1 //===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the SplitAnalysis class as well as mutator functions for 11 // live range splitting. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "splitter" 16 #include "SplitKit.h" 17 #include "LiveRangeEdit.h" 18 #include "VirtRegMap.h" 19 #include "llvm/CodeGen/CalcSpillWeights.h" 20 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 21 #include "llvm/CodeGen/MachineInstrBuilder.h" 22 #include "llvm/CodeGen/MachineLoopInfo.h" 23 #include "llvm/CodeGen/MachineRegisterInfo.h" 24 #include "llvm/Support/CommandLine.h" 25 #include "llvm/Support/Debug.h" 26 #include "llvm/Support/raw_ostream.h" 27 #include "llvm/Target/TargetInstrInfo.h" 28 #include "llvm/Target/TargetMachine.h" 29 30 using namespace llvm; 31 32 static cl::opt<bool> 33 AllowSplit("spiller-splits-edges", 34 cl::desc("Allow critical edge splitting during spilling")); 35 36 //===----------------------------------------------------------------------===// 37 // Split Analysis 38 //===----------------------------------------------------------------------===// 39 40 SplitAnalysis::SplitAnalysis(const MachineFunction &mf, 41 const LiveIntervals &lis, 42 const MachineLoopInfo &mli) 43 : mf_(mf), 44 lis_(lis), 45 loops_(mli), 46 tii_(*mf.getTarget().getInstrInfo()), 47 curli_(0) {} 48 49 void SplitAnalysis::clear() { 50 usingInstrs_.clear(); 51 usingBlocks_.clear(); 52 usingLoops_.clear(); 53 curli_ = 0; 54 } 55 56 bool SplitAnalysis::canAnalyzeBranch(const MachineBasicBlock *MBB) { 57 MachineBasicBlock *T, *F; 58 SmallVector<MachineOperand, 4> Cond; 59 return !tii_.AnalyzeBranch(const_cast<MachineBasicBlock&>(*MBB), T, F, Cond); 60 } 61 62 /// analyzeUses - Count instructions, basic blocks, and loops using curli. 63 void SplitAnalysis::analyzeUses() { 64 const MachineRegisterInfo &MRI = mf_.getRegInfo(); 65 for (MachineRegisterInfo::reg_iterator I = MRI.reg_begin(curli_->reg); 66 MachineInstr *MI = I.skipInstruction();) { 67 if (MI->isDebugValue() || !usingInstrs_.insert(MI)) 68 continue; 69 MachineBasicBlock *MBB = MI->getParent(); 70 if (usingBlocks_[MBB]++) 71 continue; 72 for (MachineLoop *Loop = loops_.getLoopFor(MBB); Loop; 73 Loop = Loop->getParentLoop()) 74 usingLoops_[Loop]++; 75 } 76 DEBUG(dbgs() << " counted " 77 << usingInstrs_.size() << " instrs, " 78 << usingBlocks_.size() << " blocks, " 79 << usingLoops_.size() << " loops.\n"); 80 } 81 82 void SplitAnalysis::print(const BlockPtrSet &B, raw_ostream &OS) const { 83 for (BlockPtrSet::const_iterator I = B.begin(), E = B.end(); I != E; ++I) { 84 unsigned count = usingBlocks_.lookup(*I); 85 OS << " BB#" << (*I)->getNumber(); 86 if (count) 87 OS << '(' << count << ')'; 88 } 89 } 90 91 // Get three sets of basic blocks surrounding a loop: Blocks inside the loop, 92 // predecessor blocks, and exit blocks. 93 void SplitAnalysis::getLoopBlocks(const MachineLoop *Loop, LoopBlocks &Blocks) { 94 Blocks.clear(); 95 96 // Blocks in the loop. 97 Blocks.Loop.insert(Loop->block_begin(), Loop->block_end()); 98 99 // Predecessor blocks. 100 const MachineBasicBlock *Header = Loop->getHeader(); 101 for (MachineBasicBlock::const_pred_iterator I = Header->pred_begin(), 102 E = Header->pred_end(); I != E; ++I) 103 if (!Blocks.Loop.count(*I)) 104 Blocks.Preds.insert(*I); 105 106 // Exit blocks. 107 for (MachineLoop::block_iterator I = Loop->block_begin(), 108 E = Loop->block_end(); I != E; ++I) { 109 const MachineBasicBlock *MBB = *I; 110 for (MachineBasicBlock::const_succ_iterator SI = MBB->succ_begin(), 111 SE = MBB->succ_end(); SI != SE; ++SI) 112 if (!Blocks.Loop.count(*SI)) 113 Blocks.Exits.insert(*SI); 114 } 115 } 116 117 void SplitAnalysis::print(const LoopBlocks &B, raw_ostream &OS) const { 118 OS << "Loop:"; 119 print(B.Loop, OS); 120 OS << ", preds:"; 121 print(B.Preds, OS); 122 OS << ", exits:"; 123 print(B.Exits, OS); 124 } 125 126 /// analyzeLoopPeripheralUse - Return an enum describing how curli_ is used in 127 /// and around the Loop. 128 SplitAnalysis::LoopPeripheralUse SplitAnalysis:: 129 analyzeLoopPeripheralUse(const SplitAnalysis::LoopBlocks &Blocks) { 130 LoopPeripheralUse use = ContainedInLoop; 131 for (BlockCountMap::iterator I = usingBlocks_.begin(), E = usingBlocks_.end(); 132 I != E; ++I) { 133 const MachineBasicBlock *MBB = I->first; 134 // Is this a peripheral block? 135 if (use < MultiPeripheral && 136 (Blocks.Preds.count(MBB) || Blocks.Exits.count(MBB))) { 137 if (I->second > 1) use = MultiPeripheral; 138 else use = SinglePeripheral; 139 continue; 140 } 141 // Is it a loop block? 142 if (Blocks.Loop.count(MBB)) 143 continue; 144 // It must be an unrelated block. 145 DEBUG(dbgs() << ", outside: BB#" << MBB->getNumber()); 146 return OutsideLoop; 147 } 148 return use; 149 } 150 151 /// getCriticalExits - It may be necessary to partially break critical edges 152 /// leaving the loop if an exit block has predecessors from outside the loop 153 /// periphery. 