1 //===- SplitKit.cpp - Toolkit for splitting live ranges -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the SplitAnalysis class as well as mutator functions for
10 // live range splitting.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "SplitKit.h"
15 #include "llvm/ADT/None.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/Analysis/AliasAnalysis.h"
19 #include "llvm/CodeGen/LiveRangeEdit.h"
20 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
21 #include "llvm/CodeGen/MachineDominators.h"
22 #include "llvm/CodeGen/MachineInstr.h"
23 #include "llvm/CodeGen/MachineInstrBuilder.h"
24 #include "llvm/CodeGen/MachineLoopInfo.h"
25 #include "llvm/CodeGen/MachineOperand.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/CodeGen/TargetInstrInfo.h"
28 #include "llvm/CodeGen/TargetOpcodes.h"
29 #include "llvm/CodeGen/TargetRegisterInfo.h"
30 #include "llvm/CodeGen/TargetSubtargetInfo.h"
31 #include "llvm/CodeGen/VirtRegMap.h"
32 #include "llvm/Config/llvm-config.h"
33 #include "llvm/IR/DebugLoc.h"
34 #include "llvm/Support/Allocator.h"
35 #include "llvm/Support/BlockFrequency.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include <algorithm>
40 #include <cassert>
41 #include <iterator>
42 #include <limits>
43 #include <tuple>
44 
45 using namespace llvm;
46 
47 #define DEBUG_TYPE "regalloc"
48 
49 STATISTIC(NumFinished, "Number of splits finished");
50 STATISTIC(NumSimple,   "Number of splits that were simple");
51 STATISTIC(NumCopies,   "Number of copies inserted for splitting");
52 STATISTIC(NumRemats,   "Number of rematerialized defs for splitting");
53 STATISTIC(NumRepairs,  "Number of invalid live ranges repaired");
54 
55 //===----------------------------------------------------------------------===//
56 //                     Last Insert Point Analysis
57 //===----------------------------------------------------------------------===//
58 
59 InsertPointAnalysis::InsertPointAnalysis(const LiveIntervals &lis,
60                                          unsigned BBNum)
61     : LIS(lis), LastInsertPoint(BBNum) {}
62 
63 SlotIndex
64 InsertPointAnalysis::computeLastInsertPoint(const LiveInterval &CurLI,
65                                             const MachineBasicBlock &MBB) {
66   unsigned Num = MBB.getNumber();
67   std::pair<SlotIndex, SlotIndex> &LIP = LastInsertPoint[Num];
68   SlotIndex MBBEnd = LIS.getMBBEndIdx(&MBB);
69 
70   SmallVector<const MachineBasicBlock *, 1> ExceptionalSuccessors;
71   bool EHPadSuccessor = false;
72   for (const MachineBasicBlock *SMBB : MBB.successors()) {
73     if (SMBB->isEHPad()) {
74       ExceptionalSuccessors.push_back(SMBB);
75       EHPadSuccessor = true;
76     } else if (SMBB->isInlineAsmBrIndirectTarget())
77       ExceptionalSuccessors.push_back(SMBB);
78   }
79 
80   // Compute insert points on the first call. The pair is independent of the
81   // current live interval.
82   if (!LIP.first.isValid()) {
83     MachineBasicBlock::const_iterator FirstTerm = MBB.getFirstTerminator();
84     if (FirstTerm == MBB.end())
85       LIP.first = MBBEnd;
86     else
87       LIP.first = LIS.getInstructionIndex(*FirstTerm);
88 
89     // If there is a landing pad or inlineasm_br successor, also find the
90     // instruction. If there is no such instruction, we don't need to do
91     // anything special.  We assume there cannot be multiple instructions that
92     // are Calls with EHPad successors or INLINEASM_BR in a block. Further, we
93     // assume that if there are any, they will be after any other call
94     // instructions in the block.
95     if (ExceptionalSuccessors.empty())
96       return LIP.first;
97     for (auto I = MBB.rbegin(), E = MBB.rend(); I != E; ++I) {
98       if ((EHPadSuccessor && I->isCall()) ||
99           I->getOpcode() == TargetOpcode::INLINEASM_BR) {
100         LIP.second = LIS.getInstructionIndex(*I);
101         break;
102       }
103     }
104   }
105 
106   // If CurLI is live into a landing pad successor, move the last insert point
107   // back to the call that may throw.
108   if (!LIP.second)
109     return LIP.first;
110 
111   if (none_of(ExceptionalSuccessors, [&](const MachineBasicBlock *EHPad) {
112         return LIS.isLiveInToMBB(CurLI, EHPad);
113       }))
114     return LIP.first;
115 
116   // Find the value leaving MBB.
117   const VNInfo *VNI = CurLI.getVNInfoBefore(MBBEnd);
118   if (!VNI)
119     return LIP.first;
120 
121   // If the value leaving MBB was defined after the call in MBB, it can't
122   // really be live-in to the landing pad.  This can happen if the landing pad
123   // has a PHI, and this register is undef on the exceptional edge.
124   // <rdar://problem/10664933>
125   if (!SlotIndex::isEarlierInstr(VNI->def, LIP.second) && VNI->def < MBBEnd)
126     return LIP.first;
127 
128   // Value is properly live-in to the landing pad.
129   // Only allow inserts before the call.
130   return LIP.second;
131 }
132 
133 MachineBasicBlock::iterator
134 InsertPointAnalysis::getLastInsertPointIter(const LiveInterval &CurLI,
135                                             MachineBasicBlock &MBB) {
136   SlotIndex LIP = getLastInsertPoint(CurLI, MBB);
137   if (LIP == LIS.getMBBEndIdx(&MBB))
138     return MBB.end();
139   return LIS.getInstructionFromIndex(LIP);
140 }
141 
142 //===----------------------------------------------------------------------===//
143 //                                 Split Analysis
144 //===----------------------------------------------------------------------===//
145 
146 SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm, const LiveIntervals &lis,
147                              const MachineLoopInfo &mli)
148     : MF(vrm.getMachineFunction()), VRM(vrm), LIS(lis), Loops(mli),
149       TII(*MF.getSubtarget().getInstrInfo()), IPA(lis, MF.getNumBlockIDs()) {}
150 
151 void SplitAnalysis::clear() {
152   UseSlots.clear();
153   UseBlocks.clear();
154   ThroughBlocks.clear();
155   CurLI = nullptr;
156   DidRepairRange = false;
157 }
158 
159 /// analyzeUses - Count instructions, basic blocks, and loops using CurLI.
160 void SplitAnalysis::analyzeUses() {
161   assert(UseSlots.empty() && "Call clear first");
162 
163   // First get all the defs from the interval values. This provides the correct
164   // slots for early clobbers.
165   for (const VNInfo *VNI : CurLI->valnos)
166     if (!VNI->isPHIDef() && !VNI->isUnused())
167       UseSlots.push_back(VNI->def);
168 
169   // Get use slots form the use-def chain.
170   const MachineRegisterInfo &MRI = MF.getRegInfo();
171   for (MachineOperand &MO : MRI.use_nodbg_operands(CurLI->reg()))
172     if (!MO.isUndef())
173       UseSlots.push_back(LIS.getInstructionIndex(*MO.getParent()).getRegSlot());
174 
175   array_pod_sort(UseSlots.begin(), UseSlots.end());
176 
177   // Remove duplicates, keeping the smaller slot for each instruction.
178   // That is what we want for early clobbers.
179   UseSlots.erase(std::unique(UseSlots.begin(), UseSlots.end(),
180                              SlotIndex::isSameInstr),
181                  UseSlots.end());
182 
183   // Compute per-live block info.
184   if (!calcLiveBlockInfo()) {
185     // FIXME: calcLiveBlockInfo found inconsistencies in the live range.
186     // I am looking at you, RegisterCoalescer!
187     DidRepairRange = true;
188     ++NumRepairs;
189     LLVM_DEBUG(dbgs() << "*** Fixing inconsistent live interval! ***\n");
190     const_cast<LiveIntervals&>(LIS)
191       .shrinkToUses(const_cast<LiveInterval*>(CurLI));
192     UseBlocks.clear();
193     ThroughBlocks.clear();
194     bool fixed = calcLiveBlockInfo();
195     (void)fixed;
196     assert(fixed && "Couldn't fix broken live interval");
197   }
198 
199   LLVM_DEBUG(dbgs() << "Analyze counted " << UseSlots.size() << " instrs in "
200                     << UseBlocks.size() << " blocks, through "
201                     << NumThroughBlocks << " blocks.\n");
202 }
203 
204 /// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks
205 /// where CurLI is live.
