1 //===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the SplitAnalysis class as well as mutator functions for 11 // live range splitting. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "regalloc" 16 #include "SplitKit.h" 17 #include "LiveRangeEdit.h" 18 #include "VirtRegMap.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 21 #include "llvm/CodeGen/MachineDominators.h" 22 #include "llvm/CodeGen/MachineInstrBuilder.h" 23 #include "llvm/CodeGen/MachineRegisterInfo.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/raw_ostream.h" 26 #include "llvm/Target/TargetInstrInfo.h" 27 #include "llvm/Target/TargetMachine.h" 28 29 using namespace llvm; 30 31 STATISTIC(NumFinished, "Number of splits finished"); 32 STATISTIC(NumSimple, "Number of splits that were simple"); 33 STATISTIC(NumCopies, "Number of copies inserted for splitting"); 34 STATISTIC(NumRemats, "Number of rematerialized defs for splitting"); 35 36 //===----------------------------------------------------------------------===// 37 // Split Analysis 38 //===----------------------------------------------------------------------===// 39 40 SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm, 41 const LiveIntervals &lis, 42 const MachineLoopInfo &mli) 43 : MF(vrm.getMachineFunction()), 44 VRM(vrm), 45 LIS(lis), 46 Loops(mli), 47 TII(*MF.getTarget().getInstrInfo()), 48 CurLI(0), 49 LastSplitPoint(MF.getNumBlockIDs()) {} 50 51 void SplitAnalysis::clear() { 52 UseSlots.clear(); 53 UseBlocks.clear(); 54 ThroughBlocks.clear(); 55 CurLI = 0; 56 DidRepairRange = false; 57 } 58 59 SlotIndex SplitAnalysis::computeLastSplitPoint(unsigned Num) { 60 const MachineBasicBlock *MBB = MF.getBlockNumbered(Num); 61 const MachineBasicBlock *LPad = MBB->getLandingPadSuccessor(); 62 std::pair<SlotIndex, SlotIndex> &LSP = LastSplitPoint[Num]; 63 64 // Compute split points on the first call. The pair is independent of the 65 // current live interval. 66 if (!LSP.first.isValid()) { 67 MachineBasicBlock::const_iterator FirstTerm = MBB->getFirstTerminator(); 68 if (FirstTerm == MBB->end()) 69 LSP.first = LIS.getMBBEndIdx(MBB); 70 else 71 LSP.first = LIS.getInstructionIndex(FirstTerm); 72 73 // If there is a landing pad successor, also find the call instruction. 74 if (!LPad) 75 return LSP.first; 76 // There may not be a call instruction (?) in which case we ignore LPad. 77 LSP.second = LSP.first; 78 for (MachineBasicBlock::const_iterator I = FirstTerm, E = MBB->begin(); 79 I != E; --I) 80 if (I->getDesc().isCall()) { 81 LSP.second = LIS.getInstructionIndex(I); 82 break; 83 } 84 } 85 86 // If CurLI is live into a landing pad successor, move the last split point 87 // back to the call that may throw. 88 if (LPad && LSP.second.isValid() && LIS.isLiveInToMBB(*CurLI, LPad)) 89 return LSP.second; 90 else 91 return LSP.first; 92 } 93 94 /// analyzeUses - Count instructions, basic blocks, and loops using CurLI. 95 void SplitAnalysis::analyzeUses() { 96 assert(UseSlots.empty() && "Call clear first"); 97 98 // First get all the defs from the interval values. This provides the correct 99 // slots for early clobbers. 100 for (LiveInterval::const_vni_iterator I = CurLI->vni_begin(), 101 E = CurLI->vni_end(); I != E; ++I) 102 if (!(*I)->isPHIDef() && !(*I)->isUnused()) 103 UseSlots.push_back((*I)->def); 104 105 // Get use slots form the use-def chain. 106 const MachineRegisterInfo &MRI = MF.getRegInfo(); 107 for (MachineRegisterInfo::use_nodbg_iterator 108 I = MRI.use_nodbg_begin(CurLI->reg), E = MRI.use_nodbg_end(); I != E; 109 ++I) 110 if (!I.getOperand().isUndef()) 111 UseSlots.push_back(LIS.getInstructionIndex(&*I).getDefIndex()); 112 113 array_pod_sort(UseSlots.begin(), UseSlots.end()); 114 115 // Remove duplicates, keeping the smaller slot for each instruction. 116 // That is what we want for early clobbers. 117 UseSlots.erase(std::unique(UseSlots.begin(), UseSlots.end(), 118 SlotIndex::isSameInstr), 119 UseSlots.end()); 120 121 // Compute per-live block info. 122 if (!calcLiveBlockInfo()) { 123 // FIXME: calcLiveBlockInfo found inconsistencies in the live range. 124 // I am looking at you, SimpleRegisterCoalescing! 125 DidRepairRange = true; 126 DEBUG(dbgs() << "*** Fixing inconsistent live interval! ***\n"); 127 const_cast<LiveIntervals&>(LIS) 128 .shrinkToUses(const_cast<LiveInterval*>(CurLI)); 129 UseBlocks.clear(); 130 ThroughBlocks.clear(); 131 bool fixed = calcLiveBlockInfo(); 132 (void)fixed; 133 assert(fixed && "Couldn't fix broken live interval"); 134 } 135 136 DEBUG(dbgs() << "Analyze counted " 137 << UseSlots.size() << " instrs in " 138 << UseBlocks.size() << " blocks, through " 139 << NumThroughBlocks << " blocks.