1 //===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the SplitAnalysis class as well as mutator functions for 11 // live range splitting. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "splitter" 16 #include "SplitKit.h" 17 #include "VirtRegMap.h" 18 #include "llvm/CodeGen/CalcSpillWeights.h" 19 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 20 #include "llvm/CodeGen/MachineInstrBuilder.h" 21 #include "llvm/CodeGen/MachineLoopInfo.h" 22 #include "llvm/CodeGen/MachineRegisterInfo.h" 23 #include "llvm/Support/CommandLine.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/raw_ostream.h" 26 #include "llvm/Target/TargetInstrInfo.h" 27 #include "llvm/Target/TargetMachine.h" 28 29 using namespace llvm; 30 31 static cl::opt<bool> 32 AllowSplit("spiller-splits-edges", 33 cl::desc("Allow critical edge splitting during spilling")); 34 35 //===----------------------------------------------------------------------===// 36 // Split Analysis 37 //===----------------------------------------------------------------------===// 38 39 SplitAnalysis::SplitAnalysis(const MachineFunction &mf, 40 const LiveIntervals &lis, 41 const MachineLoopInfo &mli) 42 : mf_(mf), 43 lis_(lis), 44 loops_(mli), 45 tii_(*mf.getTarget().getInstrInfo()), 46 curli_(0) {} 47 48 void SplitAnalysis::clear() { 49 usingInstrs_.clear(); 50 usingBlocks_.clear(); 51 usingLoops_.clear(); 52 curli_ = 0; 53 } 54 55 bool SplitAnalysis::canAnalyzeBranch(const MachineBasicBlock *MBB) { 56 MachineBasicBlock *T, *F; 57 SmallVector<MachineOperand, 4> Cond; 58 return !tii_.AnalyzeBranch(const_cast<MachineBasicBlock&>(*MBB), T, F, Cond); 59 } 60 61 /// analyzeUses - Count instructions, basic blocks, and loops using curli. 62 void SplitAnalysis::analyzeUses() { 63 const MachineRegisterInfo &MRI = mf_.getRegInfo(); 64 for (MachineRegisterInfo::reg_iterator I = MRI.reg_begin(curli_->reg); 65 MachineInstr *MI = I.skipInstruction();) { 66 if (MI->isDebugValue() || !usingInstrs_.insert(MI)) 67 continue; 68 MachineBasicBlock *MBB = MI->getParent(); 69 if (usingBlocks_[MBB]++) 70 continue; 71 if (MachineLoop *Loop = loops_.getLoopFor(MBB)) 72 usingLoops_[Loop]++; 73 } 74 DEBUG(dbgs() << " counted " 75 << usingInstrs_.size() << " instrs, " 76 << usingBlocks_.size() << " blocks, " 77 << usingLoops_.size() << " loops.\n"); 78 } 79 80 /// removeUse - Update statistics by noting that MI no longer uses curli. 81 void SplitAnalysis::removeUse(const MachineInstr *MI) { 82 if (!usingInstrs_.erase(MI)) 83 return; 84 85 // Decrement MBB count. 86 const MachineBasicBlock *MBB = MI->getParent(); 87 BlockCountMap::iterator bi = usingBlocks_.find(MBB); 88 assert(bi != usingBlocks_.end() && "MBB missing"); 89 assert(bi->second && "0 count in map"); 90 if (--bi->second) 91 return; 92 // No more uses in MBB. 93 usingBlocks_.erase(bi); 94 95 // Decrement loop count. 96 MachineLoop *Loop = loops_.getLoopFor(MBB); 97 if (!Loop) 98 return; 99 LoopCountMap::iterator li = usingLoops_.find(Loop); 100 assert(li != usingLoops_.end() && "Loop missing"); 101 assert(li->second && "0 count in map"); 102 if (--li->second) 103 return; 104 // No more blocks in Loop. 105 usingLoops_.erase(li); 106 } 107 108 // Get three sets of basic blocks surrounding a loop: Blocks inside the loop, 109 // predecessor blocks, and exit blocks. 110 void SplitAnalysis::getLoopBlocks(const MachineLoop *Loop, LoopBlocks &Blocks) { 111 Blocks.clear(); 112 113 // Blocks in the loop. 114 Blocks.Loop.insert(Loop->block_begin(), Loop->block_end()); 115 116 // Predecessor blocks. 117 const MachineBasicBlock *Header = Loop->getHeader(); 118 for (MachineBasicBlock::const_pred_iterator I = Header->pred_begin(), 119 E = Header->pred_end(); I != E; ++I) 120 if (!Blocks.Loop.count(*I)) 121 Blocks.Preds.insert(*I); 122 123 // Exit blocks. 124 for (MachineLoop::block_iterator I = Loop->block_begin(), 125 E = Loop->block_end(); I != E; ++I) { 126 const MachineBasicBlock *MBB = *I; 127 for (MachineBasicBlock::const_succ_iterator SI = MBB->succ_begin(), 128 SE = MBB->succ_end(); SI != SE; ++SI) 129 if (!Blocks.Loop.count(*SI)) 130 Blocks.Exits.insert(*SI); 131 } 132 } 133 134 /// analyzeLoopPeripheralUse - Return an enum describing how curli_ is used in 135 /// and around the Loop. 136 SplitAnalysis::LoopPeripheralUse SplitAnalysis:: 137 analyzeLoopPeripheralUse(const SplitAnalysis::LoopBlocks &Blocks) { 138 LoopPeripheralUse use = ContainedInLoop; 139 for (BlockCountMap::iterator I = usingBlocks_.begin(), E = usingBlocks_.end(); 140 I != E; ++I) { 141 const MachineBasicBlock *MBB = I->first; 142 // Is this a peripheral block? 