1 //===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the SplitAnalysis class as well as mutator functions for 11 // live range splitting. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "regalloc" 16 #include "SplitKit.h" 17 #include "LiveRangeEdit.h" 18 #include "VirtRegMap.h" 19 #include "llvm/CodeGen/CalcSpillWeights.h" 20 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 21 #include "llvm/CodeGen/MachineDominators.h" 22 #include "llvm/CodeGen/MachineInstrBuilder.h" 23 #include "llvm/CodeGen/MachineRegisterInfo.h" 24 #include "llvm/Support/CommandLine.h" 25 #include "llvm/Support/Debug.h" 26 #include "llvm/Support/raw_ostream.h" 27 #include "llvm/Target/TargetInstrInfo.h" 28 #include "llvm/Target/TargetMachine.h" 29 30 using namespace llvm; 31 32 static cl::opt<bool> 33 AllowSplit("spiller-splits-edges", 34 cl::desc("Allow critical edge splitting during spilling")); 35 36 //===----------------------------------------------------------------------===// 37 // Split Analysis 38 //===----------------------------------------------------------------------===// 39 40 SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm, 41 const LiveIntervals &lis, 42 const MachineLoopInfo &mli) 43 : MF(vrm.getMachineFunction()), 44 VRM(vrm), 45 LIS(lis), 46 Loops(mli), 47 TII(*MF.getTarget().getInstrInfo()), 48 CurLI(0) {} 49 50 void SplitAnalysis::clear() { 51 UseSlots.clear(); 52 UsingInstrs.clear(); 53 UsingBlocks.clear(); 54 LiveBlocks.clear(); 55 CurLI = 0; 56 } 57 58 bool SplitAnalysis::canAnalyzeBranch(const MachineBasicBlock *MBB) { 59 MachineBasicBlock *T, *F; 60 SmallVector<MachineOperand, 4> Cond; 61 return !TII.AnalyzeBranch(const_cast<MachineBasicBlock&>(*MBB), T, F, Cond); 62 } 63 64 /// analyzeUses - Count instructions, basic blocks, and loops using CurLI. 65 void SplitAnalysis::analyzeUses() { 66 const MachineRegisterInfo &MRI = MF.getRegInfo(); 67 for (MachineRegisterInfo::reg_iterator I = MRI.reg_begin(CurLI->reg), 68 E = MRI.reg_end(); I != E; ++I) { 69 MachineOperand &MO = I.getOperand(); 70 if (MO.isUse() && MO.isUndef()) 71 continue; 72 MachineInstr *MI = MO.getParent(); 73 if (MI->isDebugValue() || !UsingInstrs.insert(MI)) 74 continue; 75 UseSlots.push_back(LIS.getInstructionIndex(MI).getDefIndex()); 76 MachineBasicBlock *MBB = MI->getParent(); 77 UsingBlocks[MBB]++; 78 } 79 array_pod_sort(UseSlots.begin(), UseSlots.end()); 80 calcLiveBlockInfo(); 81 DEBUG(dbgs() << " counted " 82 << UsingInstrs.size() << " instrs, " 83 << UsingBlocks.size() << " blocks.\n"); 84 } 85 86 /// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks 87 /// where CurLI is live. 88 void SplitAnalysis::calcLiveBlockInfo() { 89 if (CurLI->empty()) 90 return; 91 92 LiveInterval::const_iterator LVI = CurLI->begin(); 93 LiveInterval::const_iterator LVE = CurLI->end(); 94 95 SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE; 96 UseI = UseSlots.begin(); 97 UseE = UseSlots.end(); 98 99 // Loop over basic blocks where CurLI is live. 100 MachineFunction::iterator MFI = LIS.getMBBFromIndex(LVI->start); 101 for (;;) { 102 BlockInfo BI; 103 BI.MBB = MFI; 104 SlotIndex Start, Stop; 105 tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); 106 107 // The last split point is the latest possible insertion point that dominates 108 // all successor blocks. If interference reaches LastSplitPoint, it is not 109 // possible to insert a split or reload that makes CurLI live in the 110 // outgoing bundle. 111 MachineBasicBlock::iterator LSP = LIS.getLastSplitPoint(*CurLI, BI.MBB); 112 if (LSP == BI.MBB->end()) 113 BI.LastSplitPoint = Stop; 114 else 115 BI.LastSplitPoint = LIS.getInstructionIndex(LSP); 116 117 // LVI is the first live segment overlapping MBB. 118 BI.LiveIn = LVI->start <= Start; 119 if (!BI.LiveIn) 120 BI.Def = LVI->start; 121 122 // Find the first and last uses in the block. 123 BI.Uses = hasUses(MFI); 124 if (BI.Uses && UseI != UseE) { 125 BI.FirstUse = *UseI; 126 assert(BI.FirstUse >= Start); 127 do ++UseI; 128 while (UseI != UseE && *UseI < Stop); 129 BI.LastUse = UseI[-1]; 130 assert(BI.LastUse < Stop); 131 } 132 133 // Look for gaps in the live range. 134 bool hasGap = false; 135 BI.LiveOut = true; 136 while (LVI->end < Stop) { 137 SlotIndex LastStop = LVI->end; 138 if (++LVI == LVE || LVI->start >= Stop) { 139 BI.Kill = LastStop; 140 BI.LiveOut = false; 141 break; 142 } 143 if (LastStop < LVI->start) { 144 hasGap = true; 145 BI.Kill = LastStop; 146 BI.Def = LVI->start; 147 } 148 } 149 150 // Don't set LiveThrough when the block has a gap. 151 BI.LiveThrough = !hasGap && BI.LiveIn && BI.LiveOut; 152 LiveBlocks.push_back(BI); 153 154 // LVI is now at LVE or LVI->end >= Stop. 155 if (LVI == LVE) 156 break; 157 158 // Live segment ends exactly at Stop. Move to the next segment. 