154 void SplitAnalysis::getCriticalExits(const SplitAnalysis::LoopBlocks &Blocks, 155 BlockPtrSet &CriticalExits) { 156 CriticalExits.clear(); 157 158 // A critical exit block has curli live-in, and has a predecessor that is not 159 // in the loop nor a loop predecessor. For such an exit block, the edges 160 // carrying the new variable must be moved to a new pre-exit block. 161 for (BlockPtrSet::iterator I = Blocks.Exits.begin(), E = Blocks.Exits.end(); 162 I != E; ++I) { 163 const MachineBasicBlock *Exit = *I; 164 // A single-predecessor exit block is definitely not a critical edge. 165 if (Exit->pred_size() == 1) 166 continue; 167 // This exit may not have curli live in at all. No need to split. 168 if (!lis_.isLiveInToMBB(*curli_, Exit)) 169 continue; 170 // Does this exit block have a predecessor that is not a loop block or loop 171 // predecessor? 172 for (MachineBasicBlock::const_pred_iterator PI = Exit->pred_begin(), 173 PE = Exit->pred_end(); PI != PE; ++PI) { 174 const MachineBasicBlock *Pred = *PI; 175 if (Blocks.Loop.count(Pred) || Blocks.Preds.count(Pred)) 176 continue; 177 // This is a critical exit block, and we need to split the exit edge. 178 CriticalExits.insert(Exit); 179 break; 180 } 181 } 182 } 183 184 void SplitAnalysis::getCriticalPreds(const SplitAnalysis::LoopBlocks &Blocks, 185 BlockPtrSet &CriticalPreds) { 186 CriticalPreds.clear(); 187 188 // A critical predecessor block has curli live-out, and has a successor that 189 // has curli live-in and is not in the loop nor a loop exit block. For such a 190 // predecessor block, we must carry the value in both the 'inside' and 191 // 'outside' registers. 192 for (BlockPtrSet::iterator I = Blocks.Preds.begin(), E = Blocks.Preds.end(); 193 I != E; ++I) { 194 const MachineBasicBlock *Pred = *I; 195 // Definitely not a critical edge. 196 if (Pred->succ_size() == 1) 197 continue; 198 // This block may not have curli live out at all if there is a PHI. 199 if (!lis_.isLiveOutOfMBB(*curli_, Pred)) 200 continue; 201 // Does this block have a successor outside the loop? 202 for (MachineBasicBlock::const_pred_iterator SI = Pred->succ_begin(), 203 SE = Pred->succ_end(); SI != SE; ++SI) { 204 const MachineBasicBlock *Succ = *SI; 205 if (Blocks.Loop.count(Succ) || Blocks.Exits.count(Succ)) 206 continue; 207 if (!lis_.isLiveInToMBB(*curli_, Succ)) 208 continue; 209 // This is a critical predecessor block. 210 CriticalPreds.insert(Pred); 211 break; 212 } 213 } 214 } 215 216 /// canSplitCriticalExits - Return true if it is possible to insert new exit 217 /// blocks before the blocks in CriticalExits. 218 bool 219 SplitAnalysis::canSplitCriticalExits(const SplitAnalysis::LoopBlocks &Blocks, 220 BlockPtrSet &CriticalExits) { 221 // If we don't allow critical edge splitting, require no critical exits. 222 if (!AllowSplit) 223 return CriticalExits.empty(); 224 225 for (BlockPtrSet::iterator I = CriticalExits.begin(), E = CriticalExits.end(); 226 I != E; ++I) { 227 const MachineBasicBlock *Succ = *I; 228 // We want to insert a new pre-exit MBB before Succ, and change all the 229 // in-loop blocks to branch to the pre-exit instead of Succ. 230 // Check that all the in-loop predecessors can be changed. 231 for (MachineBasicBlock::const_pred_iterator PI = Succ->pred_begin(), 232 PE = Succ->pred_end(); PI != PE; ++PI) { 233 const MachineBasicBlock *Pred = *PI; 234 // The external predecessors won't be altered. 235 if (!Blocks.Loop.count(Pred) && !Blocks.Preds.count(Pred)) 236 continue; 237 if (!canAnalyzeBranch(Pred)) 238 return false; 239 } 240 241 // If Succ's layout predecessor falls through, that too must be analyzable. 242 // We need to insert the pre-exit block in the gap. 243 MachineFunction::const_iterator MFI = Succ; 244 if (MFI == mf_.begin()) 245 continue; 246 if (!canAnalyzeBranch(--MFI)) 247 return false; 248 } 249 // No problems found. 250 return true; 251 } 252 253 void SplitAnalysis::analyze(const LiveInterval *li) { 254 clear(); 255 curli_ = li; 256 analyzeUses(); 257 } 258 259 const MachineLoop *SplitAnalysis::getBestSplitLoop() { 260 assert(curli_ && "Call analyze() before getBestSplitLoop"); 261 if (usingLoops_.empty()) 262 return 0; 263 264 LoopPtrSet Loops; 265 LoopBlocks Blocks; 266 BlockPtrSet CriticalExits; 267 268 // We split around loops where curli is used outside the periphery. 269 for (LoopCountMap::const_iterator I = usingLoops_.begin(), 270 E = usingLoops_.end(); I != E; ++I) { 271 const MachineLoop *Loop = I->first; 272 getLoopBlocks(Loop, Blocks); 273 DEBUG({ dbgs() << " "; print(Blocks, dbgs()); }); 274 275 switch(analyzeLoopPeripheralUse(Blocks)) { 276 case OutsideLoop: 277 break; 278 case MultiPeripheral: 279 // FIXME: We could split a live range with multiple uses in a peripheral 280 // block and still make progress. However, it is possible that splitting 281 // another live range will insert copies into a peripheral block, and 282 // there is a small chance we can enter an infinity loop, inserting copies 283 // forever. 284 // For safety, stick to splitting live ranges with uses outside the 285 // periphery. 