1 //===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the SplitAnalysis class as well as mutator functions for 11 // live range splitting. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "regalloc" 16 #include "SplitKit.h" 17 #include "LiveRangeEdit.h" 18 #include "VirtRegMap.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/CodeGen/CalcSpillWeights.h" 21 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 22 #include "llvm/CodeGen/MachineDominators.h" 23 #include "llvm/CodeGen/MachineInstrBuilder.h" 24 #include "llvm/CodeGen/MachineRegisterInfo.h" 25 #include "llvm/Support/CommandLine.h" 26 #include "llvm/Support/Debug.h" 27 #include "llvm/Support/raw_ostream.h" 28 #include "llvm/Target/TargetInstrInfo.h" 29 #include "llvm/Target/TargetMachine.h" 30 31 using namespace llvm; 32 33 static cl::opt<bool> 34 AllowSplit("spiller-splits-edges", 35 cl::desc("Allow critical edge splitting during spilling")); 36 37 STATISTIC(NumFinished, "Number of splits finished"); 38 STATISTIC(NumSimple, "Number of splits that were simple"); 39 40 //===----------------------------------------------------------------------===// 41 // Split Analysis 42 //===----------------------------------------------------------------------===// 43 44 SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm, 45 const LiveIntervals &lis, 46 const MachineLoopInfo &mli) 47 : MF(vrm.getMachineFunction()), 48 VRM(vrm), 49 LIS(lis), 50 Loops(mli), 51 TII(*MF.getTarget().getInstrInfo()), 52 CurLI(0) {} 53 54 void SplitAnalysis::clear() { 55 UseSlots.clear(); 56 UsingInstrs.clear(); 57 UsingBlocks.clear(); 58 LiveBlocks.clear(); 59 CurLI = 0; 60 } 61 62 bool SplitAnalysis::canAnalyzeBranch(const MachineBasicBlock *MBB) { 63 MachineBasicBlock *T, *F; 64 SmallVector<MachineOperand, 4> Cond; 65 return !TII.AnalyzeBranch(const_cast<MachineBasicBlock&>(*MBB), T, F, Cond); 66 } 67 68 /// analyzeUses - Count instructions, basic blocks, and loops using CurLI. 69 void SplitAnalysis::analyzeUses() { 70 const MachineRegisterInfo &MRI = MF.getRegInfo(); 71 for (MachineRegisterInfo::reg_iterator I = MRI.reg_begin(CurLI->reg), 72 E = MRI.reg_end(); I != E; ++I) { 73 MachineOperand &MO = I.getOperand(); 74 if (MO.isUse() && MO.isUndef()) 75 continue; 76 MachineInstr *MI = MO.getParent(); 77 if (MI->isDebugValue() || !UsingInstrs.insert(MI)) 78 continue; 79 UseSlots.push_back(LIS.getInstructionIndex(MI).getDefIndex()); 80 MachineBasicBlock *MBB = MI->getParent(); 81 UsingBlocks[MBB]++; 82 } 83 array_pod_sort(UseSlots.begin(), UseSlots.end()); 84 calcLiveBlockInfo(); 85 DEBUG(dbgs() << " counted " 86 << UsingInstrs.size() << " instrs, " 87 << UsingBlocks.size() << " blocks.\n"); 88 } 89 90 /// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks 91 /// where CurLI is live. 92 void SplitAnalysis::calcLiveBlockInfo() { 93 if (CurLI->empty()) 94 return; 95 96 LiveInterval::const_iterator LVI = CurLI->begin(); 97 LiveInterval::const_iterator LVE = CurLI->end(); 98 99 SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE; 100 UseI = UseSlots.begin(); 101 UseE = UseSlots.end(); 102 103 // Loop over basic blocks where CurLI is live. 104 MachineFunction::iterator MFI = LIS.getMBBFromIndex(LVI->start); 105 for (;;) { 106 BlockInfo BI; 107 BI.MBB = MFI; 108 tie(BI.Start, BI.Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); 109 110 // The last split point is the latest possible insertion point that dominates 111 // all successor blocks. If interference reaches LastSplitPoint, it is not 112 // possible to insert a split or reload that makes CurLI live in the 113 // outgoing bundle. 114 MachineBasicBlock::iterator LSP = LIS.getLastSplitPoint(*CurLI, BI.MBB); 115 if (LSP == BI.MBB->end()) 116 BI.LastSplitPoint = BI.Stop; 117 else 118 BI.LastSplitPoint = LIS.getInstructionIndex(LSP); 119 120 // LVI is the first live segment overlapping MBB. 121 BI.LiveIn = LVI->start <= BI.Start; 122 if (!BI.LiveIn) 123 BI.Def = LVI->start; 124 125 // Find the first and last uses in the block. 