1 //===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the SplitAnalysis class as well as mutator functions for
11 // live range splitting.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #define DEBUG_TYPE "splitter"
16 #include "SplitKit.h"
17 #include "LiveRangeEdit.h"
18 #include "VirtRegMap.h"
19 #include "llvm/CodeGen/CalcSpillWeights.h"
20 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
21 #include "llvm/CodeGen/MachineInstrBuilder.h"
22 #include "llvm/CodeGen/MachineLoopInfo.h"
23 #include "llvm/CodeGen/MachineRegisterInfo.h"
24 #include "llvm/Support/CommandLine.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/raw_ostream.h"
27 #include "llvm/Target/TargetInstrInfo.h"
28 #include "llvm/Target/TargetMachine.h"
29 
30 using namespace llvm;
31 
32 static cl::opt<bool>
33 AllowSplit("spiller-splits-edges",
34            cl::desc("Allow critical edge splitting during spilling"));
35 
36 //===----------------------------------------------------------------------===//
37 //                                 Split Analysis
38 //===----------------------------------------------------------------------===//
39 
40 SplitAnalysis::SplitAnalysis(const MachineFunction &mf,
41                              const LiveIntervals &lis,
42                              const MachineLoopInfo &mli)
43   : mf_(mf),
44     lis_(lis),
45     loops_(mli),
46     tii_(*mf.getTarget().getInstrInfo()),
47     curli_(0) {}
48 
49 void SplitAnalysis::clear() {
50   usingInstrs_.clear();
51   usingBlocks_.clear();
52   usingLoops_.clear();
53   curli_ = 0;
54 }
55 
56 bool SplitAnalysis::canAnalyzeBranch(const MachineBasicBlock *MBB) {
57   MachineBasicBlock *T, *F;
58   SmallVector<MachineOperand, 4> Cond;
59   return !tii_.AnalyzeBranch(const_cast<MachineBasicBlock&>(*MBB), T, F, Cond);
60 }
61 
62 /// analyzeUses - Count instructions, basic blocks, and loops using curli.
63 void SplitAnalysis::analyzeUses() {
64   const MachineRegisterInfo &MRI = mf_.getRegInfo();
65   for (MachineRegisterInfo::reg_iterator I = MRI.reg_begin(curli_->reg);
66        MachineInstr *MI = I.skipInstruction();) {
67     if (MI->isDebugValue() || !usingInstrs_.insert(MI))
68       continue;
69     MachineBasicBlock *MBB = MI->getParent();
70     if (usingBlocks_[MBB]++)
71       continue;
72     for (MachineLoop *Loop = loops_.getLoopFor(MBB); Loop;
73          Loop = Loop->getParentLoop())
74       usingLoops_[Loop]++;
75   }
76   DEBUG(dbgs() << "  counted "
77                << usingInstrs_.size() << " instrs, "
78                << usingBlocks_.size() << " blocks, "
79                << usingLoops_.size()  << " loops.\n");
80 }
81 
82 // Get three sets of basic blocks surrounding a loop: Blocks inside the loop,
83 // predecessor blocks, and exit blocks.
84 void SplitAnalysis::getLoopBlocks(const MachineLoop *Loop, LoopBlocks &Blocks) {
85   Blocks.clear();
86 
87   // Blocks in the loop.
88   Blocks.Loop.insert(Loop->block_begin(), Loop->block_end());
89 
90   // Predecessor blocks.
91   const MachineBasicBlock *Header = Loop->getHeader();
92   for (MachineBasicBlock::const_pred_iterator I = Header->pred_begin(),
93        E = Header->pred_end(); I != E; ++I)
94     if (!Blocks.Loop.count(*I))
95       Blocks.Preds.insert(*I);
96 
97   // Exit blocks.
98   for (MachineLoop::block_iterator I = Loop->block_begin(),
99        E = Loop->block_end(); I != E; ++I) {
100     const MachineBasicBlock *MBB = *I;
101     for (MachineBasicBlock::const_succ_iterator SI = MBB->succ_begin(),
102        SE = MBB->succ_end(); SI != SE; ++SI)
103       if (!Blocks.Loop.count(*SI))
104         Blocks.Exits.insert(*SI);
105   }
106 }
107 
108 /// analyzeLoopPeripheralUse - Return an enum describing how curli_ is used in
109 /// and around the Loop.
110 SplitAnalysis::LoopPeripheralUse SplitAnalysis::
111 analyzeLoopPeripheralUse(const SplitAnalysis::LoopBlocks &Blocks) {
112   LoopPeripheralUse use = ContainedInLoop;
113   for (BlockCountMap::iterator I = usingBlocks_.begin(), E = usingBlocks_.end();
114        I != E; ++I) {
115     const MachineBasicBlock *MBB = I->first;
116     // Is this a peripheral block?
117     if (use < MultiPeripheral &&
118         (Blocks.Preds.count(MBB) || Blocks.Exits.count(MBB))) {
119       if (I->second > 1) use = MultiPeripheral;
120       else               use = SinglePeripheral;
121       continue;
122     }
123     // Is it a loop block?
124     if (Blocks.Loop.count(MBB))
125       continue;
126     // It must be an unrelated block.
127     return OutsideLoop;
128   }
129   return use;
130 }
131 
132 /// getCriticalExits - It may be necessary to partially break critical edges
133 /// leaving the loop if an exit block has phi uses of curli. Collect the exit
134 /// blocks that need special treatment into CriticalExits.
135 void SplitAnalysis::getCriticalExits(const SplitAnalysis::LoopBlocks &Blocks,
136                                      BlockPtrSet &CriticalExits) {
137   CriticalExits.clear();
138 
139   // A critical exit block contains a phi def of curli, and has a predecessor
140   // that is not in the loop nor a loop predecessor.
141   // For such an exit block, the edges carrying the new variable must be moved
142   // to a new pre-exit block.