159 if (LVI->end == Stop && ++LVI == LVE) 160 break; 161 162 // Pick the next basic block. 163 if (LVI->start < Stop) 164 ++MFI; 165 else 166 MFI = LIS.getMBBFromIndex(LVI->start); 167 } 168 } 169 170 bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const { 171 unsigned OrigReg = VRM.getOriginal(CurLI->reg); 172 const LiveInterval &Orig = LIS.getInterval(OrigReg); 173 assert(!Orig.empty() && "Splitting empty interval?"); 174 LiveInterval::const_iterator I = Orig.find(Idx); 175 176 // Range containing Idx should begin at Idx. 177 if (I != Orig.end() && I->start <= Idx) 178 return I->start == Idx; 179 180 // Range does not contain Idx, previous must end at Idx. 181 return I != Orig.begin() && (--I)->end == Idx; 182 } 183 184 void SplitAnalysis::print(const BlockPtrSet &B, raw_ostream &OS) const { 185 for (BlockPtrSet::const_iterator I = B.begin(), E = B.end(); I != E; ++I) { 186 unsigned count = UsingBlocks.lookup(*I); 187 OS << " BB#" << (*I)->getNumber(); 188 if (count) 189 OS << '(' << count << ')'; 190 } 191 } 192 193 void SplitAnalysis::analyze(const LiveInterval *li) { 194 clear(); 195 CurLI = li; 196 analyzeUses(); 197 } 198 199 200 //===----------------------------------------------------------------------===// 201 // LiveIntervalMap 202 //===----------------------------------------------------------------------===// 203 204 // Work around the fact that the std::pair constructors are broken for pointer 205 // pairs in some implementations. makeVV(x, 0) works. 206 static inline std::pair<const VNInfo*, VNInfo*> 207 makeVV(const VNInfo *a, VNInfo *b) { 208 return std::make_pair(a, b); 209 } 210 211 void LiveIntervalMap::reset(LiveInterval *li) { 212 LI = li; 213 LiveOutCache.clear(); 214 } 215 216 217 // mapValue - Find the mapped value for ParentVNI at Idx. 218 // Potentially create phi-def values. 219 VNInfo *LiveIntervalMap::mapValue(const VNInfo *ParentVNI, SlotIndex Idx, 220 bool *simple) { 221 assert(LI && "call reset first"); 222 assert(ParentVNI && "Mapping NULL value"); 223 assert(Idx.isValid() && "Invalid SlotIndex"); 224 assert(ParentLI.getVNInfoAt(Idx) == ParentVNI && "Bad ParentVNI"); 225 226 // This is a complex mapped value. There may be multiple defs, and we may need 227 // to create phi-defs. 228 if (simple) *simple = false; 229 MachineBasicBlock *IdxMBB = LIS.getMBBFromIndex(Idx); 230 assert(IdxMBB && "No MBB at Idx"); 231 232 // Is there a def in the same MBB we can extend? 233 if (VNInfo *VNI = extendTo(IdxMBB, Idx)) 234 return VNI; 235 236 // Now for the fun part. We know that ParentVNI potentially has multiple defs, 237 // and we may need to create even more phi-defs to preserve VNInfo SSA form. 238 // Perform a search for all predecessor blocks where we know the dominating 239 // VNInfo. Insert phi-def VNInfos along the path back to IdxMBB. 240 DEBUG(dbgs() << "\n Reaching defs for BB#" << IdxMBB->getNumber() 241 << " at " << Idx << " in " << *LI << '\n'); 242 243 // Blocks where LI should be live-in. 244 SmallVector<MachineDomTreeNode*, 16> LiveIn; 245 LiveIn.push_back(MDT[IdxMBB]); 246 247 // Using LiveOutCache as a visited set, perform a BFS for all reaching defs. 248 for (unsigned i = 0; i != LiveIn.size(); ++i) { 249 MachineBasicBlock *MBB = LiveIn[i]->getBlock(); 250 for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), 251 PE = MBB->pred_end(); PI != PE; ++PI) { 252 MachineBasicBlock *Pred = *PI; 253 // Is this a known live-out block? 254 std::pair<LiveOutMap::iterator,bool> LOIP = 255 LiveOutCache.insert(std::make_pair(Pred, LiveOutPair())); 256 // Yes, we have been here before. 257 if (!LOIP.second) { 258 DEBUG(if (VNInfo *VNI = LOIP.first->second.first) 259 dbgs() << " known valno #" << VNI->id 260 << " at BB#" << Pred->getNumber() << '\n'); 261 continue; 262 } 263 264 // Does Pred provide a live-out value? 