\n"); 140 } 141 142 /// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks 143 /// where CurLI is live. 144 bool SplitAnalysis::calcLiveBlockInfo() { 145 ThroughBlocks.resize(MF.getNumBlockIDs()); 146 NumThroughBlocks = 0; 147 if (CurLI->empty()) 148 return true; 149 150 LiveInterval::const_iterator LVI = CurLI->begin(); 151 LiveInterval::const_iterator LVE = CurLI->end(); 152 153 SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE; 154 UseI = UseSlots.begin(); 155 UseE = UseSlots.end(); 156 157 // Loop over basic blocks where CurLI is live. 158 MachineFunction::iterator MFI = LIS.getMBBFromIndex(LVI->start); 159 for (;;) { 160 BlockInfo BI; 161 BI.MBB = MFI; 162 SlotIndex Start, Stop; 163 tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); 164 165 // LVI is the first live segment overlapping MBB. 166 BI.LiveIn = LVI->start <= Start; 167 if (!BI.LiveIn) 168 BI.Def = LVI->start; 169 170 // Find the first and last uses in the block. 171 bool Uses = UseI != UseE && *UseI < Stop; 172 if (Uses) { 173 BI.FirstUse = *UseI; 174 assert(BI.FirstUse >= Start); 175 do ++UseI; 176 while (UseI != UseE && *UseI < Stop); 177 BI.LastUse = UseI[-1]; 178 assert(BI.LastUse < Stop); 179 } 180 181 // Look for gaps in the live range. 182 bool hasGap = false; 183 BI.LiveOut = true; 184 while (LVI->end < Stop) { 185 SlotIndex LastStop = LVI->end; 186 if (++LVI == LVE || LVI->start >= Stop) { 187 BI.Kill = LastStop; 188 BI.LiveOut = false; 189 break; 190 } 191 if (LastStop < LVI->start) { 192 hasGap = true; 193 BI.Kill = LastStop; 194 BI.Def = LVI->start; 195 } 196 } 197 198 // Don't set LiveThrough when the block has a gap. 199 BI.LiveThrough = !hasGap && BI.LiveIn && BI.LiveOut; 200 if (Uses) 201 UseBlocks.push_back(BI); 202 else { 203 ++NumThroughBlocks; 204 ThroughBlocks.set(BI.MBB->getNumber()); 205 } 206 // FIXME: This should never happen. The live range stops or starts without a 207 // corresponding use. An earlier pass did something wrong. 208 if (!BI.LiveThrough && !Uses) 209 return false; 210 211 // LVI is now at LVE or LVI->end >= Stop. 212 if (LVI == LVE) 213 break; 214 215 // Live segment ends exactly at Stop. Move to the next segment. 216 if (LVI->end == Stop && ++LVI == LVE) 217 break; 218 219 // Pick the next basic block. 220 if (LVI->start < Stop) 221 ++MFI; 222 else 223 MFI = LIS.getMBBFromIndex(LVI->start); 224 } 225 return true; 226 } 227 228 unsigned SplitAnalysis::countLiveBlocks(const LiveInterval *cli) const { 229 if (cli->empty()) 230 return 0; 231 LiveInterval *li = const_cast<LiveInterval*>(cli); 232 LiveInterval::iterator LVI = li->begin(); 233 LiveInterval::iterator LVE = li->end(); 234 unsigned Count = 0; 235 236 // Loop over basic blocks where li is live. 237 MachineFunction::const_iterator MFI = LIS.getMBBFromIndex(LVI->start); 238 SlotIndex Stop = LIS.getMBBEndIdx(MFI); 239 for (;;) { 240 ++Count; 241 LVI = li->advanceTo(LVI, Stop); 242 if (LVI == LVE) 243 return Count; 244 do { 245 ++MFI; 246 Stop = LIS.getMBBEndIdx(MFI); 247 } while (Stop <= LVI->start); 248 } 249 } 250 251 bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const { 252 unsigned OrigReg = VRM.getOriginal(CurLI->reg); 253 const LiveInterval &Orig = LIS.getInterval(OrigReg); 254 assert(!Orig.empty() && "Splitting empty interval?"); 255 LiveInterval::const_iterator I = Orig.find(Idx); 256 257 // Range containing Idx should begin at Idx. 258 if (I != Orig.end() && I->start <= Idx) 259 return I->start == Idx; 260 261 // Range does not contain Idx, previous must end at Idx. 262 return I != Orig.begin() && (--I)->end == Idx; 263 } 264 265 void SplitAnalysis::analyze(const LiveInterval *li) { 266 clear(); 267 CurLI = li; 268 analyzeUses(); 269 } 270 271 272 //===----------------------------------------------------------------------===// 273 // Split Editor 274 //===----------------------------------------------------------------------===// 275 276 /// Create a new SplitEditor for editing the LiveInterval analyzed by SA. 277 SplitEditor::SplitEditor(SplitAnalysis &sa, 278 LiveIntervals &lis, 279 VirtRegMap &vrm, 280 MachineDominatorTree &mdt) 281 : SA(sa), LIS(lis), VRM(vrm), 282 MRI(vrm.getMachineFunction().getRegInfo()), 283 MDT(mdt), 284 TII(*vrm.getMachineFunction().getTarget().getInstrInfo()), 285 TRI(*vrm.getMachineFunction().getTarget().getRegisterInfo()), 286 Edit(0), 287 OpenIdx(0), 288 RegAssign(Allocator) 289 {} 290 291 void SplitEditor::reset(LiveRangeEdit &lre) { 292 Edit = &lre; 293 OpenIdx = 0; 294 RegAssign.clear(); 295 Values.clear(); 296 297 // We don't need to clear LiveOutCache, only LiveOutSeen entries are read. 298 LiveOutSeen.clear(); 299 300 // We don't need an AliasAnalysis since we will only be performing 301 // cheap-as-a-copy remats anyway. 