143   for (BlockPtrSet::iterator I = Blocks.Exits.begin(), E = Blocks.Exits.end();
144        I != E; ++I) {
145     const MachineBasicBlock *Succ = *I;
146     SlotIndex SuccIdx = lis_.getMBBStartIdx(Succ);
147     VNInfo *SuccVNI = curli_->getVNInfoAt(SuccIdx);
148     // This exit may not have curli live in at all. No need to split.
149     if (!SuccVNI)
150       continue;
151     // If this is not a PHI def, it is either using a value from before the
152     // loop, or a value defined inside the loop. Both are safe.
153     if (!SuccVNI->isPHIDef() || SuccVNI->def.getBaseIndex() != SuccIdx)
154       continue;
155     // This exit block does have a PHI. Does it also have a predecessor that is
156     // not a loop block or loop predecessor?
157     for (MachineBasicBlock::const_pred_iterator PI = Succ->pred_begin(),
158          PE = Succ->pred_end(); PI != PE; ++PI) {
159       const MachineBasicBlock *Pred = *PI;
160       if (Blocks.Loop.count(Pred) || Blocks.Preds.count(Pred))
161         continue;
162       // This is a critical exit block, and we need to split the exit edge.
163       CriticalExits.insert(Succ);
164       break;
165     }
166   }
167 }
168 
169 /// canSplitCriticalExits - Return true if it is possible to insert new exit
170 /// blocks before the blocks in CriticalExits.
171 bool
172 SplitAnalysis::canSplitCriticalExits(const SplitAnalysis::LoopBlocks &Blocks,
173                                      BlockPtrSet &CriticalExits) {
174   // If we don't allow critical edge splitting, require no critical exits.
175   if (!AllowSplit)
176     return CriticalExits.empty();
177 
178   for (BlockPtrSet::iterator I = CriticalExits.begin(), E = CriticalExits.end();
179        I != E; ++I) {
180     const MachineBasicBlock *Succ = *I;
181     // We want to insert a new pre-exit MBB before Succ, and change all the
182     // in-loop blocks to branch to the pre-exit instead of Succ.
183     // Check that all the in-loop predecessors can be changed.
184     for (MachineBasicBlock::const_pred_iterator PI = Succ->pred_begin(),
185          PE = Succ->pred_end(); PI != PE; ++PI) {
186       const MachineBasicBlock *Pred = *PI;
187       // The external predecessors won't be altered.
188       if (!Blocks.Loop.count(Pred) && !Blocks.Preds.count(Pred))
189         continue;
190       if (!canAnalyzeBranch(Pred))
191         return false;
192     }
193 
194     // If Succ's layout predecessor falls through, that too must be analyzable.
195     // We need to insert the pre-exit block in the gap.
196     MachineFunction::const_iterator MFI = Succ;
197     if (MFI == mf_.begin())
198       continue;
199     if (!canAnalyzeBranch(--MFI))
200       return false;
201   }
202   // No problems found.
203   return true;
204 }
205 
206 void SplitAnalysis::analyze(const LiveInterval *li) {
207   clear();
208   curli_ = li;
209   analyzeUses();
210 }
211 
212 const MachineLoop *SplitAnalysis::getBestSplitLoop() {
213   assert(curli_ && "Call analyze() before getBestSplitLoop");
214   if (usingLoops_.empty())
215     return 0;
216 
217   LoopPtrSet Loops;
218   LoopBlocks Blocks;
219   BlockPtrSet CriticalExits;
220 
221   // We split around loops where curli is used outside the periphery.
222   for (LoopCountMap::const_iterator I = usingLoops_.begin(),
223        E = usingLoops_.end(); I != E; ++I) {
224     const MachineLoop *Loop = I->first;
225     getLoopBlocks(Loop, Blocks);
226 
227     switch(analyzeLoopPeripheralUse(Blocks)) {
228     case OutsideLoop:
229       break;
230     case MultiPeripheral:
231       // FIXME: We could split a live range with multiple uses in a peripheral
232       // block and still make progress. However, it is possible that splitting
233       // another live range will insert copies into a peripheral block, and
234       // there is a small chance we can enter an infinity loop, inserting copies
235       // forever.
236       // For safety, stick to splitting live ranges with uses outside the
237       // periphery.
238       DEBUG(dbgs() << "  multiple peripheral uses in " << *Loop);
239       break;
240     case ContainedInLoop:
241       DEBUG(dbgs() << "  contained in " << *Loop);
242       continue;
243     case SinglePeripheral:
244       DEBUG(dbgs() << "  single peripheral use in " << *Loop);
245       continue;
246     }
247     // Will it be possible to split around this loop?
248     getCriticalExits(Blocks, CriticalExits);
249     DEBUG(dbgs() << "  " << CriticalExits.size() << " critical exits from "
250                  << *Loop);
251     if (!canSplitCriticalExits(Blocks, CriticalExits))
252       continue;
253     // This is a possible split.
254     Loops.insert(Loop);
255   }
256 
257   DEBUG(dbgs() << "  getBestSplitLoop found " << Loops.size()
258                << " candidate loops.\n");
259 
260   if (Loops.empty())
261     return 0;
262 
263   // Pick the earliest loop.
264   // FIXME: Are there other heuristics to consider?
265   const MachineLoop *Best = 0;
266   SlotIndex BestIdx;
267   for (LoopPtrSet::const_iterator I = Loops.begin(), E = Loops.end(); I != E;
268        ++I) {
269     SlotIndex Idx = lis_.getMBBStartIdx((*I)->getHeader());
270     if (!Best || Idx < BestIdx)
271       Best = *I, BestIdx = Idx;
272   }
273   DEBUG(dbgs() << "  getBestSplitLoop found " << *Best);
274   return Best;
275 }
276 
277 /// getMultiUseBlocks - if curli has more than one use in a basic block, it
278 /// may be an advantage to split curli for the duration of the block.
279 bool SplitAnalysis::getMultiUseBlocks(BlockPtrSet &Blocks) {
280   // If curli is local to one block, there is no point to splitting it.