265 SlotIndex Last = LIS.getMBBEndIdx(Pred).getPrevSlot(); 266 if (VNInfo *VNI = extendTo(Pred, Last)) { 267 MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(VNI->def); 268 DEBUG(dbgs() << " found valno #" << VNI->id 269 << " from BB#" << DefMBB->getNumber() 270 << " at BB#" << Pred->getNumber() << '\n'); 271 LiveOutPair &LOP = LOIP.first->second; 272 LOP.first = VNI; 273 LOP.second = MDT[DefMBB]; 274 continue; 275 } 276 // No, we need a live-in value for Pred as well 277 if (Pred != IdxMBB) 278 LiveIn.push_back(MDT[Pred]); 279 } 280 } 281 282 // We may need to add phi-def values to preserve the SSA form. 283 // This is essentially the same iterative algorithm that SSAUpdater uses, 284 // except we already have a dominator tree, so we don't have to recompute it. 285 VNInfo *IdxVNI = 0; 286 unsigned Changes; 287 do { 288 Changes = 0; 289 DEBUG(dbgs() << " Iterating over " << LiveIn.size() << " blocks.\n"); 290 // Propagate live-out values down the dominator tree, inserting phi-defs when 291 // necessary. Since LiveIn was created by a BFS, going backwards makes it more 292 // likely for us to visit immediate dominators before their children. 293 for (unsigned i = LiveIn.size(); i; --i) { 294 MachineDomTreeNode *Node = LiveIn[i-1]; 295 MachineBasicBlock *MBB = Node->getBlock(); 296 MachineDomTreeNode *IDom = Node->getIDom(); 297 LiveOutPair IDomValue; 298 // We need a live-in value to a block with no immediate dominator? 299 // This is probably an unreachable block that has survived somehow. 300 bool needPHI = !IDom; 301 302 // Get the IDom live-out value. 303 if (!needPHI) { 304 LiveOutMap::iterator I = LiveOutCache.find(IDom->getBlock()); 305 if (I != LiveOutCache.end()) 306 IDomValue = I->second; 307 else 308 // If IDom is outside our set of live-out blocks, there must be new 309 // defs, and we need a phi-def here. 310 needPHI = true; 311 } 312 313 // IDom dominates all of our predecessors, but it may not be the immediate 314 // dominator. Check if any of them have live-out values that are properly 315 // dominated by IDom. If so, we need a phi-def here. 316 if (!needPHI) { 317 for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), 318 PE = MBB->pred_end(); PI != PE; ++PI) { 319 LiveOutPair Value = LiveOutCache[*PI]; 320 if (!Value.first || Value.first == IDomValue.first) 321 continue; 322 // This predecessor is carrying something other than IDomValue. 323 // It could be because IDomValue hasn't propagated yet, or it could be 324 // because MBB is in the dominance frontier of that value. 325 if (MDT.dominates(IDom, Value.second)) { 326 needPHI = true; 327 break; 328 } 329 } 330 } 331 332 // Create a phi-def if required. 333 if (needPHI) { 334 ++Changes; 335 SlotIndex Start = LIS.getMBBStartIdx(MBB); 336 VNInfo *VNI = LI->getNextValue(Start, 0, LIS.getVNInfoAllocator()); 337 VNI->setIsPHIDef(true); 338 DEBUG(dbgs() << " - BB#" << MBB->getNumber() 339 << " phi-def #" << VNI->id << " at " << Start << '\n'); 340 // We no longer need LI to be live-in. 341 LiveIn.erase(LiveIn.begin()+(i-1)); 342 // Blocks in LiveIn are either IdxMBB, or have a value live-through. 343 if (MBB == IdxMBB) 344 IdxVNI = VNI; 345 // Check if we need to update live-out info. 346 LiveOutMap::iterator I = LiveOutCache.find(MBB); 347 if (I == LiveOutCache.end() || I->second.second == Node) { 348 // We already have a live-out defined in MBB, so this must be IdxMBB. 349 assert(MBB == IdxMBB && "Adding phi-def to known live-out"); 350 LI->addRange(LiveRange(Start, Idx.getNextSlot(), VNI)); 351 } else { 352 // This phi-def is also live-out, so color the whole block. 353 LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), VNI)); 354 I->second = LiveOutPair(VNI, Node); 355 } 356 } else if (IDomValue.first) { 357 // No phi-def here. Remember incoming value for IdxMBB. 358 if (MBB == IdxMBB) 359 IdxVNI = IDomValue.first; 360 // Propagate IDomValue if needed: 361 // MBB is live-out and doesn't define its own value. 362 LiveOutMap::iterator I = LiveOutCache.find(MBB); 363 if (I != LiveOutCache.end() && I->second.second != Node && 364 I->second.first != IDomValue.first) { 365 ++Changes; 366 I->second = IDomValue; 367 DEBUG(dbgs() << " - BB#" << MBB->getNumber() 368 << " idom valno #" << IDomValue.first->id 369 << " from BB#" << IDom->getBlock()->getNumber() << '\n'); 370 } 371 } 372 } 373 DEBUG(dbgs() << " - made " << Changes << " changes.\n"); 374 } while (Changes); 375 376 assert(IdxVNI && "Didn't find value for Idx"); 377 378 #ifndef NDEBUG 379 // Check the LiveOutCache invariants. 