302 Edit->anyRematerializable(LIS, TII, 0); 303 } 304 305 void SplitEditor::dump() const { 306 if (RegAssign.empty()) { 307 dbgs() << " empty\n"; 308 return; 309 } 310 311 for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I) 312 dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value(); 313 dbgs() << '\n'; 314 } 315 316 VNInfo *SplitEditor::defValue(unsigned RegIdx, 317 const VNInfo *ParentVNI, 318 SlotIndex Idx) { 319 assert(ParentVNI && "Mapping NULL value"); 320 assert(Idx.isValid() && "Invalid SlotIndex"); 321 assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI"); 322 LiveInterval *LI = Edit->get(RegIdx); 323 324 // Create a new value. 325 VNInfo *VNI = LI->getNextValue(Idx, 0, LIS.getVNInfoAllocator()); 326 327 // Use insert for lookup, so we can add missing values with a second lookup. 328 std::pair<ValueMap::iterator, bool> InsP = 329 Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id), VNI)); 330 331 // This was the first time (RegIdx, ParentVNI) was mapped. 332 // Keep it as a simple def without any liveness. 333 if (InsP.second) 334 return VNI; 335 336 // If the previous value was a simple mapping, add liveness for it now. 337 if (VNInfo *OldVNI = InsP.first->second) { 338 SlotIndex Def = OldVNI->def; 339 LI->addRange(LiveRange(Def, Def.getNextSlot(), OldVNI)); 340 // No longer a simple mapping. 341 InsP.first->second = 0; 342 } 343 344 // This is a complex mapping, add liveness for VNI 345 SlotIndex Def = VNI->def; 346 LI->addRange(LiveRange(Def, Def.getNextSlot(), VNI)); 347 348 return VNI; 349 } 350 351 void SplitEditor::markComplexMapped(unsigned RegIdx, const VNInfo *ParentVNI) { 352 assert(ParentVNI && "Mapping NULL value"); 353 VNInfo *&VNI = Values[std::make_pair(RegIdx, ParentVNI->id)]; 354 355 // ParentVNI was either unmapped or already complex mapped. Either way. 356 if (!VNI) 357 return; 358 359 // This was previously a single mapping. Make sure the old def is represented 360 // by a trivial live range. 361 SlotIndex Def = VNI->def; 362 Edit->get(RegIdx)->addRange(LiveRange(Def, Def.getNextSlot(), VNI)); 363 VNI = 0; 364 } 365 366 // extendRange - Extend the live range to reach Idx. 367 // Potentially create phi-def values. 368 void SplitEditor::extendRange(unsigned RegIdx, SlotIndex Idx) { 369 assert(Idx.isValid() && "Invalid SlotIndex"); 370 MachineBasicBlock *IdxMBB = LIS.getMBBFromIndex(Idx); 371 assert(IdxMBB && "No MBB at Idx"); 372 LiveInterval *LI = Edit->get(RegIdx); 373 374 // Is there a def in the same MBB we can extend? 375 if (LI->extendInBlock(LIS.getMBBStartIdx(IdxMBB), Idx)) 376 return; 377 378 // Now for the fun part. We know that ParentVNI potentially has multiple defs, 379 // and we may need to create even more phi-defs to preserve VNInfo SSA form. 380 // Perform a search for all predecessor blocks where we know the dominating 381 // VNInfo. 382 VNInfo *VNI = findReachingDefs(LI, IdxMBB, Idx.getNextSlot()); 383 384 // When there were multiple different values, we may need new PHIs. 385 if (!VNI) 386 return updateSSA(); 387 388 // Poor man's SSA update for the single-value case. 389 LiveOutPair LOP(VNI, MDT[LIS.getMBBFromIndex(VNI->def)]); 390 for (SmallVectorImpl<LiveInBlock>::iterator I = LiveInBlocks.begin(), 391 E = LiveInBlocks.end(); I != E; ++I) { 392 MachineBasicBlock *MBB = I->DomNode->getBlock(); 393 SlotIndex Start = LIS.getMBBStartIdx(MBB); 394 if (I->Kill.isValid()) 395 LI->addRange(LiveRange(Start, I->Kill, VNI)); 396 else { 397 LiveOutCache[MBB] = LOP; 398 LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), VNI)); 399 } 400 } 401 } 402 403 /// findReachingDefs - Search the CFG for known live-out values. 404 /// Add required live-in blocks to LiveInBlocks. 405 VNInfo *SplitEditor::findReachingDefs(LiveInterval *LI, 406 MachineBasicBlock *KillMBB, 407 SlotIndex Kill) { 408 // Initialize the live-out cache the first time it is needed. 409 if (LiveOutSeen.empty()) { 410 unsigned N = VRM.getMachineFunction().getNumBlockIDs(); 411 LiveOutSeen.resize(N); 412 LiveOutCache.resize(N); 413 } 414 415 // Blocks where LI should be live-in. 416 SmallVector<MachineBasicBlock*, 16> WorkList(1, KillMBB); 417 418 // Remember if we have seen more than one value. 419 bool UniqueVNI = true; 420 VNInfo *TheVNI = 0; 421 422 // Using LiveOutCache as a visited set, perform a BFS for all reaching defs. 423 for (unsigned i = 0; i != WorkList.size(); ++i) { 424 MachineBasicBlock *MBB = WorkList[i]; 425 assert(!MBB->pred_empty() && "Value live-in to entry block?"); 426 for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), 427 PE = MBB->pred_end(); PI != PE; ++PI) { 428 MachineBasicBlock *Pred = *PI; 429 LiveOutPair &LOP = LiveOutCache[Pred]; 430 431 // Is this a known live-out block? 