143 if (use < MultiPeripheral && 144 (Blocks.Preds.count(MBB) || Blocks.Exits.count(MBB))) { 145 if (I->second > 1) use = MultiPeripheral; 146 else use = SinglePeripheral; 147 continue; 148 } 149 // Is it a loop block? 150 if (Blocks.Loop.count(MBB)) 151 continue; 152 // It must be an unrelated block. 153 return OutsideLoop; 154 } 155 return use; 156 } 157 158 /// getCriticalExits - It may be necessary to partially break critical edges 159 /// leaving the loop if an exit block has phi uses of curli. Collect the exit 160 /// blocks that need special treatment into CriticalExits. 161 void SplitAnalysis::getCriticalExits(const SplitAnalysis::LoopBlocks &Blocks, 162 BlockPtrSet &CriticalExits) { 163 CriticalExits.clear(); 164 165 // A critical exit block contains a phi def of curli, and has a predecessor 166 // that is not in the loop nor a loop predecessor. 167 // For such an exit block, the edges carrying the new variable must be moved 168 // to a new pre-exit block. 169 for (BlockPtrSet::iterator I = Blocks.Exits.begin(), E = Blocks.Exits.end(); 170 I != E; ++I) { 171 const MachineBasicBlock *Succ = *I; 172 SlotIndex SuccIdx = lis_.getMBBStartIdx(Succ); 173 VNInfo *SuccVNI = curli_->getVNInfoAt(SuccIdx); 174 // This exit may not have curli live in at all. No need to split. 175 if (!SuccVNI) 176 continue; 177 // If this is not a PHI def, it is either using a value from before the 178 // loop, or a value defined inside the loop. Both are safe. 179 if (!SuccVNI->isPHIDef() || SuccVNI->def.getBaseIndex() != SuccIdx) 180 continue; 181 // This exit block does have a PHI. Does it also have a predecessor that is 182 // not a loop block or loop predecessor? 183 for (MachineBasicBlock::const_pred_iterator PI = Succ->pred_begin(), 184 PE = Succ->pred_end(); PI != PE; ++PI) { 185 const MachineBasicBlock *Pred = *PI; 186 if (Blocks.Loop.count(Pred) || Blocks.Preds.count(Pred)) 187 continue; 188 // This is a critical exit block, and we need to split the exit edge. 189 CriticalExits.insert(Succ); 190 break; 191 } 192 } 193 } 194 195 /// canSplitCriticalExits - Return true if it is possible to insert new exit 196 /// blocks before the blocks in CriticalExits. 197 bool 198 SplitAnalysis::canSplitCriticalExits(const SplitAnalysis::LoopBlocks &Blocks, 199 BlockPtrSet &CriticalExits) { 200 // If we don't allow critical edge splitting, require no critical exits. 201 if (!AllowSplit) 202 return CriticalExits.empty(); 203 204 for (BlockPtrSet::iterator I = CriticalExits.begin(), E = CriticalExits.end(); 205 I != E; ++I) { 206 const MachineBasicBlock *Succ = *I; 207 // We want to insert a new pre-exit MBB before Succ, and change all the 208 // in-loop blocks to branch to the pre-exit instead of Succ. 209 // Check that all the in-loop predecessors can be changed. 210 for (MachineBasicBlock::const_pred_iterator PI = Succ->pred_begin(), 211 PE = Succ->pred_end(); PI != PE; ++PI) { 212 const MachineBasicBlock *Pred = *PI; 213 // The external predecessors won't be altered. 214 if (!Blocks.Loop.count(Pred) && !Blocks.Preds.count(Pred)) 215 continue; 216 if (!canAnalyzeBranch(Pred)) 217 return false; 218 } 219 220 // If Succ's layout predecessor falls through, that too must be analyzable. 221 // We need to insert the pre-exit block in the gap. 222 MachineFunction::const_iterator MFI = Succ; 223 if (MFI == mf_.begin()) 224 continue; 225 if (!canAnalyzeBranch(--MFI)) 226 return false; 227 } 228 // No problems found. 229 return true; 230 } 231 232 void SplitAnalysis::analyze(const LiveInterval *li) { 233 clear(); 234 curli_ = li; 235 analyzeUses(); 236 } 237 238 const MachineLoop *SplitAnalysis::getBestSplitLoop() { 239 assert(curli_ && "Call analyze() before getBestSplitLoop"); 240 if (usingLoops_.empty()) 241 return 0; 242 243 LoopPtrSet Loops, SecondLoops; 244 LoopBlocks Blocks; 245 BlockPtrSet CriticalExits; 246 247 // Find first-class and second class candidate loops. 248 // We prefer to split around loops where curli is used outside the periphery. 249 for (LoopCountMap::const_iterator I = usingLoops_.begin(), 250 E = usingLoops_.end(); I != E; ++I) { 251 const MachineLoop *Loop = I->first; 252 getLoopBlocks(Loop, Blocks); 253 254 // FIXME: We need an SSA updater to properly handle multiple exit blocks. 