286 DEBUG(dbgs() << ": multiple peripheral uses\n"); 287 break; 288 case ContainedInLoop: 289 DEBUG(dbgs() << ": fully contained\n"); 290 continue; 291 case SinglePeripheral: 292 DEBUG(dbgs() << ": single peripheral use\n"); 293 continue; 294 } 295 // Will it be possible to split around this loop? 296 getCriticalExits(Blocks, CriticalExits); 297 DEBUG(dbgs() << ": " << CriticalExits.size() << " critical exits\n"); 298 if (!canSplitCriticalExits(Blocks, CriticalExits)) 299 continue; 300 // This is a possible split. 301 Loops.insert(Loop); 302 } 303 304 DEBUG(dbgs() << " getBestSplitLoop found " << Loops.size() 305 << " candidate loops.\n"); 306 307 if (Loops.empty()) 308 return 0; 309 310 // Pick the earliest loop. 311 // FIXME: Are there other heuristics to consider? 312 const MachineLoop *Best = 0; 313 SlotIndex BestIdx; 314 for (LoopPtrSet::const_iterator I = Loops.begin(), E = Loops.end(); I != E; 315 ++I) { 316 SlotIndex Idx = lis_.getMBBStartIdx((*I)->getHeader()); 317 if (!Best || Idx < BestIdx) 318 Best = *I, BestIdx = Idx; 319 } 320 DEBUG(dbgs() << " getBestSplitLoop found " << *Best); 321 return Best; 322 } 323 324 //===----------------------------------------------------------------------===// 325 // LiveIntervalMap 326 //===----------------------------------------------------------------------===// 327 328 // Work around the fact that the std::pair constructors are broken for pointer 329 // pairs in some implementations. makeVV(x, 0) works. 330 static inline std::pair<const VNInfo*, VNInfo*> 331 makeVV(const VNInfo *a, VNInfo *b) { 332 return std::make_pair(a, b); 333 } 334 335 void LiveIntervalMap::reset(LiveInterval *li) { 336 li_ = li; 337 valueMap_.clear(); 338 } 339 340 bool LiveIntervalMap::isComplexMapped(const VNInfo *ParentVNI) const { 341 ValueMap::const_iterator i = valueMap_.find(ParentVNI); 342 return i != valueMap_.end() && i->second == 0; 343 } 344 345 // defValue - Introduce a li_ def for ParentVNI that could be later than 346 // ParentVNI->def. 347 VNInfo *LiveIntervalMap::defValue(const VNInfo *ParentVNI, SlotIndex Idx) { 348 assert(li_ && "call reset first"); 349 assert(ParentVNI && "Mapping NULL value"); 350 assert(Idx.isValid() && "Invalid SlotIndex"); 351 assert(parentli_.getVNInfoAt(Idx) == ParentVNI && "Bad ParentVNI"); 352 353 // Create a new value. 354 VNInfo *VNI = li_->getNextValue(Idx, 0, lis_.getVNInfoAllocator()); 355 356 // Preserve the PHIDef bit. 357 if (ParentVNI->isPHIDef() && Idx == ParentVNI->def) 358 VNI->setIsPHIDef(true); 359 360 // Use insert for lookup, so we can add missing values with a second lookup. 361 std::pair<ValueMap::iterator,bool> InsP = 362 valueMap_.insert(makeVV(ParentVNI, Idx == ParentVNI->def ? VNI : 0)); 363 364 // This is now a complex def. Mark with a NULL in valueMap. 365 if (!InsP.second) 366 InsP.first->second = 0; 367 368 return VNI; 369 } 370 371 372 // mapValue - Find the mapped value for ParentVNI at Idx. 373 // Potentially create phi-def values. 374 VNInfo *LiveIntervalMap::mapValue(const VNInfo *ParentVNI, SlotIndex Idx, 375 bool *simple) { 376 assert(li_ && "call reset first"); 377 assert(ParentVNI && "Mapping NULL value"); 378 assert(Idx.isValid() && "Invalid SlotIndex"); 379 assert(parentli_.getVNInfoAt(Idx) == ParentVNI && "Bad ParentVNI"); 380 381 // Use insert for lookup, so we can add missing values with a second lookup. 382 std::pair<ValueMap::iterator,bool> InsP = 383 valueMap_.insert(makeVV(ParentVNI, 0)); 384 385 // This was an unknown value. Create a simple mapping. 386 if (InsP.second) { 387 if (simple) *simple = true; 388 return InsP.first->second = li_->createValueCopy(ParentVNI, 389 lis_.getVNInfoAllocator()); 390 } 391 392 // This was a simple mapped value. 393 if (InsP.first->second) { 394 if (simple) *simple = true; 395 return InsP.first->second; 396 } 397 398 // This is a complex mapped value. There may be multiple defs, and we may need 399 // to create phi-defs. 400 if (simple) *simple = false; 401 MachineBasicBlock *IdxMBB = lis_.getMBBFromIndex(Idx); 402 assert(IdxMBB && "No MBB at Idx"); 403 404 // Is there a def in the same MBB we can extend? 405 if (VNInfo *VNI = extendTo(IdxMBB, Idx)) 406 return VNI; 407 408 // Now for the fun part. We know that ParentVNI potentially has multiple defs, 409 // and we may need to create even more phi-defs to preserve VNInfo SSA form. 410 // Perform a depth-first search for predecessor blocks where we know the 411 // dominating VNInfo. Insert phi-def VNInfos along the path back to IdxMBB. 412 413 // Track MBBs where we have created or learned the dominating value. 414 // This may change during the DFS as we create new phi-defs. 415 typedef DenseMap<MachineBasicBlock*, VNInfo*> MBBValueMap; 416 MBBValueMap DomValue; 417 typedef SplitAnalysis::BlockPtrSet BlockPtrSet; 418 BlockPtrSet Visited; 419 420 // Iterate over IdxMBB predecessors in a depth-first order. 421 // Skip begin() since that is always IdxMBB. 