206 bool SplitAnalysis::calcLiveBlockInfo() {
207   ThroughBlocks.resize(MF.getNumBlockIDs());
208   NumThroughBlocks = NumGapBlocks = 0;
209   if (CurLI->empty())
210     return true;
211 
212   LiveInterval::const_iterator LVI = CurLI->begin();
213   LiveInterval::const_iterator LVE = CurLI->end();
214 
215   SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE;
216   UseI = UseSlots.begin();
217   UseE = UseSlots.end();
218 
219   // Loop over basic blocks where CurLI is live.
220   MachineFunction::iterator MFI =
221       LIS.getMBBFromIndex(LVI->start)->getIterator();
222   while (true) {
223     BlockInfo BI;
224     BI.MBB = &*MFI;
225     SlotIndex Start, Stop;
226     std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
227 
228     // If the block contains no uses, the range must be live through. At one
229     // point, RegisterCoalescer could create dangling ranges that ended
230     // mid-block.
231     if (UseI == UseE || *UseI >= Stop) {
232       ++NumThroughBlocks;
233       ThroughBlocks.set(BI.MBB->getNumber());
234       // The range shouldn't end mid-block if there are no uses. This shouldn't
235       // happen.
236       if (LVI->end < Stop)
237         return false;
238     } else {
239       // This block has uses. Find the first and last uses in the block.
240       BI.FirstInstr = *UseI;
241       assert(BI.FirstInstr >= Start);
242       do ++UseI;
243       while (UseI != UseE && *UseI < Stop);
244       BI.LastInstr = UseI[-1];
245       assert(BI.LastInstr < Stop);
246 
247       // LVI is the first live segment overlapping MBB.
248       BI.LiveIn = LVI->start <= Start;
249 
250       // When not live in, the first use should be a def.
251       if (!BI.LiveIn) {
252         assert(LVI->start == LVI->valno->def && "Dangling Segment start");
253         assert(LVI->start == BI.FirstInstr && "First instr should be a def");
254         BI.FirstDef = BI.FirstInstr;
255       }
256 
257       // Look for gaps in the live range.
258       BI.LiveOut = true;
259       while (LVI->end < Stop) {
260         SlotIndex LastStop = LVI->end;
261         if (++LVI == LVE || LVI->start >= Stop) {
262           BI.LiveOut = false;
263           BI.LastInstr = LastStop;
264           break;
265         }
266 
267         if (LastStop < LVI->start) {
268           // There is a gap in the live range. Create duplicate entries for the
269           // live-in snippet and the live-out snippet.
270           ++NumGapBlocks;
271 
272           // Push the Live-in part.
273           BI.LiveOut = false;
274           UseBlocks.push_back(BI);
275           UseBlocks.back().LastInstr = LastStop;
276 
277           // Set up BI for the live-out part.
278           BI.LiveIn = false;
279           BI.LiveOut = true;
280           BI.FirstInstr = BI.FirstDef = LVI->start;
281         }
282 
283         // A Segment that starts in the middle of the block must be a def.
284         assert(LVI->start == LVI->valno->def && "Dangling Segment start");
285         if (!BI.FirstDef)
286           BI.FirstDef = LVI->start;
287       }
288 
289       UseBlocks.push_back(BI);
290 
291       // LVI is now at LVE or LVI->end >= Stop.
292       if (LVI == LVE)
293         break;
294     }
295 
296     // Live segment ends exactly at Stop. Move to the next segment.
297     if (LVI->end == Stop && ++LVI == LVE)
298       break;
299 
300     // Pick the next basic block.
301     if (LVI->start < Stop)
302       ++MFI;
303     else
304       MFI = LIS.getMBBFromIndex(LVI->start)->getIterator();
305   }
306 
307   assert(getNumLiveBlocks() == countLiveBlocks(CurLI) && "Bad block count");
308   return true;
309 }
310 
311 unsigned SplitAnalysis::countLiveBlocks(const LiveInterval *cli) const {
312   if (cli->empty())
313     return 0;
314   LiveInterval *li = const_cast<LiveInterval*>(cli);
315   LiveInterval::iterator LVI = li->begin();
316   LiveInterval::iterator LVE = li->end();
317   unsigned Count = 0;
318 
319   // Loop over basic blocks where li is live.
320   MachineFunction::const_iterator MFI =
321       LIS.getMBBFromIndex(LVI->start)->getIterator();
322   SlotIndex Stop = LIS.getMBBEndIdx(&*MFI);
323   while (true) {
324     ++Count;
325     LVI = li->advanceTo(LVI, Stop);
326     if (LVI == LVE)
327       return Count;
328     do {
329       ++MFI;
330       Stop = LIS.getMBBEndIdx(&*MFI);
331     } while (Stop <= LVI->start);
332   }
333 }
334 
335 bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const {
336   unsigned OrigReg = VRM.getOriginal(CurLI->reg());
337   const LiveInterval &Orig = LIS.getInterval(OrigReg);
338   assert(!Orig.empty() && "Splitting empty interval?");
339   LiveInterval::const_iterator I = Orig.find(Idx);
340 
341   // Range containing Idx should begin at Idx.
342   if (I != Orig.end() && I->start <= Idx)
343     return I->start == Idx;
344 
345   // Range does not contain Idx, previous must end at Idx.
346   return I != Orig.begin() && (--I)->end == Idx;
347 }
348 
349 void SplitAnalysis::analyze(const LiveInterval *li) {
350   clear();
351   CurLI = li;
352   analyzeUses();
353 }
354 
355 //===----------------------------------------------------------------------===//
356 //                               Split Editor
357 //===----------------------------------------------------------------------===//
358 
359 /// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
360 SplitEditor::SplitEditor(SplitAnalysis &sa, AliasAnalysis &aa,
361                          LiveIntervals &lis, VirtRegMap &vrm,
362                          MachineDominatorTree &mdt,
363                          MachineBlockFrequencyInfo &mbfi)
364     : SA(sa), AA(aa), LIS(lis), VRM(vrm),
365       MRI(vrm.getMachineFunction().getRegInfo()), MDT(mdt),
366       TII(*vrm.getMachineFunction().getSubtarget().getInstrInfo()),
367       TRI(*vrm.getMachineFunction().getSubtarget().getRegisterInfo()),
368       MBFI(mbfi), RegAssign(Allocator) {}
369 
370 void SplitEditor::reset(LiveRangeEdit &LRE, ComplementSpillMode SM) {
371   Edit = &LRE;
372   SpillMode = SM;
373   OpenIdx = 0;
374   RegAssign.clear();
375   Values.clear();
376 
377   // Reset the LiveIntervalCalc instances needed for this spill mode.
378   LICalc[0].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
379                   &LIS.getVNInfoAllocator());
380   if (SpillMode)
381     LICalc[1].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
382                     &LIS.getVNInfoAllocator());
383 
384   // We don't need an AliasAnalysis since we will only be performing
385   // cheap-as-a-copy remats anyway.
386   Edit->anyRematerializable(nullptr);
387 }
388 
389 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
390 LLVM_DUMP_METHOD void SplitEditor::dump() const {
391   if (RegAssign.empty()) {
392     dbgs() << " empty\n";
393     return;
394   }
395 
396   for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I)
397     dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value();
398   dbgs() << '\n';
399 }
400 #endif
401 
402 LiveInterval::SubRange &SplitEditor::getSubRangeForMask(LaneBitmask LM,
403                                                         LiveInterval &LI) {
404   for (LiveInterval::SubRange &S : LI.subranges())
405     if (S.LaneMask == LM)
406       return S;
407   llvm_unreachable("SubRange for this mask not found");
408 }
409 
410 void SplitEditor::addDeadDef(LiveInterval &LI, VNInfo *VNI, bool Original) {
411   if (!LI.hasSubRanges()) {
412     LI.createDeadDef(VNI);
413     return;
414   }
415 
416   SlotIndex Def = VNI->def;
417   if (Original) {
418     // If we are transferring a def from the original interval, make sure
419     // to only update the subranges for which the original subranges had
420     // a def at this location.