255 if (Blocks.Exits.size() > 1) { 256 DEBUG(dbgs() << " multiple exits from " << *Loop); 257 continue; 258 } 259 260 LoopPtrSet *LPS = 0; 261 switch(analyzeLoopPeripheralUse(Blocks)) { 262 case OutsideLoop: 263 LPS = &Loops; 264 break; 265 case MultiPeripheral: 266 LPS = &SecondLoops; 267 break; 268 case ContainedInLoop: 269 DEBUG(dbgs() << " contained in " << *Loop); 270 continue; 271 case SinglePeripheral: 272 DEBUG(dbgs() << " single peripheral use in " << *Loop); 273 continue; 274 } 275 // Will it be possible to split around this loop? 276 getCriticalExits(Blocks, CriticalExits); 277 DEBUG(dbgs() << " " << CriticalExits.size() << " critical exits from " 278 << *Loop); 279 if (!canSplitCriticalExits(Blocks, CriticalExits)) 280 continue; 281 // This is a possible split. 282 assert(LPS); 283 LPS->insert(Loop); 284 } 285 286 DEBUG(dbgs() << " getBestSplitLoop found " << Loops.size() << " + " 287 << SecondLoops.size() << " candidate loops.\n"); 288 289 // If there are no first class loops available, look at second class loops. 290 if (Loops.empty()) 291 Loops = SecondLoops; 292 293 if (Loops.empty()) 294 return 0; 295 296 // Pick the earliest loop. 297 // FIXME: Are there other heuristics to consider? 298 const MachineLoop *Best = 0; 299 SlotIndex BestIdx; 300 for (LoopPtrSet::const_iterator I = Loops.begin(), E = Loops.end(); I != E; 301 ++I) { 302 SlotIndex Idx = lis_.getMBBStartIdx((*I)->getHeader()); 303 if (!Best || Idx < BestIdx) 304 Best = *I, BestIdx = Idx; 305 } 306 DEBUG(dbgs() << " getBestSplitLoop found " << *Best); 307 return Best; 308 } 309 310 /// getMultiUseBlocks - if curli has more than one use in a basic block, it 311 /// may be an advantage to split curli for the duration of the block. 312 bool SplitAnalysis::getMultiUseBlocks(BlockPtrSet &Blocks) { 313 // If curli is local to one block, there is no point to splitting it. 314 if (usingBlocks_.size() <= 1) 315 return false; 316 // Add blocks with multiple uses. 317 for (BlockCountMap::iterator I = usingBlocks_.begin(), E = usingBlocks_.end(); 318 I != E; ++I) 319 switch (I->second) { 320 case 0: 321 case 1: 322 continue; 323 case 2: { 324 // It doesn't pay to split a 2-instr block if it redefines curli. 325 VNInfo *VN1 = curli_->getVNInfoAt(lis_.getMBBStartIdx(I->first)); 326 VNInfo *VN2 = 327 curli_->getVNInfoAt(lis_.getMBBEndIdx(I->first).getPrevIndex()); 328 // live-in and live-out with a different value. 329 if (VN1 && VN2 && VN1 != VN2) 330 continue; 331 } // Fall through. 332 default: 333 Blocks.insert(I->first); 334 } 335 return !Blocks.empty(); 336 } 337 338 //===----------------------------------------------------------------------===// 339 // LiveIntervalMap 340 //===----------------------------------------------------------------------===// 341 342 // Work around the fact that the std::pair constructors are broken for pointer 343 // pairs in some implementations. makeVV(x, 0) works. 344 static inline std::pair<const VNInfo*, VNInfo*> 345 makeVV(const VNInfo *a, VNInfo *b) { 346 return std::make_pair(a, b); 347 } 348 349 void LiveIntervalMap::reset(LiveInterval *li) { 350 li_ = li; 351 valueMap_.clear(); 352 } 353 354 // defValue - Introduce a li_ def for ParentVNI that could be later than 355 // ParentVNI->def. 356 VNInfo *LiveIntervalMap::defValue(const VNInfo *ParentVNI, SlotIndex Idx) { 357 assert(li_ && "call reset first"); 358 assert(ParentVNI && "Mapping NULL value"); 359 assert(Idx.isValid() && "Invalid SlotIndex"); 360 assert(parentli_.getVNInfoAt(Idx) == ParentVNI && "Bad ParentVNI"); 361 362 // Is this a simple 1-1 mapping? Not likely. 363 if (Idx == ParentVNI->def) 364 return mapValue(ParentVNI, Idx); 365 366 // This is now a complex def. Mark with a NULL in valueMap. 367 valueMap_[ParentVNI] = 0; 368 369 // Should we insert a minimal snippet of VNI LiveRange, or can we count on 370 // callers to do that? We need it for lookups of complex values. 371 VNInfo *VNI = li_->getNextValue(Idx, 0, true, lis_.getVNInfoAllocator()); 372 return VNI; 373 } 374 375 // mapValue - Find the mapped value for ParentVNI at Idx. 376 // Potentially create phi-def values. 377 VNInfo *LiveIntervalMap::mapValue(const VNInfo *ParentVNI, SlotIndex Idx) { 378 assert(li_ && "call reset first"); 379 assert(ParentVNI && "Mapping NULL value"); 380 assert(Idx.isValid() && "Invalid SlotIndex"); 381 assert(parentli_.getVNInfoAt(Idx) == ParentVNI && "Bad ParentVNI"); 382 383 // Use insert for lookup, so we can add missing values with a second lookup. 