126 BI.Uses = hasUses(MFI); 127 if (BI.Uses && UseI != UseE) { 128 BI.FirstUse = *UseI; 129 assert(BI.FirstUse >= BI.Start); 130 do ++UseI; 131 while (UseI != UseE && *UseI < BI.Stop); 132 BI.LastUse = UseI[-1]; 133 assert(BI.LastUse < BI.Stop); 134 } 135 136 // Look for gaps in the live range. 137 bool hasGap = false; 138 BI.LiveOut = true; 139 while (LVI->end < BI.Stop) { 140 SlotIndex LastStop = LVI->end; 141 if (++LVI == LVE || LVI->start >= BI.Stop) { 142 BI.Kill = LastStop; 143 BI.LiveOut = false; 144 break; 145 } 146 if (LastStop < LVI->start) { 147 hasGap = true; 148 BI.Kill = LastStop; 149 BI.Def = LVI->start; 150 } 151 } 152 153 // Don't set LiveThrough when the block has a gap. 154 BI.LiveThrough = !hasGap && BI.LiveIn && BI.LiveOut; 155 LiveBlocks.push_back(BI); 156 157 // LVI is now at LVE or LVI->end >= Stop. 158 if (LVI == LVE) 159 break; 160 161 // Live segment ends exactly at Stop. Move to the next segment. 162 if (LVI->end == BI.Stop && ++LVI == LVE) 163 break; 164 165 // Pick the next basic block. 166 if (LVI->start < BI.Stop) 167 ++MFI; 168 else 169 MFI = LIS.getMBBFromIndex(LVI->start); 170 } 171 } 172 173 bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const { 174 unsigned OrigReg = VRM.getOriginal(CurLI->reg); 175 const LiveInterval &Orig = LIS.getInterval(OrigReg); 176 assert(!Orig.empty() && "Splitting empty interval?"); 177 LiveInterval::const_iterator I = Orig.find(Idx); 178 179 // Range containing Idx should begin at Idx. 180 if (I != Orig.end() && I->start <= Idx) 181 return I->start == Idx; 182 183 // Range does not contain Idx, previous must end at Idx. 184 return I != Orig.begin() && (--I)->end == Idx; 185 } 186 187 void SplitAnalysis::print(const BlockPtrSet &B, raw_ostream &OS) const { 188 for (BlockPtrSet::const_iterator I = B.begin(), E = B.end(); I != E; ++I) { 189 unsigned count = UsingBlocks.lookup(*I); 190 OS << " BB#" << (*I)->getNumber(); 191 if (count) 192 OS << '(' << count << ')'; 193 } 194 } 195 196 void SplitAnalysis::analyze(const LiveInterval *li) { 197 clear(); 198 CurLI = li; 199 analyzeUses(); 200 } 201 202 203 //===----------------------------------------------------------------------===// 204 // Split Editor 205 //===----------------------------------------------------------------------===// 206 207 /// Create a new SplitEditor for editing the LiveInterval analyzed by SA. 208 SplitEditor::SplitEditor(SplitAnalysis &sa, 209 LiveIntervals &lis, 210 VirtRegMap &vrm, 211 MachineDominatorTree &mdt) 212 : SA(sa), LIS(lis), VRM(vrm), 213 MRI(vrm.getMachineFunction().getRegInfo()), 214 MDT(mdt), 215 TII(*vrm.getMachineFunction().getTarget().getInstrInfo()), 216 TRI(*vrm.getMachineFunction().getTarget().getRegisterInfo()), 217 Edit(0), 218 OpenIdx(0), 219 RegAssign(Allocator) 220 {} 221 222 void SplitEditor::reset(LiveRangeEdit &lre) { 223 Edit = &lre; 224 OpenIdx = 0; 225 RegAssign.clear(); 226 Values.clear(); 227 LiveOutCache.clear(); 228 229 // We don't need an AliasAnalysis since we will only be performing 230 // cheap-as-a-copy remats anyway. 231 Edit->anyRematerializable(LIS, TII, 0); 232 } 233 234 void SplitEditor::dump() const { 235 if (RegAssign.empty()) { 236 dbgs() << " empty\n"; 237 return; 238 } 239 240 for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I) 241 dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value(); 242 dbgs() << '\n'; 243 } 244 245 VNInfo *SplitEditor::defValue(unsigned RegIdx, 246 const VNInfo *ParentVNI, 247 SlotIndex Idx) { 248 assert(ParentVNI && "Mapping NULL value"); 249 assert(Idx.isValid() && "Invalid SlotIndex"); 250 assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI"); 251 LiveInterval *LI = Edit->get(RegIdx); 252 253 // Create a new value. 254 VNInfo *VNI = LI->getNextValue(Idx, 0, LIS.getVNInfoAllocator()); 255 256 // Preserve the PHIDef bit. 257 if (ParentVNI->isPHIDef() && Idx == ParentVNI->def) 258 VNI->setIsPHIDef(true); 259 260 // Use insert for lookup, so we can add missing values with a second lookup. 261 std::pair<ValueMap::iterator, bool> InsP = 262 Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id), VNI)); 263 264 // This was the first time (RegIdx, ParentVNI) was mapped. 