1 //===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the SplitAnalysis class as well as mutator functions for 11 // live range splitting. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "regalloc" 16 #include "SplitKit.h" 17 #include "LiveRangeEdit.h" 18 #include "VirtRegMap.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 21 #include "llvm/CodeGen/MachineDominators.h" 22 #include "llvm/CodeGen/MachineInstrBuilder.h" 23 #include "llvm/CodeGen/MachineRegisterInfo.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/raw_ostream.h" 26 #include "llvm/Target/TargetInstrInfo.h" 27 #include "llvm/Target/TargetMachine.h" 28 29 using namespace llvm; 30 31 STATISTIC(NumFinished, "Number of splits finished"); 32 STATISTIC(NumSimple, "Number of splits that were simple"); 33 STATISTIC(NumCopies, "Number of copies inserted for splitting"); 34 STATISTIC(NumRemats, "Number of rematerialized defs for splitting"); 35 STATISTIC(NumRepairs, "Number of invalid live ranges repaired"); 36 37 //===----------------------------------------------------------------------===// 38 // Split Analysis 39 //===----------------------------------------------------------------------===// 40 41 SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm, 42 const LiveIntervals &lis, 43 const MachineLoopInfo &mli) 44 : MF(vrm.getMachineFunction()), 45 VRM(vrm), 46 LIS(lis), 47 Loops(mli), 48 TII(*MF.getTarget().getInstrInfo()), 49 CurLI(0), 50 LastSplitPoint(MF.getNumBlockIDs()) {} 51 52 void SplitAnalysis::clear() { 53 UseSlots.clear(); 54 UseBlocks.clear(); 55 ThroughBlocks.clear(); 56 CurLI = 0; 57 DidRepairRange = false; 58 } 59 60 SlotIndex SplitAnalysis::computeLastSplitPoint(unsigned Num) { 61 const MachineBasicBlock *MBB = MF.getBlockNumbered(Num); 62 const MachineBasicBlock *LPad = MBB->getLandingPadSuccessor(); 63 std::pair<SlotIndex, SlotIndex> &LSP = LastSplitPoint[Num]; 64 65 // Compute split points on the first call. The pair is independent of the 66 // current live interval. 67 if (!LSP.first.isValid()) { 68 MachineBasicBlock::const_iterator FirstTerm = MBB->getFirstTerminator(); 69 if (FirstTerm == MBB->end()) 70 LSP.first = LIS.getMBBEndIdx(MBB); 71 else 72 LSP.first = LIS.getInstructionIndex(FirstTerm); 73 74 // If there is a landing pad successor, also find the call instruction. 75 if (!LPad) 76 return LSP.first; 77 // There may not be a call instruction (?) in which case we ignore LPad. 78 LSP.second = LSP.first; 79 for (MachineBasicBlock::const_iterator I = MBB->end(), E = MBB->begin(); 80 I != E;) { 81 --I; 82 if (I->getDesc().isCall()) { 83 LSP.second = LIS.getInstructionIndex(I); 84 break; 85 } 86 } 87 } 88 89 // If CurLI is live into a landing pad successor, move the last split point 90 // back to the call that may throw. 91 if (LPad && LSP.second.isValid() && LIS.isLiveInToMBB(*CurLI, LPad)) 92 return LSP.second; 93 else 94 return LSP.first; 95 } 96 97 /// analyzeUses - Count instructions, basic blocks, and loops using CurLI. 98 void SplitAnalysis::analyzeUses() { 99 assert(UseSlots.empty() && "Call clear first"); 100 101 // First get all the defs from the interval values. This provides the correct 102 // slots for early clobbers. 103 for (LiveInterval::const_vni_iterator I = CurLI->vni_begin(), 104 E = CurLI->vni_end(); I != E; ++I) 105 if (!(*I)->isPHIDef() && !(*I)->isUnused()) 106 UseSlots.push_back((*I)->def); 107 108 // Get use slots form the use-def chain. 109 const MachineRegisterInfo &MRI = MF.getRegInfo(); 110 for (MachineRegisterInfo::use_nodbg_iterator 111 I = MRI.use_nodbg_begin(CurLI->reg), E = MRI.use_nodbg_end(); I != E; 112 ++I) 113 if (!I.getOperand().isUndef()) 114 UseSlots.push_back(LIS.getInstructionIndex(&*I).getDefIndex()); 115 116 array_pod_sort(UseSlots.begin(), UseSlots.end()); 117 118 // Remove duplicates, keeping the smaller slot for each instruction. 119 // That is what we want for early clobbers. 120 UseSlots.erase(std::unique(UseSlots.begin(), UseSlots.end(), 121 SlotIndex::isSameInstr), 122 UseSlots.end()); 123 124 // Compute per-live block info. 125 if (!calcLiveBlockInfo()) { 126 // FIXME: calcLiveBlockInfo found inconsistencies in the live range. 127 // I am looking at you, RegisterCoalescer! 128 DidRepairRange = true; 129 ++NumRepairs; 130 DEBUG(dbgs() << "*** Fixing inconsistent live interval! ***\n"); 131 const_cast<LiveIntervals&>(LIS) 132 .shrinkToUses(const_cast<LiveInterval*>(CurLI)); 133 UseBlocks.clear(); 134 ThroughBlocks.clear(); 135 bool fixed = calcLiveBlockInfo(); 136 (void)fixed; 137 assert(fixed && "Couldn't fix broken live interval"); 138 } 139 140 DEBUG(dbgs() << "Analyze counted " 141 << UseSlots.size() << " instrs in " 142 << UseBlocks.size() << " blocks, through " 143 << NumThroughBlocks << " blocks.