384 std::pair<ValueMap::iterator,bool> InsP = 385 valueMap_.insert(makeVV(ParentVNI, 0)); 386 387 // This was an unknown value. Create a simple mapping. 388 if (InsP.second) 389 return InsP.first->second = li_->createValueCopy(ParentVNI, 390 lis_.getVNInfoAllocator()); 391 // This was a simple mapped value. 392 if (InsP.first->second) 393 return InsP.first->second; 394 395 // This is a complex mapped value. There may be multiple defs, and we may need 396 // to create phi-defs. 397 MachineBasicBlock *IdxMBB = lis_.getMBBFromIndex(Idx); 398 assert(IdxMBB && "No MBB at Idx"); 399 400 // Is there a def in the same MBB we can extend? 401 if (VNInfo *VNI = extendTo(IdxMBB, Idx)) 402 return VNI; 403 404 // Now for the fun part. We know that ParentVNI potentially has multiple defs, 405 // and we may need to create even more phi-defs to preserve VNInfo SSA form. 406 // Perform a depth-first search for predecessor blocks where we know the 407 // dominating VNInfo. Insert phi-def VNInfos along the path back to IdxMBB. 408 409 // Track MBBs where we have created or learned the dominating value. 410 // This may change during the DFS as we create new phi-defs. 411 typedef DenseMap<MachineBasicBlock*, VNInfo*> MBBValueMap; 412 MBBValueMap DomValue; 413 414 for (idf_iterator<MachineBasicBlock*> 415 IDFI = idf_begin(IdxMBB), 416 IDFE = idf_end(IdxMBB); IDFI != IDFE;) { 417 MachineBasicBlock *MBB = *IDFI; 418 SlotIndex End = lis_.getMBBEndIdx(MBB).getPrevSlot(); 419 420 // We are operating on the restricted CFG where ParentVNI is live. 421 if (parentli_.getVNInfoAt(End) != ParentVNI) { 422 IDFI.skipChildren(); 423 continue; 424 } 425 426 // Do we have a dominating value in this block? 427 VNInfo *VNI = extendTo(MBB, End); 428 if (!VNI) { 429 ++IDFI; 430 continue; 431 } 432 433 // Yes, VNI dominates MBB. Track the path back to IdxMBB, creating phi-defs 434 // as needed along the way. 435 for (unsigned PI = IDFI.getPathLength()-1; PI != 0; --PI) { 436 // Start from MBB's immediate successor. End at IdxMBB. 437 MachineBasicBlock *Succ = IDFI.getPath(PI-1); 438 std::pair<MBBValueMap::iterator, bool> InsP = 439 DomValue.insert(MBBValueMap::value_type(Succ, VNI)); 440 441 // This is the first time we backtrack to Succ. 442 if (InsP.second) 443 continue; 444 445 // We reached Succ again with the same VNI. Nothing is going to change. 446 VNInfo *OVNI = InsP.first->second; 447 if (OVNI == VNI) 448 break; 449 450 // Succ already has a phi-def. No need to continue. 451 SlotIndex Start = lis_.getMBBStartIdx(Succ); 452 if (OVNI->def == Start) 453 break; 454 455 // We have a collision between the old and new VNI at Succ. That means 456 // neither dominates and we need a new phi-def. 457 VNI = li_->getNextValue(Start, 0, true, lis_.getVNInfoAllocator()); 458 VNI->setIsPHIDef(true); 459 InsP.first->second = VNI; 460 461 // Replace OVNI with VNI in the remaining path. 462 for (; PI > 1 ; --PI) { 463 MBBValueMap::iterator I = DomValue.find(IDFI.getPath(PI-2)); 464 if (I == DomValue.end() || I->second != OVNI) 465 break; 466 I->second = VNI; 467 } 468 } 469 470 // No need to search the children, we found a dominating value. 471 IDFI.skipChildren(); 472 } 473 474 // The search should at least find a dominating value for IdxMBB. 475 assert(!DomValue.empty() && "Couldn't find a reaching definition"); 476 477 // Since we went through the trouble of a full DFS visiting all reaching defs, 478 // the values in DomValue are now accurate. No more phi-defs are needed for 479 // these blocks, so we can color the live ranges. 480 // This makes the next mapValue call much faster. 481 VNInfo *IdxVNI = 0; 482 for (MBBValueMap::iterator I = DomValue.begin(), E = DomValue.end(); I != E; 483 ++I) { 484 MachineBasicBlock *MBB = I->first; 485 VNInfo *VNI = I->second; 486 SlotIndex Start = lis_.getMBBStartIdx(MBB); 487 if (MBB == IdxMBB) { 488 // Don't add full liveness to IdxMBB, stop at Idx. 489 if (Start != Idx) 490 li_->addRange(LiveRange(Start, Idx.getNextSlot(), VNI)); 491 // The caller had better add some liveness to IdxVNI, or it leaks. 