422 for (idf_ext_iterator<MachineBasicBlock*, BlockPtrSet> 423 IDFI = llvm::next(idf_ext_begin(IdxMBB, Visited)), 424 IDFE = idf_ext_end(IdxMBB, Visited); IDFI != IDFE;) { 425 MachineBasicBlock *MBB = *IDFI; 426 SlotIndex End = lis_.getMBBEndIdx(MBB).getPrevSlot(); 427 428 // We are operating on the restricted CFG where ParentVNI is live. 429 if (parentli_.getVNInfoAt(End) != ParentVNI) { 430 IDFI.skipChildren(); 431 continue; 432 } 433 434 // Do we have a dominating value in this block? 435 VNInfo *VNI = extendTo(MBB, End); 436 if (!VNI) { 437 ++IDFI; 438 continue; 439 } 440 441 // Yes, VNI dominates MBB. Make sure we visit MBB again from other paths. 442 Visited.erase(MBB); 443 444 // Track the path back to IdxMBB, creating phi-defs 445 // as needed along the way. 446 for (unsigned PI = IDFI.getPathLength()-1; PI != 0; --PI) { 447 // Start from MBB's immediate successor. End at IdxMBB. 448 MachineBasicBlock *Succ = IDFI.getPath(PI-1); 449 std::pair<MBBValueMap::iterator, bool> InsP = 450 DomValue.insert(MBBValueMap::value_type(Succ, VNI)); 451 452 // This is the first time we backtrack to Succ. 453 if (InsP.second) 454 continue; 455 456 // We reached Succ again with the same VNI. Nothing is going to change. 457 VNInfo *OVNI = InsP.first->second; 458 if (OVNI == VNI) 459 break; 460 461 // Succ already has a phi-def. No need to continue. 462 SlotIndex Start = lis_.getMBBStartIdx(Succ); 463 if (OVNI->def == Start) 464 break; 465 466 // We have a collision between the old and new VNI at Succ. That means 467 // neither dominates and we need a new phi-def. 468 VNI = li_->getNextValue(Start, 0, lis_.getVNInfoAllocator()); 469 VNI->setIsPHIDef(true); 470 InsP.first->second = VNI; 471 472 // Replace OVNI with VNI in the remaining path. 473 for (; PI > 1 ; --PI) { 474 MBBValueMap::iterator I = DomValue.find(IDFI.getPath(PI-2)); 475 if (I == DomValue.end() || I->second != OVNI) 476 break; 477 I->second = VNI; 478 } 479 } 480 481 // No need to search the children, we found a dominating value. 482 IDFI.skipChildren(); 483 } 484 485 // The search should at least find a dominating value for IdxMBB. 486 assert(!DomValue.empty() && "Couldn't find a reaching definition"); 487 488 // Since we went through the trouble of a full DFS visiting all reaching defs, 489 // the values in DomValue are now accurate. No more phi-defs are needed for 490 // these blocks, so we can color the live ranges. 491 // This makes the next mapValue call much faster. 492 VNInfo *IdxVNI = 0; 493 for (MBBValueMap::iterator I = DomValue.begin(), E = DomValue.end(); I != E; 494 ++I) { 495 MachineBasicBlock *MBB = I->first; 496 VNInfo *VNI = I->second; 497 SlotIndex Start = lis_.getMBBStartIdx(MBB); 498 if (MBB == IdxMBB) { 499 // Don't add full liveness to IdxMBB, stop at Idx. 500 if (Start != Idx) 501 li_->addRange(LiveRange(Start, Idx.getNextSlot(), VNI)); 502 // The caller had better add some liveness to IdxVNI, or it leaks. 503 IdxVNI = VNI; 504 } else 505 li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), VNI)); 506 } 507 508 assert(IdxVNI && "Didn't find value for Idx"); 509 return IdxVNI; 510 } 511 512 // extendTo - Find the last li_ value defined in MBB at or before Idx. The 513 // parentli_ is assumed to be live at Idx. Extend the live range to Idx. 514 // Return the found VNInfo, or NULL. 515 VNInfo *LiveIntervalMap::extendTo(MachineBasicBlock *MBB, SlotIndex Idx) { 516 assert(li_ && "call reset first"); 517 LiveInterval::iterator I = std::upper_bound(li_->begin(), li_->end(), Idx); 518 if (I == li_->begin()) 519 return 0; 520 --I; 521 if (I->end <= lis_.getMBBStartIdx(MBB)) 522 return 0; 523 if (I->end <= Idx) 524 I->end = Idx.getNextSlot(); 525 return I->valno; 526 } 527 528 // addSimpleRange - Add a simple range from parentli_ to li_. 529 // ParentVNI must be live in the [Start;End) interval. 530 void LiveIntervalMap::addSimpleRange(SlotIndex Start, SlotIndex End, 531 const VNInfo *ParentVNI) { 532 assert(li_ && "call reset first"); 533 bool simple; 534 VNInfo *VNI = mapValue(ParentVNI, Start, &simple); 535 // A simple mapping is easy. 536 if (simple) { 537 li_->addRange(LiveRange(Start, End, VNI)); 538 return; 539 } 540 541 // ParentVNI is a complex value. We must map per MBB. 542 MachineFunction::iterator MBB = lis_.getMBBFromIndex(Start); 543 MachineFunction::iterator MBBE = lis_.getMBBFromIndex(End.getPrevSlot()); 544 545 if (MBB == MBBE) { 546 li_->addRange(LiveRange(Start, End, VNI)); 547 return; 548 } 549 550 // First block. 551 li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), VNI)); 552 553 // Run sequence of full blocks. 554 for (++MBB; MBB != MBBE; ++MBB) { 555 Start = lis_.getMBBStartIdx(MBB); 556 li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), 557 mapValue(ParentVNI, Start))); 558 } 559 560 // Final block. 561 Start = lis_.getMBBStartIdx(MBB); 562 if (Start != End) 563 li_->addRange(LiveRange(Start, End, mapValue(ParentVNI, Start))); 564 } 565 566 /// addRange - Add live ranges to li_ where [Start;End) intersects parentli_. 