265 // Keep it as a simple def without any liveness. 266 if (InsP.second) 267 return VNI; 268 269 // If the previous value was a simple mapping, add liveness for it now. 270 if (VNInfo *OldVNI = InsP.first->second) { 271 SlotIndex Def = OldVNI->def; 272 LI->addRange(LiveRange(Def, Def.getNextSlot(), OldVNI)); 273 // No longer a simple mapping. 274 InsP.first->second = 0; 275 } 276 277 // This is a complex mapping, add liveness for VNI 278 SlotIndex Def = VNI->def; 279 LI->addRange(LiveRange(Def, Def.getNextSlot(), VNI)); 280 281 return VNI; 282 } 283 284 void SplitEditor::markComplexMapped(unsigned RegIdx, const VNInfo *ParentVNI) { 285 assert(ParentVNI && "Mapping NULL value"); 286 VNInfo *&VNI = Values[std::make_pair(RegIdx, ParentVNI->id)]; 287 288 // ParentVNI was either unmapped or already complex mapped. Either way. 289 if (!VNI) 290 return; 291 292 // This was previously a single mapping. Make sure the old def is represented 293 // by a trivial live range. 294 SlotIndex Def = VNI->def; 295 Edit->get(RegIdx)->addRange(LiveRange(Def, Def.getNextSlot(), VNI)); 296 VNI = 0; 297 } 298 299 // extendRange - Extend the live range to reach Idx. 300 // Potentially create phi-def values. 301 void SplitEditor::extendRange(unsigned RegIdx, SlotIndex Idx) { 302 assert(Idx.isValid() && "Invalid SlotIndex"); 303 MachineBasicBlock *IdxMBB = LIS.getMBBFromIndex(Idx); 304 assert(IdxMBB && "No MBB at Idx"); 305 LiveInterval *LI = Edit->get(RegIdx); 306 307 // Is there a def in the same MBB we can extend? 308 if (LI->extendInBlock(LIS.getMBBStartIdx(IdxMBB), Idx)) 309 return; 310 311 // Now for the fun part. We know that ParentVNI potentially has multiple defs, 312 // and we may need to create even more phi-defs to preserve VNInfo SSA form. 313 // Perform a search for all predecessor blocks where we know the dominating 314 // VNInfo. Insert phi-def VNInfos along the path back to IdxMBB. 315 DEBUG(dbgs() << "\n Reaching defs for BB#" << IdxMBB->getNumber() 316 << " at " << Idx << " in " << *LI << '\n'); 317 318 // Blocks where LI should be live-in. 319 SmallVector<MachineDomTreeNode*, 16> LiveIn; 320 LiveIn.push_back(MDT[IdxMBB]); 321 322 // Remember if we have seen more than one value. 323 bool UniqueVNI = true; 324 VNInfo *IdxVNI = 0; 325 326 // Using LiveOutCache as a visited set, perform a BFS for all reaching defs. 327 for (unsigned i = 0; i != LiveIn.size(); ++i) { 328 MachineBasicBlock *MBB = LiveIn[i]->getBlock(); 329 for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), 330 PE = MBB->pred_end(); PI != PE; ++PI) { 331 MachineBasicBlock *Pred = *PI; 332 // Is this a known live-out block? 333 std::pair<LiveOutMap::iterator,bool> LOIP = 334 LiveOutCache.insert(std::make_pair(Pred, LiveOutPair())); 335 // Yes, we have been here before. 336 if (!LOIP.second) { 337 if (VNInfo *VNI = LOIP.first->second.first) { 338 if (IdxVNI && IdxVNI != VNI) 339 UniqueVNI = false; 340 IdxVNI = VNI; 341 } 342 continue; 343 } 344 // Does Pred provide a live-out value? 345 SlotIndex Start, Last; 346 tie(Start, Last) = LIS.getSlotIndexes()->getMBBRange(Pred); 347 Last = Last.getPrevSlot(); 348 if (VNInfo *VNI = LI->extendInBlock(Start, Last)) { 349 MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(VNI->def); 350 LiveOutPair &LOP = LOIP.first->second; 351 LOP.first = VNI; 352 LOP.second = MDT[DefMBB]; 353 if (IdxVNI && IdxVNI != VNI) 354 UniqueVNI = false; 355 IdxVNI = VNI; 356 continue; 357 } 358 // No, we need a live-in value for Pred as well 359 if (Pred != IdxMBB) 360 LiveIn.push_back(MDT[Pred]); 361 else 362 UniqueVNI = false; // Loopback to IdxMBB, ask updateSSA() for help. 363 } 364 } 365 366 // We may need to add phi-def values to preserve the SSA form. 367 if (UniqueVNI) { 368 LiveOutPair LOP(IdxVNI, MDT[LIS.getMBBFromIndex(IdxVNI->def)]); 369 // Update LiveOutCache, but skip IdxMBB at LiveIn[0]. 370 for (unsigned i = 1, e = LiveIn.size(); i != e; ++i) 371 LiveOutCache[LiveIn[i]->getBlock()] = LOP; 372 } else 373 IdxVNI = updateSSA(RegIdx, LiveIn, Idx, IdxMBB); 374 375 #ifndef NDEBUG 376 // Check the LiveOutCache invariants. 