492 IdxVNI = VNI; 493 } else 494 li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), VNI)); 495 } 496 497 assert(IdxVNI && "Didn't find value for Idx"); 498 return IdxVNI; 499 } 500 501 // extendTo - Find the last li_ value defined in MBB at or before Idx. The 502 // parentli_ is assumed to be live at Idx. Extend the live range to Idx. 503 // Return the found VNInfo, or NULL. 504 VNInfo *LiveIntervalMap::extendTo(MachineBasicBlock *MBB, SlotIndex Idx) { 505 assert(li_ && "call reset first"); 506 LiveInterval::iterator I = std::upper_bound(li_->begin(), li_->end(), Idx); 507 if (I == li_->begin()) 508 return 0; 509 --I; 510 if (I->start < lis_.getMBBStartIdx(MBB)) 511 return 0; 512 if (I->end <= Idx) 513 I->end = Idx.getNextSlot(); 514 return I->valno; 515 } 516 517 // addSimpleRange - Add a simple range from parentli_ to li_. 518 // ParentVNI must be live in the [Start;End) interval. 519 void LiveIntervalMap::addSimpleRange(SlotIndex Start, SlotIndex End, 520 const VNInfo *ParentVNI) { 521 assert(li_ && "call reset first"); 522 VNInfo *VNI = mapValue(ParentVNI, Start); 523 // A simple mappoing is easy. 524 if (VNI->def == ParentVNI->def) { 525 li_->addRange(LiveRange(Start, End, VNI)); 526 return; 527 } 528 529 // ParentVNI is a complex value. We must map per MBB. 530 MachineFunction::iterator MBB = lis_.getMBBFromIndex(Start); 531 MachineFunction::iterator MBBE = lis_.getMBBFromIndex(End); 532 533 if (MBB == MBBE) { 534 li_->addRange(LiveRange(Start, End, VNI)); 535 return; 536 } 537 538 // First block. 539 li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), VNI)); 540 541 // Run sequence of full blocks. 542 for (++MBB; MBB != MBBE; ++MBB) { 543 Start = lis_.getMBBStartIdx(MBB); 544 li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), 545 mapValue(ParentVNI, Start))); 546 } 547 548 // Final block. 549 Start = lis_.getMBBStartIdx(MBB); 550 if (Start != End) 551 li_->addRange(LiveRange(Start, End, mapValue(ParentVNI, Start))); 552 } 553 554 /// addRange - Add live ranges to li_ where [Start;End) intersects parentli_. 555 /// All needed values whose def is not inside [Start;End) must be defined 556 /// beforehand so mapValue will work. 557 void LiveIntervalMap::addRange(SlotIndex Start, SlotIndex End) { 558 assert(li_ && "call reset first"); 559 LiveInterval::const_iterator B = parentli_.begin(), E = parentli_.end(); 560 LiveInterval::const_iterator I = std::lower_bound(B, E, Start); 561 562 // Check if --I begins before Start and overlaps. 563 if (I != B) { 564 --I; 565 if (I->end > Start) 566 addSimpleRange(Start, std::min(End, I->end), I->valno); 567 ++I; 568 } 569 570 // The remaining ranges begin after Start. 571 for (;I != E && I->start < End; ++I) 572 addSimpleRange(I->start, std::min(End, I->end), I->valno); 573 } 574 575 VNInfo *LiveIntervalMap::defByCopyFrom(unsigned Reg, 576 const VNInfo *ParentVNI, 577 MachineBasicBlock &MBB, 578 MachineBasicBlock::iterator I) { 579 const TargetInstrDesc &TID = MBB.getParent()->getTarget().getInstrInfo()-> 580 get(TargetOpcode::COPY); 581 MachineInstr *MI = BuildMI(MBB, I, DebugLoc(), TID, li_->reg).addReg(Reg); 582 SlotIndex DefIdx = lis_.InsertMachineInstrInMaps(MI).getDefIndex(); 583 VNInfo *VNI = defValue(ParentVNI, DefIdx); 584 VNI->setCopy(MI); 585 li_->addRange(LiveRange(DefIdx, DefIdx.getNextSlot(), VNI)); 586 return VNI; 587 } 588 589 //===----------------------------------------------------------------------===// 590 // Split Editor 591 //===----------------------------------------------------------------------===// 592 593 /// Create a new SplitEditor for editing the LiveInterval analyzed by SA. 594 SplitEditor::SplitEditor(SplitAnalysis &sa, LiveIntervals &lis, VirtRegMap &vrm, 595 SmallVectorImpl<LiveInterval*> &intervals) 596 : sa_(sa), lis_(lis), vrm_(vrm), 597 mri_(vrm.getMachineFunction().getRegInfo()), 598 tii_(*vrm.getMachineFunction().getTarget().getInstrInfo()), 599 curli_(sa_.getCurLI()), 600 dupli_(lis_, *curli_), 601 openli_(lis_, *curli_), 602 intervals_(intervals), 603 firstInterval(intervals_.size()) 604 { 605 assert(curli_ && "SplitEditor created from empty SplitAnalysis"); 606 607 // Make sure curli_ is assigned a stack slot, so all our intervals get the 608 // same slot as curli_. 609 if (vrm_.getStackSlot(curli_->reg) == VirtRegMap::NO_STACK_SLOT) 610 vrm_.assignVirt2StackSlot(curli_->reg); 611 612 } 613 614 LiveInterval *SplitEditor::createInterval() { 615 unsigned Reg = mri_.createVirtualRegister(mri_.getRegClass(curli_->reg)); 616 LiveInterval &Intv = lis_.getOrCreateInterval(Reg); 617 vrm_.grow(); 618 vrm_.assignVirt2StackSlot(Reg, vrm_.getStackSlot(curli_->reg)); 619 return &Intv; 620 } 621 622 /// Create a new virtual register and live interval. 