421     for (LiveInterval::SubRange &S : LI.subranges()) {
422       auto &PS = getSubRangeForMask(S.LaneMask, Edit->getParent());
423       VNInfo *PV = PS.getVNInfoAt(Def);
424       if (PV != nullptr && PV->def == Def)
425         S.createDeadDef(Def, LIS.getVNInfoAllocator());
426     }
427   } else {
428     // This is a new def: either from rematerialization, or from an inserted
429     // copy. Since rematerialization can regenerate a definition of a sub-
430     // register, we need to check which subranges need to be updated.
431     const MachineInstr *DefMI = LIS.getInstructionFromIndex(Def);
432     assert(DefMI != nullptr);
433     LaneBitmask LM;
434     for (const MachineOperand &DefOp : DefMI->defs()) {
435       Register R = DefOp.getReg();
436       if (R != LI.reg())
437         continue;
438       if (unsigned SR = DefOp.getSubReg())
439         LM |= TRI.getSubRegIndexLaneMask(SR);
440       else {
441         LM = MRI.getMaxLaneMaskForVReg(R);
442         break;
443       }
444     }
445     for (LiveInterval::SubRange &S : LI.subranges())
446       if ((S.LaneMask & LM).any())
447         S.createDeadDef(Def, LIS.getVNInfoAllocator());
448   }
449 }
450 
451 VNInfo *SplitEditor::defValue(unsigned RegIdx,
452                               const VNInfo *ParentVNI,
453                               SlotIndex Idx,
454                               bool Original) {
455   assert(ParentVNI && "Mapping  NULL value");
456   assert(Idx.isValid() && "Invalid SlotIndex");
457   assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI");
458   LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
459 
460   // Create a new value.
461   VNInfo *VNI = LI->getNextValue(Idx, LIS.getVNInfoAllocator());
462 
463   bool Force = LI->hasSubRanges();
464   ValueForcePair FP(Force ? nullptr : VNI, Force);
465   // Use insert for lookup, so we can add missing values with a second lookup.
466   std::pair<ValueMap::iterator, bool> InsP =
467     Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id), FP));
468 
469   // This was the first time (RegIdx, ParentVNI) was mapped, and it is not
470   // forced. Keep it as a simple def without any liveness.
471   if (!Force && InsP.second)
472     return VNI;
473 
474   // If the previous value was a simple mapping, add liveness for it now.
475   if (VNInfo *OldVNI = InsP.first->second.getPointer()) {
476     addDeadDef(*LI, OldVNI, Original);
477 
478     // No longer a simple mapping.  Switch to a complex mapping. If the
479     // interval has subranges, make it a forced mapping.
480     InsP.first->second = ValueForcePair(nullptr, Force);
481   }
482 
483   // This is a complex mapping, add liveness for VNI
484   addDeadDef(*LI, VNI, Original);
485   return VNI;
486 }
487 
488 void SplitEditor::forceRecompute(unsigned RegIdx, const VNInfo &ParentVNI) {
489   ValueForcePair &VFP = Values[std::make_pair(RegIdx, ParentVNI.id)];
490   VNInfo *VNI = VFP.getPointer();
491 
492   // ParentVNI was either unmapped or already complex mapped. Either way, just
493   // set the force bit.
494   if (!VNI) {
495     VFP.setInt(true);
496     return;
497   }
498 
499   // This was previously a single mapping. Make sure the old def is represented
500   // by a trivial live range.
501   addDeadDef(LIS.getInterval(Edit->get(RegIdx)), VNI, false);
502 
503   // Mark as complex mapped, forced.
504   VFP = ValueForcePair(nullptr, true);
505 }
506 
507 SlotIndex SplitEditor::buildSingleSubRegCopy(unsigned FromReg, unsigned ToReg,
508     MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore,
509     unsigned SubIdx, LiveInterval &DestLI, bool Late, SlotIndex Def) {
510   const MCInstrDesc &Desc = TII.get(TargetOpcode::COPY);
511   bool FirstCopy = !Def.isValid();
512   MachineInstr *CopyMI = BuildMI(MBB, InsertBefore, DebugLoc(), Desc)
513       .addReg(ToReg, RegState::Define | getUndefRegState(FirstCopy)
514               | getInternalReadRegState(!FirstCopy), SubIdx)
515       .addReg(FromReg, 0, SubIdx);
516 
517   BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator();
518   SlotIndexes &Indexes = *LIS.getSlotIndexes();
519   if (FirstCopy) {
520     Def = Indexes.insertMachineInstrInMaps(*CopyMI, Late).getRegSlot();
521   } else {
522     CopyMI->bundleWithPred();
523   }
524   LaneBitmask LaneMask = TRI.getSubRegIndexLaneMask(SubIdx);
525   DestLI.refineSubRanges(Allocator, LaneMask,
526                          [Def, &Allocator](LiveInterval::SubRange &SR) {
527                            SR.createDeadDef(Def, Allocator);
528                          },
529                          Indexes, TRI);
530   return Def;
531 }
532 
533 SlotIndex SplitEditor::buildCopy(unsigned FromReg, unsigned ToReg,
534     LaneBitmask LaneMask, MachineBasicBlock &MBB,
535     MachineBasicBlock::iterator InsertBefore, bool Late, unsigned RegIdx) {
536   const MCInstrDesc &Desc = TII.get(TargetOpcode::COPY);
537   if (LaneMask.all() || LaneMask == MRI.getMaxLaneMaskForVReg(FromReg)) {
538     // The full vreg is copied.
539     MachineInstr *CopyMI =
540         BuildMI(MBB, InsertBefore, DebugLoc(), Desc, ToReg).addReg(FromReg);
541     SlotIndexes &Indexes = *LIS.getSlotIndexes();
542     return Indexes.insertMachineInstrInMaps(*CopyMI, Late).getRegSlot();
543   }
544 
545   // Only a subset of lanes needs to be copied. The following is a simple
546   // heuristic to construct a sequence of COPYs. We could add a target
547   // specific callback if this turns out to be suboptimal.
548   LiveInterval &DestLI = LIS.getInterval(Edit->get(RegIdx));
549 
550   // First pass: Try to find a perfectly matching subregister index. If none
551   // exists find the one covering the most lanemask bits.
552   SmallVector<unsigned, 8> PossibleIndexes;
553   unsigned BestIdx = 0;
554   unsigned BestCover = 0;
555   const TargetRegisterClass *RC = MRI.getRegClass(FromReg);
556   assert(RC == MRI.getRegClass(ToReg) && "Should have same reg class");
557   for (unsigned Idx = 1, E = TRI.getNumSubRegIndices(); Idx < E; ++Idx) {
558     // Is this index even compatible with the given class?
559     if (TRI.getSubClassWithSubReg(RC, Idx) != RC)
560       continue;
561     LaneBitmask SubRegMask = TRI.getSubRegIndexLaneMask(Idx);
562     // Early exit if we found a perfect match.
563     if (SubRegMask == LaneMask) {
564       BestIdx = Idx;
565       break;
566     }
567 
568     // The index must not cover any lanes outside \p LaneMask.
569     if ((SubRegMask & ~LaneMask).any())
570       continue;
571 
572     unsigned PopCount = SubRegMask.getNumLanes();
573     PossibleIndexes.push_back(Idx);
574     if (PopCount > BestCover) {
575       BestCover = PopCount;
576       BestIdx = Idx;
577     }
578   }
579 
580   // Abort if we cannot possibly implement the COPY with the given indexes.
581   if (BestIdx == 0)
582     report_fatal_error("Impossible to implement partial COPY");
583 
584   SlotIndex Def = buildSingleSubRegCopy(FromReg, ToReg, MBB, InsertBefore,
585                                         BestIdx, DestLI, Late, SlotIndex());
586 
587   // Greedy heuristic: Keep iterating keeping the best covering subreg index
588   // each time.
589   LaneBitmask LanesLeft = LaneMask & ~(TRI.getSubRegIndexLaneMask(BestIdx));
590   while (LanesLeft.any()) {
591     unsigned BestIdx = 0;
592     int BestCover = std::numeric_limits<int>::min();
593     for (unsigned Idx : PossibleIndexes) {
594       LaneBitmask SubRegMask = TRI.getSubRegIndexLaneMask(Idx);
595       // Early exit if we found a perfect match.
596       if (SubRegMask == LanesLeft) {
597         BestIdx = Idx;
598         break;
599       }
600 
601       // Try to cover as much of the remaining lanes as possible but
602       // as few of the already covered lanes as possible.