377 for (LiveOutMap::iterator I = LiveOutCache.begin(), E = LiveOutCache.end(); 378 I != E; ++I) { 379 assert(I->first && "Null MBB entry in cache"); 380 assert(I->second.first && "Null VNInfo in cache"); 381 assert(I->second.second && "Null DomTreeNode in cache"); 382 if (I->second.second->getBlock() == I->first) 383 continue; 384 for (MachineBasicBlock::pred_iterator PI = I->first->pred_begin(), 385 PE = I->first->pred_end(); PI != PE; ++PI) 386 assert(LiveOutCache.lookup(*PI) == I->second && "Bad invariant"); 387 } 388 #endif 389 390 // Since we went through the trouble of a full BFS visiting all reaching defs, 391 // the values in LiveIn are now accurate. No more phi-defs are needed 392 // for these blocks, so we can color the live ranges. 393 for (unsigned i = 0, e = LiveIn.size(); i != e; ++i) { 394 MachineBasicBlock *MBB = LiveIn[i]->getBlock(); 395 SlotIndex Start = LIS.getMBBStartIdx(MBB); 396 VNInfo *VNI = LiveOutCache.lookup(MBB).first; 397 398 // Anything in LiveIn other than IdxMBB is live-through. 399 // In IdxMBB, we should stop at Idx unless the same value is live-out. 400 if (MBB == IdxMBB && IdxVNI != VNI) 401 LI->addRange(LiveRange(Start, Idx.getNextSlot(), IdxVNI)); 402 else 403 LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), VNI)); 404 } 405 } 406 407 VNInfo *SplitEditor::updateSSA(unsigned RegIdx, 408 SmallVectorImpl<MachineDomTreeNode*> &LiveIn, 409 SlotIndex Idx, 410 const MachineBasicBlock *IdxMBB) { 411 // This is essentially the same iterative algorithm that SSAUpdater uses, 412 // except we already have a dominator tree, so we don't have to recompute it. 413 LiveInterval *LI = Edit->get(RegIdx); 414 VNInfo *IdxVNI = 0; 415 unsigned Changes; 416 do { 417 Changes = 0; 418 DEBUG(dbgs() << " Iterating over " << LiveIn.size() << " blocks.\n"); 419 // Propagate live-out values down the dominator tree, inserting phi-defs 420 // when necessary. Since LiveIn was created by a BFS, going backwards makes 421 // it more likely for us to visit immediate dominators before their 422 // children. 423 for (unsigned i = LiveIn.size(); i; --i) { 424 MachineDomTreeNode *Node = LiveIn[i-1]; 425 MachineBasicBlock *MBB = Node->getBlock(); 426 MachineDomTreeNode *IDom = Node->getIDom(); 427 LiveOutPair IDomValue; 428 // We need a live-in value to a block with no immediate dominator? 429 // This is probably an unreachable block that has survived somehow. 430 bool needPHI = !IDom; 431 432 // Get the IDom live-out value. 433 if (!needPHI) { 434 LiveOutMap::iterator I = LiveOutCache.find(IDom->getBlock()); 435 if (I != LiveOutCache.end()) 436 IDomValue = I->second; 437 else 438 // If IDom is outside our set of live-out blocks, there must be new 439 // defs, and we need a phi-def here. 440 needPHI = true; 441 } 442 443 // IDom dominates all of our predecessors, but it may not be the immediate 444 // dominator. Check if any of them have live-out values that are properly 445 // dominated by IDom. If so, we need a phi-def here. 446 if (!needPHI) { 447 for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), 448 PE = MBB->pred_end(); PI != PE; ++PI) { 449 LiveOutPair Value = LiveOutCache[*PI]; 450 if (!Value.first || Value.first == IDomValue.first) 451 continue; 452 // This predecessor is carrying something other than IDomValue. 453 // It could be because IDomValue hasn't propagated yet, or it could be 454 // because MBB is in the dominance frontier of that value. 455 if (MDT.dominates(IDom, Value.second)) { 456 needPHI = true; 457 break; 458 } 459 } 460 } 461 462 // Create a phi-def if required. 463 if (needPHI) { 464 ++Changes; 465 SlotIndex Start = LIS.getMBBStartIdx(MBB); 466 VNInfo *VNI = LI->getNextValue(Start, 0, LIS.getVNInfoAllocator()); 467 VNI->setIsPHIDef(true); 468 DEBUG(dbgs() << " - BB#" << MBB->getNumber() 469 << " phi-def #" << VNI->id << " at " << Start << '\n'); 470 // We no longer need LI to be live-in. 471 LiveIn.erase(LiveIn.begin()+(i-1)); 472 // Blocks in LiveIn are either IdxMBB, or have a value live-through. 