432 if (LiveOutSeen.test(Pred->getNumber())) { 433 if (VNInfo *VNI = LOP.first) { 434 if (TheVNI && TheVNI != VNI) 435 UniqueVNI = false; 436 TheVNI = VNI; 437 } 438 continue; 439 } 440 441 // First time. LOP is garbage and must be cleared below. 442 LiveOutSeen.set(Pred->getNumber()); 443 444 // Does Pred provide a live-out value? 445 SlotIndex Start, Last; 446 tie(Start, Last) = LIS.getSlotIndexes()->getMBBRange(Pred); 447 Last = Last.getPrevSlot(); 448 VNInfo *VNI = LI->extendInBlock(Start, Last); 449 LOP.first = VNI; 450 if (VNI) { 451 LOP.second = MDT[LIS.getMBBFromIndex(VNI->def)]; 452 if (TheVNI && TheVNI != VNI) 453 UniqueVNI = false; 454 TheVNI = VNI; 455 continue; 456 } 457 LOP.second = 0; 458 459 // No, we need a live-in value for Pred as well 460 if (Pred != KillMBB) 461 WorkList.push_back(Pred); 462 else 463 // Loopback to KillMBB, so value is really live through. 464 Kill = SlotIndex(); 465 } 466 } 467 468 // Transfer WorkList to LiveInBlocks in reverse order. 469 // This ordering works best with updateSSA(). 470 LiveInBlocks.clear(); 471 LiveInBlocks.reserve(WorkList.size()); 472 while(!WorkList.empty()) 473 LiveInBlocks.push_back(MDT[WorkList.pop_back_val()]); 474 475 // The kill block may not be live-through. 476 assert(LiveInBlocks.back().DomNode->getBlock() == KillMBB); 477 LiveInBlocks.back().Kill = Kill; 478 479 return UniqueVNI ? TheVNI : 0; 480 } 481 482 void SplitEditor::updateSSA() { 483 // This is essentially the same iterative algorithm that SSAUpdater uses, 484 // except we already have a dominator tree, so we don't have to recompute it. 485 unsigned Changes; 486 do { 487 Changes = 0; 488 // Propagate live-out values down the dominator tree, inserting phi-defs 489 // when necessary. 490 for (SmallVectorImpl<LiveInBlock>::iterator I = LiveInBlocks.begin(), 491 E = LiveInBlocks.end(); I != E; ++I) { 492 MachineDomTreeNode *Node = I->DomNode; 493 // Skip block if the live-in value has already been determined. 494 if (!Node) 495 continue; 496 MachineBasicBlock *MBB = Node->getBlock(); 497 MachineDomTreeNode *IDom = Node->getIDom(); 498 LiveOutPair IDomValue; 499 500 // We need a live-in value to a block with no immediate dominator? 501 // This is probably an unreachable block that has survived somehow. 502 bool needPHI = !IDom || !LiveOutSeen.test(IDom->getBlock()->getNumber()); 503 504 // IDom dominates all of our predecessors, but it may not be their 505 // immediate dominator. Check if any of them have live-out values that are 506 // properly dominated by IDom. If so, we need a phi-def here. 507 if (!needPHI) { 508 IDomValue = LiveOutCache[IDom->getBlock()]; 509 for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), 510 PE = MBB->pred_end(); PI != PE; ++PI) { 511 LiveOutPair Value = LiveOutCache[*PI]; 512 if (!Value.first || Value.first == IDomValue.first) 513 continue; 514 // This predecessor is carrying something other than IDomValue. 515 // It could be because IDomValue hasn't propagated yet, or it could be 516 // because MBB is in the dominance frontier of that value. 517 if (MDT.dominates(IDom, Value.second)) { 518 needPHI = true; 519 break; 520 } 521 } 522 } 523 524 // The value may be live-through even if Kill is set, as can happen when 525 // we are called from extendRange. In that case LiveOutSeen is true, and 526 // LiveOutCache indicates a foreign or missing value. 527 LiveOutPair &LOP = LiveOutCache[MBB]; 528 529 // Create a phi-def if required. 530 if (needPHI) { 531 ++Changes; 532 SlotIndex Start = LIS.getMBBStartIdx(MBB); 533 unsigned RegIdx = RegAssign.lookup(Start); 534 LiveInterval *LI = Edit->get(RegIdx); 535 VNInfo *VNI = LI->getNextValue(Start, 0, LIS.getVNInfoAllocator()); 536 VNI->setIsPHIDef(true); 537 I->Value = VNI; 538 // This block is done, we know the final value. 539 I->DomNode = 0; 540 if (I->Kill.isValid()) 541 LI->addRange(LiveRange(Start, I->Kill, VNI)); 542 else { 543 LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), VNI)); 544 LOP = LiveOutPair(VNI, Node); 545 } 546 } else if (IDomValue.first) { 547 // No phi-def here. Remember incoming value. 548 I->Value = IDomValue.first; 549 if (I->Kill.isValid()) 550 continue; 551 // Propagate IDomValue if needed: 552 // MBB is live-out and doesn't define its own value. 553 if (LOP.second != Node && LOP.first != IDomValue.first) { 554 ++Changes; 555 LOP = IDomValue; 556 } 557 } 558 } 559 } while (Changes); 560 561 // The values in LiveInBlocks are now accurate. No more phi-defs are needed 562 // for these blocks, so we can color the live ranges. 563 for (SmallVectorImpl<LiveInBlock>::iterator I = LiveInBlocks.begin(), 564 E = LiveInBlocks.end(); I != E; ++I) { 565 if (!I->DomNode) 566 continue; 567 assert(I->Value && "No live-in value found"); 568 MachineBasicBlock *MBB = I->DomNode->getBlock(); 569 SlotIndex Start = LIS.getMBBStartIdx(MBB); 570 unsigned RegIdx = RegAssign.lookup(Start); 571 LiveInterval *LI = Edit->get(RegIdx); 572 LI->addRange(LiveRange(Start, I->Kill.isValid() ? 