\n"); 144 } 145 146 /// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks 147 /// where CurLI is live. 148 bool SplitAnalysis::calcLiveBlockInfo() { 149 ThroughBlocks.resize(MF.getNumBlockIDs()); 150 NumThroughBlocks = NumGapBlocks = 0; 151 if (CurLI->empty()) 152 return true; 153 154 LiveInterval::const_iterator LVI = CurLI->begin(); 155 LiveInterval::const_iterator LVE = CurLI->end(); 156 157 SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE; 158 UseI = UseSlots.begin(); 159 UseE = UseSlots.end(); 160 161 // Loop over basic blocks where CurLI is live. 162 MachineFunction::iterator MFI = LIS.getMBBFromIndex(LVI->start); 163 for (;;) { 164 BlockInfo BI; 165 BI.MBB = MFI; 166 SlotIndex Start, Stop; 167 tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); 168 169 // If the block contains no uses, the range must be live through. At one 170 // point, RegisterCoalescer could create dangling ranges that ended 171 // mid-block. 172 if (UseI == UseE || *UseI >= Stop) { 173 ++NumThroughBlocks; 174 ThroughBlocks.set(BI.MBB->getNumber()); 175 // The range shouldn't end mid-block if there are no uses. This shouldn't 176 // happen. 177 if (LVI->end < Stop) 178 return false; 179 } else { 180 // This block has uses. Find the first and last uses in the block. 181 BI.FirstInstr = *UseI; 182 assert(BI.FirstInstr >= Start); 183 do ++UseI; 184 while (UseI != UseE && *UseI < Stop); 185 BI.LastInstr = UseI[-1]; 186 assert(BI.LastInstr < Stop); 187 188 // LVI is the first live segment overlapping MBB. 189 BI.LiveIn = LVI->start <= Start; 190 191 // When not live in, the first use should be a def. 192 if (!BI.LiveIn) { 193 assert(LVI->start == LVI->valno->def && "Dangling LiveRange start"); 194 assert(LVI->start == BI.FirstInstr && "First instr should be a def"); 195 BI.FirstDef = BI.FirstInstr; 196 } 197 198 // Look for gaps in the live range. 199 BI.LiveOut = true; 200 while (LVI->end < Stop) { 201 SlotIndex LastStop = LVI->end; 202 if (++LVI == LVE || LVI->start >= Stop) { 203 BI.LiveOut = false; 204 BI.LastInstr = LastStop; 205 break; 206 } 207 208 if (LastStop < LVI->start) { 209 // There is a gap in the live range. Create duplicate entries for the 210 // live-in snippet and the live-out snippet. 211 ++NumGapBlocks; 212 213 // Push the Live-in part. 214 BI.LiveOut = false; 215 UseBlocks.push_back(BI); 216 UseBlocks.back().LastInstr = LastStop; 217 218 // Set up BI for the live-out part. 219 BI.LiveIn = false; 220 BI.LiveOut = true; 221 BI.FirstInstr = BI.FirstDef = LVI->start; 222 } 223 224 // A LiveRange that starts in the middle of the block must be a def. 225 assert(LVI->start == LVI->valno->def && "Dangling LiveRange start"); 226 if (!BI.FirstDef) 227 BI.FirstDef = LVI->start; 228 } 229 230 UseBlocks.push_back(BI); 231 232 // LVI is now at LVE or LVI->end >= Stop. 233 if (LVI == LVE) 234 break; 235 } 236 237 // Live segment ends exactly at Stop. Move to the next segment. 238 if (LVI->end == Stop && ++LVI == LVE) 239 break; 240 241 // Pick the next basic block. 242 if (LVI->start < Stop) 243 ++MFI; 244 else 245 MFI = LIS.getMBBFromIndex(LVI->start); 246 } 247 248 assert(getNumLiveBlocks() == countLiveBlocks(CurLI) && "Bad block count"); 249 return true; 250 } 251 252 unsigned SplitAnalysis::countLiveBlocks(const LiveInterval *cli) const { 253 if (cli->empty()) 254 return 0; 255 LiveInterval *li = const_cast<LiveInterval*>(cli); 256 LiveInterval::iterator LVI = li->begin(); 257 LiveInterval::iterator LVE = li->end(); 258 unsigned Count = 0; 259 260 // Loop over basic blocks where li is live. 261 MachineFunction::const_iterator MFI = LIS.getMBBFromIndex(LVI->start); 262 SlotIndex Stop = LIS.getMBBEndIdx(MFI); 263 for (;;) { 264 ++Count; 265 LVI = li->advanceTo(LVI, Stop); 266 if (LVI == LVE) 267 return Count; 268 do { 269 ++MFI; 270 Stop = LIS.getMBBEndIdx(MFI); 271 } while (Stop <= LVI->start); 272 } 273 } 274 275 bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const { 276 unsigned OrigReg = VRM.getOriginal(CurLI->reg); 277 const LiveInterval &Orig = LIS.getInterval(OrigReg); 278 assert(!Orig.empty() && "Splitting empty interval?"); 279 LiveInterval::const_iterator I = Orig.find(Idx); 280 281 // Range containing Idx should begin at Idx. 282 if (I != Orig.end() && I->start <= Idx) 283 return I->start == Idx; 284 285 // Range does not contain Idx, previous must end at Idx. 286 return I != Orig.begin() && (--I)->end == Idx; 287 } 288 289 void SplitAnalysis::analyze(const LiveInterval *li) { 290 clear(); 291 CurLI = li; 292 analyzeUses(); 293 } 294 295 296 //===----------------------------------------------------------------------===// 297 // Split Editor 298 //===----------------------------------------------------------------------===// 299 300 /// Create a new SplitEditor for editing the LiveInterval analyzed by SA. 301 SplitEditor::SplitEditor(SplitAnalysis &sa, 302 LiveIntervals &lis, 303 VirtRegMap &vrm, 304 MachineDominatorTree &mdt) 305 : SA(sa), LIS(lis), VRM(vrm), 306 MRI(vrm.getMachineFunction().getRegInfo()), 307 MDT(mdt), 308 TII(*vrm.getMachineFunction().getTarget().getInstrInfo()), 309 TRI(*vrm.getMachineFunction().getTarget().getRegisterInfo()), 310 Edit(0), 311 OpenIdx(0), 312 SpillMode(SM_Partition), 313 RegAssign(Allocator) 314 {} 315 316 void SplitEditor::reset(LiveRangeEdit &LRE, ComplementSpillMode SM) { 317 Edit = &LRE; 318 SpillMode = SM; 319 OpenIdx = 0; 320 RegAssign.clear(); 321 Values.clear(); 322 323 // Reset the LiveRangeCalc instances needed for this spill mode. 324 LRCalc[0].reset(&VRM.getMachineFunction()); 325 if (SpillMode) 326 LRCalc[1].reset(&VRM.getMachineFunction()); 327 328 // We don't need an AliasAnalysis since we will only be performing 329 // cheap-as-a-copy remats anyway. 