567 /// All needed values whose def is not inside [Start;End) must be defined 568 /// beforehand so mapValue will work. 569 void LiveIntervalMap::addRange(SlotIndex Start, SlotIndex End) { 570 assert(li_ && "call reset first"); 571 LiveInterval::const_iterator B = parentli_.begin(), E = parentli_.end(); 572 LiveInterval::const_iterator I = std::lower_bound(B, E, Start); 573 574 // Check if --I begins before Start and overlaps. 575 if (I != B) { 576 --I; 577 if (I->end > Start) 578 addSimpleRange(Start, std::min(End, I->end), I->valno); 579 ++I; 580 } 581 582 // The remaining ranges begin after Start. 583 for (;I != E && I->start < End; ++I) 584 addSimpleRange(I->start, std::min(End, I->end), I->valno); 585 } 586 587 VNInfo *LiveIntervalMap::defByCopyFrom(unsigned Reg, 588 const VNInfo *ParentVNI, 589 MachineBasicBlock &MBB, 590 MachineBasicBlock::iterator I) { 591 const TargetInstrDesc &TID = MBB.getParent()->getTarget().getInstrInfo()-> 592 get(TargetOpcode::COPY); 593 MachineInstr *MI = BuildMI(MBB, I, DebugLoc(), TID, li_->reg).addReg(Reg); 594 SlotIndex DefIdx = lis_.InsertMachineInstrInMaps(MI).getDefIndex(); 595 VNInfo *VNI = defValue(ParentVNI, DefIdx); 596 VNI->setCopy(MI); 597 li_->addRange(LiveRange(DefIdx, DefIdx.getNextSlot(), VNI)); 598 return VNI; 599 } 600 601 //===----------------------------------------------------------------------===// 602 // Split Editor 603 //===----------------------------------------------------------------------===// 604 605 /// Create a new SplitEditor for editing the LiveInterval analyzed by SA. 606 SplitEditor::SplitEditor(SplitAnalysis &sa, LiveIntervals &lis, VirtRegMap &vrm, 607 LiveRangeEdit &edit) 608 : sa_(sa), lis_(lis), vrm_(vrm), 609 mri_(vrm.getMachineFunction().getRegInfo()), 610 tii_(*vrm.getMachineFunction().getTarget().getInstrInfo()), 611 edit_(edit), 612 dupli_(lis_, edit.getParent()), 613 openli_(lis_, edit.getParent()) 614 { 615 } 616 617 bool SplitEditor::intervalsLiveAt(SlotIndex Idx) const { 618 for (LiveRangeEdit::iterator I = edit_.begin(), E = edit_.end(); I != E; ++I) 619 if (*I != dupli_.getLI() && (*I)->liveAt(Idx)) 620 return true; 621 return false; 622 } 623 624 /// Create a new virtual register and live interval. 625 void SplitEditor::openIntv() { 626 assert(!openli_.getLI() && "Previous LI not closed before openIntv"); 627 628 if (!dupli_.getLI()) 629 dupli_.reset(&edit_.create(mri_, lis_, vrm_)); 630 631 openli_.reset(&edit_.create(mri_, lis_, vrm_)); 632 } 633 634 /// enterIntvBefore - Enter openli before the instruction at Idx. If curli is 635 /// not live before Idx, a COPY is not inserted. 636 void SplitEditor::enterIntvBefore(SlotIndex Idx) { 637 assert(openli_.getLI() && "openIntv not called before enterIntvBefore"); 638 DEBUG(dbgs() << " enterIntvBefore " << Idx); 639 VNInfo *ParentVNI = edit_.getParent().getVNInfoAt(Idx.getUseIndex()); 640 if (!ParentVNI) { 641 DEBUG(dbgs() << ": not live\n"); 642 return; 643 } 644 DEBUG(dbgs() << ": valno " << ParentVNI->id); 645 truncatedValues.insert(ParentVNI); 646 MachineInstr *MI = lis_.getInstructionFromIndex(Idx); 647 assert(MI && "enterIntvBefore called with invalid index"); 648 VNInfo *VNI = openli_.defByCopyFrom(edit_.getReg(), ParentVNI, 649 *MI->getParent(), MI); 650 openli_.getLI()->addRange(LiveRange(VNI->def, Idx.getDefIndex(), VNI)); 651 DEBUG(dbgs() << ": " << *openli_.getLI() << '\n'); 652 } 653 654 /// enterIntvAtEnd - Enter openli at the end of MBB. 655 void SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) { 656 assert(openli_.getLI() && "openIntv not called before enterIntvAtEnd"); 657 SlotIndex End = lis_.getMBBEndIdx(&MBB); 658 DEBUG(dbgs() << " enterIntvAtEnd BB#" << MBB.getNumber() << ", " << End); 659 VNInfo *ParentVNI = edit_.getParent().getVNInfoAt(End.getPrevSlot()); 660 if (!ParentVNI) { 661 DEBUG(dbgs() << ": not live\n"); 662 return; 663 } 664 DEBUG(dbgs() << ": valno " << ParentVNI->id); 665 truncatedValues.insert(ParentVNI); 666 VNInfo *VNI = openli_.defByCopyFrom(edit_.getReg(), ParentVNI, 667 MBB, MBB.getFirstTerminator()); 668 // Make sure openli is live out of MBB. 669 openli_.getLI()->addRange(LiveRange(VNI->def, End, VNI)); 670 DEBUG(dbgs() << ": " << *openli_.getLI() << '\n'); 671 } 672 673 /// useIntv - indicate that all instructions in MBB should use openli. 674 void SplitEditor::useIntv(const MachineBasicBlock &MBB) { 675 useIntv(lis_.getMBBStartIdx(&MBB), lis_.getMBBEndIdx(&MBB)); 676 } 677 678 void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) { 679 assert(openli_.getLI() && "openIntv not called before useIntv"); 680 openli_.addRange(Start, End); 681 DEBUG(dbgs() << " use [" << Start << ';' << End << "): " 682 << *openli_.getLI() << '\n'); 683 } 684 685 /// leaveIntvAfter - Leave openli after the instruction at Idx. 686 void SplitEditor::leaveIntvAfter(SlotIndex Idx) { 687 assert(openli_.getLI() && "openIntv not called before leaveIntvAfter"); 688 DEBUG(dbgs() << " leaveIntvAfter " << Idx); 689 690 // The interval must be live beyond the instruction at Idx. 691 VNInfo *ParentVNI = edit_.getParent().getVNInfoAt(Idx.getBoundaryIndex()); 692 if (!ParentVNI) { 693 DEBUG(dbgs() << ": not live\n"); 694 return; 695 } 696 DEBUG(dbgs() << ": valno " << ParentVNI->id); 697 698 MachineBasicBlock::iterator MII = lis_.getInstructionFromIndex(Idx); 699 MachineBasicBlock *MBB = MII->getParent(); 700 VNInfo *VNI = dupli_.defByCopyFrom(openli_.getLI()->reg, ParentVNI, *MBB, 701 llvm::next(MII)); 702 703 // Finally we must make sure that openli is properly extended from Idx to the 704 // new copy. 705 openli_.addSimpleRange(Idx.getBoundaryIndex(), VNI->def, ParentVNI); 706 DEBUG(dbgs() << ": " << *openli_.getLI() << '\n'); 707 } 708 709 /// leaveIntvAtTop - Leave the interval at the top of MBB. 710 /// Currently, only one value can leave the interval. 