603       int Cover = (SubRegMask & LanesLeft).getNumLanes()
604                 - (SubRegMask & ~LanesLeft).getNumLanes();
605       if (Cover > BestCover) {
606         BestCover = Cover;
607         BestIdx = Idx;
608       }
609     }
610 
611     if (BestIdx == 0)
612       report_fatal_error("Impossible to implement partial COPY");
613 
614     buildSingleSubRegCopy(FromReg, ToReg, MBB, InsertBefore, BestIdx,
615                           DestLI, Late, Def);
616     LanesLeft &= ~TRI.getSubRegIndexLaneMask(BestIdx);
617   }
618 
619   return Def;
620 }
621 
622 VNInfo *SplitEditor::defFromParent(unsigned RegIdx,
623                                    VNInfo *ParentVNI,
624                                    SlotIndex UseIdx,
625                                    MachineBasicBlock &MBB,
626                                    MachineBasicBlock::iterator I) {
627   SlotIndex Def;
628   LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
629 
630   // We may be trying to avoid interference that ends at a deleted instruction,
631   // so always begin RegIdx 0 early and all others late.
632   bool Late = RegIdx != 0;
633 
634   // Attempt cheap-as-a-copy rematerialization.
635   unsigned Original = VRM.getOriginal(Edit->get(RegIdx));
636   LiveInterval &OrigLI = LIS.getInterval(Original);
637   VNInfo *OrigVNI = OrigLI.getVNInfoAt(UseIdx);
638 
639   unsigned Reg = LI->reg();
640   bool DidRemat = false;
641   if (OrigVNI) {
642     LiveRangeEdit::Remat RM(ParentVNI);
643     RM.OrigMI = LIS.getInstructionFromIndex(OrigVNI->def);
644     if (Edit->canRematerializeAt(RM, OrigVNI, UseIdx, true)) {
645       Def = Edit->rematerializeAt(MBB, I, Reg, RM, TRI, Late);
646       ++NumRemats;
647       DidRemat = true;
648     }
649   }
650   if (!DidRemat) {
651     LaneBitmask LaneMask;
652     if (OrigLI.hasSubRanges()) {
653       LaneMask = LaneBitmask::getNone();
654       for (LiveInterval::SubRange &S : OrigLI.subranges()) {
655         if (S.liveAt(UseIdx))
656           LaneMask |= S.LaneMask;
657       }
658       assert(LaneMask.any() && "Interval has no live subranges");
659     } else {
660       LaneMask = LaneBitmask::getAll();
661     }
662 
663     ++NumCopies;
664     Def = buildCopy(Edit->getReg(), Reg, LaneMask, MBB, I, Late, RegIdx);
665   }
666 
667   // Define the value in Reg.
668   return defValue(RegIdx, ParentVNI, Def, false);
669 }
670 
671 /// Create a new virtual register and live interval.
672 unsigned SplitEditor::openIntv() {
673   // Create the complement as index 0.
674   if (Edit->empty())
675     Edit->createEmptyInterval();
676 
677   // Create the open interval.
678   OpenIdx = Edit->size();
679   Edit->createEmptyInterval();
680   return OpenIdx;
681 }
682 
683 void SplitEditor::selectIntv(unsigned Idx) {
684   assert(Idx != 0 && "Cannot select the complement interval");
685   assert(Idx < Edit->size() && "Can only select previously opened interval");
686   LLVM_DEBUG(dbgs() << "    selectIntv " << OpenIdx << " -> " << Idx << '\n');
687   OpenIdx = Idx;
688 }
689 
690 SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) {
691   assert(OpenIdx && "openIntv not called before enterIntvBefore");
692   LLVM_DEBUG(dbgs() << "    enterIntvBefore " << Idx);
693   Idx = Idx.getBaseIndex();
694   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
695   if (!ParentVNI) {
696     LLVM_DEBUG(dbgs() << ": not live\n");
697     return Idx;
698   }
699   LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
700   MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
701   assert(MI && "enterIntvBefore called with invalid index");
702 
703   VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI);
704   return VNI->def;
705 }
706 
707 SlotIndex SplitEditor::enterIntvAfter(SlotIndex Idx) {
708   assert(OpenIdx && "openIntv not called before enterIntvAfter");
709   LLVM_DEBUG(dbgs() << "    enterIntvAfter " << Idx);
710   Idx = Idx.getBoundaryIndex();
711   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
712   if (!ParentVNI) {
713     LLVM_DEBUG(dbgs() << ": not live\n");
714     return Idx;
715   }
716   LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
717   MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
718   assert(MI && "enterIntvAfter called with invalid index");
719 
720   VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(),
721                               std::next(MachineBasicBlock::iterator(MI)));
722   return VNI->def;
723 }
724 
725 SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) {
726   assert(OpenIdx && "openIntv not called before enterIntvAtEnd");
727   SlotIndex End = LIS.getMBBEndIdx(&MBB);
728   SlotIndex Last = End.getPrevSlot();
729   LLVM_DEBUG(dbgs() << "    enterIntvAtEnd " << printMBBReference(MBB) << ", "
730                     << Last);
731   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last);
732   if (!ParentVNI) {
733     LLVM_DEBUG(dbgs() << ": not live\n");
734     return End;
735   }
736   LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id);
737   VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB,
738                               SA.getLastSplitPointIter(&MBB));
739   RegAssign.insert(VNI->def, End, OpenIdx);
740   LLVM_DEBUG(dump());
741   return VNI->def;
742 }
743 
744 /// useIntv - indicate that all instructions in MBB should use OpenLI.
745 void SplitEditor::useIntv(const MachineBasicBlock &MBB) {
746   useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB));
747 }
748 
749 void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) {
750   assert(OpenIdx && "openIntv not called before useIntv");
751   LLVM_DEBUG(dbgs() << "    useIntv [" << Start << ';' << End << "):");
752   RegAssign.insert(Start, End, OpenIdx);
753   LLVM_DEBUG(dump());
754 }
755 
756 SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) {
757   assert(OpenIdx && "openIntv not called before leaveIntvAfter");
758   LLVM_DEBUG(dbgs() << "    leaveIntvAfter " << Idx);
759 
760   // The interval must be live beyond the instruction at Idx.
761   SlotIndex Boundary = Idx.getBoundaryIndex();
762   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Boundary);
763   if (!ParentVNI) {
764     LLVM_DEBUG(dbgs() << ": not live\n");
765     return Boundary.getNextSlot();
766   }
767   LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
768   MachineInstr *MI = LIS.getInstructionFromIndex(Boundary);
769   assert(MI && "No instruction at index");
770 
771   // In spill mode, make live ranges as short as possible by inserting the copy
772   // before MI.  This is only possible if that instruction doesn't redefine the
773   // value.  The inserted COPY is not a kill, and we don't need to recompute
774   // the source live range.  The spiller also won't try to hoist this copy.
775   if (SpillMode && !SlotIndex::isSameInstr(ParentVNI->def, Idx) &&
776       MI->readsVirtualRegister(Edit->getReg())) {
777     forceRecompute(0, *ParentVNI);
778     defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
779     return Idx;
780   }
781 
782   VNInfo *VNI = defFromParent(0, ParentVNI, Boundary, *MI->getParent(),
783                               std::next(MachineBasicBlock::iterator(MI)));
784   return VNI->def;
785 }
786 
787 SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) {
788   assert(OpenIdx && "openIntv not called before leaveIntvBefore");
789   LLVM_DEBUG(dbgs() << "    leaveIntvBefore " << Idx);
790 
791   // The interval must be live into the instruction at Idx.
792   Idx = Idx.getBaseIndex();
793   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
794   if (!ParentVNI) {
795     LLVM_DEBUG(dbgs() << ": not live\n");
796     return Idx.getNextSlot();
797   }
798   LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
799 
800   MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
801   assert(MI && "No instruction at index");
802   VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
803   return VNI->def;
804 }
805 
806 SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) {
807   assert(OpenIdx && "openIntv not called before leaveIntvAtTop");
808   SlotIndex Start = LIS.getMBBStartIdx(&MBB);
809   LLVM_DEBUG(dbgs() << "    leaveIntvAtTop " << printMBBReference(MBB) << ", "
810                     << Start);
811 
812   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
813   if (!ParentVNI) {
814     LLVM_DEBUG(dbgs() << ": not live\n");
815     return Start;
816   }
817 
818   VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB,
819                               MBB.SkipPHIsLabelsAndDebug(MBB.begin()));
820   RegAssign.insert(Start, VNI->def, OpenIdx);
821   LLVM_DEBUG(dump());
822   return VNI->def;
823 }
824 
825 void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) {
826   assert(OpenIdx && "openIntv not called before overlapIntv");
827   const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
828   assert(ParentVNI == Edit->getParent().getVNInfoBefore(End) &&
829          "Parent changes value in extended range");
830   assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) &&
831          "Range cannot span basic blocks");
832 
833   // The complement interval will be extended as needed by LICalc.extend().