330 Edit->anyRematerializable(LIS, TII, 0); 331 } 332 333 void SplitEditor::dump() const { 334 if (RegAssign.empty()) { 335 dbgs() << " empty\n"; 336 return; 337 } 338 339 for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I) 340 dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value(); 341 dbgs() << '\n'; 342 } 343 344 VNInfo *SplitEditor::defValue(unsigned RegIdx, 345 const VNInfo *ParentVNI, 346 SlotIndex Idx) { 347 assert(ParentVNI && "Mapping NULL value"); 348 assert(Idx.isValid() && "Invalid SlotIndex"); 349 assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI"); 350 LiveInterval *LI = Edit->get(RegIdx); 351 352 // Create a new value. 353 VNInfo *VNI = LI->getNextValue(Idx, 0, LIS.getVNInfoAllocator()); 354 355 // Use insert for lookup, so we can add missing values with a second lookup. 356 std::pair<ValueMap::iterator, bool> InsP = 357 Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id), VNI)); 358 359 // This was the first time (RegIdx, ParentVNI) was mapped. 360 // Keep it as a simple def without any liveness. 361 if (InsP.second) 362 return VNI; 363 364 // If the previous value was a simple mapping, add liveness for it now. 365 if (VNInfo *OldVNI = InsP.first->second) { 366 SlotIndex Def = OldVNI->def; 367 LI->addRange(LiveRange(Def, Def.getNextSlot(), OldVNI)); 368 // No longer a simple mapping. 369 InsP.first->second = 0; 370 } 371 372 // This is a complex mapping, add liveness for VNI 373 SlotIndex Def = VNI->def; 374 LI->addRange(LiveRange(Def, Def.getNextSlot(), VNI)); 375 376 return VNI; 377 } 378 379 void SplitEditor::markComplexMapped(unsigned RegIdx, const VNInfo *ParentVNI) { 380 assert(ParentVNI && "Mapping NULL value"); 381 VNInfo *&VNI = Values[std::make_pair(RegIdx, ParentVNI->id)]; 382 383 // ParentVNI was either unmapped or already complex mapped. Either way. 384 if (!VNI) 385 return; 386 387 // This was previously a single mapping. Make sure the old def is represented 388 // by a trivial live range. 389 SlotIndex Def = VNI->def; 390 Edit->get(RegIdx)->addRange(LiveRange(Def, Def.getNextSlot(), VNI)); 391 VNI = 0; 392 } 393 394 VNInfo *SplitEditor::defFromParent(unsigned RegIdx, 395 VNInfo *ParentVNI, 396 SlotIndex UseIdx, 397 MachineBasicBlock &MBB, 398 MachineBasicBlock::iterator I) { 399 MachineInstr *CopyMI = 0; 400 SlotIndex Def; 401 LiveInterval *LI = Edit->get(RegIdx); 402 403 // We may be trying to avoid interference that ends at a deleted instruction, 404 // so always begin RegIdx 0 early and all others late. 405 bool Late = RegIdx != 0; 406 407 // Attempt cheap-as-a-copy rematerialization. 408 LiveRangeEdit::Remat RM(ParentVNI); 409 if (Edit->canRematerializeAt(RM, UseIdx, true, LIS)) { 410 Def = Edit->rematerializeAt(MBB, I, LI->reg, RM, LIS, TII, TRI, Late); 411 ++NumRemats; 412 } else { 413 // Can't remat, just insert a copy from parent. 414 CopyMI = BuildMI(MBB, I, DebugLoc(), TII.get(TargetOpcode::COPY), LI->reg) 415 .addReg(Edit->getReg()); 416 Def = LIS.getSlotIndexes()->insertMachineInstrInMaps(CopyMI, Late) 417 .getDefIndex(); 418 ++NumCopies; 419 } 420 421 // Define the value in Reg. 422 VNInfo *VNI = defValue(RegIdx, ParentVNI, Def); 423 VNI->setCopy(CopyMI); 424 return VNI; 425 } 426 427 /// Create a new virtual register and live interval. 428 unsigned SplitEditor::openIntv() { 429 // Create the complement as index 0. 430 if (Edit->empty()) 431 Edit->create(LIS, VRM); 432 433 // Create the open interval. 434 OpenIdx = Edit->size(); 435 Edit->create(LIS, VRM); 436 return OpenIdx; 437 } 438 439 void SplitEditor::selectIntv(unsigned Idx) { 440 assert(Idx != 0 && "Cannot select the complement interval"); 441 assert(Idx < Edit->size() && "Can only select previously opened interval"); 442 DEBUG(dbgs() << " selectIntv " << OpenIdx << " -> " << Idx << '\n'); 443 OpenIdx = Idx; 444 } 445 446 SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) { 447 assert(OpenIdx && "openIntv not called before enterIntvBefore"); 448 DEBUG(dbgs() << " enterIntvBefore " << Idx); 449 Idx = Idx.getBaseIndex(); 450 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 451 if (!ParentVNI) { 452 DEBUG(dbgs() << ": not live\n"); 453 return Idx; 454 } 455 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 456 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 457 assert(MI && "enterIntvBefore called with invalid index"); 458 459 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI); 460 return VNI->def; 461 } 462 463 SlotIndex SplitEditor::enterIntvAfter(SlotIndex Idx) { 464 assert(OpenIdx && "openIntv not called before enterIntvAfter"); 465 DEBUG(dbgs() << " enterIntvAfter " << Idx); 466 Idx = Idx.getBoundaryIndex(); 467 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 468 if (!ParentVNI) { 469 DEBUG(dbgs() << ": not live\n"); 470 return Idx; 471 } 472 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 473 