfter " << Idx); 685 686 // The interval must be live beyond the instruction at Idx. 687 VNInfo *ParentVNI = edit_.getParent().getVNInfoAt(Idx.getBoundaryIndex()); 688 if (!ParentVNI) { 689 DEBUG(dbgs() << ": not live\n"); 690 return; 691 } 692 DEBUG(dbgs() << ": valno " << ParentVNI->id); 693 694 MachineBasicBlock::iterator MII = lis_.getInstructionFromIndex(Idx); 695 MachineBasicBlock *MBB = MII->getParent(); 696 VNInfo *VNI = dupli_.defByCopyFrom(openli_.getLI()->reg, ParentVNI, *MBB, 697 llvm::next(MII)); 698 699 // Finally we must make sure that openli is properly extended from Idx to the 700 // new copy. 701 openli_.addSimpleRange(Idx.getBoundaryIndex(), VNI->def, ParentVNI); 702 DEBUG(dbgs() << ": " << *openli_.getLI() << '\n'); 703 } 704 705 /// leaveIntvAtTop - Leave the interval at the top of MBB. 706 /// Currently, only one value can leave the interval. 707 void SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) { 708 assert(openli_.getLI() && "openIntv not called before leaveIntvAtTop"); 709 SlotIndex Start = lis_.getMBBStartIdx(&MBB); 710 DEBUG(dbgs() << " leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start); 711 712 VNInfo *ParentVNI = edit_.getParent().getVNInfoAt(Start); 713 if (!ParentVNI) { 714 DEBUG(dbgs() << ": not live\n"); 715 return; 716 } 717 718 // We are going to insert a back copy, so we must have a dupli_. 719 VNInfo *VNI = dupli_.defByCopyFrom(openli_.getLI()->reg, ParentVNI, 720 MBB, MBB.begin()); 721 722 // Finally we must make sure that openli is properly extended from Start to 723 // the new copy. 724 openli_.addSimpleRange(Start, VNI->def, ParentVNI); 725 DEBUG(dbgs() << ": " << *openli_.getLI() << '\n'); 726 } 727 728 /// closeIntv - Indicate that we are done editing the currently open 729 /// LiveInterval, and ranges can be trimmed. 730 void SplitEditor::closeIntv() { 731 assert(openli_.getLI() && "openIntv not called before closeIntv"); 732 733 DEBUG(dbgs() << " closeIntv cleaning up\n"); 734 DEBUG(dbgs() << " open " << *openli_.getLI() << '\n'); 735 openli_.reset(0); 736 } 737 738 /// rewrite - Rewrite all uses of reg to use the new registers. 739 void SplitEditor::rewrite(unsigned reg) { 740 for (MachineRegisterInfo::reg_iterator RI = mri_.reg_begin(reg), 741 RE = mri_.reg_end(); RI != RE;) { 742 MachineOperand &MO = RI.getOperand(); 743 MachineInstr *MI = MO.getParent(); 744 ++RI; 745 if (MI->isDebugValue()) { 746 DEBUG(dbgs() << "Zapping " << *MI); 747 // FIXME: We can do much better with debug values. 748 MO.setReg(0); 749 continue; 750 } 751 SlotIndex Idx = lis_.getInstructionIndex(MI); 752 Idx = MO.isUse() ? Idx.getUseIndex() : Idx.getDefIndex(); 753 LiveInterval *LI = 0; 754 for (LiveRangeEdit::iterator I = edit_.begin(), E = edit_.end(); I != E; 755 ++I) { 756 LiveInterval *testli = *I; 757 if (testli->liveAt(Idx)) { 758 LI = testli; 759 break; 760 } 761 } 762 DEBUG(dbgs() << " rewr BB#" << MI->getParent()->getNumber() << '\t'<< Idx); 763 assert(LI && "No register was live at use"); 764 MO.setReg(LI->reg); 765 DEBUG(dbgs() << '\t' << *MI); 766 } 767 } 768 769 void 770 SplitEditor::addTruncSimpleRange(SlotIndex Start, SlotIndex End, VNInfo *VNI) { 771 // Build vector of iterator pairs from the intervals. 772 typedef std::pair<LiveInterval::const_iterator, 773 LiveInterval::const_iterator> IIPair; 774 SmallVector<IIPair, 8> Iters; 775 for (LiveRangeEdit::iterator LI = edit_.begin(), LE = edit_.end(); LI != LE; 776 ++LI) { 777 if (*LI == dupli_.getLI()) 778 continue; 779 LiveInterval::const_iterator I = (*LI)->find(Start); 780 LiveInterval::const_iterator E = (*LI)->end(); 781 if (I != E) 782 Iters.push_back(std::make_pair(I, E)); 783 } 784 785 SlotIndex sidx = Start; 786 // Break [Start;End) into segments that don't overlap any intervals. 