834   if (ParentVNI)
835     forceRecompute(0, *ParentVNI);
836   LLVM_DEBUG(dbgs() << "    overlapIntv [" << Start << ';' << End << "):");
837   RegAssign.insert(Start, End, OpenIdx);
838   LLVM_DEBUG(dump());
839 }
840 
841 //===----------------------------------------------------------------------===//
842 //                                  Spill modes
843 //===----------------------------------------------------------------------===//
844 
845 void SplitEditor::removeBackCopies(SmallVectorImpl<VNInfo*> &Copies) {
846   LiveInterval *LI = &LIS.getInterval(Edit->get(0));
847   LLVM_DEBUG(dbgs() << "Removing " << Copies.size() << " back-copies.\n");
848   RegAssignMap::iterator AssignI;
849   AssignI.setMap(RegAssign);
850 
851   for (unsigned i = 0, e = Copies.size(); i != e; ++i) {
852     SlotIndex Def = Copies[i]->def;
853     MachineInstr *MI = LIS.getInstructionFromIndex(Def);
854     assert(MI && "No instruction for back-copy");
855 
856     MachineBasicBlock *MBB = MI->getParent();
857     MachineBasicBlock::iterator MBBI(MI);
858     bool AtBegin;
859     do AtBegin = MBBI == MBB->begin();
860     while (!AtBegin && (--MBBI)->isDebugInstr());
861 
862     LLVM_DEBUG(dbgs() << "Removing " << Def << '\t' << *MI);
863     LIS.removeVRegDefAt(*LI, Def);
864     LIS.RemoveMachineInstrFromMaps(*MI);
865     MI->eraseFromParent();
866 
867     // Adjust RegAssign if a register assignment is killed at Def. We want to
868     // avoid calculating the live range of the source register if possible.
869     AssignI.find(Def.getPrevSlot());
870     if (!AssignI.valid() || AssignI.start() >= Def)
871       continue;
872     // If MI doesn't kill the assigned register, just leave it.
873     if (AssignI.stop() != Def)
874       continue;
875     unsigned RegIdx = AssignI.value();
876     if (AtBegin || !MBBI->readsVirtualRegister(Edit->getReg())) {
877       LLVM_DEBUG(dbgs() << "  cannot find simple kill of RegIdx " << RegIdx
878                         << '\n');
879       forceRecompute(RegIdx, *Edit->getParent().getVNInfoAt(Def));
880     } else {
881       SlotIndex Kill = LIS.getInstructionIndex(*MBBI).getRegSlot();
882       LLVM_DEBUG(dbgs() << "  move kill to " << Kill << '\t' << *MBBI);
883       AssignI.setStop(Kill);
884     }
885   }
886 }
887 
888 MachineBasicBlock*
889 SplitEditor::findShallowDominator(MachineBasicBlock *MBB,
890                                   MachineBasicBlock *DefMBB) {
891   if (MBB == DefMBB)
892     return MBB;
893   assert(MDT.dominates(DefMBB, MBB) && "MBB must be dominated by the def.");
894 
895   const MachineLoopInfo &Loops = SA.Loops;
896   const MachineLoop *DefLoop = Loops.getLoopFor(DefMBB);
897   MachineDomTreeNode *DefDomNode = MDT[DefMBB];
898 
899   // Best candidate so far.
900   MachineBasicBlock *BestMBB = MBB;
901   unsigned BestDepth = std::numeric_limits<unsigned>::max();
902 
903   while (true) {
904     const MachineLoop *Loop = Loops.getLoopFor(MBB);
905 
906     // MBB isn't in a loop, it doesn't get any better.  All dominators have a
907     // higher frequency by definition.
908     if (!Loop) {
909       LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB)
910                         << " dominates " << printMBBReference(*MBB)
911                         << " at depth 0\n");
912       return MBB;
913     }
914 
915     // We'll never be able to exit the DefLoop.
916     if (Loop == DefLoop) {
917       LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB)
918                         << " dominates " << printMBBReference(*MBB)
919                         << " in the same loop\n");
920       return MBB;
921     }
922 
923     // Least busy dominator seen so far.
924     unsigned Depth = Loop->getLoopDepth();
925     if (Depth < BestDepth) {
926       BestMBB = MBB;
927       BestDepth = Depth;
928       LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB)
929                         << " dominates " << printMBBReference(*MBB)
930                         << " at depth " << Depth << '\n');
931     }
932 
933     // Leave loop by going to the immediate dominator of the loop header.
934     // This is a bigger stride than simply walking up the dominator tree.
935     MachineDomTreeNode *IDom = MDT[Loop->getHeader()]->getIDom();
936 
937     // Too far up the dominator tree?
938     if (!IDom || !MDT.dominates(DefDomNode, IDom))
939       return BestMBB;
940 
941     MBB = IDom->getBlock();
942   }
943 }
944 
945 void SplitEditor::computeRedundantBackCopies(
946     DenseSet<unsigned> &NotToHoistSet, SmallVectorImpl<VNInfo *> &BackCopies) {
947   LiveInterval *LI = &LIS.getInterval(Edit->get(0));
948   LiveInterval *Parent = &Edit->getParent();
949   SmallVector<SmallPtrSet<VNInfo *, 8>, 8> EqualVNs(Parent->getNumValNums());
950   SmallPtrSet<VNInfo *, 8> DominatedVNIs;
951 
952   // Aggregate VNIs having the same value as ParentVNI.
953   for (VNInfo *VNI : LI->valnos) {
954     if (VNI->isUnused())
955       continue;
956     VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
957     EqualVNs[ParentVNI->id].insert(VNI);
958   }
959 
960   // For VNI aggregation of each ParentVNI, collect dominated, i.e.,
961   // redundant VNIs to BackCopies.
962   for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) {
963     VNInfo *ParentVNI = Parent->getValNumInfo(i);
964     if (!NotToHoistSet.count(ParentVNI->id))
965       continue;
966     SmallPtrSetIterator<VNInfo *> It1 = EqualVNs[ParentVNI->id].begin();
967     SmallPtrSetIterator<VNInfo *> It2 = It1;
968     for (; It1 != EqualVNs[ParentVNI->id].end(); ++It1) {
969       It2 = It1;
970       for (++It2; It2 != EqualVNs[ParentVNI->id].end(); ++It2) {
971         if (DominatedVNIs.count(*It1) || DominatedVNIs.count(*It2))
972           continue;
973 
974         MachineBasicBlock *MBB1 = LIS.getMBBFromIndex((*It1)->def);
975         MachineBasicBlock *MBB2 = LIS.getMBBFromIndex((*It2)->def);
976         if (MBB1 == MBB2) {
977           DominatedVNIs.insert((*It1)->def < (*It2)->def ? (*It2) : (*It1));
978         } else if (MDT.dominates(MBB1, MBB2)) {
979           DominatedVNIs.insert(*It2);
980         } else if (MDT.dominates(MBB2, MBB1)) {
981           DominatedVNIs.insert(*It1);
982         }
983       }
984     }
985     if (!DominatedVNIs.empty()) {
986       forceRecompute(0, *ParentVNI);
987       for (auto VNI : DominatedVNIs) {
988         BackCopies.push_back(VNI);
989       }
990       DominatedVNIs.clear();
991     }
992   }
993 }
994 
995 /// For SM_Size mode, find a common dominator for all the back-copies for
996 /// the same ParentVNI and hoist the backcopies to the dominator BB.
997 /// For SM_Speed mode, if the common dominator is hot and it is not beneficial
998 /// to do the hoisting, simply remove the dominated backcopies for the same
999 /// ParentVNI.
1000 void SplitEditor::hoistCopies() {
1001   // Get the complement interval, always RegIdx 0.
1002   LiveInterval *LI = &LIS.getInterval(Edit->get(0));
1003   LiveInterval *Parent = &Edit->getParent();
1004 
1005   // Track the nearest common dominator for all back-copies for each ParentVNI,
1006   // indexed by ParentVNI->id.
1007   using DomPair = std::pair<MachineBasicBlock *, SlotIndex>;
1008   SmallVector<DomPair, 8> NearestDom(Parent->getNumValNums());
1009   // The total cost of all the back-copies for each ParentVNI.