380 for (LiveOutMap::iterator I = LiveOutCache.begin(), E = LiveOutCache.end(); 381 I != E; ++I) { 382 assert(I->first && "Null MBB entry in cache"); 383 assert(I->second.first && "Null VNInfo in cache"); 384 assert(I->second.second && "Null DomTreeNode in cache"); 385 if (I->second.second->getBlock() == I->first) 386 continue; 387 for (MachineBasicBlock::pred_iterator PI = I->first->pred_begin(), 388 PE = I->first->pred_end(); PI != PE; ++PI) 389 assert(LiveOutCache.lookup(*PI) == I->second && "Bad invariant"); 390 } 391 #endif 392 393 // Since we went through the trouble of a full BFS visiting all reaching defs, 394 // the values in LiveIn are now accurate. No more phi-defs are needed 395 // for these blocks, so we can color the live ranges. 396 // This makes the next mapValue call much faster. 397 for (unsigned i = 0, e = LiveIn.size(); i != e; ++i) { 398 MachineBasicBlock *MBB = LiveIn[i]->getBlock(); 399 SlotIndex Start = LIS.getMBBStartIdx(MBB); 400 VNInfo *VNI = LiveOutCache.lookup(MBB).first; 401 402 // Anything in LiveIn other than IdxMBB is live-through. 403 // In IdxMBB, we should stop at Idx unless the same value is live-out. 404 if (MBB == IdxMBB && IdxVNI != VNI) 405 LI->addRange(LiveRange(Start, Idx.getNextSlot(), IdxVNI)); 406 else 407 LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), VNI)); 408 } 409 410 return IdxVNI; 411 } 412 413 #ifndef NDEBUG 414 void LiveIntervalMap::dumpCache() { 415 for (LiveOutMap::iterator I = LiveOutCache.begin(), E = LiveOutCache.end(); 416 I != E; ++I) { 417 assert(I->first && "Null MBB entry in cache"); 418 assert(I->second.first && "Null VNInfo in cache"); 419 assert(I->second.second && "Null DomTreeNode in cache"); 420 dbgs() << " cache: BB#" << I->first->getNumber() 421 << " has valno #" << I->second.first->id << " from BB#" 422 << I->second.second->getBlock()->getNumber() << ", preds"; 423 for (MachineBasicBlock::pred_iterator PI = I->first->pred_begin(), 424 PE = I->first->pred_end(); PI != PE; ++PI) 425 dbgs() << " BB#" << (*PI)->getNumber(); 426 dbgs() << '\n'; 427 } 428 dbgs() << " cache: " << LiveOutCache.size() << " entries.\n"; 429 } 430 #endif 431 432 // extendTo - Find the last LI value defined in MBB at or before Idx. The 433 // ParentLI is assumed to be live at Idx. Extend the live range to Idx. 434 // Return the found VNInfo, or NULL. 435 VNInfo *LiveIntervalMap::extendTo(const MachineBasicBlock *MBB, SlotIndex Idx) { 436 assert(LI && "call reset first"); 437 LiveInterval::iterator I = std::upper_bound(LI->begin(), LI->end(), Idx); 438 if (I == LI->begin()) 439 return 0; 440 --I; 441 if (I->end <= LIS.getMBBStartIdx(MBB)) 442 return 0; 443 if (I->end <= Idx) 444 I->end = Idx.getNextSlot(); 445 return I->valno; 446 } 447 448 // addSimpleRange - Add a simple range from ParentLI to LI. 449 // ParentVNI must be live in the [Start;End) interval. 450 void LiveIntervalMap::addSimpleRange(SlotIndex Start, SlotIndex End, 451 const VNInfo *ParentVNI) { 452 assert(LI && "call reset first"); 453 bool simple; 454 VNInfo *VNI = mapValue(ParentVNI, Start, &simple); 455 // A simple mapping is easy. 456 if (simple) { 457 LI->addRange(LiveRange(Start, End, VNI)); 458 return; 459 } 460 461 // ParentVNI is a complex value. We must map per MBB. 462 MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start); 463 MachineFunction::iterator MBBE = LIS.getMBBFromIndex(End.getPrevSlot()); 464 465 if (MBB == MBBE) { 466 LI->addRange(LiveRange(Start, End, VNI)); 467 return; 468 } 469 470 // First block. 471 LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), VNI)); 472 473 // Run sequence of full blocks. 474 for (++MBB; MBB != MBBE; ++MBB) { 475 Start = LIS.getMBBStartIdx(MBB); 476 LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), 477 mapValue(ParentVNI, Start))); 478 } 479 480 // Final block. 481 Start = LIS.getMBBStartIdx(MBB); 482 if (Start != End) 483 LI->addRange(LiveRange(Start, End, mapValue(ParentVNI, Start))); 484 } 485 486 /// addRange - Add live ranges to LI where [Start;End) intersects ParentLI. 487 /// All needed values whose def is not inside [Start;End) must be defined 488 /// beforehand so mapValue will work. 489 void LiveIntervalMap::addRange(SlotIndex Start, SlotIndex End) { 490 assert(LI && "call reset first"); 491 LiveInterval::const_iterator B = ParentLI.begin(), E = ParentLI.end(); 492 LiveInterval::const_iterator I = std::lower_bound(B, E, Start); 493 494 // Check if --I begins before Start and overlaps. 495 if (I != B) { 496 --I; 497 if (I->end > Start) 498 addSimpleRange(Start, std::min(End, I->end), I->valno); 499 ++I; 500 } 501 502 // The remaining ranges begin after Start. 