473 if (MBB == IdxMBB) 474 IdxVNI = VNI; 475 // Check if we need to update live-out info. 476 LiveOutMap::iterator I = LiveOutCache.find(MBB); 477 if (I == LiveOutCache.end() || I->second.second == Node) { 478 // We already have a live-out defined in MBB, so this must be IdxMBB. 479 assert(MBB == IdxMBB && "Adding phi-def to known live-out"); 480 LI->addRange(LiveRange(Start, Idx.getNextSlot(), VNI)); 481 } else { 482 // This phi-def is also live-out, so color the whole block. 483 LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), VNI)); 484 I->second = LiveOutPair(VNI, Node); 485 } 486 } else if (IDomValue.first) { 487 // No phi-def here. Remember incoming value for IdxMBB. 488 if (MBB == IdxMBB) 489 IdxVNI = IDomValue.first; 490 // Propagate IDomValue if needed: 491 // MBB is live-out and doesn't define its own value. 492 LiveOutMap::iterator I = LiveOutCache.find(MBB); 493 if (I != LiveOutCache.end() && I->second.second != Node && 494 I->second.first != IDomValue.first) { 495 ++Changes; 496 I->second = IDomValue; 497 DEBUG(dbgs() << " - BB#" << MBB->getNumber() 498 << " idom valno #" << IDomValue.first->id 499 << " from BB#" << IDom->getBlock()->getNumber() << '\n'); 500 } 501 } 502 } 503 DEBUG(dbgs() << " - made " << Changes << " changes.\n"); 504 } while (Changes); 505 506 assert(IdxVNI && "Didn't find value for Idx"); 507 return IdxVNI; 508 } 509 510 VNInfo *SplitEditor::defFromParent(unsigned RegIdx, 511 VNInfo *ParentVNI, 512 SlotIndex UseIdx, 513 MachineBasicBlock &MBB, 514 MachineBasicBlock::iterator I) { 515 MachineInstr *CopyMI = 0; 516 SlotIndex Def; 517 LiveInterval *LI = Edit->get(RegIdx); 518 519 // Attempt cheap-as-a-copy rematerialization. 520 LiveRangeEdit::Remat RM(ParentVNI); 521 if (Edit->canRematerializeAt(RM, UseIdx, true, LIS)) { 522 Def = Edit->rematerializeAt(MBB, I, LI->reg, RM, LIS, TII, TRI); 523 } else { 524 // Can't remat, just insert a copy from parent. 525 CopyMI = BuildMI(MBB, I, DebugLoc(), TII.get(TargetOpcode::COPY), LI->reg) 526 .addReg(Edit->getReg()); 527 Def = LIS.InsertMachineInstrInMaps(CopyMI).getDefIndex(); 528 } 529 530 // Define the value in Reg. 531 VNInfo *VNI = defValue(RegIdx, ParentVNI, Def); 532 VNI->setCopy(CopyMI); 533 return VNI; 534 } 535 536 /// Create a new virtual register and live interval. 537 void SplitEditor::openIntv() { 538 assert(!OpenIdx && "Previous LI not closed before openIntv"); 539 540 // Create the complement as index 0. 541 if (Edit->empty()) 542 Edit->create(MRI, LIS, VRM); 543 544 // Create the open interval. 545 OpenIdx = Edit->size(); 546 Edit->create(MRI, LIS, VRM); 547 } 548 549 SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) { 550 assert(OpenIdx && "openIntv not called before enterIntvBefore"); 551 DEBUG(dbgs() << " enterIntvBefore " << Idx); 552 Idx = Idx.getBaseIndex(); 553 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 554 if (!ParentVNI) { 555 DEBUG(dbgs() << ": not live\n"); 556 return Idx; 557 } 558 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 559 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 560 assert(MI && "enterIntvBefore called with invalid index"); 561 562 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI); 563 return VNI->def; 564 } 565 566 SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) { 567 assert(OpenIdx && "openIntv not called before enterIntvAtEnd"); 568 SlotIndex End = LIS.getMBBEndIdx(&MBB); 569 SlotIndex Last = End.getPrevSlot(); 570 DEBUG(dbgs() << " enterIntvAtEnd BB#" << MBB.getNumber() << ", " << Last); 571 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last); 572 if (!ParentVNI) { 573 DEBUG(dbgs() << ": not live\n"); 574 return End; 575 } 576 DEBUG(dbgs() << ": valno " << ParentVNI->id); 577 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB, 578 LIS.getLastSplitPoint(Edit->getParent(), &MBB)); 579 RegAssign.insert(VNI->def, End, OpenIdx); 580 DEBUG(dump()); 581 return VNI->def; 582 } 583 584 /// useIntv - indicate that all instructions in MBB should use OpenLI. 