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 474 assert(MI && "enterIntvAfter called with invalid index"); 475 476 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), 477 llvm::next(MachineBasicBlock::iterator(MI))); 478 return VNI->def; 479 } 480 481 SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) { 482 assert(OpenIdx && "openIntv not called before enterIntvAtEnd"); 483 SlotIndex End = LIS.getMBBEndIdx(&MBB); 484 SlotIndex Last = End.getPrevSlot(); 485 DEBUG(dbgs() << " enterIntvAtEnd BB#" << MBB.getNumber() << ", " << Last); 486 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last); 487 if (!ParentVNI) { 488 DEBUG(dbgs() << ": not live\n"); 489 return End; 490 } 491 DEBUG(dbgs() << ": valno " << ParentVNI->id); 492 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB, 493 LIS.getLastSplitPoint(Edit->getParent(), &MBB)); 494 RegAssign.insert(VNI->def, End, OpenIdx); 495 DEBUG(dump()); 496 return VNI->def; 497 } 498 499 /// useIntv - indicate that all instructions in MBB should use OpenLI. 500 void SplitEditor::useIntv(const MachineBasicBlock &MBB) { 501 useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB)); 502 } 503 504 void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) { 505 assert(OpenIdx && "openIntv not called before useIntv"); 506 DEBUG(dbgs() << " useIntv [" << Start << ';' << End << "):"); 507 RegAssign.insert(Start, End, OpenIdx); 508 DEBUG(dump()); 509 } 510 511 SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) { 512 assert(OpenIdx && "openIntv not called before leaveIntvAfter"); 513 DEBUG(dbgs() << " leaveIntvAfter " << Idx); 514 515 // The interval must be live beyond the instruction at Idx. 516 Idx = Idx.getBoundaryIndex(); 517 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 518 if (!ParentVNI) { 519 DEBUG(dbgs() << ": not live\n"); 520 return Idx.getNextSlot(); 521 } 522 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 523 524 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 525 assert(MI && "No instruction at index"); 526 VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), 527 llvm::next(MachineBasicBlock::iterator(MI))); 528 return VNI->def; 529 } 530 531 SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) { 532 assert(OpenIdx && "openIntv not called before leaveIntvBefore"); 533 DEBUG(dbgs() << " leaveIntvBefore " << Idx); 534 535 // The interval must be live into the instruction at Idx. 536 Idx = Idx.getBaseIndex(); 537 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 538 if (!ParentVNI) { 539 DEBUG(dbgs() << ": not live\n"); 540 return Idx.getNextSlot(); 541 } 542 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 543 544 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 545 assert(MI && "No instruction at index"); 546 VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI); 547 return VNI->def; 548 } 549 550 SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) { 551 assert(OpenIdx && "openIntv not called before leaveIntvAtTop"); 552 SlotIndex Start = LIS.getMBBStartIdx(&MBB); 553 DEBUG(dbgs() << " leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start); 554 555 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start); 556 if (!ParentVNI) { 557 DEBUG(dbgs() << ": not live\n"); 558 return Start; 559 } 560 561 VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB, 562 MBB.SkipPHIsAndLabels(MBB.begin())); 563 RegAssign.insert(Start, VNI->def, OpenIdx); 564 DEBUG(dump()); 565 return VNI->def; 566 } 567 568 void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) { 569 assert(OpenIdx && "openIntv not called before overlapIntv"); 570 const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start); 571 assert(ParentVNI == Edit->getParent().getVNInfoAt(End.getPrevSlot()) && 572 "Parent changes value in extended range"); 573 assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) && 574 "Range cannot span basic blocks"); 575 576 // The complement interval will be extended as needed by LRCalc.extend(). 577 if (ParentVNI) 578 markComplexMapped(0, ParentVNI); 579 DEBUG(dbgs() << " overlapIntv [" << Start << ';' << End << "):"); 580 RegAssign.insert(Start, End, OpenIdx); 581 DEBUG(dump()); 582 } 583 584 /// transferValues - Transfer all possible values to the new live ranges. 585 /// Values that were rematerialized are left alone, they need LRCalc.extend(). 586 bool SplitEditor::transferValues() { 587 bool Skipped = false; 588 RegAssignMap::const_iterator AssignI = RegAssign.begin(); 589 for (LiveInterval::const_iterator ParentI = Edit->getParent().begin(), 590 ParentE = Edit->getParent().end(); ParentI != ParentE; ++ParentI) { 591 DEBUG(dbgs() << " blit " << *ParentI << ':'); 592 VNInfo *ParentVNI = ParentI->valno; 593 // RegAssign has holes where RegIdx 0 should be used. 594 SlotIndex Start = ParentI->start; 595 AssignI.advanceTo(Start); 596 do { 597 unsigned RegIdx; 598 SlotIndex End = ParentI->end; 599 if (!AssignI.valid()) { 600 RegIdx = 0; 601 } else if (AssignI.start() <= Start) { 602 RegIdx = AssignI.value(); 603 if (AssignI.stop() < End) { 604 End = AssignI.stop(); 605 ++AssignI; 606 } 607 } else { 608 RegIdx = 0; 609 End = std::min(End, AssignI.start()); 610 } 611 612 // The interval [Start;End) is continuously mapped to RegIdx, ParentVNI. 