281   if (usingBlocks_.size() <= 1)
282     return false;
283   // Add blocks with multiple uses.
284   for (BlockCountMap::iterator I = usingBlocks_.begin(), E = usingBlocks_.end();
285        I != E; ++I)
286     switch (I->second) {
287     case 0:
288     case 1:
289       continue;
290     case 2: {
291       // It doesn't pay to split a 2-instr block if it redefines curli.
292       VNInfo *VN1 = curli_->getVNInfoAt(lis_.getMBBStartIdx(I->first));
293       VNInfo *VN2 =
294         curli_->getVNInfoAt(lis_.getMBBEndIdx(I->first).getPrevIndex());
295       // live-in and live-out with a different value.
296       if (VN1 && VN2 && VN1 != VN2)
297         continue;
298     } // Fall through.
299     default:
300       Blocks.insert(I->first);
301     }
302   return !Blocks.empty();
303 }
304 
305 //===----------------------------------------------------------------------===//
306 //                               LiveIntervalMap
307 //===----------------------------------------------------------------------===//
308 
309 // Work around the fact that the std::pair constructors are broken for pointer
310 // pairs in some implementations. makeVV(x, 0) works.
311 static inline std::pair<const VNInfo*, VNInfo*>
312 makeVV(const VNInfo *a, VNInfo *b) {
313   return std::make_pair(a, b);
314 }
315 
316 void LiveIntervalMap::reset(LiveInterval *li) {
317   li_ = li;
318   valueMap_.clear();
319 }
320 
321 bool LiveIntervalMap::isComplexMapped(const VNInfo *ParentVNI) const {
322   ValueMap::const_iterator i = valueMap_.find(ParentVNI);
323   return i != valueMap_.end() && i->second == 0;
324 }
325 
326 // defValue - Introduce a li_ def for ParentVNI that could be later than
327 // ParentVNI->def.
328 VNInfo *LiveIntervalMap::defValue(const VNInfo *ParentVNI, SlotIndex Idx) {
329   assert(li_ && "call reset first");
330   assert(ParentVNI && "Mapping  NULL value");
331   assert(Idx.isValid() && "Invalid SlotIndex");
332   assert(parentli_.getVNInfoAt(Idx) == ParentVNI && "Bad ParentVNI");
333 
334   // Create a new value.
335   VNInfo *VNI = li_->getNextValue(Idx, 0, lis_.getVNInfoAllocator());
336 
337   // Use insert for lookup, so we can add missing values with a second lookup.
338   std::pair<ValueMap::iterator,bool> InsP =
339     valueMap_.insert(makeVV(ParentVNI, Idx == ParentVNI->def ? VNI : 0));
340 
341   // This is now a complex def. Mark with a NULL in valueMap.
342   if (!InsP.second)
343     InsP.first->second = 0;
344 
345   return VNI;
346 }
347 
348 
349 // mapValue - Find the mapped value for ParentVNI at Idx.
350 // Potentially create phi-def values.
351 VNInfo *LiveIntervalMap::mapValue(const VNInfo *ParentVNI, SlotIndex Idx,
352                                   bool *simple) {
353   assert(li_ && "call reset first");
354   assert(ParentVNI && "Mapping  NULL value");
355   assert(Idx.isValid() && "Invalid SlotIndex");
356   assert(parentli_.getVNInfoAt(Idx) == ParentVNI && "Bad ParentVNI");
357 
358   // Use insert for lookup, so we can add missing values with a second lookup.
359   std::pair<ValueMap::iterator,bool> InsP =
360     valueMap_.insert(makeVV(ParentVNI, 0));
361 
362   // This was an unknown value. Create a simple mapping.
363   if (InsP.second) {
364     if (simple) *simple = true;
365     return InsP.first->second = li_->createValueCopy(ParentVNI,
366                                                      lis_.getVNInfoAllocator());
367   }
368 
369   // This was a simple mapped value.
370   if (InsP.first->second) {
371     if (simple) *simple = true;
372     return InsP.first->second;
373   }
374 
375   // This is a complex mapped value. There may be multiple defs, and we may need
376   // to create phi-defs.
377   if (simple) *simple = false;
378   MachineBasicBlock *IdxMBB = lis_.getMBBFromIndex(Idx);
379   assert(IdxMBB && "No MBB at Idx");
380 
381   // Is there a def in the same MBB we can extend?
382   if (VNInfo *VNI = extendTo(IdxMBB, Idx))
383     return VNI;
384 
385   // Now for the fun part. We know that ParentVNI potentially has multiple defs,
386   // and we may need to create even more phi-defs to preserve VNInfo SSA form.
387   // Perform a depth-first search for predecessor blocks where we know the
388   // dominating VNInfo. Insert phi-def VNInfos along the path back to IdxMBB.
389 
390   // Track MBBs where we have created or learned the dominating value.
391   // This may change during the DFS as we create new phi-defs.
392   typedef DenseMap<MachineBasicBlock*, VNInfo*> MBBValueMap;
393   MBBValueMap DomValue;
394   typedef SplitAnalysis::BlockPtrSet BlockPtrSet;
395   BlockPtrSet Visited;
396 
397   // Iterate over IdxMBB predecessors in a depth-first order.
398   // Skip begin() since that is always IdxMBB.
399   for (idf_ext_iterator<MachineBasicBlock*, BlockPtrSet>
400          IDFI = llvm::next(idf_ext_begin(IdxMBB, Visited)),
401          IDFE = idf_ext_end(IdxMBB, Visited); IDFI != IDFE;) {
402     MachineBasicBlock *MBB = *IDFI;
403     SlotIndex End = lis_.getMBBEndIdx(MBB).getPrevSlot();
404 
405     // We are operating on the restricted CFG where ParentVNI is live.
406     if (parentli_.getVNInfoAt(End) != ParentVNI) {
407       IDFI.skipChildren();
408       continue;
409     }
410 
411     // Do we have a dominating value in this block?