573 I->Kill : LIS.getMBBEndIdx(MBB), I->Value)); 574 } 575 } 576 577 VNInfo *SplitEditor::defFromParent(unsigned RegIdx, 578 VNInfo *ParentVNI, 579 SlotIndex UseIdx, 580 MachineBasicBlock &MBB, 581 MachineBasicBlock::iterator I) { 582 MachineInstr *CopyMI = 0; 583 SlotIndex Def; 584 LiveInterval *LI = Edit->get(RegIdx); 585 586 // We may be trying to avoid interference that ends at a deleted instruction, 587 // so always begin RegIdx 0 early and all others late. 588 bool Late = RegIdx != 0; 589 590 // Attempt cheap-as-a-copy rematerialization. 591 LiveRangeEdit::Remat RM(ParentVNI); 592 if (Edit->canRematerializeAt(RM, UseIdx, true, LIS)) { 593 Def = Edit->rematerializeAt(MBB, I, LI->reg, RM, LIS, TII, TRI, Late); 594 ++NumRemats; 595 } else { 596 // Can't remat, just insert a copy from parent. 597 CopyMI = BuildMI(MBB, I, DebugLoc(), TII.get(TargetOpcode::COPY), LI->reg) 598 .addReg(Edit->getReg()); 599 Def = LIS.getSlotIndexes()->insertMachineInstrInMaps(CopyMI, Late) 600 .getDefIndex(); 601 ++NumCopies; 602 } 603 604 // Define the value in Reg. 605 VNInfo *VNI = defValue(RegIdx, ParentVNI, Def); 606 VNI->setCopy(CopyMI); 607 return VNI; 608 } 609 610 /// Create a new virtual register and live interval. 611 unsigned SplitEditor::openIntv() { 612 // Create the complement as index 0. 613 if (Edit->empty()) 614 Edit->create(LIS, VRM); 615 616 // Create the open interval. 617 OpenIdx = Edit->size(); 618 Edit->create(LIS, VRM); 619 return OpenIdx; 620 } 621 622 void SplitEditor::selectIntv(unsigned Idx) { 623 assert(Idx != 0 && "Cannot select the complement interval"); 624 assert(Idx < Edit->size() && "Can only select previously opened interval"); 625 OpenIdx = Idx; 626 } 627 628 SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) { 629 assert(OpenIdx && "openIntv not called before enterIntvBefore"); 630 DEBUG(dbgs() << " enterIntvBefore " << Idx); 631 Idx = Idx.getBaseIndex(); 632 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 633 if (!ParentVNI) { 634 DEBUG(dbgs() << ": not live\n"); 635 return Idx; 636 } 637 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 638 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 639 assert(MI && "enterIntvBefore called with invalid index"); 640 641 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI); 642 return VNI->def; 643 } 644 645 SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) { 646 assert(OpenIdx && "openIntv not called before enterIntvAtEnd"); 647 SlotIndex End = LIS.getMBBEndIdx(&MBB); 648 SlotIndex Last = End.getPrevSlot(); 649 DEBUG(dbgs() << " enterIntvAtEnd BB#" << MBB.getNumber() << ", " << Last); 650 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last); 651 if (!ParentVNI) { 652 DEBUG(dbgs() << ": not live\n"); 653 return End; 654 } 655 DEBUG(dbgs() << ": valno " << ParentVNI->id); 656 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB, 657 LIS.getLastSplitPoint(Edit->getParent(), &MBB)); 658 RegAssign.insert(VNI->def, End, OpenIdx); 659 DEBUG(dump()); 660 return VNI->def; 661 } 662 663 /// useIntv - indicate that all instructions in MBB should use OpenLI. 664 void SplitEditor::useIntv(const MachineBasicBlock &MBB) { 665 useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB)); 666 } 667 668 void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) { 669 assert(OpenIdx && "openIntv not called before useIntv"); 670 DEBUG(dbgs() << " useIntv [" << Start << ';' << End << "):"); 671 RegAssign.insert(Start, End, OpenIdx); 672 DEBUG(dump()); 673 } 674 675 SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) { 676 assert(OpenIdx && "openIntv not called before leaveIntvAfter"); 677 DEBUG(dbgs() << " leaveIntvAfter " << Idx); 678 679 // The interval must be live beyond the instruction at Idx. 680 Idx = Idx.getBoundaryIndex(); 681 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 682 if (!ParentVNI) { 683 DEBUG(dbgs() << ": not live\n"); 684 return Idx.getNextSlot(); 685 } 686 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 687 688 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 689 assert(MI && "No instruction at index"); 690 VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), 691 llvm::next(MachineBasicBlock::iterator(MI))); 692 return VNI->def; 693 } 694 695 SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) { 696 assert(OpenIdx && "openIntv not called before leaveIntvBefore"); 697 DEBUG(dbgs() << " leaveIntvBefore " << Idx); 698 699 // The interval must be live into the instruction at Idx. 700 Idx = Idx.getBoundaryIndex(); 