623 void SplitEditor::openIntv() { 624 assert(!openli_.getLI() && "Previous LI not closed before openIntv"); 625 626 if (!dupli_.getLI()) { 627 // Create an interval for dupli that is a copy of curli. 628 dupli_.reset(createInterval()); 629 dupli_.getLI()->Copy(*curli_, &mri_, lis_.getVNInfoAllocator()); 630 } 631 632 openli_.reset(createInterval()); 633 intervals_.push_back(openli_.getLI()); 634 } 635 636 /// enterIntvBefore - Enter openli before the instruction at Idx. If curli is 637 /// not live before Idx, a COPY is not inserted. 638 void SplitEditor::enterIntvBefore(SlotIndex Idx) { 639 assert(openli_.getLI() && "openIntv not called before enterIntvBefore"); 640 VNInfo *ParentVNI = curli_->getVNInfoAt(Idx.getUseIndex()); 641 if (!ParentVNI) { 642 DEBUG(dbgs() << " enterIntvBefore " << Idx << ": not live\n"); 643 return; 644 } 645 MachineInstr *MI = lis_.getInstructionFromIndex(Idx); 646 assert(MI && "enterIntvBefore called with invalid index"); 647 openli_.defByCopyFrom(curli_->reg, ParentVNI, *MI->getParent(), MI); 648 DEBUG(dbgs() << " enterIntvBefore " << Idx << ": " << *openli_.getLI() 649 << '\n'); 650 } 651 652 /// enterIntvAtEnd - Enter openli at the end of MBB. 653 void SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) { 654 assert(openli_.getLI() && "openIntv not called before enterIntvAtEnd"); 655 SlotIndex End = lis_.getMBBEndIdx(&MBB); 656 VNInfo *ParentVNI = curli_->getVNInfoAt(End.getPrevSlot()); 657 if (!ParentVNI) { 658 DEBUG(dbgs() << " enterIntvAtEnd " << End << ": not live\n"); 659 return; 660 } 661 VNInfo *VNI = openli_.defByCopyFrom(curli_->reg, ParentVNI, 662 MBB, MBB.getFirstTerminator()); 663 // Make sure openli is live out of MBB. 664 openli_.getLI()->addRange(LiveRange(VNI->def, End, VNI)); 665 DEBUG(dbgs() << " enterIntvAtEnd: " << *openli_.getLI() << '\n'); 666 } 667 668 /// useIntv - indicate that all instructions in MBB should use openli. 669 void SplitEditor::useIntv(const MachineBasicBlock &MBB) { 670 useIntv(lis_.getMBBStartIdx(&MBB), lis_.getMBBEndIdx(&MBB)); 671 } 672 673 void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) { 674 assert(openli_.getLI() && "openIntv not called before useIntv"); 675 openli_.addRange(Start, End); 676 DEBUG(dbgs() << " use [" << Start << ';' << End << "): " 677 << *openli_.getLI() << '\n'); 678 } 679 680 /// leaveIntvAfter - Leave openli after the instruction at Idx. 681 void SplitEditor::leaveIntvAfter(SlotIndex Idx) { 682 assert(openli_.getLI() && "openIntv not called before leaveIntvAfter"); 683 684 // The interval must be live beyond the instruction at Idx. 685 SlotIndex EndIdx = Idx.getNextIndex().getBaseIndex(); 686 VNInfo *ParentVNI = curli_->getVNInfoAt(EndIdx); 687 if (!ParentVNI) { 688 DEBUG(dbgs() << " leaveIntvAfter " << Idx << ": not live\n"); 689 return; 690 } 691 692 MachineInstr *MI = lis_.getInstructionFromIndex(Idx); 693 assert(MI && "leaveIntvAfter called with invalid index"); 694 695 VNInfo *VNI = dupli_.defByCopyFrom(openli_.getLI()->reg, ParentVNI, 696 *MI->getParent(), MI); 697 698 // Finally we must make sure that openli is properly extended from Idx to the 699 // new copy. 700 openli_.mapValue(ParentVNI, VNI->def.getUseIndex()); 701 702 DEBUG(dbgs() << " leaveIntvAfter " << Idx << ": " << *openli_.getLI() 703 << '\n'); 704 } 705 706 /// leaveIntvAtTop - Leave the interval at the top of MBB. 707 /// Currently, only one value can leave the interval. 708 void SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) { 709 assert(openli_.getLI() && "openIntv not called before leaveIntvAtTop"); 710 711 SlotIndex Start = lis_.getMBBStartIdx(&MBB); 712 VNInfo *ParentVNI = curli_->getVNInfoAt(Start); 713 714 // Is curli even live-in to MBB? 715 if (!ParentVNI) { 716 DEBUG(dbgs() << " leaveIntvAtTop at " << Start << ": not live\n"); 717 return; 718 } 719 720 // We are going to insert a back copy, so we must have a dupli_. 721 VNInfo *VNI = dupli_.defByCopyFrom(openli_.getLI()->reg, ParentVNI, 722 MBB, MBB.begin()); 723 724 // Finally we must make sure that openli is properly extended from Start to 725 // the new copy. 726 openli_.mapValue(ParentVNI, VNI->def.getUseIndex()); 727 728 DEBUG(dbgs() << " leaveIntvAtTop at " << Start << ": " << *openli_.getLI() 729 << '\n'); 730 } 731 732 /// closeIntv - Indicate that we are done editing the currently open 733 /// LiveInterval, and ranges can be trimmed. 