412     VNInfo *VNI = extendTo(MBB, End);
413     if (!VNI) {
414       ++IDFI;
415       continue;
416     }
417 
418     // Yes, VNI dominates MBB. Make sure we visit MBB again from other paths.
419     Visited.erase(MBB);
420 
421     // Track the path back to IdxMBB, creating phi-defs
422     // as needed along the way.
423     for (unsigned PI = IDFI.getPathLength()-1; PI != 0; --PI) {
424       // Start from MBB's immediate successor. End at IdxMBB.
425       MachineBasicBlock *Succ = IDFI.getPath(PI-1);
426       std::pair<MBBValueMap::iterator, bool> InsP =
427         DomValue.insert(MBBValueMap::value_type(Succ, VNI));
428 
429       // This is the first time we backtrack to Succ.
430       if (InsP.second)
431         continue;
432 
433       // We reached Succ again with the same VNI. Nothing is going to change.
434       VNInfo *OVNI = InsP.first->second;
435       if (OVNI == VNI)
436         break;
437 
438       // Succ already has a phi-def. No need to continue.
439       SlotIndex Start = lis_.getMBBStartIdx(Succ);
440       if (OVNI->def == Start)
441         break;
442 
443       // We have a collision between the old and new VNI at Succ. That means
444       // neither dominates and we need a new phi-def.
445       VNI = li_->getNextValue(Start, 0, lis_.getVNInfoAllocator());
446       VNI->setIsPHIDef(true);
447       InsP.first->second = VNI;
448 
449       // Replace OVNI with VNI in the remaining path.
450       for (; PI > 1 ; --PI) {
451         MBBValueMap::iterator I = DomValue.find(IDFI.getPath(PI-2));
452         if (I == DomValue.end() || I->second != OVNI)
453           break;
454         I->second = VNI;
455       }
456     }
457 
458     // No need to search the children, we found a dominating value.
459     IDFI.skipChildren();
460   }
461 
462   // The search should at least find a dominating value for IdxMBB.
463   assert(!DomValue.empty() && "Couldn't find a reaching definition");
464 
465   // Since we went through the trouble of a full DFS visiting all reaching defs,
466   // the values in DomValue are now accurate. No more phi-defs are needed for
467   // these blocks, so we can color the live ranges.
468   // This makes the next mapValue call much faster.
469   VNInfo *IdxVNI = 0;
470   for (MBBValueMap::iterator I = DomValue.begin(), E = DomValue.end(); I != E;
471        ++I) {
472      MachineBasicBlock *MBB = I->first;
473      VNInfo *VNI = I->second;
474      SlotIndex Start = lis_.getMBBStartIdx(MBB);
475      if (MBB == IdxMBB) {
476        // Don't add full liveness to IdxMBB, stop at Idx.
477        if (Start != Idx)
478          li_->addRange(LiveRange(Start, Idx.getNextSlot(), VNI));
479        // The caller had better add some liveness to IdxVNI, or it leaks.
480        IdxVNI = VNI;
481      } else
482       li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), VNI));
483   }
484 
485   assert(IdxVNI && "Didn't find value for Idx");
486   return IdxVNI;
487 }
488 
489 // extendTo - Find the last li_ value defined in MBB at or before Idx. The
490 // parentli_ is assumed to be live at Idx. Extend the live range to Idx.
491 // Return the found VNInfo, or NULL.
492 VNInfo *LiveIntervalMap::extendTo(MachineBasicBlock *MBB, SlotIndex Idx) {
493   assert(li_ && "call reset first");
494   LiveInterval::iterator I = std::upper_bound(li_->begin(), li_->end(), Idx);
495   if (I == li_->begin())
496     return 0;
497   --I;
498   if (I->end <= lis_.getMBBStartIdx(MBB))
499     return 0;
500   if (I->end <= Idx)
501     I->end = Idx.getNextSlot();
502   return I->valno;
503 }
504 
505 // addSimpleRange - Add a simple range from parentli_ to li_.
506 // ParentVNI must be live in the [Start;End) interval.
507 void LiveIntervalMap::addSimpleRange(SlotIndex Start, SlotIndex End,
508                                      const VNInfo *ParentVNI) {
509   assert(li_ && "call reset first");
510   bool simple;
511   VNInfo *VNI = mapValue(ParentVNI, Start, &simple);
512   // A simple mapping is easy.
513   if (simple) {
514     li_->addRange(LiveRange(Start, End, VNI));
515     return;
516   }
517 
518   // ParentVNI is a complex value. We must map per MBB.
519   MachineFunction::iterator MBB = lis_.getMBBFromIndex(Start);
520   MachineFunction::iterator MBBE = lis_.getMBBFromIndex(End.getPrevSlot());
521 
522   if (MBB == MBBE) {
523     li_->addRange(LiveRange(Start, End, VNI));
524     return;
525   }
526 
527   // First block.
528   li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), VNI));
529 
530   // Run sequence of full blocks.
531   for (++MBB; MBB != MBBE; ++MBB) {
532     Start = lis_.getMBBStartIdx(MBB);
533     li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB),
534                             mapValue(ParentVNI, Start)));
535   }
536 
537   // Final block.
538   Start = lis_.getMBBStartIdx(MBB);
539   if (Start != End)
540     li_->addRange(LiveRange(Start, End, mapValue(ParentVNI, Start)));
541 }
542 
543 /// addRange - Add live ranges to li_ where [Start;End) intersects parentli_.
544 /// All needed values whose def is not inside [Start;End) must be defined
545 /// beforehand so mapValue will work.
546 void LiveIntervalMap::addRange(SlotIndex Start, SlotIndex End) {
547   assert(li_ && "call reset first");
548   LiveInterval::const_iterator B = parentli_.begin(), E = parentli_.end();
549   LiveInterval::const_iterator I = std::lower_bound(B, E, Start);
550 
551   // Check if --I begins before Start and overlaps.