585 void SplitEditor::useIntv(const MachineBasicBlock &MBB) { 586 useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB)); 587 } 588 589 void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) { 590 assert(OpenIdx && "openIntv not called before useIntv"); 591 DEBUG(dbgs() << " useIntv [" << Start << ';' << End << "):"); 592 RegAssign.insert(Start, End, OpenIdx); 593 DEBUG(dump()); 594 } 595 596 SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) { 597 assert(OpenIdx && "openIntv not called before leaveIntvAfter"); 598 DEBUG(dbgs() << " leaveIntvAfter " << Idx); 599 600 // The interval must be live beyond the instruction at Idx. 601 Idx = Idx.getBoundaryIndex(); 602 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 603 if (!ParentVNI) { 604 DEBUG(dbgs() << ": not live\n"); 605 return Idx.getNextSlot(); 606 } 607 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 608 609 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 610 assert(MI && "No instruction at index"); 611 VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), 612 llvm::next(MachineBasicBlock::iterator(MI))); 613 return VNI->def; 614 } 615 616 SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) { 617 assert(OpenIdx && "openIntv not called before leaveIntvBefore"); 618 DEBUG(dbgs() << " leaveIntvBefore " << Idx); 619 620 // The interval must be live into the instruction at Idx. 621 Idx = Idx.getBoundaryIndex(); 622 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 623 if (!ParentVNI) { 624 DEBUG(dbgs() << ": not live\n"); 625 return Idx.getNextSlot(); 626 } 627 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 628 629 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 630 assert(MI && "No instruction at index"); 631 VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI); 632 return VNI->def; 633 } 634 635 SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) { 636 assert(OpenIdx && "openIntv not called before leaveIntvAtTop"); 637 SlotIndex Start = LIS.getMBBStartIdx(&MBB); 638 DEBUG(dbgs() << " leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start); 639 640 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start); 641 if (!ParentVNI) { 642 DEBUG(dbgs() << ": not live\n"); 643 return Start; 644 } 645 646 VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB, 647 MBB.SkipPHIsAndLabels(MBB.begin())); 648 RegAssign.insert(Start, VNI->def, OpenIdx); 649 DEBUG(dump()); 650 return VNI->def; 651 } 652 653 void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) { 654 assert(OpenIdx && "openIntv not called before overlapIntv"); 655 const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start); 656 assert(ParentVNI == Edit->getParent().getVNInfoAt(End.getPrevSlot()) && 657 "Parent changes value in extended range"); 658 assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) && 659 "Range cannot span basic blocks"); 660 661 // The complement interval will be extended as needed by extendRange(). 662 markComplexMapped(0, ParentVNI); 663 DEBUG(dbgs() << " overlapIntv [" << Start << ';' << End << "):"); 664 RegAssign.insert(Start, End, OpenIdx); 665 DEBUG(dump()); 666 } 667 668 /// closeIntv - Indicate that we are done editing the currently open 669 /// LiveInterval, and ranges can be trimmed. 670 void SplitEditor::closeIntv() { 671 assert(OpenIdx && "openIntv not called before closeIntv"); 672 OpenIdx = 0; 673 } 674 675 /// transferSimpleValues - Transfer all simply defined values to the new live 676 /// ranges. 677 /// Values that were rematerialized or that have multiple defs are left alone. 678 bool SplitEditor::transferSimpleValues() { 679 bool Skipped = false; 680 RegAssignMap::const_iterator AssignI = RegAssign.begin(); 681 for (LiveInterval::const_iterator ParentI = Edit->getParent().begin(), 682 ParentE = Edit->getParent().end(); ParentI != ParentE; ++ParentI) { 683 DEBUG(dbgs() << " blit " << *ParentI << ':'); 684 VNInfo *ParentVNI = ParentI->valno; 685 // RegAssign has holes where RegIdx 0 should be used. 686 SlotIndex Start = ParentI->start; 687 AssignI.advanceTo(Start); 688 do { 689 unsigned RegIdx; 690 SlotIndex End = ParentI->end; 691 if (!AssignI.valid()) { 692 RegIdx = 0; 693 } else if (AssignI.start() <= Start) { 