1 //===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the SplitAnalysis class as well as mutator functions for
11 // live range splitting.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #define DEBUG_TYPE "regalloc"
16 #include "SplitKit.h"
17 #include "LiveRangeEdit.h"
18 #include "VirtRegMap.h"
19 #include "llvm/CodeGen/CalcSpillWeights.h"
20 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
21 #include "llvm/CodeGen/MachineDominators.h"
22 #include "llvm/CodeGen/MachineInstrBuilder.h"
23 #include "llvm/CodeGen/MachineRegisterInfo.h"
24 #include "llvm/Support/CommandLine.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/raw_ostream.h"
27 #include "llvm/Target/TargetInstrInfo.h"
28 #include "llvm/Target/TargetMachine.h"
29 
30 using namespace llvm;
31 
32 static cl::opt<bool>
33 AllowSplit("spiller-splits-edges",
34            cl::desc("Allow critical edge splitting during spilling"));
35 
36 //===----------------------------------------------------------------------===//
37 //                                 Split Analysis
38 //===----------------------------------------------------------------------===//
39 
40 SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm,
41                              const LiveIntervals &lis,
42                              const MachineLoopInfo &mli)
43   : MF(vrm.getMachineFunction()),
44     VRM(vrm),
45     LIS(lis),
46     Loops(mli),
47     TII(*MF.getTarget().getInstrInfo()),
48     CurLI(0) {}
49 
50 void SplitAnalysis::clear() {
51   UseSlots.clear();
52   UsingInstrs.clear();
53   UsingBlocks.clear();
54   LiveBlocks.clear();
55   CurLI = 0;
56 }
57 
58 bool SplitAnalysis::canAnalyzeBranch(const MachineBasicBlock *MBB) {
59   MachineBasicBlock *T, *F;
60   SmallVector<MachineOperand, 4> Cond;
61   return !TII.AnalyzeBranch(const_cast<MachineBasicBlock&>(*MBB), T, F, Cond);
62 }
63 
64 /// analyzeUses - Count instructions, basic blocks, and loops using CurLI.
65 void SplitAnalysis::analyzeUses() {
66   const MachineRegisterInfo &MRI = MF.getRegInfo();
67   for (MachineRegisterInfo::reg_iterator I = MRI.reg_begin(CurLI->reg),
68        E = MRI.reg_end(); I != E; ++I) {
69     MachineOperand &MO = I.getOperand();
70     if (MO.isUse() && MO.isUndef())
71       continue;
72     MachineInstr *MI = MO.getParent();
73     if (MI->isDebugValue() || !UsingInstrs.insert(MI))
74       continue;
75     UseSlots.push_back(LIS.getInstructionIndex(MI).getDefIndex());
76     MachineBasicBlock *MBB = MI->getParent();
77     UsingBlocks[MBB]++;
78   }
79   array_pod_sort(UseSlots.begin(), UseSlots.end());
80   calcLiveBlockInfo();
81   DEBUG(dbgs() << "  counted "
82                << UsingInstrs.size() << " instrs, "
83                << UsingBlocks.size() << " blocks.\n");
84 }
85 
86 /// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks
87 /// where CurLI is live.
88 void SplitAnalysis::calcLiveBlockInfo() {
89   if (CurLI->empty())
90     return;
91 
92   LiveInterval::const_iterator LVI = CurLI->begin();
93   LiveInterval::const_iterator LVE = CurLI->end();
94 
95   SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE;
96   UseI = UseSlots.begin();
97   UseE = UseSlots.end();
98 
99   // Loop over basic blocks where CurLI is live.
100   MachineFunction::iterator MFI = LIS.getMBBFromIndex(LVI->start);
101   for (;;) {
102     BlockInfo BI;
103     BI.MBB = MFI;
104     SlotIndex Start, Stop;
105     tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
106 
107     // The last split point is the latest possible insertion point that dominates
108     // all successor blocks. If interference reaches LastSplitPoint, it is not
109     // possible to insert a split or reload that makes CurLI live in the
110     // outgoing bundle.
111     MachineBasicBlock::iterator LSP = LIS.getLastSplitPoint(*CurLI, BI.MBB);
112     if (LSP == BI.MBB->end())
113       BI.LastSplitPoint = Stop;
114     else
115       BI.LastSplitPoint = LIS.getInstructionIndex(LSP);
116 
117     // LVI is the first live segment overlapping MBB.
118     BI.LiveIn = LVI->start <= Start;
119     if (!BI.LiveIn)
120       BI.Def = LVI->start;
121 
122     // Find the first and last uses in the block.
123     BI.Uses = hasUses(MFI);
124     if (BI.Uses && UseI != UseE) {
125       BI.FirstUse = *UseI;
126       assert(BI.FirstUse >= Start);
127       do ++UseI;
128       while (UseI != UseE && *UseI < Stop);
129       BI.LastUse = UseI[-1];
130       assert(BI.LastUse < Stop);
131     }
132 
133     // Look for gaps in the live range.
134     bool hasGap = false;
135     BI.LiveOut = true;
136     while (LVI->end < Stop) {
137       SlotIndex LastStop = LVI->end;
138       if (++LVI == LVE || LVI->start >= Stop) {
139         BI.Kill = LastStop;
140         BI.LiveOut = false;
141         break;
142       }
143       if (LastStop < LVI->start) {
144         hasGap = true;
145         BI.Kill = LastStop;
146         BI.Def = LVI->start;
147       }
148     }
149 
150     // Don't set LiveThrough when the block has a gap.