552   if (I != B) {
553     --I;
554     if (I->end > Start)
555       addSimpleRange(Start, std::min(End, I->end), I->valno);
556     ++I;
557   }
558 
559   // The remaining ranges begin after Start.
560   for (;I != E && I->start < End; ++I)
561     addSimpleRange(I->start, std::min(End, I->end), I->valno);
562 }
563 
564 VNInfo *LiveIntervalMap::defByCopyFrom(unsigned Reg,
565                                        const VNInfo *ParentVNI,
566                                        MachineBasicBlock &MBB,
567                                        MachineBasicBlock::iterator I) {
568   const TargetInstrDesc &TID = MBB.getParent()->getTarget().getInstrInfo()->
569     get(TargetOpcode::COPY);
570   MachineInstr *MI = BuildMI(MBB, I, DebugLoc(), TID, li_->reg).addReg(Reg);
571   SlotIndex DefIdx = lis_.InsertMachineInstrInMaps(MI).getDefIndex();
572   VNInfo *VNI = defValue(ParentVNI, DefIdx);
573   VNI->setCopy(MI);
574   li_->addRange(LiveRange(DefIdx, DefIdx.getNextSlot(), VNI));
575   return VNI;
576 }
577 
578 //===----------------------------------------------------------------------===//
579 //                               Split Editor
580 //===----------------------------------------------------------------------===//
581 
582 /// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
583 SplitEditor::SplitEditor(SplitAnalysis &sa, LiveIntervals &lis, VirtRegMap &vrm,
584                          LiveRangeEdit &edit)
585   : sa_(sa), lis_(lis), vrm_(vrm),
586     mri_(vrm.getMachineFunction().getRegInfo()),
587     tii_(*vrm.getMachineFunction().getTarget().getInstrInfo()),
588     edit_(edit),
589     curli_(sa_.getCurLI()),
590     dupli_(lis_, *curli_),
591     openli_(lis_, *curli_)
592 {
593   assert(curli_ && "SplitEditor created from empty SplitAnalysis");
594 
595   // Make sure curli_ is assigned a stack slot, so all our intervals get the
596   // same slot as curli_.
597   if (vrm_.getStackSlot(curli_->reg) == VirtRegMap::NO_STACK_SLOT)
598     vrm_.assignVirt2StackSlot(curli_->reg);
599 
600 }
601 
602 bool SplitEditor::intervalsLiveAt(SlotIndex Idx) const {
603   for (LiveRangeEdit::iterator I = edit_.begin(), E = edit_.end(); I != E; ++I)
604     if (*I != dupli_.getLI() && (*I)->liveAt(Idx))
605       return true;
606   return false;
607 }
608 
609 /// Create a new virtual register and live interval.
610 void SplitEditor::openIntv() {
611   assert(!openli_.getLI() && "Previous LI not closed before openIntv");
612 
613   if (!dupli_.getLI())
614     dupli_.reset(&edit_.create(mri_, lis_, vrm_));
615 
616   openli_.reset(&edit_.create(mri_, lis_, vrm_));
617 }
618 
619 /// enterIntvBefore - Enter openli before the instruction at Idx. If curli is
620 /// not live before Idx, a COPY is not inserted.
621 void SplitEditor::enterIntvBefore(SlotIndex Idx) {
622   assert(openli_.getLI() && "openIntv not called before enterIntvBefore");
623   DEBUG(dbgs() << "    enterIntvBefore " << Idx);
624   VNInfo *ParentVNI = curli_->getVNInfoAt(Idx.getUseIndex());
625   if (!ParentVNI) {
626     DEBUG(dbgs() << ": not live\n");
627     return;
628   }
629   DEBUG(dbgs() << ": valno " << ParentVNI->id);
630   truncatedValues.insert(ParentVNI);
631   MachineInstr *MI = lis_.getInstructionFromIndex(Idx);
632   assert(MI && "enterIntvBefore called with invalid index");
633   VNInfo *VNI = openli_.defByCopyFrom(curli_->reg, ParentVNI,
634                                       *MI->getParent(), MI);
635   openli_.getLI()->addRange(LiveRange(VNI->def, Idx.getDefIndex(), VNI));
636   DEBUG(dbgs() << ": " << *openli_.getLI() << '\n');
637 }
638 
639 /// enterIntvAtEnd - Enter openli at the end of MBB.
640 void SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) {
641   assert(openli_.getLI() && "openIntv not called before enterIntvAtEnd");
642   SlotIndex End = lis_.getMBBEndIdx(&MBB);
643   DEBUG(dbgs() << "    enterIntvAtEnd BB#" << MBB.getNumber() << ", " << End);
644   VNInfo *ParentVNI = curli_->getVNInfoAt(End.getPrevSlot());
645   if (!ParentVNI) {
646     DEBUG(dbgs() << ": not live\n");
647     return;
648   }
649   DEBUG(dbgs() << ": valno " << ParentVNI->id);
650   truncatedValues.insert(ParentVNI);
651   VNInfo *VNI = openli_.defByCopyFrom(curli_->reg, ParentVNI,
652                                       MBB, MBB.getFirstTerminator());
653   // Make sure openli is live out of MBB.
654   openli_.getLI()->addRange(LiveRange(VNI->def, End, VNI));
655   DEBUG(dbgs() << ": " << *openli_.getLI() << '\n');
656 }
657 
658 /// useIntv - indicate that all instructions in MBB should use openli.
659 void SplitEditor::useIntv(const MachineBasicBlock &MBB) {
660   useIntv(lis_.getMBBStartIdx(&MBB), lis_.getMBBEndIdx(&MBB));
661 }
662 
663 void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) {
664   assert(openli_.getLI() && "openIntv not called before useIntv");
665   openli_.addRange(Start, End);
666   DEBUG(dbgs() << "    use [" << Start << ';' << End << "): "
667                << *openli_.getLI() << '\n');
668 }
669 
670 /// leaveIntvAfter - Leave openli after the instruction at Idx.