701 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 702 if (!ParentVNI) { 703 DEBUG(dbgs() << ": not live\n"); 704 return Idx.getNextSlot(); 705 } 706 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 707 708 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 709 assert(MI && "No instruction at index"); 710 VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI); 711 return VNI->def; 712 } 713 714 SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) { 715 assert(OpenIdx && "openIntv not called before leaveIntvAtTop"); 716 SlotIndex Start = LIS.getMBBStartIdx(&MBB); 717 DEBUG(dbgs() << " leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start); 718 719 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start); 720 if (!ParentVNI) { 721 DEBUG(dbgs() << ": not live\n"); 722 return Start; 723 } 724 725 VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB, 726 MBB.SkipPHIsAndLabels(MBB.begin())); 727 RegAssign.insert(Start, VNI->def, OpenIdx); 728 DEBUG(dump()); 729 return VNI->def; 730 } 731 732 void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) { 733 assert(OpenIdx && "openIntv not called before overlapIntv"); 734 const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start); 735 assert(ParentVNI == Edit->getParent().getVNInfoAt(End.getPrevSlot()) && 736 "Parent changes value in extended range"); 737 assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) && 738 "Range cannot span basic blocks"); 739 740 // The complement interval will be extended as needed by extendRange(). 741 if (ParentVNI) 742 markComplexMapped(0, ParentVNI); 743 DEBUG(dbgs() << " overlapIntv [" << Start << ';' << End << "):"); 744 RegAssign.insert(Start, End, OpenIdx); 745 DEBUG(dump()); 746 } 747 748 /// transferValues - Transfer all possible values to the new live ranges. 749 /// Values that were rematerialized are left alone, they need extendRange(). 750 bool SplitEditor::transferValues() { 751 bool Skipped = false; 752 LiveInBlocks.clear(); 753 RegAssignMap::const_iterator AssignI = RegAssign.begin(); 754 for (LiveInterval::const_iterator ParentI = Edit->getParent().begin(), 755 ParentE = Edit->getParent().end(); ParentI != ParentE; ++ParentI) { 756 DEBUG(dbgs() << " blit " << *ParentI << ':'); 757 VNInfo *ParentVNI = ParentI->valno; 758 // RegAssign has holes where RegIdx 0 should be used. 759 SlotIndex Start = ParentI->start; 760 AssignI.advanceTo(Start); 761 do { 762 unsigned RegIdx; 763 SlotIndex End = ParentI->end; 764 if (!AssignI.valid()) { 765 RegIdx = 0; 766 } else if (AssignI.start() <= Start) { 767 RegIdx = AssignI.value(); 768 if (AssignI.stop() < End) { 769 End = AssignI.stop(); 770 ++AssignI; 771 } 772 } else { 773 RegIdx = 0; 774 End = std::min(End, AssignI.start()); 775 } 776 777 // The interval [Start;End) is continuously mapped to RegIdx, ParentVNI. 778 DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx); 779 LiveInterval *LI = Edit->get(RegIdx); 780 781 // Check for a simply defined value that can be blitted directly. 782 if (VNInfo *VNI = Values.lookup(std::make_pair(RegIdx, ParentVNI->id))) { 783 DEBUG(dbgs() << ':' << VNI->id); 784 LI->addRange(LiveRange(Start, End, VNI)); 785 Start = End; 786 continue; 787 } 788 789 // Skip rematerialized values, we need to use extendRange() and 790 // extendPHIKillRanges() to completely recompute the live ranges. 791 if (Edit->didRematerialize(ParentVNI)) { 792 DEBUG(dbgs() << "(remat)"); 793 Skipped = true; 794 Start = End; 795 continue; 796 } 797 798 // Initialize the live-out cache the first time it is needed. 799 if (LiveOutSeen.empty()) { 800 unsigned N = VRM.getMachineFunction().getNumBlockIDs(); 801 LiveOutSeen.resize(N); 802 LiveOutCache.resize(N); 803 } 804 805 // This value has multiple defs in RegIdx, but it wasn't rematerialized, 806 // so the live range is accurate. Add live-in blocks in [Start;End) to the 807 // LiveInBlocks. 808 MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start); 809 SlotIndex BlockStart, BlockEnd; 810 tie(BlockStart, BlockEnd) = LIS.getSlotIndexes()->getMBBRange(MBB); 811 812 // The first block may be live-in, or it may have its own def. 813 if (Start != BlockStart) { 814 VNInfo *VNI = LI->extendInBlock(BlockStart, 815 std::min(BlockEnd, End).getPrevSlot()); 816 assert(VNI && "Missing def for complex mapped value"); 817 DEBUG(dbgs() << ':' << VNI->id << "*BB#" << MBB->getNumber()); 818 // MBB has its own def. Is it also live-out? 819 if (BlockEnd <= End) { 820 LiveOutSeen.set(MBB->getNumber()); 821 LiveOutCache[MBB] = LiveOutPair(VNI, MDT[MBB]); 822 } 823 // Skip to the next block for live-in. 824 ++MBB; 825 BlockStart = BlockEnd; 826 } 827 828 // Handle the live-in blocks covered by [Start;End). 