151     BI.LiveThrough = !hasGap && BI.LiveIn && BI.LiveOut;
152     LiveBlocks.push_back(BI);
153 
154     // LVI is now at LVE or LVI->end >= Stop.
155     if (LVI == LVE)
156       break;
157 
158     // Live segment ends exactly at Stop. Move to the next segment.
159     if (LVI->end == Stop && ++LVI == LVE)
160       break;
161 
162     // Pick the next basic block.
163     if (LVI->start < Stop)
164       ++MFI;
165     else
166       MFI = LIS.getMBBFromIndex(LVI->start);
167   }
168 }
169 
170 bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const {
171   unsigned OrigReg = VRM.getOriginal(CurLI->reg);
172   const LiveInterval &Orig = LIS.getInterval(OrigReg);
173   assert(!Orig.empty() && "Splitting empty interval?");
174   LiveInterval::const_iterator I = Orig.find(Idx);
175 
176   // Range containing Idx should begin at Idx.
177   if (I != Orig.end() && I->start <= Idx)
178     return I->start == Idx;
179 
180   // Range does not contain Idx, previous must end at Idx.
181   return I != Orig.begin() && (--I)->end == Idx;
182 }
183 
184 void SplitAnalysis::print(const BlockPtrSet &B, raw_ostream &OS) const {
185   for (BlockPtrSet::const_iterator I = B.begin(), E = B.end(); I != E; ++I) {
186     unsigned count = UsingBlocks.lookup(*I);
187     OS << " BB#" << (*I)->getNumber();
188     if (count)
189       OS << '(' << count << ')';
190   }
191 }
192 
193 void SplitAnalysis::analyze(const LiveInterval *li) {
194   clear();
195   CurLI = li;
196   analyzeUses();
197 }
198 
199 
200 //===----------------------------------------------------------------------===//
201 //                               LiveIntervalMap
202 //===----------------------------------------------------------------------===//
203 
204 // Work around the fact that the std::pair constructors are broken for pointer
205 // pairs in some implementations. makeVV(x, 0) works.
206 static inline std::pair<const VNInfo*, VNInfo*>
207 makeVV(const VNInfo *a, VNInfo *b) {
208   return std::make_pair(a, b);
209 }
210 
211 void LiveIntervalMap::reset(LiveInterval *li) {
212   LI = li;
213   LiveOutCache.clear();
214 }
215 
216 
217 // mapValue - Find the mapped value for ParentVNI at Idx.
218 // Potentially create phi-def values.
219 VNInfo *LiveIntervalMap::mapValue(const VNInfo *ParentVNI, SlotIndex Idx,
220                                   bool *simple) {
221   assert(LI && "call reset first");
222   assert(ParentVNI && "Mapping  NULL value");
223   assert(Idx.isValid() && "Invalid SlotIndex");
224   assert(ParentLI.getVNInfoAt(Idx) == ParentVNI && "Bad ParentVNI");
225 
226   // This is a complex mapped value. There may be multiple defs, and we may need
227   // to create phi-defs.
228   if (simple) *simple = false;
229   MachineBasicBlock *IdxMBB = LIS.getMBBFromIndex(Idx);
230   assert(IdxMBB && "No MBB at Idx");
231 
232   // Is there a def in the same MBB we can extend?
233   if (VNInfo *VNI = extendTo(IdxMBB, Idx))
234     return VNI;
235 
236   // Now for the fun part. We know that ParentVNI potentially has multiple defs,
237   // and we may need to create even more phi-defs to preserve VNInfo SSA form.
238   // Perform a search for all predecessor blocks where we know the dominating
239   // VNInfo. Insert phi-def VNInfos along the path back to IdxMBB.
240   DEBUG(dbgs() << "\n  Reaching defs for BB#" << IdxMBB->getNumber()
241                << " at " << Idx << " in " << *LI << '\n');
242 
243   // Blocks where LI should be live-in.
244   SmallVector<MachineDomTreeNode*, 16> LiveIn;
245   LiveIn.push_back(MDT[IdxMBB]);
246 
247   // Using LiveOutCache as a visited set, perform a BFS for all reaching defs.
248   for (unsigned i = 0; i != LiveIn.size(); ++i) {
249     MachineBasicBlock *MBB = LiveIn[i]->getBlock();
250     for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
251            PE = MBB->pred_end(); PI != PE; ++PI) {
252        MachineBasicBlock *Pred = *PI;
253        // Is this a known live-out block?
254        std::pair<LiveOutMap::iterator,bool> LOIP =
255          LiveOutCache.insert(std::make_pair(Pred, LiveOutPair()));
256        // Yes, we have been here before.
257        if (!LOIP.second) {
258          DEBUG(if (VNInfo *VNI = LOIP.first->second.first)
259                  dbgs() << "    known valno #" << VNI->id
260                         << " at BB#" << Pred->getNumber() << '\n');
261          continue;
262        }
263 
264        // Does Pred provide a live-out value?