711 void SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) { 712 assert(openli_.getLI() && "openIntv not called before leaveIntvAtTop"); 713 SlotIndex Start = lis_.getMBBStartIdx(&MBB); 714 DEBUG(dbgs() << " leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start); 715 716 VNInfo *ParentVNI = edit_.getParent().getVNInfoAt(Start); 717 if (!ParentVNI) { 718 DEBUG(dbgs() << ": not live\n"); 719 return; 720 } 721 722 // We are going to insert a back copy, so we must have a dupli_. 723 VNInfo *VNI = dupli_.defByCopyFrom(openli_.getLI()->reg, ParentVNI, 724 MBB, MBB.begin()); 725 726 // Finally we must make sure that openli is properly extended from Start to 727 // the new copy. 728 openli_.addSimpleRange(Start, VNI->def, ParentVNI); 729 DEBUG(dbgs() << ": " << *openli_.getLI() << '\n'); 730 } 731 732 /// closeIntv - Indicate that we are done editing the currently open 733 /// LiveInterval, and ranges can be trimmed. 734 void SplitEditor::closeIntv() { 735 assert(openli_.getLI() && "openIntv not called before closeIntv"); 736 737 DEBUG(dbgs() << " closeIntv cleaning up\n"); 738 DEBUG(dbgs() << " open " << *openli_.getLI() << '\n'); 739 openli_.reset(0); 740 } 741 742 /// rewrite - Rewrite all uses of reg to use the new registers. 743 void SplitEditor::rewrite(unsigned reg) { 744 for (MachineRegisterInfo::reg_iterator RI = mri_.reg_begin(reg), 745 RE = mri_.reg_end(); RI != RE;) { 746 MachineOperand &MO = RI.getOperand(); 747 MachineInstr *MI = MO.getParent(); 748 ++RI; 749 if (MI->isDebugValue()) { 750 DEBUG(dbgs() << "Zapping " << *MI); 751 // FIXME: We can do much better with debug values. 752 MO.setReg(0); 753 continue; 754 } 755 SlotIndex Idx = lis_.getInstructionIndex(MI); 756 Idx = MO.isUse() ? Idx.getUseIndex() : Idx.getDefIndex(); 757 LiveInterval *LI = 0; 758 for (LiveRangeEdit::iterator I = edit_.begin(), E = edit_.end(); I != E; 759 ++I) { 760 LiveInterval *testli = *I; 761 if (testli->liveAt(Idx)) { 762 LI = testli; 763 break; 764 } 765 } 766 DEBUG(dbgs() << " rewr BB#" << MI->getParent()->getNumber() << '\t'<< Idx); 767 assert(LI && "No register was live at use"); 768 MO.setReg(LI->reg); 769 DEBUG(dbgs() << '\t' << *MI); 770 } 771 } 772 773 void 774 SplitEditor::addTruncSimpleRange(SlotIndex Start, SlotIndex End, VNInfo *VNI) { 775 // Build vector of iterator pairs from the intervals. 776 typedef std::pair<LiveInterval::const_iterator, 777 LiveInterval::const_iterator> IIPair; 778 SmallVector<IIPair, 8> Iters; 779 for (LiveRangeEdit::iterator LI = edit_.begin(), LE = edit_.end(); LI != LE; 780 ++LI) { 781 if (*LI == dupli_.getLI()) 782 continue; 783 LiveInterval::const_iterator I = (*LI)->find(Start); 784 LiveInterval::const_iterator E = (*LI)->end(); 785 if (I != E) 786 Iters.push_back(std::make_pair(I, E)); 787 } 788 789 SlotIndex sidx = Start; 790 // Break [Start;End) into segments that don't overlap any intervals. 791 for (;;) { 792 SlotIndex next = sidx, eidx = End; 793 // Find overlapping intervals. 794 for (unsigned i = 0; i != Iters.size() && sidx < eidx; ++i) { 795 LiveInterval::const_iterator I = Iters[i].first; 796 // Interval I is overlapping [sidx;eidx). Trim sidx. 797 if (I->start <= sidx) { 798 sidx = I->end; 799 // Move to the next run, remove iters when all are consumed. 800 I = ++Iters[i].first; 801 if (I == Iters[i].second) { 802 Iters.erase(Iters.begin() + i); 803 --i; 804 continue; 805 } 806 } 807 // Trim eidx too if needed. 808 if (I->start >= eidx) 809 continue; 810 eidx = I->start; 811 next = I->end; 812 } 813 // Now, [sidx;eidx) doesn't overlap anything in intervals_. 814 if (sidx < eidx) 815 dupli_.addSimpleRange(sidx, eidx, VNI); 816 // If the interval end was truncated, we can try again from next. 817 if (next <= sidx) 818 break; 819 sidx = next; 820 } 821 } 822 823 void SplitEditor::computeRemainder() { 824 // First we need to fill in the live ranges in dupli. 825 // If values were redefined, we need a full recoloring with SSA update. 826 // If values were truncated, we only need to truncate the ranges. 827 // If values were partially rematted, we should shrink to uses. 828 // If values were fully rematted, they should be omitted. 829 // FIXME: If a single value is redefined, just move the def and truncate. 830 LiveInterval &parent = edit_.getParent(); 831 832 // Values that are fully contained in the split intervals. 