1010   SmallVector<BlockFrequency, 8> Costs(Parent->getNumValNums());
1011   // The ParentVNI->id set for which hoisting back-copies are not beneficial
1012   // for Speed.
1013   DenseSet<unsigned> NotToHoistSet;
1014 
1015   // Find the nearest common dominator for parent values with multiple
1016   // back-copies.  If a single back-copy dominates, put it in DomPair.second.
1017   for (VNInfo *VNI : LI->valnos) {
1018     if (VNI->isUnused())
1019       continue;
1020     VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
1021     assert(ParentVNI && "Parent not live at complement def");
1022 
1023     // Don't hoist remats.  The complement is probably going to disappear
1024     // completely anyway.
1025     if (Edit->didRematerialize(ParentVNI))
1026       continue;
1027 
1028     MachineBasicBlock *ValMBB = LIS.getMBBFromIndex(VNI->def);
1029 
1030     DomPair &Dom = NearestDom[ParentVNI->id];
1031 
1032     // Keep directly defined parent values.  This is either a PHI or an
1033     // instruction in the complement range.  All other copies of ParentVNI
1034     // should be eliminated.
1035     if (VNI->def == ParentVNI->def) {
1036       LLVM_DEBUG(dbgs() << "Direct complement def at " << VNI->def << '\n');
1037       Dom = DomPair(ValMBB, VNI->def);
1038       continue;
1039     }
1040     // Skip the singly mapped values.  There is nothing to gain from hoisting a
1041     // single back-copy.
1042     if (Values.lookup(std::make_pair(0, ParentVNI->id)).getPointer()) {
1043       LLVM_DEBUG(dbgs() << "Single complement def at " << VNI->def << '\n');
1044       continue;
1045     }
1046 
1047     if (!Dom.first) {
1048       // First time we see ParentVNI.  VNI dominates itself.
1049       Dom = DomPair(ValMBB, VNI->def);
1050     } else if (Dom.first == ValMBB) {
1051       // Two defs in the same block.  Pick the earlier def.
1052       if (!Dom.second.isValid() || VNI->def < Dom.second)
1053         Dom.second = VNI->def;
1054     } else {
1055       // Different basic blocks. Check if one dominates.
1056       MachineBasicBlock *Near =
1057         MDT.findNearestCommonDominator(Dom.first, ValMBB);
1058       if (Near == ValMBB)
1059         // Def ValMBB dominates.
1060         Dom = DomPair(ValMBB, VNI->def);
1061       else if (Near != Dom.first)
1062         // None dominate. Hoist to common dominator, need new def.
1063         Dom = DomPair(Near, SlotIndex());
1064       Costs[ParentVNI->id] += MBFI.getBlockFreq(ValMBB);
1065     }
1066 
1067     LLVM_DEBUG(dbgs() << "Multi-mapped complement " << VNI->id << '@'
1068                       << VNI->def << " for parent " << ParentVNI->id << '@'
1069                       << ParentVNI->def << " hoist to "
1070                       << printMBBReference(*Dom.first) << ' ' << Dom.second
1071                       << '\n');
1072   }
1073 
1074   // Insert the hoisted copies.
1075   for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) {
1076     DomPair &Dom = NearestDom[i];
1077     if (!Dom.first || Dom.second.isValid())
1078       continue;
1079     // This value needs a hoisted copy inserted at the end of Dom.first.
1080     VNInfo *ParentVNI = Parent->getValNumInfo(i);
1081     MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(ParentVNI->def);
1082     // Get a less loopy dominator than Dom.first.
1083     Dom.first = findShallowDominator(Dom.first, DefMBB);
1084     if (SpillMode == SM_Speed &&
1085         MBFI.getBlockFreq(Dom.first) > Costs[ParentVNI->id]) {
1086       NotToHoistSet.insert(ParentVNI->id);
1087       continue;
1088     }
1089     SlotIndex Last = LIS.getMBBEndIdx(Dom.first).getPrevSlot();
1090     Dom.second =
1091       defFromParent(0, ParentVNI, Last, *Dom.first,
1092                     SA.getLastSplitPointIter(Dom.first))->def;
1093   }
1094 
1095   // Remove redundant back-copies that are now known to be dominated by another
1096   // def with the same value.
1097   SmallVector<VNInfo*, 8> BackCopies;
1098   for (VNInfo *VNI : LI->valnos) {
1099     if (VNI->isUnused())
1100       continue;
1101     VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
1102     const DomPair &Dom = NearestDom[ParentVNI->id];
1103     if (!Dom.first || Dom.second == VNI->def ||
1104         NotToHoistSet.count(ParentVNI->id))
1105       continue;
1106     BackCopies.push_back(VNI);
1107     forceRecompute(0, *ParentVNI);
1108   }
1109 
1110   // If it is not beneficial to hoist all the BackCopies, simply remove
1111   // redundant BackCopies in speed mode.
1112   if (SpillMode == SM_Speed && !NotToHoistSet.empty())
1113     computeRedundantBackCopies(NotToHoistSet, BackCopies);
1114 
1115   removeBackCopies(BackCopies);
1116 }
1117 
1118 /// transferValues - Transfer all possible values to the new live ranges.
1119 /// Values that were rematerialized are left alone, they need LICalc.extend().
1120 bool SplitEditor::transferValues() {
1121   bool Skipped = false;
1122   RegAssignMap::const_iterator AssignI = RegAssign.begin();
1123   for (const LiveRange::Segment &S : Edit->getParent()) {
1124     LLVM_DEBUG(dbgs() << "  blit " << S << ':');
1125     VNInfo *ParentVNI = S.valno;
1126     // RegAssign has holes where RegIdx 0 should be used.
1127     SlotIndex Start = S.start;
1128     AssignI.advanceTo(Start);
1129     do {
1130       unsigned RegIdx;
1131       SlotIndex End = S.end;
1132       if (!AssignI.valid()) {
1133         RegIdx = 0;
1134       } else if (AssignI.start() <= Start) {
1135         RegIdx = AssignI.value();
1136         if (AssignI.stop() < End) {
1137           End = AssignI.stop();
1138           ++AssignI;
1139         }
1140       } else {
1141         RegIdx = 0;
1142         End = std::min(End, AssignI.start());
1143       }
1144 
1145       // The interval [Start;End) is continuously mapped to RegIdx, ParentVNI.
1146       LLVM_DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx << '('
1147                         << printReg(Edit->get(RegIdx)) << ')');
1148       LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
1149 
1150       // Check for a simply defined value that can be blitted directly.
1151       ValueForcePair VFP = Values.lookup(std::make_pair(RegIdx, ParentVNI->id));
1152       if (VNInfo *VNI = VFP.getPointer()) {
1153         LLVM_DEBUG(dbgs() << ':' << VNI->id);
1154         LI.addSegment(LiveInterval::Segment(Start, End, VNI));
1155         Start = End;
1156         continue;
1157       }
1158 
1159       // Skip values with forced recomputation.
1160       if (VFP.getInt()) {
1161         LLVM_DEBUG(dbgs() << "(recalc)");
1162         Skipped = true;
1163         Start = End;
1164         continue;
1165       }
1166 
1167       LiveIntervalCalc &LIC = getLICalc(RegIdx);
1168 
1169       // This value has multiple defs in RegIdx, but it wasn't rematerialized,
1170       // so the live range is accurate. Add live-in blocks in [Start;End) to the
1171       // LiveInBlocks.
1172       MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start)->getIterator();
1173       SlotIndex BlockStart, BlockEnd;
1174       std::tie(BlockStart, BlockEnd) = LIS.getSlotIndexes()->getMBBRange(&*MBB);
1175 
1176       // The first block may be live-in, or it may have its own def.
1177       if (Start != BlockStart) {
1178         VNInfo *VNI = LI.extendInBlock(BlockStart, std::min(BlockEnd, End));
1179         assert(VNI && "Missing def for complex mapped value");
1180         LLVM_DEBUG(dbgs() << ':' << VNI->id << "*" << printMBBReference(*MBB));
1181         // MBB has its own def. Is it also live-out?
1182         if (BlockEnd <= End)
1183           LIC.setLiveOutValue(&*MBB, VNI);
1184 
1185         // Skip to the next block for live-in.
1186         ++MBB;
1187         BlockStart = BlockEnd;
1188       }
1189 
1190       // Handle the live-in blocks covered by [Start;End).