265        SlotIndex Last = LIS.getMBBEndIdx(Pred).getPrevSlot();
266        if (VNInfo *VNI = extendTo(Pred, Last)) {
267          MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(VNI->def);
268          DEBUG(dbgs() << "    found valno #" << VNI->id
269                       << " from BB#" << DefMBB->getNumber()
270                       << " at BB#" << Pred->getNumber() << '\n');
271          LiveOutPair &LOP = LOIP.first->second;
272          LOP.first = VNI;
273          LOP.second = MDT[DefMBB];
274          continue;
275        }
276        // No, we need a live-in value for Pred as well
277        if (Pred != IdxMBB)
278          LiveIn.push_back(MDT[Pred]);
279     }
280   }
281 
282   // We may need to add phi-def values to preserve the SSA form.
283   // This is essentially the same iterative algorithm that SSAUpdater uses,
284   // except we already have a dominator tree, so we don't have to recompute it.
285   VNInfo *IdxVNI = 0;
286   unsigned Changes;
287   do {
288     Changes = 0;
289     DEBUG(dbgs() << "  Iterating over " << LiveIn.size() << " blocks.\n");
290     // Propagate live-out values down the dominator tree, inserting phi-defs when
291     // necessary. Since LiveIn was created by a BFS, going backwards makes it more
292     // likely for us to visit immediate dominators before their children.
293     for (unsigned i = LiveIn.size(); i; --i) {
294       MachineDomTreeNode *Node = LiveIn[i-1];
295       MachineBasicBlock *MBB = Node->getBlock();
296       MachineDomTreeNode *IDom = Node->getIDom();
297       LiveOutPair IDomValue;
298       // We need a live-in value to a block with no immediate dominator?
299       // This is probably an unreachable block that has survived somehow.
300       bool needPHI = !IDom;
301 
302       // Get the IDom live-out value.
303       if (!needPHI) {
304         LiveOutMap::iterator I = LiveOutCache.find(IDom->getBlock());
305         if (I != LiveOutCache.end())
306           IDomValue = I->second;
307         else
308           // If IDom is outside our set of live-out blocks, there must be new
309           // defs, and we need a phi-def here.
310           needPHI = true;
311       }
312 
313       // IDom dominates all of our predecessors, but it may not be the immediate
314       // dominator. Check if any of them have live-out values that are properly
315       // dominated by IDom. If so, we need a phi-def here.
316       if (!needPHI) {
317         for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
318                PE = MBB->pred_end(); PI != PE; ++PI) {
319           LiveOutPair Value = LiveOutCache[*PI];
320           if (!Value.first || Value.first == IDomValue.first)
321             continue;
322           // This predecessor is carrying something other than IDomValue.
323           // It could be because IDomValue hasn't propagated yet, or it could be
324           // because MBB is in the dominance frontier of that value.
325           if (MDT.dominates(IDom, Value.second)) {
326             needPHI = true;
327             break;
328           }
329         }
330       }
331 
332       // Create a phi-def if required.
333       if (needPHI) {
334         ++Changes;
335         SlotIndex Start = LIS.getMBBStartIdx(MBB);
336         VNInfo *VNI = LI->getNextValue(Start, 0, LIS.getVNInfoAllocator());
337         VNI->setIsPHIDef(true);
338         DEBUG(dbgs() << "    - BB#" << MBB->getNumber()
339                      << " phi-def #" << VNI->id << " at " << Start << '\n');
340         // We no longer need LI to be live-in.
341         LiveIn.erase(LiveIn.begin()+(i-1));
342         // Blocks in LiveIn are either IdxMBB, or have a value live-through.
343         if (MBB == IdxMBB)
344           IdxVNI = VNI;
345         // Check if we need to update live-out info.
346         LiveOutMap::iterator I = LiveOutCache.find(MBB);
347         if (I == LiveOutCache.end() || I->second.second == Node) {
348           // We already have a live-out defined in MBB, so this must be IdxMBB.
349           assert(MBB == IdxMBB && "Adding phi-def to known live-out");
350           LI->addRange(LiveRange(Start, Idx.getNextSlot(), VNI));
351         } else {
352           // This phi-def is also live-out, so color the whole block.
353           LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), VNI));
354           I->second = LiveOutPair(VNI, Node);
355         }
356       } else if (IDomValue.first) {
357         // No phi-def here. Remember incoming value for IdxMBB.
358         if (MBB == IdxMBB)
359           IdxVNI = IDomValue.first;
360         // Propagate IDomValue if needed:
361         // MBB is live-out and doesn't define its own value.
362         LiveOutMap::iterator I = LiveOutCache.find(MBB);
363         if (I != LiveOutCache.end() && I->second.second != Node &&
364             I->second.first != IDomValue.first) {
365           ++Changes;
366           I->second = IDomValue;
367           DEBUG(dbgs() << "    - BB#" << MBB->getNumber()
368                        << " idom valno #" << IDomValue.first->id
369                        << " from BB#" << IDom->getBlock()->getNumber() << '\n');
370         }
371       }
372     }
373     DEBUG(dbgs() << "  - made " << Changes << " changes.\n");
374   } while (Changes);
375 
376   assert(IdxVNI && "Didn't find value for Idx");
377 
378 #ifndef NDEBUG
379   // Check the LiveOutCache invariants.