833 SmallPtrSet<const VNInfo*, 8> deadValues; 834 // Map all curli values that should have live defs in dupli. 835 for (LiveInterval::const_vni_iterator I = parent.vni_begin(), 836 E = parent.vni_end(); I != E; ++I) { 837 const VNInfo *VNI = *I; 838 // Original def is contained in the split intervals. 839 if (intervalsLiveAt(VNI->def)) { 840 // Did this value escape? 841 if (dupli_.isMapped(VNI)) 842 truncatedValues.insert(VNI); 843 else 844 deadValues.insert(VNI); 845 continue; 846 } 847 // Add minimal live range at the definition. 848 VNInfo *DVNI = dupli_.defValue(VNI, VNI->def); 849 dupli_.getLI()->addRange(LiveRange(VNI->def, VNI->def.getNextSlot(), DVNI)); 850 } 851 852 // Add all ranges to dupli. 853 for (LiveInterval::const_iterator I = parent.begin(), E = parent.end(); 854 I != E; ++I) { 855 const LiveRange &LR = *I; 856 if (truncatedValues.count(LR.valno)) { 857 // recolor after removing intervals_. 858 addTruncSimpleRange(LR.start, LR.end, LR.valno); 859 } else if (!deadValues.count(LR.valno)) { 860 // recolor without truncation. 861 dupli_.addSimpleRange(LR.start, LR.end, LR.valno); 862 } 863 } 864 } 865 866 void SplitEditor::finish() { 867 assert(!openli_.getLI() && "Previous LI not closed before rewrite"); 868 assert(dupli_.getLI() && "No dupli for rewrite. Noop spilt?"); 869 870 // Complete dupli liveness. 871 computeRemainder(); 872 873 // Get rid of unused values and set phi-kill flags. 874 for (LiveRangeEdit::iterator I = edit_.begin(), E = edit_.end(); I != E; ++I) 875 (*I)->RenumberValues(lis_); 876 877 // Rewrite instructions. 878 rewrite(edit_.getReg()); 879 880 // Now check if any registers were separated into multiple components. 881 ConnectedVNInfoEqClasses ConEQ(lis_); 882 for (unsigned i = 0, e = edit_.size(); i != e; ++i) { 883 // Don't use iterators, they are invalidated by create() below. 884 LiveInterval *li = edit_.get(i); 885 unsigned NumComp = ConEQ.Classify(li); 886 if (NumComp <= 1) 887 continue; 888 DEBUG(dbgs() << " " << NumComp << " components: " << *li << '\n'); 889 SmallVector<LiveInterval*, 8> dups; 890 dups.push_back(li); 891 for (unsigned i = 1; i != NumComp; ++i) 892 dups.push_back(&edit_.create(mri_, lis_, vrm_)); 893 ConEQ.Distribute(&dups[0]); 894 // Rewrite uses to the new regs. 895 rewrite(li->reg); 896 } 897 898 // Calculate spill weight and allocation hints for new intervals. 899 VirtRegAuxInfo vrai(vrm_.getMachineFunction(), lis_, sa_.loops_); 900 for (LiveRangeEdit::iterator I = edit_.begin(), E = edit_.end(); I != E; ++I){ 901 LiveInterval &li = **I; 902 vrai.CalculateRegClass(li.reg); 903 vrai.CalculateWeightAndHint(li); 904 DEBUG(dbgs() << " new interval " << mri_.getRegClass(li.reg)->getName() 905 << ":" << li << '\n'); 906 } 907 } 908 909 910 //===----------------------------------------------------------------------===// 911 // Loop Splitting 912 //===----------------------------------------------------------------------===// 913 914 void SplitEditor::splitAroundLoop(const MachineLoop *Loop) { 915 SplitAnalysis::LoopBlocks Blocks; 916 sa_.getLoopBlocks(Loop, Blocks); 917 918 DEBUG({ 919 dbgs() << " splitAround"; sa_.print(Blocks, dbgs()); dbgs() << '\n'; 920 }); 921 922 // Break critical edges as needed. 923 SplitAnalysis::BlockPtrSet CriticalExits; 924 sa_.getCriticalExits(Blocks, CriticalExits); 925 assert(CriticalExits.empty() && "Cannot break critical exits yet"); 926 927 // Create new live interval for the loop. 928 openIntv(); 929 930 // Insert copies in the predecessors. 931 for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Preds.begin(), 932 E = Blocks.Preds.end(); I != E; ++I) { 933 MachineBasicBlock &MBB = const_cast<MachineBasicBlock&>(**I); 934 enterIntvAtEnd(MBB); 935 } 936 937 // Switch all loop blocks. 938 for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Loop.begin(), 939 E = Blocks.Loop.end(); I != E; ++I) 940 useIntv(**I); 941 942 // Insert back copies in the exit blocks. 943 for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Exits.begin(), 944 E = Blocks.Exits.end(); I != E; ++I) { 945 MachineBasicBlock &MBB = const_cast<MachineBasicBlock&>(**I); 946 leaveIntvAtTop(MBB); 947 } 948 949 // Done. 950 closeIntv(); 951 finish(); 952 } 953 954 955 //===----------------------------------------------------------------------===// 956 // Single Block Splitting 957 //===----------------------------------------------------------------------===// 958 959 /// getMultiUseBlocks - if curli has more than one use in a basic block, it 960 /// may be an advantage to split curli for the duration of the block. 961 bool SplitAnalysis::getMultiUseBlocks(BlockPtrSet &Blocks) { 962 // If curli is local to one block, there is no point to splitting it. 963 if (usingBlocks_.size() <= 1) 964 return false; 965 // Add blocks with multiple uses. 966 for (BlockCountMap::iterator I = usingBlocks_.begin(), E = usingBlocks_.end(); 967 I != E; ++I) 968 switch (I->second) { 969 case 0: 970 case 1: 971 continue; 972 case 2: { 973 // When there are only two uses and curli is both live in and live out, 974 // we don't really win anything by isolating the block since we would be 975 // inserting two copies. 