503 for (;I != E && I->start < End; ++I) 504 addSimpleRange(I->start, std::min(End, I->end), I->valno); 505 } 506 507 508 //===----------------------------------------------------------------------===// 509 // Split Editor 510 //===----------------------------------------------------------------------===// 511 512 /// Create a new SplitEditor for editing the LiveInterval analyzed by SA. 513 SplitEditor::SplitEditor(SplitAnalysis &sa, 514 LiveIntervals &lis, 515 VirtRegMap &vrm, 516 MachineDominatorTree &mdt, 517 LiveRangeEdit &edit) 518 : SA(sa), LIS(lis), VRM(vrm), 519 MRI(vrm.getMachineFunction().getRegInfo()), 520 MDT(mdt), 521 TII(*vrm.getMachineFunction().getTarget().getInstrInfo()), 522 TRI(*vrm.getMachineFunction().getTarget().getRegisterInfo()), 523 Edit(edit), 524 OpenIdx(0), 525 RegAssign(Allocator) 526 { 527 // We don't need an AliasAnalysis since we will only be performing 528 // cheap-as-a-copy remats anyway. 529 Edit.anyRematerializable(LIS, TII, 0); 530 } 531 532 void SplitEditor::dump() const { 533 if (RegAssign.empty()) { 534 dbgs() << " empty\n"; 535 return; 536 } 537 538 for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I) 539 dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value(); 540 dbgs() << '\n'; 541 } 542 543 VNInfo *SplitEditor::defValue(unsigned RegIdx, 544 const VNInfo *ParentVNI, 545 SlotIndex Idx) { 546 assert(ParentVNI && "Mapping NULL value"); 547 assert(Idx.isValid() && "Invalid SlotIndex"); 548 assert(Edit.getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI"); 549 LiveInterval *LI = Edit.get(RegIdx); 550 551 // Create a new value. 552 VNInfo *VNI = LI->getNextValue(Idx, 0, LIS.getVNInfoAllocator()); 553 554 // Preserve the PHIDef bit. 555 if (ParentVNI->isPHIDef() && Idx == ParentVNI->def) 556 VNI->setIsPHIDef(true); 557 558 // Use insert for lookup, so we can add missing values with a second lookup. 559 std::pair<ValueMap::iterator, bool> InsP = 560 Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id), VNI)); 561 562 // This was the first time (RegIdx, ParentVNI) was mapped. 563 // Keep it as a simple def without any liveness. 564 if (InsP.second) 565 return VNI; 566 567 // If the previous value was a simple mapping, add liveness for it now. 568 if (VNInfo *OldVNI = InsP.first->second) { 569 SlotIndex Def = OldVNI->def; 570 LI->addRange(LiveRange(Def, Def.getNextSlot(), OldVNI)); 571 // No longer a simple mapping. 572 InsP.first->second = 0; 573 } 574 575 // This is a complex mapping, add liveness for VNI 576 SlotIndex Def = VNI->def; 577 LI->addRange(LiveRange(Def, Def.getNextSlot(), VNI)); 578 579 return VNI; 580 } 581 582 void SplitEditor::markComplexMapped(unsigned RegIdx, const VNInfo *ParentVNI) { 583 assert(ParentVNI && "Mapping NULL value"); 584 VNInfo *&VNI = Values[std::make_pair(RegIdx, ParentVNI->id)]; 585 586 // ParentVNI was either unmapped or already complex mapped. Either way. 587 if (!VNI) 588 return; 589 590 // This was previously a single mapping. Make sure the old def is represented 591 // by a trivial live range. 592 SlotIndex Def = VNI->def; 593 Edit.get(RegIdx)->addRange(LiveRange(Def, Def.getNextSlot(), VNI)); 594 VNI = 0; 595 } 596 597 VNInfo *SplitEditor::defFromParent(unsigned RegIdx, 598 VNInfo *ParentVNI, 599 SlotIndex UseIdx, 600 MachineBasicBlock &MBB, 601 MachineBasicBlock::iterator I) { 602 MachineInstr *CopyMI = 0; 603 SlotIndex Def; 604 LiveInterval *LI = Edit.get(RegIdx); 605 606 // Attempt cheap-as-a-copy rematerialization. 607 LiveRangeEdit::Remat RM(ParentVNI); 608 if (Edit.canRematerializeAt(RM, UseIdx, true, LIS)) { 609 Def = Edit.rematerializeAt(MBB, I, LI->reg, RM, LIS, TII, TRI); 610 } else { 611 // Can't remat, just insert a copy from parent. 612 CopyMI = BuildMI(MBB, I, DebugLoc(), TII.get(TargetOpcode::COPY), LI->reg) 613 .addReg(Edit.getReg()); 614 Def = LIS.InsertMachineInstrInMaps(CopyMI).getDefIndex(); 615 } 616 617 // Temporarily mark all values as complex mapped. 618 markComplexMapped(RegIdx, ParentVNI); 619 620 // Define the value in Reg. 621 VNInfo *VNI = defValue(RegIdx, ParentVNI, Def); 622 VNI->setCopy(CopyMI); 623 return VNI; 624 } 625 626 /// Create a new virtual register and live interval. 627 void SplitEditor::openIntv() { 628 assert(!OpenIdx && "Previous LI not closed before openIntv"); 629 630 // Create the complement as index 0. 631 if (Edit.empty()) { 632 Edit.create(MRI, LIS, VRM); 633 LIMappers.push_back(LiveIntervalMap(LIS, MDT, Edit.getParent())); 634 LIMappers.back().reset(Edit.get(0)); 635 } 636 637 // Create the open interval. 