380   for (LiveOutMap::iterator I = LiveOutCache.begin(), E = LiveOutCache.end();
381          I != E; ++I) {
382     assert(I->first && "Null MBB entry in cache");
383     assert(I->second.first && "Null VNInfo in cache");
384     assert(I->second.second && "Null DomTreeNode in cache");
385     if (I->second.second->getBlock() == I->first)
386       continue;
387     for (MachineBasicBlock::pred_iterator PI = I->first->pred_begin(),
388            PE = I->first->pred_end(); PI != PE; ++PI)
389       assert(LiveOutCache.lookup(*PI) == I->second && "Bad invariant");
390   }
391 #endif
392 
393   // Since we went through the trouble of a full BFS visiting all reaching defs,
394   // the values in LiveIn are now accurate. No more phi-defs are needed
395   // for these blocks, so we can color the live ranges.
396   // This makes the next mapValue call much faster.
397   for (unsigned i = 0, e = LiveIn.size(); i != e; ++i) {
398     MachineBasicBlock *MBB = LiveIn[i]->getBlock();
399     SlotIndex Start = LIS.getMBBStartIdx(MBB);
400     VNInfo *VNI = LiveOutCache.lookup(MBB).first;
401 
402     // Anything in LiveIn other than IdxMBB is live-through.
403     // In IdxMBB, we should stop at Idx unless the same value is live-out.
404     if (MBB == IdxMBB && IdxVNI != VNI)
405       LI->addRange(LiveRange(Start, Idx.getNextSlot(), IdxVNI));
406     else
407       LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), VNI));
408   }
409 
410   return IdxVNI;
411 }
412 
413 #ifndef NDEBUG
414 void LiveIntervalMap::dumpCache() {
415   for (LiveOutMap::iterator I = LiveOutCache.begin(), E = LiveOutCache.end();
416          I != E; ++I) {
417     assert(I->first && "Null MBB entry in cache");
418     assert(I->second.first && "Null VNInfo in cache");
419     assert(I->second.second && "Null DomTreeNode in cache");
420     dbgs() << "    cache: BB#" << I->first->getNumber()
421            << " has valno #" << I->second.first->id << " from BB#"
422            << I->second.second->getBlock()->getNumber() << ", preds";
423     for (MachineBasicBlock::pred_iterator PI = I->first->pred_begin(),
424            PE = I->first->pred_end(); PI != PE; ++PI)
425       dbgs() << " BB#" << (*PI)->getNumber();
426     dbgs() << '\n';
427   }
428   dbgs() << "    cache: " << LiveOutCache.size() << " entries.\n";
429 }
430 #endif
431 
432 // extendTo - Find the last LI value defined in MBB at or before Idx. The
433 // ParentLI is assumed to be live at Idx. Extend the live range to Idx.
434 // Return the found VNInfo, or NULL.
435 VNInfo *LiveIntervalMap::extendTo(const MachineBasicBlock *MBB, SlotIndex Idx) {
436   assert(LI && "call reset first");
437   LiveInterval::iterator I = std::upper_bound(LI->begin(), LI->end(), Idx);
438   if (I == LI->begin())
439     return 0;
440   --I;
441   if (I->end <= LIS.getMBBStartIdx(MBB))
442     return 0;
443   if (I->end <= Idx)
444     I->end = Idx.getNextSlot();
445   return I->valno;
446 }
447 
448 // addSimpleRange - Add a simple range from ParentLI to LI.
449 // ParentVNI must be live in the [Start;End) interval.
450 void LiveIntervalMap::addSimpleRange(SlotIndex Start, SlotIndex End,
451                                      const VNInfo *ParentVNI) {
452   assert(LI && "call reset first");
453   bool simple;
454   VNInfo *VNI = mapValue(ParentVNI, Start, &simple);
455   // A simple mapping is easy.
456   if (simple) {
457     LI->addRange(LiveRange(Start, End, VNI));
458     return;
459   }
460 
461   // ParentVNI is a complex value. We must map per MBB.
462   MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start);
463   MachineFunction::iterator MBBE = LIS.getMBBFromIndex(End.getPrevSlot());
464 
465   if (MBB == MBBE) {
466     LI->addRange(LiveRange(Start, End, VNI));
467     return;
468   }
469 
470   // First block.
471   LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), VNI));
472 
473   // Run sequence of full blocks.
474   for (++MBB; MBB != MBBE; ++MBB) {
475     Start = LIS.getMBBStartIdx(MBB);
476     LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB),
477                             mapValue(ParentVNI, Start)));
478   }
479 
480   // Final block.
481   Start = LIS.getMBBStartIdx(MBB);
482   if (Start != End)
483     LI->addRange(LiveRange(Start, End, mapValue(ParentVNI, Start)));
484 }
485 
486 /// addRange - Add live ranges to LI where [Start;End) intersects ParentLI.
487 /// All needed values whose def is not inside [Start;End) must be defined
488 /// beforehand so mapValue will work.
489 void LiveIntervalMap::addRange(SlotIndex Start, SlotIndex End) {
490   assert(LI && "call reset first");
491   LiveInterval::const_iterator B = ParentLI.begin(), E = ParentLI.end();
492   LiveInterval::const_iterator I = std::lower_bound(B, E, Start);
493 
494   // Check if --I begins before Start and overlaps.
495   if (I != B) {
496     --I;
497     if (I->end > Start)
498       addSimpleRange(Start, std::min(End, I->end), I->valno);
499     ++I;
500   }
501 
502   // The remaining ranges begin after Start.