671 void SplitEditor::leaveIntvAfter(SlotIndex Idx) {
672   assert(openli_.getLI() && "openIntv not called before leaveIntvAfter");
673   DEBUG(dbgs() << "    leaveIntvAfter " << Idx);
674 
675   // The interval must be live beyond the instruction at Idx.
676   VNInfo *ParentVNI = curli_->getVNInfoAt(Idx.getBoundaryIndex());
677   if (!ParentVNI) {
678     DEBUG(dbgs() << ": not live\n");
679     return;
680   }
681   DEBUG(dbgs() << ": valno " << ParentVNI->id);
682 
683   MachineBasicBlock::iterator MII = lis_.getInstructionFromIndex(Idx);
684   MachineBasicBlock *MBB = MII->getParent();
685   VNInfo *VNI = dupli_.defByCopyFrom(openli_.getLI()->reg, ParentVNI, *MBB,
686                                      llvm::next(MII));
687 
688   // Finally we must make sure that openli is properly extended from Idx to the
689   // new copy.
690   openli_.addSimpleRange(Idx.getBoundaryIndex(), VNI->def, ParentVNI);
691   DEBUG(dbgs() << ": " << *openli_.getLI() << '\n');
692 }
693 
694 /// leaveIntvAtTop - Leave the interval at the top of MBB.
695 /// Currently, only one value can leave the interval.
696 void SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) {
697   assert(openli_.getLI() && "openIntv not called before leaveIntvAtTop");
698   SlotIndex Start = lis_.getMBBStartIdx(&MBB);
699   DEBUG(dbgs() << "    leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start);
700 
701   VNInfo *ParentVNI = curli_->getVNInfoAt(Start);
702   if (!ParentVNI) {
703     DEBUG(dbgs() << ": not live\n");
704     return;
705   }
706 
707   // We are going to insert a back copy, so we must have a dupli_.
708   VNInfo *VNI = dupli_.defByCopyFrom(openli_.getLI()->reg, ParentVNI,
709                                      MBB, MBB.begin());
710 
711   // Finally we must make sure that openli is properly extended from Start to
712   // the new copy.
713   openli_.addSimpleRange(Start, VNI->def, ParentVNI);
714   DEBUG(dbgs() << ": " << *openli_.getLI() << '\n');
715 }
716 
717 /// closeIntv - Indicate that we are done editing the currently open
718 /// LiveInterval, and ranges can be trimmed.
719 void SplitEditor::closeIntv() {
720   assert(openli_.getLI() && "openIntv not called before closeIntv");
721 
722   DEBUG(dbgs() << "    closeIntv cleaning up\n");
723   DEBUG(dbgs() << "    open " << *openli_.getLI() << '\n');
724   openli_.reset(0);
725 }
726 
727 /// rewrite - Rewrite all uses of reg to use the new registers.
728 void SplitEditor::rewrite(unsigned reg) {
729   for (MachineRegisterInfo::reg_iterator RI = mri_.reg_begin(reg),
730        RE = mri_.reg_end(); RI != RE;) {
731     MachineOperand &MO = RI.getOperand();
732     MachineInstr *MI = MO.getParent();
733     ++RI;
734     if (MI->isDebugValue()) {
735       DEBUG(dbgs() << "Zapping " << *MI);
736       // FIXME: We can do much better with debug values.
737       MO.setReg(0);
738       continue;
739     }
740     SlotIndex Idx = lis_.getInstructionIndex(MI);
741     Idx = MO.isUse() ? Idx.getUseIndex() : Idx.getDefIndex();
742     LiveInterval *LI = 0;
743     for (LiveRangeEdit::iterator I = edit_.begin(), E = edit_.end(); I != E;
744          ++I) {
745       LiveInterval *testli = *I;
746       if (testli->liveAt(Idx)) {
747         LI = testli;
748         break;
749       }
750     }
751     assert(LI && "No register was live at use");
752     MO.setReg(LI->reg);
753     DEBUG(dbgs() << "  rewrite BB#" << MI->getParent()->getNumber() << '\t'
754                  << Idx << '\t' << *MI);
755   }
756 }
757 
758 void
759 SplitEditor::addTruncSimpleRange(SlotIndex Start, SlotIndex End, VNInfo *VNI) {
760   // Build vector of iterator pairs from the intervals.
761   typedef std::pair<LiveInterval::const_iterator,
762                     LiveInterval::const_iterator> IIPair;
763   SmallVector<IIPair, 8> Iters;
764   for (LiveRangeEdit::iterator LI = edit_.begin(), LE = edit_.end(); LI != LE;
765        ++LI) {
766     LiveInterval::const_iterator I = (*LI)->find(Start);
767     LiveInterval::const_iterator E = (*LI)->end();
768     if (I != E)
769       Iters.push_back(std::make_pair(I, E));
770   }
771 
772   SlotIndex sidx = Start;
773   // Break [Start;End) into segments that don't overlap any intervals.
774   for (;;) {
775     SlotIndex next = sidx, eidx = End;
776     // Find overlapping intervals.
777     for (unsigned i = 0; i != Iters.size() && sidx < eidx; ++i) {
778       LiveInterval::const_iterator I = Iters[i].first;
779       // Interval I is overlapping [sidx;eidx). Trim sidx.
780       if (I->start <= sidx) {
781         sidx = I->end;
782         // Move to the next run, remove iters when all are consumed.
783         I = ++Iters[i].first;
784         if (I == Iters[i].second) {
785           Iters.erase(Iters.begin() + i);
786           --i;
787           continue;
788         }
789       }
790       // Trim eidx too if needed.
791       if (I->start >= eidx)
792         continue;
793       eidx = I->start;
794       next = I->end;
795     }
796     // Now, [sidx;eidx) doesn't overlap anything in intervals_.
797     if (sidx < eidx)
798       dupli_.addSimpleRange(sidx, eidx, VNI);
799     // If the interval end was truncated, we can try again from next.