638 OpenIdx = Edit.size(); 639 Edit.create(MRI, LIS, VRM); 640 LIMappers.push_back(LiveIntervalMap(LIS, MDT, Edit.getParent())); 641 LIMappers[OpenIdx].reset(Edit.get(OpenIdx)); 642 } 643 644 SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) { 645 assert(OpenIdx && "openIntv not called before enterIntvBefore"); 646 DEBUG(dbgs() << " enterIntvBefore " << Idx); 647 Idx = Idx.getBaseIndex(); 648 VNInfo *ParentVNI = Edit.getParent().getVNInfoAt(Idx); 649 if (!ParentVNI) { 650 DEBUG(dbgs() << ": not live\n"); 651 return Idx; 652 } 653 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 654 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 655 assert(MI && "enterIntvBefore called with invalid index"); 656 657 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI); 658 return VNI->def; 659 } 660 661 SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) { 662 assert(OpenIdx && "openIntv not called before enterIntvAtEnd"); 663 SlotIndex End = LIS.getMBBEndIdx(&MBB); 664 SlotIndex Last = End.getPrevSlot(); 665 DEBUG(dbgs() << " enterIntvAtEnd BB#" << MBB.getNumber() << ", " << Last); 666 VNInfo *ParentVNI = Edit.getParent().getVNInfoAt(Last); 667 if (!ParentVNI) { 668 DEBUG(dbgs() << ": not live\n"); 669 return End; 670 } 671 DEBUG(dbgs() << ": valno " << ParentVNI->id); 672 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB, 673 LIS.getLastSplitPoint(Edit.getParent(), &MBB)); 674 RegAssign.insert(VNI->def, End, OpenIdx); 675 DEBUG(dump()); 676 return VNI->def; 677 } 678 679 /// useIntv - indicate that all instructions in MBB should use OpenLI. 680 void SplitEditor::useIntv(const MachineBasicBlock &MBB) { 681 useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB)); 682 } 683 684 void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) { 685 assert(OpenIdx && "openIntv not called before useIntv"); 686 DEBUG(dbgs() << " useIntv [" << Start << ';' << End << "):"); 687 RegAssign.insert(Start, End, OpenIdx); 688 DEBUG(dump()); 689 } 690 691 SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) { 692 assert(OpenIdx && "openIntv not called before leaveIntvAfter"); 693 DEBUG(dbgs() << " leaveIntvAfter " << Idx); 694 695 // The interval must be live beyond the instruction at Idx. 696 Idx = Idx.getBoundaryIndex(); 697 VNInfo *ParentVNI = Edit.getParent().getVNInfoAt(Idx); 698 if (!ParentVNI) { 699 DEBUG(dbgs() << ": not live\n"); 700 return Idx.getNextSlot(); 701 } 702 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 703 704 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 705 assert(MI && "No instruction at index"); 706 VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), 707 llvm::next(MachineBasicBlock::iterator(MI))); 708 return VNI->def; 709 } 710 711 SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) { 712 assert(OpenIdx && "openIntv not called before leaveIntvBefore"); 713 DEBUG(dbgs() << " leaveIntvBefore " << Idx); 714 715 // The interval must be live into the instruction at Idx. 716 Idx = Idx.getBoundaryIndex(); 717 VNInfo *ParentVNI = Edit.getParent().getVNInfoAt(Idx); 718 if (!ParentVNI) { 719 DEBUG(dbgs() << ": not live\n"); 720 return Idx.getNextSlot(); 721 } 722 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 723 724 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 725 assert(MI && "No instruction at index"); 726 VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI); 727 return VNI->def; 728 } 729 730 SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) { 731 assert(OpenIdx && "openIntv not called before leaveIntvAtTop"); 732 SlotIndex Start = LIS.getMBBStartIdx(&MBB); 733 DEBUG(dbgs() << " leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start); 734 735 VNInfo *ParentVNI = Edit.getParent().getVNInfoAt(Start); 736 if (!ParentVNI) { 737 DEBUG(dbgs() << ": not live\n"); 738 return Start; 739 } 740 741 VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB, 742 MBB.SkipPHIsAndLabels(MBB.begin())); 743 RegAssign.insert(Start, VNI->def, OpenIdx); 744 DEBUG(dump()); 745 return VNI->def; 746 } 747 748 void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) { 749 assert(OpenIdx && "openIntv not called before overlapIntv"); 750 assert(Edit.getParent().getVNInfoAt(Start) == 751 Edit.getParent().getVNInfoAt(End.getPrevSlot()) && 752 "Parent changes value in extended range"); 753 assert(Edit.get(0)->getVNInfoAt(Start) && "Start must come from leaveIntv*"); 754 assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) && 755 "Range cannot span basic blocks"); 756 757 // Treat this as useIntv() for now. The complement interval will be extended 758 // as needed by mapValue(). 