503   for (;I != E && I->start < End; ++I)
504     addSimpleRange(I->start, std::min(End, I->end), I->valno);
505 }
506 
507 
508 //===----------------------------------------------------------------------===//
509 //                               Split Editor
510 //===----------------------------------------------------------------------===//
511 
512 /// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
513 SplitEditor::SplitEditor(SplitAnalysis &sa,
514                          LiveIntervals &lis,
515                          VirtRegMap &vrm,
516                          MachineDominatorTree &mdt,
517                          LiveRangeEdit &edit)
518   : SA(sa), LIS(lis), VRM(vrm),
519     MRI(vrm.getMachineFunction().getRegInfo()),
520     MDT(mdt),
521     TII(*vrm.getMachineFunction().getTarget().getInstrInfo()),
522     TRI(*vrm.getMachineFunction().getTarget().getRegisterInfo()),
523     Edit(edit),
524     OpenIdx(0),
525     RegAssign(Allocator)
526 {
527   // We don't need an AliasAnalysis since we will only be performing
528   // cheap-as-a-copy remats anyway.
529   Edit.anyRematerializable(LIS, TII, 0);
530 }
531 
532 void SplitEditor::dump() const {
533   if (RegAssign.empty()) {
534     dbgs() << " empty\n";
535     return;
536   }
537 
538   for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I)
539     dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value();
540   dbgs() << '\n';
541 }
542 
543 VNInfo *SplitEditor::defValue(unsigned RegIdx,
544                               const VNInfo *ParentVNI,
545                               SlotIndex Idx) {
546   assert(ParentVNI && "Mapping  NULL value");
547   assert(Idx.isValid() && "Invalid SlotIndex");
548   assert(Edit.getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI");
549   LiveInterval *LI = Edit.get(RegIdx);
550 
551   // Create a new value.
552   VNInfo *VNI = LI->getNextValue(Idx, 0, LIS.getVNInfoAllocator());
553 
554   // Preserve the PHIDef bit.
555   if (ParentVNI->isPHIDef() && Idx == ParentVNI->def)
556     VNI->setIsPHIDef(true);
557 
558   // Use insert for lookup, so we can add missing values with a second lookup.
559   std::pair<ValueMap::iterator, bool> InsP =
560     Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id), VNI));
561 
562   // This was the first time (RegIdx, ParentVNI) was mapped.
563   // Keep it as a simple def without any liveness.
564   if (InsP.second)
565     return VNI;
566 
567   // If the previous value was a simple mapping, add liveness for it now.
568   if (VNInfo *OldVNI = InsP.first->second) {
569     SlotIndex Def = OldVNI->def;
570     LI->addRange(LiveRange(Def, Def.getNextSlot(), OldVNI));
571     // No longer a simple mapping.
572     InsP.first->second = 0;
573   }
574 
575   // This is a complex mapping, add liveness for VNI
576   SlotIndex Def = VNI->def;
577   LI->addRange(LiveRange(Def, Def.getNextSlot(), VNI));
578 
579   return VNI;
580 }
581 
582 void SplitEditor::markComplexMapped(unsigned RegIdx, const VNInfo *ParentVNI) {
583   assert(ParentVNI && "Mapping  NULL value");
584   VNInfo *&VNI = Values[std::make_pair(RegIdx, ParentVNI->id)];
585 
586   // ParentVNI was either unmapped or already complex mapped. Either way.
587   if (!VNI)
588     return;
589 
590   // This was previously a single mapping. Make sure the old def is represented
591   // by a trivial live range.
592   SlotIndex Def = VNI->def;
593   Edit.get(RegIdx)->addRange(LiveRange(Def, Def.getNextSlot(), VNI));
594   VNI = 0;
595 }
596 
597 VNInfo *SplitEditor::defFromParent(unsigned RegIdx,
598                                    VNInfo *ParentVNI,
599                                    SlotIndex UseIdx,
600                                    MachineBasicBlock &MBB,
601                                    MachineBasicBlock::iterator I) {
602   MachineInstr *CopyMI = 0;
603   SlotIndex Def;
604   LiveInterval *LI = Edit.get(RegIdx);
605 
606   // Attempt cheap-as-a-copy rematerialization.
607   LiveRangeEdit::Remat RM(ParentVNI);
608   if (Edit.canRematerializeAt(RM, UseIdx, true, LIS)) {
609     Def = Edit.rematerializeAt(MBB, I, LI->reg, RM, LIS, TII, TRI);
610   } else {
611     // Can't remat, just insert a copy from parent.
612     CopyMI = BuildMI(MBB, I, DebugLoc(), TII.get(TargetOpcode::COPY), LI->reg)
613                .addReg(Edit.getReg());
614     Def = LIS.InsertMachineInstrInMaps(CopyMI).getDefIndex();
615   }
616 
617   // Temporarily mark all values as complex mapped.
618   markComplexMapped(RegIdx, ParentVNI);
619 
620   // Define the value in Reg.
621   VNInfo *VNI = defValue(RegIdx, ParentVNI, Def);
622   VNI->setCopy(CopyMI);
623   return VNI;
624 }
625 
626 /// Create a new virtual register and live interval.
627 void SplitEditor::openIntv() {
628   assert(!OpenIdx && "Previous LI not closed before openIntv");
629 
630   // Create the complement as index 0.