800     if (next <= sidx)
801       break;
802     sidx = next;
803   }
804 }
805 
806 void SplitEditor::computeRemainder() {
807   // First we need to fill in the live ranges in dupli.
808   // If values were redefined, we need a full recoloring with SSA update.
809   // If values were truncated, we only need to truncate the ranges.
810   // If values were partially rematted, we should shrink to uses.
811   // If values were fully rematted, they should be omitted.
812   // FIXME: If a single value is redefined, just move the def and truncate.
813 
814   // Values that are fully contained in the split intervals.
815   SmallPtrSet<const VNInfo*, 8> deadValues;
816 
817   // Map all curli values that should have live defs in dupli.
818   for (LiveInterval::const_vni_iterator I = curli_->vni_begin(),
819        E = curli_->vni_end(); I != E; ++I) {
820     const VNInfo *VNI = *I;
821     // Original def is contained in the split intervals.
822     if (intervalsLiveAt(VNI->def)) {
823       // Did this value escape?
824       if (dupli_.isMapped(VNI))
825         truncatedValues.insert(VNI);
826       else
827         deadValues.insert(VNI);
828       continue;
829     }
830     // Add minimal live range at the definition.
831     VNInfo *DVNI = dupli_.defValue(VNI, VNI->def);
832     dupli_.getLI()->addRange(LiveRange(VNI->def, VNI->def.getNextSlot(), DVNI));
833   }
834 
835   // Add all ranges to dupli.
836   for (LiveInterval::const_iterator I = curli_->begin(), E = curli_->end();
837        I != E; ++I) {
838     const LiveRange &LR = *I;
839     if (truncatedValues.count(LR.valno)) {
840       // recolor after removing intervals_.
841       addTruncSimpleRange(LR.start, LR.end, LR.valno);
842     } else if (!deadValues.count(LR.valno)) {
843       // recolor without truncation.
844       dupli_.addSimpleRange(LR.start, LR.end, LR.valno);
845     }
846   }
847 }
848 
849 void SplitEditor::finish() {
850   assert(!openli_.getLI() && "Previous LI not closed before rewrite");
851   assert(dupli_.getLI() && "No dupli for rewrite. Noop spilt?");
852 
853   // Complete dupli liveness.
854   computeRemainder();
855 
856   // Get rid of unused values and set phi-kill flags.
857   dupli_.getLI()->RenumberValues(lis_);
858 
859   // Now check if dupli was separated into multiple connected components.
860   ConnectedVNInfoEqClasses ConEQ(lis_);
861   if (unsigned NumComp = ConEQ.Classify(dupli_.getLI())) {
862     DEBUG(dbgs() << "  Remainder has " << NumComp << " connected components: "
863                  << *dupli_.getLI() << '\n');
864     // Did the remainder break up? Create intervals for all the components.
865     if (NumComp > 1) {
866       SmallVector<LiveInterval*, 8> dups;
867       dups.push_back(dupli_.getLI());
868       for (unsigned i = 1; i != NumComp; ++i)
869         dups.push_back(&edit_.create(mri_, lis_, vrm_));
870       ConEQ.Distribute(&dups[0]);
871       // Rewrite uses to the new regs.
872       rewrite(dupli_.getLI()->reg);
873     }
874   }
875 
876   // Rewrite instructions.
877   rewrite(curli_->reg);
878 
879   // Calculate spill weight and allocation hints for new intervals.
880   VirtRegAuxInfo vrai(vrm_.getMachineFunction(), lis_, sa_.loops_);
881   for (LiveRangeEdit::iterator I = edit_.begin(), E = edit_.end(); I != E; ++I){
882     LiveInterval &li = **I;
883     vrai.CalculateRegClass(li.reg);
884     vrai.CalculateWeightAndHint(li);
885     DEBUG(dbgs() << "  new interval " << mri_.getRegClass(li.reg)->getName()
886                  << ":" << li << '\n');
887   }
888 }
889 
890 
891 //===----------------------------------------------------------------------===//
892 //                               Loop Splitting
893 //===----------------------------------------------------------------------===//
894 
895 void SplitEditor::splitAroundLoop(const MachineLoop *Loop) {
896   SplitAnalysis::LoopBlocks Blocks;
897   sa_.getLoopBlocks(Loop, Blocks);
898 
899   DEBUG({
900     dbgs() << "  splitAroundLoop";
901     for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Loop.begin(),
902          E = Blocks.Loop.end(); I != E; ++I)
903       dbgs() << " BB#" << (*I)->getNumber();
904     dbgs() << ", preds:";
905     for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Preds.begin(),
906          E = Blocks.Preds.end(); I != E; ++I)
907       dbgs() << " BB#" << (*I)->getNumber();
908     dbgs() << ", exits:";
909     for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Exits.begin(),
910          E = Blocks.Exits.end(); I != E; ++I)
911       dbgs() << " BB#" << (*I)->getNumber();
912     dbgs() << '\n';
913   });
914 
915   // Break critical edges as needed.
916   SplitAnalysis::BlockPtrSet CriticalExits;
917   sa_.getCriticalExits(Blocks, CriticalExits);
918   assert(CriticalExits.empty() && "Cannot break critical exits yet");
919 
920   // Create new live interval for the loop.
921   openIntv();
922 
923   // Insert copies in the predecessors.
924   for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Preds.begin(),
925        E = Blocks.Preds.end(); I != E; ++I) {
926     MachineBasicBlock &MBB = const_cast<MachineBasicBlock&>(**I);
927     enterIntvAtEnd(MBB);
928   }
929 
930   // Switch all loop blocks.
931   for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Loop.begin(),
932        E = Blocks.Loop.end(); I != E; ++I)
933      useIntv(**I);
934 
935   // Insert back copies in the exit blocks.
936   for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Exits.begin(),
937        E = Blocks.Exits.end(); I != E; ++I) {
938     MachineBasicBlock &MBB = const_cast<MachineBasicBlock&>(**I);
939     leaveIntvAtTop(MBB);
940   }
941 
942   // Done.