787 for (;;) { 788 SlotIndex next = sidx, eidx = End; 789 // Find overlapping intervals. 790 for (unsigned i = 0; i != Iters.size() && sidx < eidx; ++i) { 791 LiveInterval::const_iterator I = Iters[i].first; 792 // Interval I is overlapping [sidx;eidx). Trim sidx. 793 if (I->start <= sidx) { 794 sidx = I->end; 795 // Move to the next run, remove iters when all are consumed. 796 I = ++Iters[i].first; 797 if (I == Iters[i].second) { 798 Iters.erase(Iters.begin() + i); 799 --i; 800 continue; 801 } 802 } 803 // Trim eidx too if needed. 804 if (I->start >= eidx) 805 continue; 806 eidx = I->start; 807 next = I->end; 808 } 809 // Now, [sidx;eidx) doesn't overlap anything in intervals_. 810 if (sidx < eidx) 811 dupli_.addSimpleRange(sidx, eidx, VNI); 812 // If the interval end was truncated, we can try again from next. 813 if (next <= sidx) 814 break; 815 sidx = next; 816 } 817 } 818 819 void SplitEditor::computeRemainder() { 820 // First we need to fill in the live ranges in dupli. 821 // If values were redefined, we need a full recoloring with SSA update. 822 // If values were truncated, we only need to truncate the ranges. 823 // If values were partially rematted, we should shrink to uses. 824 // If values were fully rematted, they should be omitted. 825 // FIXME: If a single value is redefined, just move the def and truncate. 826 LiveInterval &parent = edit_.getParent(); 827 828 // Values that are fully contained in the split intervals. 829 SmallPtrSet<const VNInfo*, 8> deadValues; 830 // Map all curli values that should have live defs in dupli. 831 for (LiveInterval::const_vni_iterator I = parent.vni_begin(), 832 E = parent.vni_end(); I != E; ++I) { 833 const VNInfo *VNI = *I; 834 // Original def is contained in the split intervals. 835 if (intervalsLiveAt(VNI->def)) { 836 // Did this value escape? 837 if (dupli_.isMapped(VNI)) 838 truncatedValues.insert(VNI); 839 else 840 deadValues.insert(VNI); 841 continue; 842 } 843 // Add minimal live range at the definition. 844 VNInfo *DVNI = dupli_.defValue(VNI, VNI->def); 845 dupli_.getLI()->addRange(LiveRange(VNI->def, VNI->def.getNextSlot(), DVNI)); 846 } 847 848 // Add all ranges to dupli. 849 for (LiveInterval::const_iterator I = parent.begin(), E = parent.end(); 850 I != E; ++I) { 851 const LiveRange &LR = *I; 852 if (truncatedValues.count(LR.valno)) { 853 // recolor after removing intervals_. 854 addTruncSimpleRange(LR.start, LR.end, LR.valno); 855 } else if (!deadValues.count(LR.valno)) { 856 // recolor without truncation. 857 dupli_.addSimpleRange(LR.start, LR.end, LR.valno); 858 } 859 } 860 } 861 862 void SplitEditor::finish() { 863 assert(!openli_.getLI() && "Previous LI not closed before rewrite"); 864 assert(dupli_.getLI() && "No dupli for rewrite. Noop spilt?"); 865 866 // Complete dupli liveness. 867 computeRemainder(); 868 869 // Get rid of unused values and set phi-kill flags. 870 dupli_.getLI()->RenumberValues(lis_); 871 872 // Now check if dupli was separated into multiple connected components. 873 ConnectedVNInfoEqClasses ConEQ(lis_); 874 if (unsigned NumComp = ConEQ.Classify(dupli_.getLI())) { 875 DEBUG(dbgs() << " Remainder has " << NumComp << " connected components: " 876 << *dupli_.getLI() << '\n'); 877 // Did the remainder break up? Create intervals for all the components. 