613 DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx); 614 LiveInterval *LI = Edit->get(RegIdx); 615 616 // Check for a simply defined value that can be blitted directly. 617 if (VNInfo *VNI = Values.lookup(std::make_pair(RegIdx, ParentVNI->id))) { 618 DEBUG(dbgs() << ':' << VNI->id); 619 LI->addRange(LiveRange(Start, End, VNI)); 620 Start = End; 621 continue; 622 } 623 624 // Skip rematerialized values, we need to use LRCalc.extend() and 625 // extendPHIKillRanges() to completely recompute the live ranges. 626 if (Edit->didRematerialize(ParentVNI)) { 627 DEBUG(dbgs() << "(remat)"); 628 Skipped = true; 629 Start = End; 630 continue; 631 } 632 633 LiveRangeCalc &LRC = getLRCalc(RegIdx); 634 635 // This value has multiple defs in RegIdx, but it wasn't rematerialized, 636 // so the live range is accurate. Add live-in blocks in [Start;End) to the 637 // LiveInBlocks. 638 MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start); 639 SlotIndex BlockStart, BlockEnd; 640 tie(BlockStart, BlockEnd) = LIS.getSlotIndexes()->getMBBRange(MBB); 641 642 // The first block may be live-in, or it may have its own def. 643 if (Start != BlockStart) { 644 VNInfo *VNI = LI->extendInBlock(BlockStart, std::min(BlockEnd, End)); 645 assert(VNI && "Missing def for complex mapped value"); 646 DEBUG(dbgs() << ':' << VNI->id << "*BB#" << MBB->getNumber()); 647 // MBB has its own def. Is it also live-out? 648 if (BlockEnd <= End) 649 LRC.setLiveOutValue(MBB, VNI); 650 651 // Skip to the next block for live-in. 652 ++MBB; 653 BlockStart = BlockEnd; 654 } 655 656 // Handle the live-in blocks covered by [Start;End). 657 assert(Start <= BlockStart && "Expected live-in block"); 658 while (BlockStart < End) { 659 DEBUG(dbgs() << ">BB#" << MBB->getNumber()); 660 BlockEnd = LIS.getMBBEndIdx(MBB); 661 if (BlockStart == ParentVNI->def) { 662 // This block has the def of a parent PHI, so it isn't live-in. 663 assert(ParentVNI->isPHIDef() && "Non-phi defined at block start?"); 664 VNInfo *VNI = LI->extendInBlock(BlockStart, std::min(BlockEnd, End)); 665 assert(VNI && "Missing def for complex mapped parent PHI"); 666 if (End >= BlockEnd) 667 LRC.setLiveOutValue(MBB, VNI); // Live-out as well. 668 } else { 669 // This block needs a live-in value. The last block covered may not 670 // be live-out. 671 if (End < BlockEnd) 672 LRC.addLiveInBlock(LI, MDT[MBB], End); 673 else { 674 // Live-through, and we don't know the value. 675 LRC.addLiveInBlock(LI, MDT[MBB]); 676 LRC.setLiveOutValue(MBB, 0); 677 } 678 } 679 BlockStart = BlockEnd; 680 ++MBB; 681 } 682 Start = End; 683 } while (Start != ParentI->end); 684 DEBUG(dbgs() << '\n'); 685 } 686 687 LRCalc[0].calculateValues(LIS.getSlotIndexes(), &MDT, 688 &LIS.getVNInfoAllocator()); 689 if (SpillMode) 690 LRCalc[1].calculateValues(LIS.getSlotIndexes(), &MDT, 691 &LIS.getVNInfoAllocator()); 692 693 return Skipped; 694 } 695 696 void SplitEditor::extendPHIKillRanges() { 697 // Extend live ranges to be live-out for successor PHI values. 698 for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(), 699 E = Edit->getParent().vni_end(); I != E; ++I) { 700 const VNInfo *PHIVNI = *I; 701 if (PHIVNI->isUnused() || !PHIVNI->isPHIDef()) 702 continue; 703 unsigned RegIdx = RegAssign.lookup(PHIVNI->def); 704 LiveInterval *LI = Edit->get(RegIdx); 705 LiveRangeCalc &LRC = getLRCalc(RegIdx); 706 MachineBasicBlock *MBB = LIS.getMBBFromIndex(PHIVNI->def); 707 for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), 708 PE = MBB->pred_end(); PI != PE; ++PI) { 709 SlotIndex End = LIS.getMBBEndIdx(*PI); 710 SlotIndex LastUse = End.getPrevSlot(); 711 // The predecessor may not have a live-out value. That is OK, like an 712 // undef PHI operand. 713 if (Edit->getParent().liveAt(LastUse)) { 714 assert(RegAssign.lookup(LastUse) == RegIdx && 715 "Different register assignment in phi predecessor"); 716 LRC.extend(LI, End, 717 LIS.getSlotIndexes(), &MDT, &LIS.getVNInfoAllocator()); 718 } 719 } 720 } 721 } 722 723 /// rewriteAssigned - Rewrite all uses of Edit->getReg(). 724 void SplitEditor::rewriteAssigned(bool ExtendRanges) { 725 for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Edit->getReg()), 726 RE = MRI.reg_end(); RI != RE;) { 727 MachineOperand &MO = RI.getOperand(); 728 MachineInstr *MI = MO.getParent(); 729 ++RI; 730 // LiveDebugVariables should have handled all DBG_VALUE instructions. 731 if (MI->isDebugValue()) { 732 DEBUG(dbgs() << "Zapping " << *MI); 733 MO.setReg(0); 734 continue; 735 } 736 737 // <undef> operands don't really read the register, so it doesn't matter 738 // which register we choose. When the use operand is tied to a def, we must 739 // use the same register as the def, so just do that always. 