759 DEBUG(dbgs() << " overlapIntv [" << Start << ';' << End << "):"); 760 RegAssign.insert(Start, End, OpenIdx); 761 DEBUG(dump()); 762 } 763 764 /// closeIntv - Indicate that we are done editing the currently open 765 /// LiveInterval, and ranges can be trimmed. 766 void SplitEditor::closeIntv() { 767 assert(OpenIdx && "openIntv not called before closeIntv"); 768 OpenIdx = 0; 769 } 770 771 /// rewriteAssigned - Rewrite all uses of Edit.getReg(). 772 void SplitEditor::rewriteAssigned() { 773 for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Edit.getReg()), 774 RE = MRI.reg_end(); RI != RE;) { 775 MachineOperand &MO = RI.getOperand(); 776 MachineInstr *MI = MO.getParent(); 777 ++RI; 778 // LiveDebugVariables should have handled all DBG_VALUE instructions. 779 if (MI->isDebugValue()) { 780 DEBUG(dbgs() << "Zapping " << *MI); 781 MO.setReg(0); 782 continue; 783 } 784 785 // <undef> operands don't really read the register, so just assign them to 786 // the complement. 787 if (MO.isUse() && MO.isUndef()) { 788 MO.setReg(Edit.get(0)->reg); 789 continue; 790 } 791 792 SlotIndex Idx = LIS.getInstructionIndex(MI); 793 Idx = MO.isUse() ? Idx.getUseIndex() : Idx.getDefIndex(); 794 795 // Rewrite to the mapped register at Idx. 796 unsigned RegIdx = RegAssign.lookup(Idx); 797 MO.setReg(Edit.get(RegIdx)->reg); 798 DEBUG(dbgs() << " rewr BB#" << MI->getParent()->getNumber() << '\t' 799 << Idx << ':' << RegIdx << '\t' << *MI); 800 801 // Extend liveness to Idx. 802 const VNInfo *ParentVNI = Edit.getParent().getVNInfoAt(Idx); 803 LIMappers[RegIdx].mapValue(ParentVNI, Idx); 804 } 805 } 806 807 /// rewriteSplit - Rewrite uses of Intvs[0] according to the ConEQ mapping. 808 void SplitEditor::rewriteComponents(const SmallVectorImpl<LiveInterval*> &Intvs, 809 const ConnectedVNInfoEqClasses &ConEq) { 810 for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Intvs[0]->reg), 811 RE = MRI.reg_end(); RI != RE;) { 812 MachineOperand &MO = RI.getOperand(); 813 MachineInstr *MI = MO.getParent(); 814 ++RI; 815 if (MO.isUse() && MO.isUndef()) 816 continue; 817 // DBG_VALUE instructions should have been eliminated earlier. 818 SlotIndex Idx = LIS.getInstructionIndex(MI); 819 Idx = MO.isUse() ? Idx.getUseIndex() : Idx.getDefIndex(); 820 DEBUG(dbgs() << " rewr BB#" << MI->getParent()->getNumber() << '\t' 821 << Idx << ':'); 822 const VNInfo *VNI = Intvs[0]->getVNInfoAt(Idx); 823 assert(VNI && "Interval not live at use."); 824 MO.setReg(Intvs[ConEq.getEqClass(VNI)]->reg); 825 DEBUG(dbgs() << VNI->id << '\t' << *MI); 826 } 827 } 828 829 void SplitEditor::finish() { 830 assert(OpenIdx == 0 && "Previous LI not closed before rewrite"); 831 832 // At this point, the live intervals in Edit contain VNInfos corresponding to 833 // the inserted copies. 834 835 // Add the original defs from the parent interval. 836 for (LiveInterval::const_vni_iterator I = Edit.getParent().vni_begin(), 837 E = Edit.getParent().vni_end(); I != E; ++I) { 838 const VNInfo *ParentVNI = *I; 839 if (ParentVNI->isUnused()) 840 continue; 841 unsigned RegIdx = RegAssign.lookup(ParentVNI->def); 842 // Mark all values as complex to force liveness computation. 843 // This should really only be necessary for remat victims, but we are lazy. 844 markComplexMapped(RegIdx, ParentVNI); 845 defValue(RegIdx, ParentVNI, ParentVNI->def); 846 } 847 848 #ifndef NDEBUG 849 // Every new interval must have a def by now, otherwise the split is bogus. 850 for (LiveRangeEdit::iterator I = Edit.begin(), E = Edit.end(); I != E; ++I) 851 assert((*I)->hasAtLeastOneValue() && "Split interval has no value"); 852 #endif 853 854 // FIXME: Don't recompute the liveness of all values, infer it from the 855 // overlaps between the parent live interval and RegAssign. 856 // The mapValue algorithm is only necessary when: 857 // - The parent value maps to multiple defs, and new phis are needed, or 858 // - The value has been rematerialized before some uses, and we want to 859 // minimize the live range so it only reaches the remaining uses. 860 // All other values have simple liveness that can be computed from RegAssign 861 // and the parent live interval. 862 863 // Extend live ranges to be live-out for successor PHI values. 