878 if (NumComp > 1) { 879 SmallVector<LiveInterval*, 8> dups; 880 dups.push_back(dupli_.getLI()); 881 for (unsigned i = 1; i != NumComp; ++i) 882 dups.push_back(&edit_.create(mri_, lis_, vrm_)); 883 ConEQ.Distribute(&dups[0]); 884 // Rewrite uses to the new regs. 885 rewrite(dupli_.getLI()->reg); 886 } 887 } 888 889 // Rewrite instructions. 890 rewrite(edit_.getReg()); 891 892 // Calculate spill weight and allocation hints for new intervals. 893 VirtRegAuxInfo vrai(vrm_.getMachineFunction(), lis_, sa_.loops_); 894 for (LiveRangeEdit::iterator I = edit_.begin(), E = edit_.end(); I != E; ++I){ 895 LiveInterval &li = **I; 896 vrai.CalculateRegClass(li.reg); 897 vrai.CalculateWeightAndHint(li); 898 DEBUG(dbgs() << " new interval " << mri_.getRegClass(li.reg)->getName() 899 << ":" << li << '\n'); 900 } 901 } 902 903 904 //===----------------------------------------------------------------------===// 905 // Loop Splitting 906 //===----------------------------------------------------------------------===// 907 908 void SplitEditor::splitAroundLoop(const MachineLoop *Loop) { 909 SplitAnalysis::LoopBlocks Blocks; 910 sa_.getLoopBlocks(Loop, Blocks); 911 912 DEBUG({ 913 dbgs() << " splitAround"; sa_.print(Blocks, dbgs()); dbgs() << '\n'; 914 }); 915 916 // Break critical edges as needed. 917 SplitAnalysis::BlockPtrSet CriticalExits; 918 sa_.getCriticalExits(Blocks, CriticalExits); 919 assert(CriticalExits.empty() && "Cannot break critical exits yet"); 920 921 // Create new live interval for the loop. 922 openIntv(); 923 924 // Insert copies in the predecessors. 925 for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Preds.begin(), 926 E = Blocks.Preds.end(); I != E; ++I) { 927 MachineBasicBlock &MBB = const_cast<MachineBasicBlock&>(**I); 928 enterIntvAtEnd(MBB); 929 } 930 931 // Switch all loop blocks. 932 for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Loop.begin(), 933 E = Blocks.Loop.end(); I != E; ++I) 934 useIntv(**I); 935 936 // Insert back copies in the exit blocks. 937 for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Exits.begin(), 938 E = Blocks.Exits.end(); I != E; ++I) { 939 MachineBasicBlock &MBB = const_cast<MachineBasicBlock&>(**I); 940 leaveIntvAtTop(MBB); 941 } 942 943 // Done. 944 closeIntv(); 945 finish(); 946 } 947 948 949 //===----------------------------------------------------------------------===// 950 // Single Block Splitting 951 //===----------------------------------------------------------------------===// 952 953 /// splitSingleBlocks - Split curli into a separate live interval inside each 954 /// basic block in Blocks. 955 void SplitEditor::splitSingleBlocks(const SplitAnalysis::BlockPtrSet &Blocks) { 956 DEBUG(dbgs() << " splitSingleBlocks for " << Blocks.size() << " blocks.\n"); 957 // Determine the first and last instruction using curli in each block. 958 typedef std::pair<SlotIndex,SlotIndex> IndexPair; 959 typedef DenseMap<const MachineBasicBlock*,IndexPair> IndexPairMap; 960 IndexPairMap MBBRange; 961 for (SplitAnalysis::InstrPtrSet::const_iterator I = sa_.usingInstrs_.begin(), 962 E = sa_.usingInstrs_.end(); I != E; ++I) { 963 const MachineBasicBlock *MBB = (*I)->getParent(); 964 if (!Blocks.count(MBB)) 965 continue; 966 SlotIndex Idx = lis_.getInstructionIndex(*I); 967 DEBUG(dbgs() << " BB#" << MBB->getNumber() << '\t' << Idx << '\t' << **I); 968 IndexPair &IP = MBBRange[MBB]; 969 if (!IP.first.isValid() || Idx < IP.first) 970 IP.first = Idx; 971 if (!IP.second.isValid() || Idx > IP.second) 972 IP.second = Idx; 973 } 974 975 // Create a new interval for each block. 