740 SlotIndex Idx = LIS.getInstructionIndex(MI); 741 if (MO.isDef() || MO.isUndef()) 742 Idx = MO.isEarlyClobber() ? Idx.getUseIndex() : Idx.getDefIndex(); 743 744 // Rewrite to the mapped register at Idx. 745 unsigned RegIdx = RegAssign.lookup(Idx); 746 LiveInterval *LI = Edit->get(RegIdx); 747 MO.setReg(LI->reg); 748 DEBUG(dbgs() << " rewr BB#" << MI->getParent()->getNumber() << '\t' 749 << Idx << ':' << RegIdx << '\t' << *MI); 750 751 // Extend liveness to Idx if the instruction reads reg. 752 if (!ExtendRanges || MO.isUndef()) 753 continue; 754 755 // Skip instructions that don't read Reg. 756 if (MO.isDef()) { 757 if (!MO.getSubReg() && !MO.isEarlyClobber()) 758 continue; 759 // We may wan't to extend a live range for a partial redef, or for a use 760 // tied to an early clobber. 761 Idx = Idx.getPrevSlot(); 762 if (!Edit->getParent().liveAt(Idx)) 763 continue; 764 } else 765 Idx = Idx.getUseIndex(); 766 767 getLRCalc(RegIdx).extend(LI, Idx.getNextSlot(), LIS.getSlotIndexes(), 768 &MDT, &LIS.getVNInfoAllocator()); 769 } 770 } 771 772 void SplitEditor::deleteRematVictims() { 773 SmallVector<MachineInstr*, 8> Dead; 774 for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I){ 775 LiveInterval *LI = *I; 776 for (LiveInterval::const_iterator LII = LI->begin(), LIE = LI->end(); 777 LII != LIE; ++LII) { 778 // Dead defs end at the store slot. 779 if (LII->end != LII->valno->def.getNextSlot()) 780 continue; 781 MachineInstr *MI = LIS.getInstructionFromIndex(LII->valno->def); 782 assert(MI && "Missing instruction for dead def"); 783 MI->addRegisterDead(LI->reg, &TRI); 784 785 if (!MI->allDefsAreDead()) 786 continue; 787 788 DEBUG(dbgs() << "All defs dead: " << *MI); 789 Dead.push_back(MI); 790 } 791 } 792 793 if (Dead.empty()) 794 return; 795 796 Edit->eliminateDeadDefs(Dead, LIS, VRM, TII); 797 } 798 799 void SplitEditor::finish(SmallVectorImpl<unsigned> *LRMap) { 800 ++NumFinished; 801 802 // At this point, the live intervals in Edit contain VNInfos corresponding to 803 // the inserted copies. 804 805 // Add the original defs from the parent interval. 806 for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(), 807 E = Edit->getParent().vni_end(); I != E; ++I) { 808 const VNInfo *ParentVNI = *I; 809 if (ParentVNI->isUnused()) 810 continue; 811 unsigned RegIdx = RegAssign.lookup(ParentVNI->def); 812 VNInfo *VNI = defValue(RegIdx, ParentVNI, ParentVNI->def); 813 VNI->setIsPHIDef(ParentVNI->isPHIDef()); 814 VNI->setCopy(ParentVNI->getCopy()); 815 816 // Mark rematted values as complex everywhere to force liveness computation. 817 // The new live ranges may be truncated. 818 if (Edit->didRematerialize(ParentVNI)) 819 for (unsigned i = 0, e = Edit->size(); i != e; ++i) 820 markComplexMapped(i, ParentVNI); 821 } 822 823 // Transfer the simply mapped values, check if any are skipped. 824 bool Skipped = transferValues(); 825 if (Skipped) 826 extendPHIKillRanges(); 827 else 828 ++NumSimple; 829 830 // Rewrite virtual registers, possibly extending ranges. 831 rewriteAssigned(Skipped); 832 833 // Delete defs that were rematted everywhere. 834 if (Skipped) 835 deleteRematVictims(); 836 837 // Get rid of unused values and set phi-kill flags. 838 for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I) 839 (*I)->RenumberValues(LIS); 840 841 // Provide a reverse mapping from original indices to Edit ranges. 842 if (LRMap) { 843 LRMap->clear(); 844 for (unsigned i = 0, e = Edit->size(); i != e; ++i) 845 LRMap->push_back(i); 846 } 847 848 // Now check if any registers were separated into multiple components. 849 ConnectedVNInfoEqClasses ConEQ(LIS); 850 for (unsigned i = 0, e = Edit->size(); i != e; ++i) { 851 // Don't use iterators, they are invalidated by create() below. 852 LiveInterval *li = Edit->get(i); 853 unsigned NumComp = ConEQ.Classify(li); 854 if (NumComp <= 1) 855 continue; 856 DEBUG(dbgs() << " " << NumComp << " components: " << *li << '\n'); 857 SmallVector<LiveInterval*, 8> dups; 858 dups.push_back(li); 859 for (unsigned j = 1; j != NumComp; ++j) 860 dups.push_back(&Edit->create(LIS, VRM)); 861 ConEQ.Distribute(&dups[0], MRI); 862 // The new intervals all map back to i. 863 if (LRMap) 864 LRMap->resize(Edit->size(), i); 865 } 866 867 // Calculate spill weight and allocation hints for new intervals. 868 Edit->calculateRegClassAndHint(VRM.getMachineFunction(), LIS, SA.Loops); 869 870 assert(!LRMap || LRMap->size() == Edit->size()); 871 } 872 873 874 //===----------------------------------------------------------------------===// 875 // Single Block Splitting 876 //===----------------------------------------------------------------------===// 877 878 bool SplitAnalysis::shouldSplitSingleBlock(const BlockInfo &BI, 879 bool SingleInstrs) const { 880 // Always split for multiple instructions. 881 if (!BI.isOneInstr()) 882 return true; 883 // Don't split for single instructions unless explicitly requested. 884 if (!SingleInstrs) 885 return false; 886 // Splitting a live-through range always makes progress. 887 if (BI.LiveIn && BI.LiveOut) 888 return true; 889 // No point in isolating a copy. It has no register class constraints. 890 if (LIS.getInstructionFromIndex(BI.FirstInstr)->isCopyLike()) 891 return false; 892 // Finally, don't isolate an end point that was created by earlier splits. 