734 void SplitEditor::closeIntv() { 735 assert(openli_.getLI() && "openIntv not called before closeIntv"); 736 737 DEBUG(dbgs() << " closeIntv cleaning up\n"); 738 DEBUG(dbgs() << " open " << *openli_.getLI() << '\n'); 739 740 for (LiveInterval::iterator I = openli_.getLI()->begin(), 741 E = openli_.getLI()->end(); I != E; ++I) { 742 dupli_.getLI()->removeRange(I->start, I->end); 743 } 744 // FIXME: A block branching to the entry block may also branch elsewhere 745 // curli is live. We need both openli and curli to be live in that case. 746 DEBUG(dbgs() << " dup2 " << *dupli_.getLI() << '\n'); 747 openli_.reset(0); 748 } 749 750 /// rewrite - after all the new live ranges have been created, rewrite 751 /// instructions using curli to use the new intervals. 752 bool SplitEditor::rewrite() { 753 assert(!openli_.getLI() && "Previous LI not closed before rewrite"); 754 const LiveInterval *curli = sa_.getCurLI(); 755 for (MachineRegisterInfo::reg_iterator RI = mri_.reg_begin(curli->reg), 756 RE = mri_.reg_end(); RI != RE;) { 757 MachineOperand &MO = RI.getOperand(); 758 MachineInstr *MI = MO.getParent(); 759 ++RI; 760 if (MI->isDebugValue()) { 761 DEBUG(dbgs() << "Zapping " << *MI); 762 // FIXME: We can do much better with debug values. 763 MO.setReg(0); 764 continue; 765 } 766 SlotIndex Idx = lis_.getInstructionIndex(MI); 767 Idx = MO.isUse() ? Idx.getUseIndex() : Idx.getDefIndex(); 768 LiveInterval *LI = dupli_.getLI(); 769 for (unsigned i = firstInterval, e = intervals_.size(); i != e; ++i) { 770 LiveInterval *testli = intervals_[i]; 771 if (testli->liveAt(Idx)) { 772 LI = testli; 773 break; 774 } 775 } 776 if (LI) { 777 MO.setReg(LI->reg); 778 sa_.removeUse(MI); 779 DEBUG(dbgs() << " rewrite " << Idx << '\t' << *MI); 780 } 781 } 782 783 // dupli_ goes in last, after rewriting. 784 if (dupli_.getLI()) { 785 if (dupli_.getLI()->empty()) { 786 DEBUG(dbgs() << " dupli became empty?\n"); 787 lis_.removeInterval(dupli_.getLI()->reg); 788 dupli_.reset(0); 789 } else { 790 dupli_.getLI()->RenumberValues(lis_); 791 intervals_.push_back(dupli_.getLI()); 792 } 793 } 794 795 // Calculate spill weight and allocation hints for new intervals. 796 VirtRegAuxInfo vrai(vrm_.getMachineFunction(), lis_, sa_.loops_); 797 for (unsigned i = firstInterval, e = intervals_.size(); i != e; ++i) { 798 LiveInterval &li = *intervals_[i]; 799 vrai.CalculateRegClass(li.reg); 800 vrai.CalculateWeightAndHint(li); 801 DEBUG(dbgs() << " new interval " << mri_.getRegClass(li.reg)->getName() 802 << ":" << li << '\n'); 803 } 804 return dupli_.getLI(); 805 } 806 807 808 //===----------------------------------------------------------------------===// 809 // Loop Splitting 810 //===----------------------------------------------------------------------===// 811 812 bool SplitEditor::splitAroundLoop(const MachineLoop *Loop) { 813 SplitAnalysis::LoopBlocks Blocks; 814 sa_.getLoopBlocks(Loop, Blocks); 815 816 // Break critical edges as needed. 817 SplitAnalysis::BlockPtrSet CriticalExits; 818 sa_.getCriticalExits(Blocks, CriticalExits); 819 assert(CriticalExits.empty() && "Cannot break critical exits yet"); 820 821 // Create new live interval for the loop. 822 openIntv(); 823 824 // Insert copies in the predecessors. 825 for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Preds.begin(), 826 E = Blocks.Preds.end(); I != E; ++I) { 827 MachineBasicBlock &MBB = const_cast<MachineBasicBlock&>(**I); 828 enterIntvAtEnd(MBB); 829 } 830 831 // Switch all loop blocks. 832 for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Loop.begin(), 833 E = Blocks.Loop.end(); I != E; ++I) 834 useIntv(**I); 835 836 // Insert back copies in the exit blocks. 837 for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Exits.begin(), 838 E = Blocks.Exits.end(); I != E; ++I) { 839 MachineBasicBlock &MBB = const_cast<MachineBasicBlock&>(**I); 840 leaveIntvAtTop(MBB); 841 } 842 843 // Done. 844 closeIntv(); 845 return rewrite(); 846 } 847 848 849 //===----------------------------------------------------------------------===// 850 // Single Block Splitting 851 //===----------------------------------------------------------------------===// 852 853 /// splitSingleBlocks - Split curli into a separate live interval inside each 854 /// basic block in Blocks. Return true if curli has been completely replaced, 855 /// false if curli is still intact, and needs to be spilled or split further. 