976 // The remaing register would still have two uses in the block. (Unless it 977 // separates into disconnected components). 978 if (lis_.isLiveInToMBB(*curli_, I->first) && 979 lis_.isLiveOutOfMBB(*curli_, I->first)) 980 continue; 981 } // Fall through. 982 default: 983 Blocks.insert(I->first); 984 } 985 return !Blocks.empty(); 986 } 987 988 /// splitSingleBlocks - Split curli into a separate live interval inside each 989 /// basic block in Blocks. 990 void SplitEditor::splitSingleBlocks(const SplitAnalysis::BlockPtrSet &Blocks) { 991 DEBUG(dbgs() << " splitSingleBlocks for " << Blocks.size() << " blocks.\n"); 992 // Determine the first and last instruction using curli in each block. 993 typedef std::pair<SlotIndex,SlotIndex> IndexPair; 994 typedef DenseMap<const MachineBasicBlock*,IndexPair> IndexPairMap; 995 IndexPairMap MBBRange; 996 for (SplitAnalysis::InstrPtrSet::const_iterator I = sa_.usingInstrs_.begin(), 997 E = sa_.usingInstrs_.end(); I != E; ++I) { 998 const MachineBasicBlock *MBB = (*I)->getParent(); 999 if (!Blocks.count(MBB)) 1000 continue; 1001 SlotIndex Idx = lis_.getInstructionIndex(*I); 1002 DEBUG(dbgs() << " BB#" << MBB->getNumber() << '\t' << Idx << '\t' << **I); 1003 IndexPair &IP = MBBRange[MBB]; 1004 if (!IP.first.isValid() || Idx < IP.first) 1005 IP.first = Idx; 1006 if (!IP.second.isValid() || Idx > IP.second) 1007 IP.second = Idx; 1008 } 1009 1010 // Create a new interval for each block. 1011 for (SplitAnalysis::BlockPtrSet::const_iterator I = Blocks.begin(), 1012 E = Blocks.end(); I != E; ++I) { 1013 IndexPair &IP = MBBRange[*I]; 1014 DEBUG(dbgs() << " splitting for BB#" << (*I)->getNumber() << ": [" 1015 << IP.first << ';' << IP.second << ")\n"); 1016 assert(IP.first.isValid() && IP.second.isValid()); 1017 1018 openIntv(); 1019 enterIntvBefore(IP.first); 1020 useIntv(IP.first.getBaseIndex(), IP.second.getBoundaryIndex()); 1021 leaveIntvAfter(IP.second); 1022 closeIntv(); 1023 } 1024 finish(); 1025 } 1026 1027 1028 //===----------------------------------------------------------------------===// 1029 // Sub Block Splitting 1030 //===----------------------------------------------------------------------===// 1031 1032 /// getBlockForInsideSplit - If curli is contained inside a single basic block, 1033 /// and it wou pay to subdivide the interval inside that block, return it. 1034 /// Otherwise return NULL. The returned block can be passed to 1035 /// SplitEditor::splitInsideBlock. 1036 const MachineBasicBlock *SplitAnalysis::getBlockForInsideSplit() { 1037 // The interval must be exclusive to one block. 1038 if (usingBlocks_.size() != 1) 1039 return 0; 1040 // Don't to this for less than 4 instructions. We want to be sure that 1041 // splitting actually reduces the instruction count per interval. 1042 if (usingInstrs_.size() < 4) 1043 return 0; 1044 return usingBlocks_.begin()->first; 1045 } 1046 1047 /// splitInsideBlock - Split curli into multiple intervals inside MBB. 1048 void SplitEditor::splitInsideBlock(const MachineBasicBlock *MBB) { 1049 SmallVector<SlotIndex, 32> Uses; 1050 Uses.reserve(sa_.usingInstrs_.size()); 1051 for (SplitAnalysis::InstrPtrSet::const_iterator I = sa_.usingInstrs_.begin(), 1052 E = sa_.usingInstrs_.end(); I != E; ++I) 1053 if ((*I)->getParent() == MBB) 1054 Uses.push_back(lis_.getInstructionIndex(*I)); 1055 DEBUG(dbgs() << " splitInsideBlock BB#" << MBB->getNumber() << " for " 1056 << Uses.size() << " instructions.\n"); 1057 assert(Uses.size() >= 3 && "Need at least 3 instructions"); 1058 array_pod_sort(Uses.begin(), Uses.end()); 1059 1060 // Simple algorithm: Find the largest gap between uses as determined by slot 1061 // indices. Create new intervals for instructions before the gap and after the 1062 // gap. 1063 unsigned bestPos = 0; 1064 int bestGap = 0; 1065 DEBUG(dbgs() << " dist (" << Uses[0]); 1066 for (unsigned i = 1, e = Uses.size(); i != e; ++i) { 1067 int g = Uses[i-1].distance(Uses[i]); 1068 DEBUG(dbgs() << ") -" << g << "- (" << Uses[i]); 1069 if (g > bestGap) 1070 bestPos = i, bestGap = g; 1071 } 1072 DEBUG(dbgs() << "), best: -" << bestGap << "-\n"); 1073 1074 // bestPos points to the first use after the best gap. 1075 assert(bestPos > 0 && "Invalid gap"); 1076 1077 // FIXME: Don't create intervals for low densities. 1078 1079 // First interval before the gap. Don't create single-instr intervals. 1080 if (bestPos > 1) { 1081 openIntv(); 1082 enterIntvBefore(Uses.front()); 1083 useIntv(Uses.front().getBaseIndex(), Uses[bestPos-1].getBoundaryIndex()); 1084 leaveIntvAfter(Uses[bestPos-1]); 1085 closeIntv(); 1086 } 1087 1088 // Second interval after the gap. 1089 if (bestPos < Uses.size()-1) { 1090 openIntv(); 1091 enterIntvBefore(Uses[bestPos]); 1092 useIntv(Uses[bestPos].getBaseIndex(), Uses.back().getBoundaryIndex()); 1093 leaveIntvAfter(Uses.back()); 1094 closeIntv(); 1095 } 1096 1097 finish(); 1098 } 1099