943   closeIntv();
944   finish();
945 }
946 
947 
948 //===----------------------------------------------------------------------===//
949 //                            Single Block Splitting
950 //===----------------------------------------------------------------------===//
951 
952 /// splitSingleBlocks - Split curli into a separate live interval inside each
953 /// basic block in Blocks.
954 void SplitEditor::splitSingleBlocks(const SplitAnalysis::BlockPtrSet &Blocks) {
955   DEBUG(dbgs() << "  splitSingleBlocks for " << Blocks.size() << " blocks.\n");
956   // Determine the first and last instruction using curli in each block.
957   typedef std::pair<SlotIndex,SlotIndex> IndexPair;
958   typedef DenseMap<const MachineBasicBlock*,IndexPair> IndexPairMap;
959   IndexPairMap MBBRange;
960   for (SplitAnalysis::InstrPtrSet::const_iterator I = sa_.usingInstrs_.begin(),
961        E = sa_.usingInstrs_.end(); I != E; ++I) {
962     const MachineBasicBlock *MBB = (*I)->getParent();
963     if (!Blocks.count(MBB))
964       continue;
965     SlotIndex Idx = lis_.getInstructionIndex(*I);
966     DEBUG(dbgs() << "  BB#" << MBB->getNumber() << '\t' << Idx << '\t' << **I);
967     IndexPair &IP = MBBRange[MBB];
968     if (!IP.first.isValid() || Idx < IP.first)
969       IP.first = Idx;
970     if (!IP.second.isValid() || Idx > IP.second)
971       IP.second = Idx;
972   }
973 
974   // Create a new interval for each block.
975   for (SplitAnalysis::BlockPtrSet::const_iterator I = Blocks.begin(),
976        E = Blocks.end(); I != E; ++I) {
977     IndexPair &IP = MBBRange[*I];
978     DEBUG(dbgs() << "  splitting for BB#" << (*I)->getNumber() << ": ["
979                  << IP.first << ';' << IP.second << ")\n");
980     assert(IP.first.isValid() && IP.second.isValid());
981 
982     openIntv();
983     enterIntvBefore(IP.first);
984     useIntv(IP.first.getBaseIndex(), IP.second.getBoundaryIndex());
985     leaveIntvAfter(IP.second);
986     closeIntv();
987   }
988   finish();
989 }
990 
991 
992 //===----------------------------------------------------------------------===//
993 //                            Sub Block Splitting
994 //===----------------------------------------------------------------------===//
995 
996 /// getBlockForInsideSplit - If curli is contained inside a single basic block,
997 /// and it wou pay to subdivide the interval inside that block, return it.
998 /// Otherwise return NULL. The returned block can be passed to
999 /// SplitEditor::splitInsideBlock.
1000 const MachineBasicBlock *SplitAnalysis::getBlockForInsideSplit() {
1001   // The interval must be exclusive to one block.
1002   if (usingBlocks_.size() != 1)
1003     return 0;
1004   // Don't to this for less than 4 instructions. We want to be sure that
1005   // splitting actually reduces the instruction count per interval.
1006   if (usingInstrs_.size() < 4)
1007     return 0;
1008   return usingBlocks_.begin()->first;
1009 }
1010 
1011 /// splitInsideBlock - Split curli into multiple intervals inside MBB.
1012 void SplitEditor::splitInsideBlock(const MachineBasicBlock *MBB) {
1013   SmallVector<SlotIndex, 32> Uses;
1014   Uses.reserve(sa_.usingInstrs_.size());
1015   for (SplitAnalysis::InstrPtrSet::const_iterator I = sa_.usingInstrs_.begin(),
1016        E = sa_.usingInstrs_.end(); I != E; ++I)
1017     if ((*I)->getParent() == MBB)
1018       Uses.push_back(lis_.getInstructionIndex(*I));
1019   DEBUG(dbgs() << "  splitInsideBlock BB#" << MBB->getNumber() << " for "
1020                << Uses.size() << " instructions.\n");
1021   assert(Uses.size() >= 3 && "Need at least 3 instructions");
1022   array_pod_sort(Uses.begin(), Uses.end());
1023 
1024   // Simple algorithm: Find the largest gap between uses as determined by slot
1025   // indices. Create new intervals for instructions before the gap and after the
1026   // gap.
1027   unsigned bestPos = 0;
1028   int bestGap = 0;
1029   DEBUG(dbgs() << "    dist (" << Uses[0]);
1030   for (unsigned i = 1, e = Uses.size(); i != e; ++i) {
1031     int g = Uses[i-1].distance(Uses[i]);
1032     DEBUG(dbgs() << ") -" << g << "- (" << Uses[i]);
1033     if (g > bestGap)
1034       bestPos = i, bestGap = g;
1035   }
1036   DEBUG(dbgs() << "), best: -" << bestGap << "-\n");
1037 
1038   // bestPos points to the first use after the best gap.
1039   assert(bestPos > 0 && "Invalid gap");
1040 
1041   // FIXME: Don't create intervals for low densities.
1042 
1043   // First interval before the gap. Don't create single-instr intervals.
1044   if (bestPos > 1) {
1045     openIntv();
1046     enterIntvBefore(Uses.front());
1047     useIntv(Uses.front().getBaseIndex(), Uses[bestPos-1].getBoundaryIndex());
1048     leaveIntvAfter(Uses[bestPos-1]);
1049     closeIntv();
1050   }
1051 
1052   // Second interval after the gap.
1053   if (bestPos < Uses.size()-1) {
1054     openIntv();
1055     enterIntvBefore(Uses[bestPos]);
1056     useIntv(Uses[bestPos].getBaseIndex(), Uses.back().getBoundaryIndex());
1057     leaveIntvAfter(Uses.back());
1058     closeIntv();
1059   }
1060 
1061   finish();
1062 }
1063