631   if (Edit.empty()) {
632     Edit.create(MRI, LIS, VRM);
633     LIMappers.push_back(LiveIntervalMap(LIS, MDT, Edit.getParent()));
634     LIMappers.back().reset(Edit.get(0));
635   }
636 
637   // Create the open interval.
638   OpenIdx = Edit.size();
639   Edit.create(MRI, LIS, VRM);
640   LIMappers.push_back(LiveIntervalMap(LIS, MDT, Edit.getParent()));
641   LIMappers[OpenIdx].reset(Edit.get(OpenIdx));
642 }
643 
644 SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) {
645   assert(OpenIdx && "openIntv not called before enterIntvBefore");
646   DEBUG(dbgs() << "    enterIntvBefore " << Idx);
647   Idx = Idx.getBaseIndex();
648   VNInfo *ParentVNI = Edit.getParent().getVNInfoAt(Idx);
649   if (!ParentVNI) {
650     DEBUG(dbgs() << ": not live\n");
651     return Idx;
652   }
653   DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
654   MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
655   assert(MI && "enterIntvBefore called with invalid index");
656 
657   VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI);
658   return VNI->def;
659 }
660 
661 SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) {
662   assert(OpenIdx && "openIntv not called before enterIntvAtEnd");
663   SlotIndex End = LIS.getMBBEndIdx(&MBB);
664   SlotIndex Last = End.getPrevSlot();
665   DEBUG(dbgs() << "    enterIntvAtEnd BB#" << MBB.getNumber() << ", " << Last);
666   VNInfo *ParentVNI = Edit.getParent().getVNInfoAt(Last);
667   if (!ParentVNI) {
668     DEBUG(dbgs() << ": not live\n");
669     return End;
670   }
671   DEBUG(dbgs() << ": valno " << ParentVNI->id);
672   VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB,
673                               LIS.getLastSplitPoint(Edit.getParent(), &MBB));
674   RegAssign.insert(VNI->def, End, OpenIdx);
675   DEBUG(dump());
676   return VNI->def;
677 }
678 
679 /// useIntv - indicate that all instructions in MBB should use OpenLI.
680 void SplitEditor::useIntv(const MachineBasicBlock &MBB) {
681   useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB));
682 }
683 
684 void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) {
685   assert(OpenIdx && "openIntv not called before useIntv");
686   DEBUG(dbgs() << "    useIntv [" << Start << ';' << End << "):");
687   RegAssign.insert(Start, End, OpenIdx);
688   DEBUG(dump());
689 }
690 
691 SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) {
692   assert(OpenIdx && "openIntv not called before leaveIntvAfter");
693   DEBUG(dbgs() << "    leaveIntvAfter " << Idx);
694 
695   // The interval must be live beyond the instruction at Idx.
696   Idx = Idx.getBoundaryIndex();
697   VNInfo *ParentVNI = Edit.getParent().getVNInfoAt(Idx);
698   if (!ParentVNI) {
699     DEBUG(dbgs() << ": not live\n");
700     return Idx.getNextSlot();
701   }
702   DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
703 
704   MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
705   assert(MI && "No instruction at index");
706   VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(),
707                               llvm::next(MachineBasicBlock::iterator(MI)));
708   return VNI->def;
709 }
710 
711 SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) {
712   assert(OpenIdx && "openIntv not called before leaveIntvBefore");
713   DEBUG(dbgs() << "    leaveIntvBefore " << Idx);
714 
715   // The interval must be live into the instruction at Idx.
716   Idx = Idx.getBoundaryIndex();
717   VNInfo *ParentVNI = Edit.getParent().getVNInfoAt(Idx);
718   if (!ParentVNI) {
719     DEBUG(dbgs() << ": not live\n");
720     return Idx.getNextSlot();
721   }
722   DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
723 
724   MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
725   assert(MI && "No instruction at index");
726   VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
727   return VNI->def;
728 }
729 
730 SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) {
731   assert(OpenIdx && "openIntv not called before leaveIntvAtTop");
732   SlotIndex Start = LIS.getMBBStartIdx(&MBB);
733   DEBUG(dbgs() << "    leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start);
734 
735   VNInfo *ParentVNI = Edit.getParent().getVNInfoAt(Start);
736   if (!ParentVNI) {
737     DEBUG(dbgs() << ": not live\n");
738     return Start;
739   }
740 
741   VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB,
742                               MBB.SkipPHIsAndLabels(MBB.begin()));
743   RegAssign.insert(Start, VNI->def, OpenIdx);
744   DEBUG(dump());
745   return VNI->def;
746 }
747 
748 void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) {
749   assert(OpenIdx && "openIntv not called before overlapIntv");
750   assert(Edit.getParent().getVNInfoAt(Start) ==
751          Edit.getParent().getVNInfoAt(End.getPrevSlot()) &&
752          "Parent changes value in extended range");
753   assert(Edit.get(0)->getVNInfoAt(Start) && "Start must come from leaveIntv*");
754   assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) &&
755          "Range cannot span basic blocks");
756 
757   // Treat this as useIntv() for now. The complement interval will be extended
758   // as needed by mapValue().
759   DEBUG(dbgs() << "    overlapIntv [" << Start << ';' << End << "):");
760   RegAssign.insert(Start, End, OpenIdx);
761   DEBUG(dump());
762 }
763 
764 /// closeIntv - Indicate that we are done editing the currently open
765 /// LiveInterval, and ranges can be trimmed.