893 return isOriginalEndpoint(BI.FirstInstr); 894 } 895 896 void SplitEditor::splitSingleBlock(const SplitAnalysis::BlockInfo &BI) { 897 openIntv(); 898 SlotIndex LastSplitPoint = SA.getLastSplitPoint(BI.MBB->getNumber()); 899 SlotIndex SegStart = enterIntvBefore(std::min(BI.FirstInstr, 900 LastSplitPoint)); 901 if (!BI.LiveOut || BI.LastInstr < LastSplitPoint) { 902 useIntv(SegStart, leaveIntvAfter(BI.LastInstr)); 903 } else { 904 // The last use is after the last valid split point. 905 SlotIndex SegStop = leaveIntvBefore(LastSplitPoint); 906 useIntv(SegStart, SegStop); 907 overlapIntv(SegStop, BI.LastInstr); 908 } 909 } 910 911 912 //===----------------------------------------------------------------------===// 913 // Global Live Range Splitting Support 914 //===----------------------------------------------------------------------===// 915 916 // These methods support a method of global live range splitting that uses a 917 // global algorithm to decide intervals for CFG edges. They will insert split 918 // points and color intervals in basic blocks while avoiding interference. 919 // 920 // Note that splitSingleBlock is also useful for blocks where both CFG edges 921 // are on the stack. 922 923 void SplitEditor::splitLiveThroughBlock(unsigned MBBNum, 924 unsigned IntvIn, SlotIndex LeaveBefore, 925 unsigned IntvOut, SlotIndex EnterAfter){ 926 SlotIndex Start, Stop; 927 tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(MBBNum); 928 929 DEBUG(dbgs() << "BB#" << MBBNum << " [" << Start << ';' << Stop 930 << ") intf " << LeaveBefore << '-' << EnterAfter 931 << ", live-through " << IntvIn << " -> " << IntvOut); 932 933 assert((IntvIn || IntvOut) && "Use splitSingleBlock for isolated blocks"); 934 935 assert((!LeaveBefore || LeaveBefore < Stop) && "Interference after block"); 936 assert((!IntvIn || !LeaveBefore || LeaveBefore > Start) && "Impossible intf"); 937 assert((!EnterAfter || EnterAfter >= Start) && "Interference before block"); 938 939 MachineBasicBlock *MBB = VRM.getMachineFunction().getBlockNumbered(MBBNum); 940 941 if (!IntvOut) { 942 DEBUG(dbgs() << ", spill on entry.\n"); 943 // 944 // <<<<<<<<< Possible LeaveBefore interference. 945 // |-----------| Live through. 946 // -____________ Spill on entry. 947 // 948 selectIntv(IntvIn); 949 SlotIndex Idx = leaveIntvAtTop(*MBB); 950 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 951 (void)Idx; 952 return; 953 } 954 955 if (!IntvIn) { 956 DEBUG(dbgs() << ", reload on exit.\n"); 957 // 958 // >>>>>>> Possible EnterAfter interference. 959 // |-----------| Live through. 960 // ___________-- Reload on exit. 961 // 962 selectIntv(IntvOut); 963 SlotIndex Idx = enterIntvAtEnd(*MBB); 964 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 965 (void)Idx; 966 return; 967 } 968 969 if (IntvIn == IntvOut && !LeaveBefore && !EnterAfter) { 970 DEBUG(dbgs() << ", straight through.\n"); 971 // 972 // |-----------| Live through. 973 // ------------- Straight through, same intv, no interference. 974 // 975 selectIntv(IntvOut); 976 useIntv(Start, Stop); 977 return; 978 } 979 980 // We cannot legally insert splits after LSP. 981 SlotIndex LSP = SA.getLastSplitPoint(MBBNum); 982 assert((!IntvOut || !EnterAfter || EnterAfter < LSP) && "Impossible intf"); 983 984 if (IntvIn != IntvOut && (!LeaveBefore || !EnterAfter || 985 LeaveBefore.getBaseIndex() > EnterAfter.getBoundaryIndex())) { 986 DEBUG(dbgs() << ", switch avoiding interference.\n"); 987 // 988 // >>>> <<<< Non-overlapping EnterAfter/LeaveBefore interference. 989 // |-----------| Live through. 990 // ------======= Switch intervals between interference. 991 // 992 selectIntv(IntvOut); 993 SlotIndex Idx; 994 if (LeaveBefore && LeaveBefore < LSP) { 995 Idx = enterIntvBefore(LeaveBefore); 996 useIntv(Idx, Stop); 997 } else { 998 Idx = enterIntvAtEnd(*MBB); 999 } 1000 selectIntv(IntvIn); 1001 useIntv(Start, Idx); 1002 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1003 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1004 return; 1005 } 1006 1007 DEBUG(dbgs() << ", create local intv for interference.\n"); 1008 // 1009 // >>><><><><<<< Overlapping EnterAfter/LeaveBefore interference. 1010 // |-----------| Live through. 1011 // ==---------== Switch intervals before/after interference. 1012 // 1013 assert(LeaveBefore <= EnterAfter && "Missed case"); 1014 1015 selectIntv(IntvOut); 1016 SlotIndex Idx = enterIntvAfter(EnterAfter); 1017 useIntv(Idx, Stop); 1018 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1019 1020 selectIntv(IntvIn); 1021 Idx = leaveIntvBefore(LeaveBefore); 1022 useIntv(Start, Idx); 1023 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1024 } 1025 1026 1027 void SplitEditor::splitRegInBlock(const SplitAnalysis::BlockInfo &BI, 1028 unsigned IntvIn, SlotIndex LeaveBefore) { 1029 SlotIndex Start, Stop; 1030 tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); 1031 1032 DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " [" << Start << ';' << Stop 1033 << "), uses " << BI.FirstInstr << '-' << BI.LastInstr 1034 << ", reg-in " << IntvIn << ", leave before " << LeaveBefore 1035 << (BI.LiveOut ? ", stack-out" : ", killed in block")); 1036 1037 assert(IntvIn && "Must have register in"); 1038 assert(BI.LiveIn && "Must be live-in"); 1039 assert((!LeaveBefore || LeaveBefore > Start) && "Bad interference"); 1040 1041 if (!BI.LiveOut && (!LeaveBefore || LeaveBefore >= BI.LastInstr)) { 1042 DEBUG(dbgs() << " before interference.