1191       assert(Start <= BlockStart && "Expected live-in block");
1192       while (BlockStart < End) {
1193         LLVM_DEBUG(dbgs() << ">" << printMBBReference(*MBB));
1194         BlockEnd = LIS.getMBBEndIdx(&*MBB);
1195         if (BlockStart == ParentVNI->def) {
1196           // This block has the def of a parent PHI, so it isn't live-in.
1197           assert(ParentVNI->isPHIDef() && "Non-phi defined at block start?");
1198           VNInfo *VNI = LI.extendInBlock(BlockStart, std::min(BlockEnd, End));
1199           assert(VNI && "Missing def for complex mapped parent PHI");
1200           if (End >= BlockEnd)
1201             LIC.setLiveOutValue(&*MBB, VNI); // Live-out as well.
1202         } else {
1203           // This block needs a live-in value.  The last block covered may not
1204           // be live-out.
1205           if (End < BlockEnd)
1206             LIC.addLiveInBlock(LI, MDT[&*MBB], End);
1207           else {
1208             // Live-through, and we don't know the value.
1209             LIC.addLiveInBlock(LI, MDT[&*MBB]);
1210             LIC.setLiveOutValue(&*MBB, nullptr);
1211           }
1212         }
1213         BlockStart = BlockEnd;
1214         ++MBB;
1215       }
1216       Start = End;
1217     } while (Start != S.end);
1218     LLVM_DEBUG(dbgs() << '\n');
1219   }
1220 
1221   LICalc[0].calculateValues();
1222   if (SpillMode)
1223     LICalc[1].calculateValues();
1224 
1225   return Skipped;
1226 }
1227 
1228 static bool removeDeadSegment(SlotIndex Def, LiveRange &LR) {
1229   const LiveRange::Segment *Seg = LR.getSegmentContaining(Def);
1230   if (Seg == nullptr)
1231     return true;
1232   if (Seg->end != Def.getDeadSlot())
1233     return false;
1234   // This is a dead PHI. Remove it.
1235   LR.removeSegment(*Seg, true);
1236   return true;
1237 }
1238 
1239 void SplitEditor::extendPHIRange(MachineBasicBlock &B, LiveIntervalCalc &LIC,
1240                                  LiveRange &LR, LaneBitmask LM,
1241                                  ArrayRef<SlotIndex> Undefs) {
1242   for (MachineBasicBlock *P : B.predecessors()) {
1243     SlotIndex End = LIS.getMBBEndIdx(P);
1244     SlotIndex LastUse = End.getPrevSlot();
1245     // The predecessor may not have a live-out value. That is OK, like an
1246     // undef PHI operand.
1247     LiveInterval &PLI = Edit->getParent();
1248     // Need the cast because the inputs to ?: would otherwise be deemed
1249     // "incompatible": SubRange vs LiveInterval.
1250     LiveRange &PSR = !LM.all() ? getSubRangeForMask(LM, PLI)
1251                                : static_cast<LiveRange&>(PLI);
1252     if (PSR.liveAt(LastUse))
1253       LIC.extend(LR, End, /*PhysReg=*/0, Undefs);
1254   }
1255 }
1256 
1257 void SplitEditor::extendPHIKillRanges() {
1258   // Extend live ranges to be live-out for successor PHI values.
1259 
1260   // Visit each PHI def slot in the parent live interval. If the def is dead,
1261   // remove it. Otherwise, extend the live interval to reach the end indexes
1262   // of all predecessor blocks.
1263 
1264   LiveInterval &ParentLI = Edit->getParent();
1265   for (const VNInfo *V : ParentLI.valnos) {
1266     if (V->isUnused() || !V->isPHIDef())
1267       continue;
1268 
1269     unsigned RegIdx = RegAssign.lookup(V->def);
1270     LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
1271     LiveIntervalCalc &LIC = getLICalc(RegIdx);
1272     MachineBasicBlock &B = *LIS.getMBBFromIndex(V->def);
1273     if (!removeDeadSegment(V->def, LI))
1274       extendPHIRange(B, LIC, LI, LaneBitmask::getAll(), /*Undefs=*/{});
1275   }
1276 
1277   SmallVector<SlotIndex, 4> Undefs;
1278   LiveIntervalCalc SubLIC;
1279 
1280   for (LiveInterval::SubRange &PS : ParentLI.subranges()) {
1281     for (const VNInfo *V : PS.valnos) {
1282       if (V->isUnused() || !V->isPHIDef())
1283         continue;
1284       unsigned RegIdx = RegAssign.lookup(V->def);
1285       LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
1286       LiveInterval::SubRange &S = getSubRangeForMask(PS.LaneMask, LI);
1287       if (removeDeadSegment(V->def, S))
1288         continue;
1289 
1290       MachineBasicBlock &B = *LIS.getMBBFromIndex(V->def);
1291       SubLIC.reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
1292                    &LIS.getVNInfoAllocator());
1293       Undefs.clear();
1294       LI.computeSubRangeUndefs(Undefs, PS.LaneMask, MRI, *LIS.getSlotIndexes());
1295       extendPHIRange(B, SubLIC, S, PS.LaneMask, Undefs);
1296     }
1297   }
1298 }
1299 
1300 /// rewriteAssigned - Rewrite all uses of Edit->getReg().
1301 void SplitEditor::rewriteAssigned(bool ExtendRanges) {
1302   struct ExtPoint {
1303     ExtPoint(const MachineOperand &O, unsigned R, SlotIndex N)
1304       : MO(O), RegIdx(R), Next(N) {}
1305 
1306     MachineOperand MO;
1307     unsigned RegIdx;
1308     SlotIndex Next;
1309   };
1310 
1311   SmallVector<ExtPoint,4> ExtPoints;
1312 
1313   for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Edit->getReg()),
1314        RE = MRI.reg_end(); RI != RE;) {
1315     MachineOperand &MO = *RI;
1316     MachineInstr *MI = MO.getParent();
1317     ++RI;
1318     // LiveDebugVariables should have handled all DBG_VALUE instructions.
1319     if (MI->isDebugValue()) {
1320       LLVM_DEBUG(dbgs() << "Zapping " << *MI);
1321       MO.setReg(0);
1322       continue;
1323     }
1324 
1325     // <undef> operands don't really read the register, so it doesn't matter
1326     // which register we choose.  When the use operand is tied to a def, we must
1327     // use the same register as the def, so just do that always.
1328     SlotIndex Idx = LIS.getInstructionIndex(*MI);
1329     if (MO.isDef() || MO.isUndef())
1330       Idx = Idx.getRegSlot(MO.isEarlyClobber());
1331 
1332     // Rewrite to the mapped register at Idx.
1333     unsigned RegIdx = RegAssign.lookup(Idx);
1334     LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
1335     MO.setReg(LI.reg());
1336     LLVM_DEBUG(dbgs() << "  rewr " << printMBBReference(*MI->getParent())
1337                       << '\t' << Idx << ':' << RegIdx << '\t' << *MI);
1338 
1339     // Extend liveness to Idx if the instruction reads reg.
1340     if (!ExtendRanges || MO.isUndef())
1341       continue;
1342 
1343     // Skip instructions that don't read Reg.
1344     if (MO.isDef()) {
1345       if (!MO.getSubReg() && !MO.isEarlyClobber())
1346         continue;
1347       // We may want to extend a live range for a partial redef, or for a use
1348       // tied to an early clobber.
1349       Idx = Idx.getPrevSlot();
1350       if (!Edit->getParent().liveAt(Idx))
1351         continue;
1352     } else
1353       Idx = Idx.getRegSlot(true);
1354 
1355     SlotIndex Next = Idx.getNextSlot();
1356     if (LI.hasSubRanges()) {
1357       // We have to delay extending subranges until we have seen all operands
1358       // defining the register. This is because a <def,read-undef> operand
1359       // will create an "undef" point, and we cannot extend any subranges
1360       // until all of them have been accounted for.