694 RegIdx = AssignI.value(); 695 if (AssignI.stop() < End) { 696 End = AssignI.stop(); 697 ++AssignI; 698 } 699 } else { 700 RegIdx = 0; 701 End = std::min(End, AssignI.start()); 702 } 703 DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx); 704 if (VNInfo *VNI = Values.lookup(std::make_pair(RegIdx, ParentVNI->id))) { 705 DEBUG(dbgs() << ':' << VNI->id); 706 Edit->get(RegIdx)->addRange(LiveRange(Start, End, VNI)); 707 } else 708 Skipped = true; 709 Start = End; 710 } while (Start != ParentI->end); 711 DEBUG(dbgs() << '\n'); 712 } 713 return Skipped; 714 } 715 716 void SplitEditor::extendPHIKillRanges() { 717 // Extend live ranges to be live-out for successor PHI values. 718 for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(), 719 E = Edit->getParent().vni_end(); I != E; ++I) { 720 const VNInfo *PHIVNI = *I; 721 if (PHIVNI->isUnused() || !PHIVNI->isPHIDef()) 722 continue; 723 unsigned RegIdx = RegAssign.lookup(PHIVNI->def); 724 MachineBasicBlock *MBB = LIS.getMBBFromIndex(PHIVNI->def); 725 for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), 726 PE = MBB->pred_end(); PI != PE; ++PI) { 727 SlotIndex End = LIS.getMBBEndIdx(*PI).getPrevSlot(); 728 // The predecessor may not have a live-out value. That is OK, like an 729 // undef PHI operand. 730 if (Edit->getParent().liveAt(End)) { 731 assert(RegAssign.lookup(End) == RegIdx && 732 "Different register assignment in phi predecessor"); 733 extendRange(RegIdx, End); 734 } 735 } 736 } 737 } 738 739 /// rewriteAssigned - Rewrite all uses of Edit->getReg(). 740 void SplitEditor::rewriteAssigned(bool ExtendRanges) { 741 for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Edit->getReg()), 742 RE = MRI.reg_end(); RI != RE;) { 743 MachineOperand &MO = RI.getOperand(); 744 MachineInstr *MI = MO.getParent(); 745 ++RI; 746 // LiveDebugVariables should have handled all DBG_VALUE instructions. 747 if (MI->isDebugValue()) { 748 DEBUG(dbgs() << "Zapping " << *MI); 749 MO.setReg(0); 750 continue; 751 } 752 753 // <undef> operands don't really read the register, so just assign them to 754 // the complement. 755 if (MO.isUse() && MO.isUndef()) { 756 MO.setReg(Edit->get(0)->reg); 757 continue; 758 } 759 760 SlotIndex Idx = LIS.getInstructionIndex(MI); 761 Idx = MO.isUse() ? Idx.getUseIndex() : Idx.getDefIndex(); 762 763 // Rewrite to the mapped register at Idx. 764 unsigned RegIdx = RegAssign.lookup(Idx); 765 MO.setReg(Edit->get(RegIdx)->reg); 766 DEBUG(dbgs() << " rewr BB#" << MI->getParent()->getNumber() << '\t' 767 << Idx << ':' << RegIdx << '\t' << *MI); 768 769 // Extend liveness to Idx. 770 if (ExtendRanges) 771 extendRange(RegIdx, Idx); 772 } 773 } 774 775 /// rewriteSplit - Rewrite uses of Intvs[0] according to the ConEQ mapping. 776 void SplitEditor::rewriteComponents(const SmallVectorImpl<LiveInterval*> &Intvs, 777 const ConnectedVNInfoEqClasses &ConEq) { 778 for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Intvs[0]->reg), 779 RE = MRI.reg_end(); RI != RE;) { 780 MachineOperand &MO = RI.getOperand(); 781 MachineInstr *MI = MO.getParent(); 782 ++RI; 783 if (MO.isUse() && MO.isUndef()) 784 continue; 785 // DBG_VALUE instructions should have been eliminated earlier. 786 SlotIndex Idx = LIS.getInstructionIndex(MI); 787 Idx = MO.isUse() ? Idx.getUseIndex() : Idx.getDefIndex(); 788 DEBUG(dbgs() << " rewr BB#" << MI->getParent()->getNumber() << '\t' 789 << Idx << ':'); 790 const VNInfo *VNI = Intvs[0]->getVNInfoAt(Idx); 791 assert(VNI && "Interval not live at use."); 792 MO.setReg(Intvs[ConEq.getEqClass(VNI)]->reg); 793 DEBUG(dbgs() << VNI->id << '\t' << *MI); 794 } 795 } 796 797 void SplitEditor::finish() { 798 assert(OpenIdx == 0 && "Previous LI not closed before rewrite"); 799 ++NumFinished; 800 801 // At this point, the live intervals in Edit contain VNInfos corresponding to 802 // the inserted copies. 803 804 // Add the original defs from the parent interval. 