864 for (LiveInterval::const_vni_iterator I = Edit.getParent().vni_begin(), 865 E = Edit.getParent().vni_end(); I != E; ++I) { 866 const VNInfo *PHIVNI = *I; 867 if (PHIVNI->isUnused() || !PHIVNI->isPHIDef()) 868 continue; 869 unsigned RegIdx = RegAssign.lookup(PHIVNI->def); 870 LiveIntervalMap &LIM = LIMappers[RegIdx]; 871 MachineBasicBlock *MBB = LIS.getMBBFromIndex(PHIVNI->def); 872 DEBUG(dbgs() << " map phi in BB#" << MBB->getNumber() << '@' << PHIVNI->def 873 << " -> " << RegIdx << '\n'); 874 for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), 875 PE = MBB->pred_end(); PI != PE; ++PI) { 876 SlotIndex End = LIS.getMBBEndIdx(*PI).getPrevSlot(); 877 DEBUG(dbgs() << " pred BB#" << (*PI)->getNumber() << '@' << End); 878 // The predecessor may not have a live-out value. That is OK, like an 879 // undef PHI operand. 880 if (VNInfo *VNI = Edit.getParent().getVNInfoAt(End)) { 881 DEBUG(dbgs() << " has parent valno #" << VNI->id << " live out\n"); 882 assert(RegAssign.lookup(End) == RegIdx && 883 "Different register assignment in phi predecessor"); 884 LIM.mapValue(VNI, End); 885 } 886 else 887 DEBUG(dbgs() << " is not live-out\n"); 888 } 889 DEBUG(dbgs() << " " << *LIM.getLI() << '\n'); 890 } 891 892 // Rewrite instructions. 893 rewriteAssigned(); 894 895 // FIXME: Delete defs that were rematted everywhere. 896 897 // Get rid of unused values and set phi-kill flags. 898 for (LiveRangeEdit::iterator I = Edit.begin(), E = Edit.end(); I != E; ++I) 899 (*I)->RenumberValues(LIS); 900 901 // Now check if any registers were separated into multiple components. 902 ConnectedVNInfoEqClasses ConEQ(LIS); 903 for (unsigned i = 0, e = Edit.size(); i != e; ++i) { 904 // Don't use iterators, they are invalidated by create() below. 905 LiveInterval *li = Edit.get(i); 906 unsigned NumComp = ConEQ.Classify(li); 907 if (NumComp <= 1) 908 continue; 909 DEBUG(dbgs() << " " << NumComp << " components: " << *li << '\n'); 910 SmallVector<LiveInterval*, 8> dups; 911 dups.push_back(li); 912 for (unsigned i = 1; i != NumComp; ++i) 913 dups.push_back(&Edit.create(MRI, LIS, VRM)); 914 rewriteComponents(dups, ConEQ); 915 ConEQ.Distribute(&dups[0]); 916 } 917 918 // Calculate spill weight and allocation hints for new intervals. 919 VirtRegAuxInfo vrai(VRM.getMachineFunction(), LIS, SA.Loops); 920 for (LiveRangeEdit::iterator I = Edit.begin(), E = Edit.end(); I != E; ++I){ 921 LiveInterval &li = **I; 922 vrai.CalculateRegClass(li.reg); 923 vrai.CalculateWeightAndHint(li); 924 DEBUG(dbgs() << " new interval " << MRI.getRegClass(li.reg)->getName() 925 << ":" << li << '\n'); 926 } 927 } 928 929 930 //===----------------------------------------------------------------------===// 931 // Single Block Splitting 932 //===----------------------------------------------------------------------===// 933 934 /// getMultiUseBlocks - if CurLI has more than one use in a basic block, it 935 /// may be an advantage to split CurLI for the duration of the block. 936 bool SplitAnalysis::getMultiUseBlocks(BlockPtrSet &Blocks) { 937 // If CurLI is local to one block, there is no point to splitting it. 938 if (LiveBlocks.size() <= 1) 939 return false; 940 // Add blocks with multiple uses. 941 for (unsigned i = 0, e = LiveBlocks.size(); i != e; ++i) { 942 const BlockInfo &BI = LiveBlocks[i]; 943 if (!BI.Uses) 944 continue; 945 unsigned Instrs = UsingBlocks.lookup(BI.MBB); 946 if (Instrs <= 1) 947 continue; 948 if (Instrs == 2 && BI.LiveIn && BI.LiveOut && !BI.LiveThrough) 949 continue; 950 Blocks.insert(BI.MBB); 951 } 952 return !Blocks.empty(); 953 } 954 955 /// splitSingleBlocks - Split CurLI into a separate live interval inside each 956 /// basic block in Blocks. 957 void SplitEditor::splitSingleBlocks(const SplitAnalysis::BlockPtrSet &Blocks) { 958 DEBUG(dbgs() << " splitSingleBlocks for " << Blocks.size() << " blocks.\n"); 959 960 for (unsigned i = 0, e = SA.LiveBlocks.size(); i != e; ++i) { 961 const SplitAnalysis::BlockInfo &BI = SA.LiveBlocks[i]; 962 if (!BI.Uses || !Blocks.count(BI.MBB)) 963 continue; 964 965 openIntv(); 966 SlotIndex SegStart = enterIntvBefore(BI.FirstUse); 967 if (!BI.LiveOut || BI.LastUse < BI.LastSplitPoint) { 968 useIntv(SegStart, leaveIntvAfter(BI.LastUse)); 969 } else { 970 // The last use is after the last valid split point. 971 SlotIndex SegStop = leaveIntvBefore(BI.LastSplitPoint); 972 useIntv(SegStart, SegStop); 973 overlapIntv(SegStop, BI.LastUse); 974 } 975 closeIntv(); 976 } 977 finish(); 978 } 979