766 void SplitEditor::closeIntv() {
767   assert(OpenIdx && "openIntv not called before closeIntv");
768   OpenIdx = 0;
769 }
770 
771 /// rewriteAssigned - Rewrite all uses of Edit.getReg().
772 void SplitEditor::rewriteAssigned() {
773   for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Edit.getReg()),
774        RE = MRI.reg_end(); RI != RE;) {
775     MachineOperand &MO = RI.getOperand();
776     MachineInstr *MI = MO.getParent();
777     ++RI;
778     // LiveDebugVariables should have handled all DBG_VALUE instructions.
779     if (MI->isDebugValue()) {
780       DEBUG(dbgs() << "Zapping " << *MI);
781       MO.setReg(0);
782       continue;
783     }
784 
785     // <undef> operands don't really read the register, so just assign them to
786     // the complement.
787     if (MO.isUse() && MO.isUndef()) {
788       MO.setReg(Edit.get(0)->reg);
789       continue;
790     }
791 
792     SlotIndex Idx = LIS.getInstructionIndex(MI);
793     Idx = MO.isUse() ? Idx.getUseIndex() : Idx.getDefIndex();
794 
795     // Rewrite to the mapped register at Idx.
796     unsigned RegIdx = RegAssign.lookup(Idx);
797     MO.setReg(Edit.get(RegIdx)->reg);
798     DEBUG(dbgs() << "  rewr BB#" << MI->getParent()->getNumber() << '\t'
799                  << Idx << ':' << RegIdx << '\t' << *MI);
800 
801     // Extend liveness to Idx.
802     const VNInfo *ParentVNI = Edit.getParent().getVNInfoAt(Idx);
803     LIMappers[RegIdx].mapValue(ParentVNI, Idx);
804   }
805 }
806 
807 /// rewriteSplit - Rewrite uses of Intvs[0] according to the ConEQ mapping.
808 void SplitEditor::rewriteComponents(const SmallVectorImpl<LiveInterval*> &Intvs,
809                                     const ConnectedVNInfoEqClasses &ConEq) {
810   for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Intvs[0]->reg),
811        RE = MRI.reg_end(); RI != RE;) {
812     MachineOperand &MO = RI.getOperand();
813     MachineInstr *MI = MO.getParent();
814     ++RI;
815     if (MO.isUse() && MO.isUndef())
816       continue;
817     // DBG_VALUE instructions should have been eliminated earlier.
818     SlotIndex Idx = LIS.getInstructionIndex(MI);
819     Idx = MO.isUse() ? Idx.getUseIndex() : Idx.getDefIndex();
820     DEBUG(dbgs() << "  rewr BB#" << MI->getParent()->getNumber() << '\t'
821                  << Idx << ':');
822     const VNInfo *VNI = Intvs[0]->getVNInfoAt(Idx);
823     assert(VNI && "Interval not live at use.");
824     MO.setReg(Intvs[ConEq.getEqClass(VNI)]->reg);
825     DEBUG(dbgs() << VNI->id << '\t' << *MI);
826   }
827 }
828 
829 void SplitEditor::finish() {
830   assert(OpenIdx == 0 && "Previous LI not closed before rewrite");
831 
832   // At this point, the live intervals in Edit contain VNInfos corresponding to
833   // the inserted copies.
834 
835   // Add the original defs from the parent interval.
836   for (LiveInterval::const_vni_iterator I = Edit.getParent().vni_begin(),
837          E = Edit.getParent().vni_end(); I != E; ++I) {
838     const VNInfo *ParentVNI = *I;
839     if (ParentVNI->isUnused())
840       continue;
841     unsigned RegIdx = RegAssign.lookup(ParentVNI->def);
842     // Mark all values as complex to force liveness computation.
843     // This should really only be necessary for remat victims, but we are lazy.
844     markComplexMapped(RegIdx, ParentVNI);
845     defValue(RegIdx, ParentVNI, ParentVNI->def);
846   }
847 
848 #ifndef NDEBUG
849   // Every new interval must have a def by now, otherwise the split is bogus.
850   for (LiveRangeEdit::iterator I = Edit.begin(), E = Edit.end(); I != E; ++I)
851     assert((*I)->hasAtLeastOneValue() && "Split interval has no value");
852 #endif
853 
854   // FIXME: Don't recompute the liveness of all values, infer it from the
855   // overlaps between the parent live interval and RegAssign.
856   // The mapValue algorithm is only necessary when:
857   // - The parent value maps to multiple defs, and new phis are needed, or
858   // - The value has been rematerialized before some uses, and we want to
859   //   minimize the live range so it only reaches the remaining uses.
860   // All other values have simple liveness that can be computed from RegAssign
861   // and the parent live interval.
862 
863   // Extend live ranges to be live-out for successor PHI values.