805 for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(), 806 E = Edit->getParent().vni_end(); I != E; ++I) { 807 const VNInfo *ParentVNI = *I; 808 if (ParentVNI->isUnused()) 809 continue; 810 unsigned RegIdx = RegAssign.lookup(ParentVNI->def); 811 defValue(RegIdx, ParentVNI, ParentVNI->def); 812 // Mark rematted values as complex everywhere to force liveness computation. 813 // The new live ranges may be truncated. 814 if (Edit->didRematerialize(ParentVNI)) 815 for (unsigned i = 0, e = Edit->size(); i != e; ++i) 816 markComplexMapped(i, ParentVNI); 817 } 818 819 #ifndef NDEBUG 820 // Every new interval must have a def by now, otherwise the split is bogus. 821 for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I) 822 assert((*I)->hasAtLeastOneValue() && "Split interval has no value"); 823 #endif 824 825 // Transfer the simply mapped values, check if any are complex. 826 bool Complex = transferSimpleValues(); 827 if (Complex) 828 extendPHIKillRanges(); 829 else 830 ++NumSimple; 831 832 // Rewrite virtual registers, possibly extending ranges. 833 rewriteAssigned(Complex); 834 835 // FIXME: Delete defs that were rematted everywhere. 836 837 // Get rid of unused values and set phi-kill flags. 838 for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I) 839 (*I)->RenumberValues(LIS); 840 841 // Now check if any registers were separated into multiple components. 842 ConnectedVNInfoEqClasses ConEQ(LIS); 843 for (unsigned i = 0, e = Edit->size(); i != e; ++i) { 844 // Don't use iterators, they are invalidated by create() below. 845 LiveInterval *li = Edit->get(i); 846 unsigned NumComp = ConEQ.Classify(li); 847 if (NumComp <= 1) 848 continue; 849 DEBUG(dbgs() << " " << NumComp << " components: " << *li << '\n'); 850 SmallVector<LiveInterval*, 8> dups; 851 dups.push_back(li); 852 for (unsigned i = 1; i != NumComp; ++i) 853 dups.push_back(&Edit->create(MRI, LIS, VRM)); 854 rewriteComponents(dups, ConEQ); 855 ConEQ.Distribute(&dups[0]); 856 } 857 858 // Calculate spill weight and allocation hints for new intervals. 859 VirtRegAuxInfo vrai(VRM.getMachineFunction(), LIS, SA.Loops); 860 for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I){ 861 LiveInterval &li = **I; 862 vrai.CalculateRegClass(li.reg); 863 vrai.CalculateWeightAndHint(li); 864 DEBUG(dbgs() << " new interval " << MRI.getRegClass(li.reg)->getName() 865 << ":" << li << '\n'); 866 } 867 } 868 869 870 //===----------------------------------------------------------------------===// 871 // Single Block Splitting 872 //===----------------------------------------------------------------------===// 873 874 /// getMultiUseBlocks - if CurLI has more than one use in a basic block, it 875 /// may be an advantage to split CurLI for the duration of the block. 876 bool SplitAnalysis::getMultiUseBlocks(BlockPtrSet &Blocks) { 877 // If CurLI is local to one block, there is no point to splitting it. 878 if (LiveBlocks.size() <= 1) 879 return false; 880 // Add blocks with multiple uses. 881 for (unsigned i = 0, e = LiveBlocks.size(); i != e; ++i) { 882 const BlockInfo &BI = LiveBlocks[i]; 883 if (!BI.Uses) 884 continue; 885 unsigned Instrs = UsingBlocks.lookup(BI.MBB); 886 if (Instrs <= 1) 887 continue; 888 if (Instrs == 2 && BI.LiveIn && BI.LiveOut && !BI.LiveThrough) 889 continue; 890 Blocks.insert(BI.MBB); 891 } 892 return !Blocks.empty(); 893 } 894 895 /// splitSingleBlocks - Split CurLI into a separate live interval inside each 896 /// basic block in Blocks. 897 void SplitEditor::splitSingleBlocks(const SplitAnalysis::BlockPtrSet &Blocks) { 898 DEBUG(dbgs() << " splitSingleBlocks for " << Blocks.size() << " blocks.\n"); 899 900 for (unsigned i = 0, e = SA.LiveBlocks.size(); i != e; ++i) { 901 const SplitAnalysis::BlockInfo &BI = SA.LiveBlocks[i]; 902 if (!BI.Uses || !Blocks.count(BI.MBB)) 903 continue; 904 905 openIntv(); 906 SlotIndex SegStart = enterIntvBefore(BI.FirstUse); 907 if (!BI.LiveOut || BI.LastUse < BI.LastSplitPoint) { 908 useIntv(SegStart, leaveIntvAfter(BI.LastUse)); 909 } else { 910 // The last use is after the last valid split point. 911 SlotIndex SegStop = leaveIntvBefore(BI.LastSplitPoint); 912 useIntv(SegStart, SegStop); 913 overlapIntv(SegStop, BI.LastUse); 914 } 915 closeIntv(); 916 } 917 finish(); 918 } 919