829 assert(Start <= BlockStart && "Expected live-in block"); 830 while (BlockStart < End) { 831 DEBUG(dbgs() << ">BB#" << MBB->getNumber()); 832 BlockEnd = LIS.getMBBEndIdx(MBB); 833 if (BlockStart == ParentVNI->def) { 834 // This block has the def of a parent PHI, so it isn't live-in. 835 assert(ParentVNI->isPHIDef() && "Non-phi defined at block start?"); 836 VNInfo *VNI = LI->extendInBlock(BlockStart, 837 std::min(BlockEnd, End).getPrevSlot()); 838 assert(VNI && "Missing def for complex mapped parent PHI"); 839 if (End >= BlockEnd) { 840 // Live-out as well. 841 LiveOutSeen.set(MBB->getNumber()); 842 LiveOutCache[MBB] = LiveOutPair(VNI, MDT[MBB]); 843 } 844 } else { 845 // This block needs a live-in value. 846 LiveInBlocks.push_back(MDT[MBB]); 847 // The last block covered may not be live-out. 848 if (End < BlockEnd) 849 LiveInBlocks.back().Kill = End; 850 else { 851 // Live-out, but we need updateSSA to tell us the value. 852 LiveOutSeen.set(MBB->getNumber()); 853 LiveOutCache[MBB] = LiveOutPair((VNInfo*)0, 854 (MachineDomTreeNode*)0); 855 } 856 } 857 BlockStart = BlockEnd; 858 ++MBB; 859 } 860 Start = End; 861 } while (Start != ParentI->end); 862 DEBUG(dbgs() << '\n'); 863 } 864 865 if (!LiveInBlocks.empty()) 866 updateSSA(); 867 868 return Skipped; 869 } 870 871 void SplitEditor::extendPHIKillRanges() { 872 // Extend live ranges to be live-out for successor PHI values. 873 for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(), 874 E = Edit->getParent().vni_end(); I != E; ++I) { 875 const VNInfo *PHIVNI = *I; 876 if (PHIVNI->isUnused() || !PHIVNI->isPHIDef()) 877 continue; 878 unsigned RegIdx = RegAssign.lookup(PHIVNI->def); 879 MachineBasicBlock *MBB = LIS.getMBBFromIndex(PHIVNI->def); 880 for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), 881 PE = MBB->pred_end(); PI != PE; ++PI) { 882 SlotIndex End = LIS.getMBBEndIdx(*PI).getPrevSlot(); 883 // The predecessor may not have a live-out value. That is OK, like an 884 // undef PHI operand. 885 if (Edit->getParent().liveAt(End)) { 886 assert(RegAssign.lookup(End) == RegIdx && 887 "Different register assignment in phi predecessor"); 888 extendRange(RegIdx, End); 889 } 890 } 891 } 892 } 893 894 /// rewriteAssigned - Rewrite all uses of Edit->getReg(). 895 void SplitEditor::rewriteAssigned(bool ExtendRanges) { 896 for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Edit->getReg()), 897 RE = MRI.reg_end(); RI != RE;) { 898 MachineOperand &MO = RI.getOperand(); 899 MachineInstr *MI = MO.getParent(); 900 ++RI; 901 // LiveDebugVariables should have handled all DBG_VALUE instructions. 902 if (MI->isDebugValue()) { 903 DEBUG(dbgs() << "Zapping " << *MI); 904 MO.setReg(0); 905 continue; 906 } 907 908 // <undef> operands don't really read the register, so just assign them to 909 // the complement. 910 if (MO.isUse() && MO.isUndef()) { 911 MO.setReg(Edit->get(0)->reg); 912 continue; 913 } 914 915 SlotIndex Idx = LIS.getInstructionIndex(MI); 916 if (MO.isDef()) 917 Idx = MO.isEarlyClobber() ? Idx.getUseIndex() : Idx.getDefIndex(); 918 919 // Rewrite to the mapped register at Idx. 920 unsigned RegIdx = RegAssign.lookup(Idx); 921 MO.setReg(Edit->get(RegIdx)->reg); 922 DEBUG(dbgs() << " rewr BB#" << MI->getParent()->getNumber() << '\t' 923 << Idx << ':' << RegIdx << '\t' << *MI); 924 925 // Extend liveness to Idx if the instruction reads reg. 926 if (!ExtendRanges) 927 continue; 928 929 // Skip instructions that don't read Reg. 930 if (MO.isDef()) { 931 if (!MO.getSubReg() && !MO.isEarlyClobber()) 932 continue; 933 // We may wan't to extend a live range for a partial redef, or for a use 934 // tied to an early clobber. 935 Idx = Idx.getPrevSlot(); 936 if (!Edit->getParent().liveAt(Idx)) 937 continue; 938 } else 939 Idx = Idx.getUseIndex(); 940 941 extendRange(RegIdx, Idx); 942 } 943 } 944 945 void SplitEditor::deleteRematVictims() { 946 SmallVector<MachineInstr*, 8> Dead; 947 for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I){ 948 LiveInterval *LI = *I; 949 for (LiveInterval::const_iterator LII = LI->begin(), LIE = LI->end(); 950 LII != LIE; ++LII) { 951 // Dead defs end at the store slot. 952 if (LII->end != LII->valno->def.getNextSlot()) 953 continue; 954 MachineInstr *MI = LIS.getInstructionFromIndex(LII->valno->def); 955 assert(MI && "Missing instruction for dead def"); 956 MI->addRegisterDead(LI->reg, &TRI); 957 958 if (!MI->allDefsAreDead()) 959 continue; 960 961 DEBUG(dbgs() << "All defs dead: " << *MI); 962 Dead.push_back(MI); 963 } 964 } 965 966 if (Dead.empty()) 967 return; 968 969 Edit->eliminateDeadDefs(Dead, LIS, VRM, TII); 970 } 971 972 void SplitEditor::finish(SmallVectorImpl<unsigned> *LRMap) { 973 ++NumFinished; 974 975 // At this point, the live intervals in Edit contain VNInfos corresponding to 976 // the inserted copies. 