856 bool SplitEditor::splitSingleBlocks(const SplitAnalysis::BlockPtrSet &Blocks) { 857 DEBUG(dbgs() << " splitSingleBlocks for " << Blocks.size() << " blocks.\n"); 858 // Determine the first and last instruction using curli in each block. 859 typedef std::pair<SlotIndex,SlotIndex> IndexPair; 860 typedef DenseMap<const MachineBasicBlock*,IndexPair> IndexPairMap; 861 IndexPairMap MBBRange; 862 for (SplitAnalysis::InstrPtrSet::const_iterator I = sa_.usingInstrs_.begin(), 863 E = sa_.usingInstrs_.end(); I != E; ++I) { 864 const MachineBasicBlock *MBB = (*I)->getParent(); 865 if (!Blocks.count(MBB)) 866 continue; 867 SlotIndex Idx = lis_.getInstructionIndex(*I); 868 DEBUG(dbgs() << " BB#" << MBB->getNumber() << '\t' << Idx << '\t' << **I); 869 IndexPair &IP = MBBRange[MBB]; 870 if (!IP.first.isValid() || Idx < IP.first) 871 IP.first = Idx; 872 if (!IP.second.isValid() || Idx > IP.second) 873 IP.second = Idx; 874 } 875 876 // Create a new interval for each block. 877 for (SplitAnalysis::BlockPtrSet::const_iterator I = Blocks.begin(), 878 E = Blocks.end(); I != E; ++I) { 879 IndexPair &IP = MBBRange[*I]; 880 DEBUG(dbgs() << " splitting for BB#" << (*I)->getNumber() << ": [" 881 << IP.first << ';' << IP.second << ")\n"); 882 assert(IP.first.isValid() && IP.second.isValid()); 883 884 openIntv(); 885 enterIntvBefore(IP.first); 886 useIntv(IP.first.getBaseIndex(), IP.second.getBoundaryIndex()); 887 leaveIntvAfter(IP.second); 888 closeIntv(); 889 } 890 return rewrite(); 891 } 892 893 894 //===----------------------------------------------------------------------===// 895 // Sub Block Splitting 896 //===----------------------------------------------------------------------===// 897 898 /// getBlockForInsideSplit - If curli is contained inside a single basic block, 899 /// and it wou pay to subdivide the interval inside that block, return it. 900 /// Otherwise return NULL. The returned block can be passed to 901 /// SplitEditor::splitInsideBlock. 902 const MachineBasicBlock *SplitAnalysis::getBlockForInsideSplit() { 903 // The interval must be exclusive to one block. 904 if (usingBlocks_.size() != 1) 905 return 0; 906 // Don't to this for less than 4 instructions. We want to be sure that 907 // splitting actually reduces the instruction count per interval. 908 if (usingInstrs_.size() < 4) 909 return 0; 910 return usingBlocks_.begin()->first; 911 } 912 913 /// splitInsideBlock - Split curli into multiple intervals inside MBB. Return 914 /// true if curli has been completely replaced, false if curli is still 915 /// intact, and needs to be spilled or split further. 916 bool SplitEditor::splitInsideBlock(const MachineBasicBlock *MBB) { 917 SmallVector<SlotIndex, 32> Uses; 918 Uses.reserve(sa_.usingInstrs_.size()); 919 for (SplitAnalysis::InstrPtrSet::const_iterator I = sa_.usingInstrs_.begin(), 920 E = sa_.usingInstrs_.end(); I != E; ++I) 921 if ((*I)->getParent() == MBB) 922 Uses.push_back(lis_.getInstructionIndex(*I)); 923 DEBUG(dbgs() << " splitInsideBlock BB#" << MBB->getNumber() << " for " 924 << Uses.size() << " instructions.\n"); 925 assert(Uses.size() >= 3 && "Need at least 3 instructions"); 926 array_pod_sort(Uses.begin(), Uses.end()); 927 928 // Simple algorithm: Find the largest gap between uses as determined by slot 929 // indices. Create new intervals for instructions before the gap and after the 930 // gap. 931 unsigned bestPos = 0; 932 int bestGap = 0; 933 DEBUG(dbgs() << " dist (" << Uses[0]); 934 for (unsigned i = 1, e = Uses.size(); i != e; ++i) { 935 int g = Uses[i-1].distance(Uses[i]); 936 DEBUG(dbgs() << ") -" << g << "- (" << Uses[i]); 937 if (g > bestGap) 938 bestPos = i, bestGap = g; 939 } 940 DEBUG(dbgs() << "), best: -" << bestGap << "-\n"); 941 942 // bestPos points to the first use after the best gap. 943 assert(bestPos > 0 && "Invalid gap"); 944 945 // FIXME: Don't create intervals for low densities. 946 947 // First interval before the gap. Don't create single-instr intervals. 948 if (bestPos > 1) { 949 openIntv(); 950 enterIntvBefore(Uses.front()); 951 useIntv(Uses.front().getBaseIndex(), Uses[bestPos-1].getBoundaryIndex()); 952 leaveIntvAfter(Uses[bestPos-1]); 953 closeIntv(); 954 } 955 956 // Second interval after the gap. 957 if (bestPos < Uses.size()-1) { 958 openIntv(); 959 enterIntvBefore(Uses[bestPos]); 960 useIntv(Uses[bestPos].getBaseIndex(), Uses.back().getBoundaryIndex()); 961 leaveIntvAfter(Uses.back()); 962 closeIntv(); 963 } 964 965 return rewrite(); 966 } 967