976 for (SplitAnalysis::BlockPtrSet::const_iterator I = Blocks.begin(), 977 E = Blocks.end(); I != E; ++I) { 978 IndexPair &IP = MBBRange[*I]; 979 DEBUG(dbgs() << " splitting for BB#" << (*I)->getNumber() << ": [" 980 << IP.first << ';' << IP.second << ")\n"); 981 assert(IP.first.isValid() && IP.second.isValid()); 982 983 openIntv(); 984 enterIntvBefore(IP.first); 985 useIntv(IP.first.getBaseIndex(), IP.second.getBoundaryIndex()); 986 leaveIntvAfter(IP.second); 987 closeIntv(); 988 } 989 finish(); 990 } 991 992 993 //===----------------------------------------------------------------------===// 994 // Sub Block Splitting 995 //===----------------------------------------------------------------------===// 996 997 /// getBlockForInsideSplit - If curli is contained inside a single basic block, 998 /// and it wou pay to subdivide the interval inside that block, return it. 999 /// Otherwise return NULL. The returned block can be passed to 1000 /// SplitEditor::splitInsideBlock. 1001 const MachineBasicBlock *SplitAnalysis::getBlockForInsideSplit() { 1002 // The interval must be exclusive to one block. 1003 if (usingBlocks_.size() != 1) 1004 return 0; 1005 // Don't to this for less than 4 instructions. We want to be sure that 1006 // splitting actually reduces the instruction count per interval. 1007 if (usingInstrs_.size() < 4) 1008 return 0; 1009 return usingBlocks_.begin()->first; 1010 } 1011 1012 /// splitInsideBlock - Split curli into multiple intervals inside MBB. 1013 void SplitEditor::splitInsideBlock(const MachineBasicBlock *MBB) { 1014 SmallVector<SlotIndex, 32> Uses; 1015 Uses.reserve(sa_.usingInstrs_.size()); 1016 for (SplitAnalysis::InstrPtrSet::const_iterator I = sa_.usingInstrs_.begin(), 1017 E = sa_.usingInstrs_.end(); I != E; ++I) 1018 if ((*I)->getParent() == MBB) 1019 Uses.push_back(lis_.getInstructionIndex(*I)); 1020 DEBUG(dbgs() << " splitInsideBlock BB#" << MBB->getNumber() << " for " 1021 << Uses.size() << " instructions.\n"); 1022 assert(Uses.size() >= 3 && "Need at least 3 instructions"); 1023 array_pod_sort(Uses.begin(), Uses.end()); 1024 1025 // Simple algorithm: Find the largest gap between uses as determined by slot 1026 // indices. Create new intervals for instructions before the gap and after the 1027 // gap. 1028 unsigned bestPos = 0; 1029 int bestGap = 0; 1030 DEBUG(dbgs() << " dist (" << Uses[0]); 1031 for (unsigned i = 1, e = Uses.size(); i != e; ++i) { 1032 int g = Uses[i-1].distance(Uses[i]); 1033 DEBUG(dbgs() << ") -" << g << "- (" << Uses[i]); 1034 if (g > bestGap) 1035 bestPos = i, bestGap = g; 1036 } 1037 DEBUG(dbgs() << "), best: -" << bestGap << "-\n"); 1038 1039 // bestPos points to the first use after the best gap. 1040 assert(bestPos > 0 && "Invalid gap"); 1041 1042 // FIXME: Don't create intervals for low densities. 1043 1044 // First interval before the gap. Don't create single-instr intervals. 1045 if (bestPos > 1) { 1046 openIntv(); 1047 enterIntvBefore(Uses.front()); 1048 useIntv(Uses.front().getBaseIndex(), Uses[bestPos-1].getBoundaryIndex()); 1049 leaveIntvAfter(Uses[bestPos-1]); 1050 closeIntv(); 1051 } 1052 1053 // Second interval after the gap. 1054 if (bestPos < Uses.size()-1) { 1055 openIntv(); 1056 enterIntvBefore(Uses[bestPos]); 1057 useIntv(Uses[bestPos].getBaseIndex(), Uses.back().getBoundaryIndex()); 1058 leaveIntvAfter(Uses.back()); 1059 closeIntv(); 1060 } 1061 1062 finish(); 1063 } 1064