977 978 // Add the original defs from the parent interval. 979 for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(), 980 E = Edit->getParent().vni_end(); I != E; ++I) { 981 const VNInfo *ParentVNI = *I; 982 if (ParentVNI->isUnused()) 983 continue; 984 unsigned RegIdx = RegAssign.lookup(ParentVNI->def); 985 VNInfo *VNI = defValue(RegIdx, ParentVNI, ParentVNI->def); 986 VNI->setIsPHIDef(ParentVNI->isPHIDef()); 987 VNI->setCopy(ParentVNI->getCopy()); 988 989 // Mark rematted values as complex everywhere to force liveness computation. 990 // The new live ranges may be truncated. 991 if (Edit->didRematerialize(ParentVNI)) 992 for (unsigned i = 0, e = Edit->size(); i != e; ++i) 993 markComplexMapped(i, ParentVNI); 994 } 995 996 #ifndef NDEBUG 997 // Every new interval must have a def by now, otherwise the split is bogus. 998 for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I) 999 assert((*I)->hasAtLeastOneValue() && "Split interval has no value"); 1000 #endif 1001 1002 // Transfer the simply mapped values, check if any are skipped. 1003 bool Skipped = transferValues(); 1004 if (Skipped) 1005 extendPHIKillRanges(); 1006 else 1007 ++NumSimple; 1008 1009 // Rewrite virtual registers, possibly extending ranges. 1010 rewriteAssigned(Skipped); 1011 1012 // Delete defs that were rematted everywhere. 1013 if (Skipped) 1014 deleteRematVictims(); 1015 1016 // Get rid of unused values and set phi-kill flags. 1017 for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I) 1018 (*I)->RenumberValues(LIS); 1019 1020 // Provide a reverse mapping from original indices to Edit ranges. 1021 if (LRMap) { 1022 LRMap->clear(); 1023 for (unsigned i = 0, e = Edit->size(); i != e; ++i) 1024 LRMap->push_back(i); 1025 } 1026 1027 // Now check if any registers were separated into multiple components. 1028 ConnectedVNInfoEqClasses ConEQ(LIS); 1029 for (unsigned i = 0, e = Edit->size(); i != e; ++i) { 1030 // Don't use iterators, they are invalidated by create() below. 1031 LiveInterval *li = Edit->get(i); 1032 unsigned NumComp = ConEQ.Classify(li); 1033 if (NumComp <= 1) 1034 continue; 1035 DEBUG(dbgs() << " " << NumComp << " components: " << *li << '\n'); 1036 SmallVector<LiveInterval*, 8> dups; 1037 dups.push_back(li); 1038 for (unsigned j = 1; j != NumComp; ++j) 1039 dups.push_back(&Edit->create(LIS, VRM)); 1040 ConEQ.Distribute(&dups[0], MRI); 1041 // The new intervals all map back to i. 1042 if (LRMap) 1043 LRMap->resize(Edit->size(), i); 1044 } 1045 1046 // Calculate spill weight and allocation hints for new intervals. 1047 Edit->calculateRegClassAndHint(VRM.getMachineFunction(), LIS, SA.Loops); 1048 1049 assert(!LRMap || LRMap->size() == Edit->size()); 1050 } 1051 1052 1053 //===----------------------------------------------------------------------===// 1054 // Single Block Splitting 1055 //===----------------------------------------------------------------------===// 1056 1057 /// getMultiUseBlocks - if CurLI has more than one use in a basic block, it 1058 /// may be an advantage to split CurLI for the duration of the block. 1059 bool SplitAnalysis::getMultiUseBlocks(BlockPtrSet &Blocks) { 1060 // If CurLI is local to one block, there is no point to splitting it. 1061 if (UseBlocks.size() <= 1) 1062 return false; 1063 // Add blocks with multiple uses. 1064 for (unsigned i = 0, e = UseBlocks.size(); i != e; ++i) { 1065 const BlockInfo &BI = UseBlocks[i]; 1066 if (BI.FirstUse == BI.LastUse) 1067 continue; 1068 Blocks.insert(BI.MBB); 1069 } 1070 return !Blocks.empty(); 1071 } 1072 1073 void SplitEditor::splitSingleBlock(const SplitAnalysis::BlockInfo &BI) { 1074 openIntv(); 1075 SlotIndex LastSplitPoint = SA.getLastSplitPoint(BI.MBB->getNumber()); 1076 SlotIndex SegStart = enterIntvBefore(std::min(BI.FirstUse, 1077 LastSplitPoint)); 1078 if (!BI.LiveOut || BI.LastUse < LastSplitPoint) { 1079 useIntv(SegStart, leaveIntvAfter(BI.LastUse)); 1080 } else { 1081 // The last use is after the last valid split point. 1082 SlotIndex SegStop = leaveIntvBefore(LastSplitPoint); 1083 useIntv(SegStart, SegStop); 1084 overlapIntv(SegStop, BI.LastUse); 1085 } 1086 } 1087 1088 /// splitSingleBlocks - Split CurLI into a separate live interval inside each 1089 /// basic block in Blocks. 1090 void SplitEditor::splitSingleBlocks(const SplitAnalysis::BlockPtrSet &Blocks) { 1091 DEBUG(dbgs() << " splitSingleBlocks for " << Blocks.size() << " blocks.\n"); 1092 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA.getUseBlocks(); 1093 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 1094 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 1095 if (Blocks.count(BI.MBB)) 1096 splitSingleBlock(BI); 1097 } 1098 finish(); 1099 } 1100