864   for (LiveInterval::const_vni_iterator I = Edit.getParent().vni_begin(),
865        E = Edit.getParent().vni_end(); I != E; ++I) {
866     const VNInfo *PHIVNI = *I;
867     if (PHIVNI->isUnused() || !PHIVNI->isPHIDef())
868       continue;
869     unsigned RegIdx = RegAssign.lookup(PHIVNI->def);
870     LiveIntervalMap &LIM = LIMappers[RegIdx];
871     MachineBasicBlock *MBB = LIS.getMBBFromIndex(PHIVNI->def);
872     DEBUG(dbgs() << "  map phi in BB#" << MBB->getNumber() << '@' << PHIVNI->def
873                  << " -> " << RegIdx << '\n');
874     for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
875          PE = MBB->pred_end(); PI != PE; ++PI) {
876       SlotIndex End = LIS.getMBBEndIdx(*PI).getPrevSlot();
877       DEBUG(dbgs() << "    pred BB#" << (*PI)->getNumber() << '@' << End);
878       // The predecessor may not have a live-out value. That is OK, like an
879       // undef PHI operand.
880       if (VNInfo *VNI = Edit.getParent().getVNInfoAt(End)) {
881         DEBUG(dbgs() << " has parent valno #" << VNI->id << " live out\n");
882         assert(RegAssign.lookup(End) == RegIdx &&
883                "Different register assignment in phi predecessor");
884         LIM.mapValue(VNI, End);
885       }
886       else
887         DEBUG(dbgs() << " is not live-out\n");
888     }
889     DEBUG(dbgs() << "    " << *LIM.getLI() << '\n');
890   }
891 
892   // Rewrite instructions.
893   rewriteAssigned();
894 
895   // FIXME: Delete defs that were rematted everywhere.
896 
897   // Get rid of unused values and set phi-kill flags.
898   for (LiveRangeEdit::iterator I = Edit.begin(), E = Edit.end(); I != E; ++I)
899     (*I)->RenumberValues(LIS);
900 
901   // Now check if any registers were separated into multiple components.
902   ConnectedVNInfoEqClasses ConEQ(LIS);
903   for (unsigned i = 0, e = Edit.size(); i != e; ++i) {
904     // Don't use iterators, they are invalidated by create() below.
905     LiveInterval *li = Edit.get(i);
906     unsigned NumComp = ConEQ.Classify(li);
907     if (NumComp <= 1)
908       continue;
909     DEBUG(dbgs() << "  " << NumComp << " components: " << *li << '\n');
910     SmallVector<LiveInterval*, 8> dups;
911     dups.push_back(li);
912     for (unsigned i = 1; i != NumComp; ++i)
913       dups.push_back(&Edit.create(MRI, LIS, VRM));
914     rewriteComponents(dups, ConEQ);
915     ConEQ.Distribute(&dups[0]);
916   }
917 
918   // Calculate spill weight and allocation hints for new intervals.
919   VirtRegAuxInfo vrai(VRM.getMachineFunction(), LIS, SA.Loops);
920   for (LiveRangeEdit::iterator I = Edit.begin(), E = Edit.end(); I != E; ++I){
921     LiveInterval &li = **I;
922     vrai.CalculateRegClass(li.reg);
923     vrai.CalculateWeightAndHint(li);
924     DEBUG(dbgs() << "  new interval " << MRI.getRegClass(li.reg)->getName()
925                  << ":" << li << '\n');
926   }
927 }
928 
929 
930 //===----------------------------------------------------------------------===//
931 //                            Single Block Splitting
932 //===----------------------------------------------------------------------===//
933 
934 /// getMultiUseBlocks - if CurLI has more than one use in a basic block, it
935 /// may be an advantage to split CurLI for the duration of the block.
936 bool SplitAnalysis::getMultiUseBlocks(BlockPtrSet &Blocks) {
937   // If CurLI is local to one block, there is no point to splitting it.
938   if (LiveBlocks.size() <= 1)
939     return false;
940   // Add blocks with multiple uses.
941   for (unsigned i = 0, e = LiveBlocks.size(); i != e; ++i) {
942     const BlockInfo &BI = LiveBlocks[i];
943     if (!BI.Uses)
944       continue;
945     unsigned Instrs = UsingBlocks.lookup(BI.MBB);
946     if (Instrs <= 1)
947       continue;
948     if (Instrs == 2 && BI.LiveIn && BI.LiveOut && !BI.LiveThrough)
949       continue;
950     Blocks.insert(BI.MBB);
951   }
952   return !Blocks.empty();
953 }
954 
955 /// splitSingleBlocks - Split CurLI into a separate live interval inside each
956 /// basic block in Blocks.
957 void SplitEditor::splitSingleBlocks(const SplitAnalysis::BlockPtrSet &Blocks) {
958   DEBUG(dbgs() << "  splitSingleBlocks for " << Blocks.size() << " blocks.\n");
959 
960   for (unsigned i = 0, e = SA.LiveBlocks.size(); i != e; ++i) {
961     const SplitAnalysis::BlockInfo &BI = SA.LiveBlocks[i];
962     if (!BI.Uses || !Blocks.count(BI.MBB))
963       continue;
964 
965     openIntv();
966     SlotIndex SegStart = enterIntvBefore(BI.FirstUse);
967     if (!BI.LiveOut || BI.LastUse < BI.LastSplitPoint) {
968       useIntv(SegStart, leaveIntvAfter(BI.LastUse));
969     } else {
970       // The last use is after the last valid split point.
971       SlotIndex SegStop = leaveIntvBefore(BI.LastSplitPoint);
972       useIntv(SegStart, SegStop);
973       overlapIntv(SegStop, BI.LastUse);
974     }
975     closeIntv();
976   }
977   finish();
978 }
979