\n"); 1043 // 1044 // <<< Interference after kill. 1045 // |---o---x | Killed in block. 1046 // ========= Use IntvIn everywhere. 1047 // 1048 selectIntv(IntvIn); 1049 useIntv(Start, BI.LastInstr); 1050 return; 1051 } 1052 1053 SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber()); 1054 1055 if (!LeaveBefore || LeaveBefore > BI.LastInstr.getBoundaryIndex()) { 1056 // 1057 // <<< Possible interference after last use. 1058 // |---o---o---| Live-out on stack. 1059 // =========____ Leave IntvIn after last use. 1060 // 1061 // < Interference after last use. 1062 // |---o---o--o| Live-out on stack, late last use. 1063 // ============ Copy to stack after LSP, overlap IntvIn. 1064 // \_____ Stack interval is live-out. 1065 // 1066 if (BI.LastInstr < LSP) { 1067 DEBUG(dbgs() << ", spill after last use before interference.\n"); 1068 selectIntv(IntvIn); 1069 SlotIndex Idx = leaveIntvAfter(BI.LastInstr); 1070 useIntv(Start, Idx); 1071 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1072 } else { 1073 DEBUG(dbgs() << ", spill before last split point.\n"); 1074 selectIntv(IntvIn); 1075 SlotIndex Idx = leaveIntvBefore(LSP); 1076 overlapIntv(Idx, BI.LastInstr); 1077 useIntv(Start, Idx); 1078 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1079 } 1080 return; 1081 } 1082 1083 // The interference is overlapping somewhere we wanted to use IntvIn. That 1084 // means we need to create a local interval that can be allocated a 1085 // different register. 1086 unsigned LocalIntv = openIntv(); 1087 (void)LocalIntv; 1088 DEBUG(dbgs() << ", creating local interval " << LocalIntv << ".\n"); 1089 1090 if (!BI.LiveOut || BI.LastInstr < LSP) { 1091 // 1092 // <<<<<<< Interference overlapping uses. 1093 // |---o---o---| Live-out on stack. 1094 // =====----____ Leave IntvIn before interference, then spill. 1095 // 1096 SlotIndex To = leaveIntvAfter(BI.LastInstr); 1097 SlotIndex From = enterIntvBefore(LeaveBefore); 1098 useIntv(From, To); 1099 selectIntv(IntvIn); 1100 useIntv(Start, From); 1101 assert((!LeaveBefore || From <= LeaveBefore) && "Interference"); 1102 return; 1103 } 1104 1105 // <<<<<<< Interference overlapping uses. 1106 // |---o---o--o| Live-out on stack, late last use. 1107 // =====------- Copy to stack before LSP, overlap LocalIntv. 1108 // \_____ Stack interval is live-out. 1109 // 1110 SlotIndex To = leaveIntvBefore(LSP); 1111 overlapIntv(To, BI.LastInstr); 1112 SlotIndex From = enterIntvBefore(std::min(To, LeaveBefore)); 1113 useIntv(From, To); 1114 selectIntv(IntvIn); 1115 useIntv(Start, From); 1116 assert((!LeaveBefore || From <= LeaveBefore) && "Interference"); 1117 } 1118 1119 void SplitEditor::splitRegOutBlock(const SplitAnalysis::BlockInfo &BI, 1120 unsigned IntvOut, SlotIndex EnterAfter) { 1121 SlotIndex Start, Stop; 1122 tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); 1123 1124 DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " [" << Start << ';' << Stop 1125 << "), uses " << BI.FirstInstr << '-' << BI.LastInstr 1126 << ", reg-out " << IntvOut << ", enter after " << EnterAfter 1127 << (BI.LiveIn ? ", stack-in" : ", defined in block")); 1128 1129 SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber()); 1130 1131 assert(IntvOut && "Must have register out"); 1132 assert(BI.LiveOut && "Must be live-out"); 1133 assert((!EnterAfter || EnterAfter < LSP) && "Bad interference"); 1134 1135 if (!BI.LiveIn && (!EnterAfter || EnterAfter <= BI.FirstInstr)) { 1136 DEBUG(dbgs() << " after interference.\n"); 1137 // 1138 // >>>> Interference before def. 1139 // | o---o---| Defined in block. 1140 // ========= Use IntvOut everywhere. 1141 // 1142 selectIntv(IntvOut); 1143 useIntv(BI.FirstInstr, Stop); 1144 return; 1145 } 1146 1147 if (!EnterAfter || EnterAfter < BI.FirstInstr.getBaseIndex()) { 1148 DEBUG(dbgs() << ", reload after interference.\n"); 1149 // 1150 // >>>> Interference before def. 1151 // |---o---o---| Live-through, stack-in. 1152 // ____========= Enter IntvOut before first use. 1153 // 1154 selectIntv(IntvOut); 1155 SlotIndex Idx = enterIntvBefore(std::min(LSP, BI.FirstInstr)); 1156 useIntv(Idx, Stop); 1157 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1158 return; 1159 } 1160 1161 // The interference is overlapping somewhere we wanted to use IntvOut. That 1162 // means we need to create a local interval that can be allocated a 1163 // different register. 1164 DEBUG(dbgs() << ", interference overlaps uses.\n"); 1165 // 1166 // >>>>>>> Interference overlapping uses. 1167 // |---o---o---| Live-through, stack-in. 1168 // ____---====== Create local interval for interference range. 1169 // 1170 selectIntv(IntvOut); 1171 SlotIndex Idx = enterIntvAfter(EnterAfter); 1172 useIntv(Idx, Stop); 1173 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1174 1175 openIntv(); 1176 SlotIndex From = enterIntvBefore(std::min(Idx, BI.FirstInstr)); 1177 useIntv(From, Idx); 1178 } 1179