1361       if (MO.isUse())
1362         ExtPoints.push_back(ExtPoint(MO, RegIdx, Next));
1363     } else {
1364       LiveIntervalCalc &LIC = getLICalc(RegIdx);
1365       LIC.extend(LI, Next, 0, ArrayRef<SlotIndex>());
1366     }
1367   }
1368 
1369   for (ExtPoint &EP : ExtPoints) {
1370     LiveInterval &LI = LIS.getInterval(Edit->get(EP.RegIdx));
1371     assert(LI.hasSubRanges());
1372 
1373     LiveIntervalCalc SubLIC;
1374     Register Reg = EP.MO.getReg(), Sub = EP.MO.getSubReg();
1375     LaneBitmask LM = Sub != 0 ? TRI.getSubRegIndexLaneMask(Sub)
1376                               : MRI.getMaxLaneMaskForVReg(Reg);
1377     for (LiveInterval::SubRange &S : LI.subranges()) {
1378       if ((S.LaneMask & LM).none())
1379         continue;
1380       // The problem here can be that the new register may have been created
1381       // for a partially defined original register. For example:
1382       //   %0:subreg_hireg<def,read-undef> = ...
1383       //   ...
1384       //   %1 = COPY %0
1385       if (S.empty())
1386         continue;
1387       SubLIC.reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
1388                    &LIS.getVNInfoAllocator());
1389       SmallVector<SlotIndex, 4> Undefs;
1390       LI.computeSubRangeUndefs(Undefs, S.LaneMask, MRI, *LIS.getSlotIndexes());
1391       SubLIC.extend(S, EP.Next, 0, Undefs);
1392     }
1393   }
1394 
1395   for (unsigned R : *Edit) {
1396     LiveInterval &LI = LIS.getInterval(R);
1397     if (!LI.hasSubRanges())
1398       continue;
1399     LI.clear();
1400     LI.removeEmptySubRanges();
1401     LIS.constructMainRangeFromSubranges(LI);
1402   }
1403 }
1404 
1405 void SplitEditor::deleteRematVictims() {
1406   SmallVector<MachineInstr*, 8> Dead;
1407   for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I){
1408     LiveInterval *LI = &LIS.getInterval(*I);
1409     for (const LiveRange::Segment &S : LI->segments) {
1410       // Dead defs end at the dead slot.
1411       if (S.end != S.valno->def.getDeadSlot())
1412         continue;
1413       if (S.valno->isPHIDef())
1414         continue;
1415       MachineInstr *MI = LIS.getInstructionFromIndex(S.valno->def);
1416       assert(MI && "Missing instruction for dead def");
1417       MI->addRegisterDead(LI->reg(), &TRI);
1418 
1419       if (!MI->allDefsAreDead())
1420         continue;
1421 
1422       LLVM_DEBUG(dbgs() << "All defs dead: " << *MI);
1423       Dead.push_back(MI);
1424     }
1425   }
1426 
1427   if (Dead.empty())
1428     return;
1429 
1430   Edit->eliminateDeadDefs(Dead, None, &AA);
1431 }
1432 
1433 void SplitEditor::forceRecomputeVNI(const VNInfo &ParentVNI) {
1434   // Fast-path for common case.
1435   if (!ParentVNI.isPHIDef()) {
1436     for (unsigned I = 0, E = Edit->size(); I != E; ++I)
1437       forceRecompute(I, ParentVNI);
1438     return;
1439   }
1440 
1441   // Trace value through phis.
1442   SmallPtrSet<const VNInfo *, 8> Visited; ///< whether VNI was/is in worklist.
1443   SmallVector<const VNInfo *, 4> WorkList;
1444   Visited.insert(&ParentVNI);
1445   WorkList.push_back(&ParentVNI);
1446 
1447   const LiveInterval &ParentLI = Edit->getParent();
1448   const SlotIndexes &Indexes = *LIS.getSlotIndexes();
1449   do {
1450     const VNInfo &VNI = *WorkList.back();
1451     WorkList.pop_back();
1452     for (unsigned I = 0, E = Edit->size(); I != E; ++I)
1453       forceRecompute(I, VNI);
1454     if (!VNI.isPHIDef())
1455       continue;
1456 
1457     MachineBasicBlock &MBB = *Indexes.getMBBFromIndex(VNI.def);
1458     for (const MachineBasicBlock *Pred : MBB.predecessors()) {
1459       SlotIndex PredEnd = Indexes.getMBBEndIdx(Pred);
1460       VNInfo *PredVNI = ParentLI.getVNInfoBefore(PredEnd);
1461       assert(PredVNI && "Value available in PhiVNI predecessor");
1462       if (Visited.insert(PredVNI).second)
1463         WorkList.push_back(PredVNI);
1464     }
1465   } while(!WorkList.empty());
1466 }
1467 
1468 void SplitEditor::finish(SmallVectorImpl<unsigned> *LRMap) {
1469   ++NumFinished;
1470 
1471   // At this point, the live intervals in Edit contain VNInfos corresponding to
1472   // the inserted copies.
1473 
1474   // Add the original defs from the parent interval.
1475   for (const VNInfo *ParentVNI : Edit->getParent().valnos) {
1476     if (ParentVNI->isUnused())
1477       continue;
1478     unsigned RegIdx = RegAssign.lookup(ParentVNI->def);
1479     defValue(RegIdx, ParentVNI, ParentVNI->def, true);
1480 
1481     // Force rematted values to be recomputed everywhere.
1482     // The new live ranges may be truncated.
1483     if (Edit->didRematerialize(ParentVNI))
1484       forceRecomputeVNI(*ParentVNI);
1485   }
1486 
1487   // Hoist back-copies to the complement interval when in spill mode.
1488   switch (SpillMode) {
1489   case SM_Partition:
1490     // Leave all back-copies as is.
1491     break;
1492   case SM_Size:
1493   case SM_Speed:
1494     // hoistCopies will behave differently between size and speed.
1495     hoistCopies();
1496   }
1497 
1498   // Transfer the simply mapped values, check if any are skipped.
1499   bool Skipped = transferValues();
1500 
1501   // Rewrite virtual registers, possibly extending ranges.
1502   rewriteAssigned(Skipped);
1503 
1504   if (Skipped)
1505     extendPHIKillRanges();
1506   else
1507     ++NumSimple;
1508 
1509   // Delete defs that were rematted everywhere.
1510   if (Skipped)
1511     deleteRematVictims();
1512 
1513   // Get rid of unused values and set phi-kill flags.
1514   for (unsigned Reg : *Edit) {
1515     LiveInterval &LI = LIS.getInterval(Reg);
1516     LI.removeEmptySubRanges();
1517     LI.RenumberValues();
1518   }
1519 
1520   // Provide a reverse mapping from original indices to Edit ranges.
1521   if (LRMap) {
1522     LRMap->clear();
1523     for (unsigned i = 0, e = Edit->size(); i != e; ++i)
1524       LRMap->push_back(i);
1525   }
1526 
1527   // Now check if any registers were separated into multiple components.
1528   ConnectedVNInfoEqClasses ConEQ(LIS);
1529   for (unsigned i = 0, e = Edit->size(); i != e; ++i) {
1530     // Don't use iterators, they are invalidated by create() below.
1531     unsigned VReg = Edit->get(i);
1532     LiveInterval &LI = LIS.getInterval(VReg);
1533     SmallVector<LiveInterval*, 8> SplitLIs;
1534     LIS.splitSeparateComponents(LI, SplitLIs);
1535     unsigned Original = VRM.getOriginal(VReg);
1536     for (LiveInterval *SplitLI : SplitLIs)
1537       VRM.setIsSplitFromReg(SplitLI->reg(), Original);
1538 
1539     // The new intervals all map back to i.
1540     if (LRMap)
1541       LRMap->resize(Edit->size(), i);
1542   }
1543 
1544   // Calculate spill weight and allocation hints for new intervals.
1545   Edit->calculateRegClassAndHint(VRM.getMachineFunction(), SA.Loops, MBFI);
1546 
1547   assert(!LRMap || LRMap->size() == Edit->size());
1548 }
1549 
1550 //===----------------------------------------------------------------------===//
1551 //                            Single Block Splitting
1552 //===----------------------------------------------------------------------===//
1553 
1554 bool SplitAnalysis::shouldSplitSingleBlock(const BlockInfo &BI,
1555                                            bool SingleInstrs) const {
1556   // Always split for multiple instructions.
1557   if (!BI.isOneInstr())
1558     return true;
1559   // Don't split for single instructions unless explicitly requested.
1560   if (!SingleInstrs)
1561     return false;
1562   // Splitting a live-through range always makes progress.
1563   if (BI.LiveIn && BI.LiveOut)
1564     return true;
1565   // No point in isolating a copy. It has no register class constraints.
1566   if (LIS.getInstructionFromIndex(BI.FirstInstr)->isCopyLike())
1567     return false;
1568   // Finally, don't isolate an end point that was created by earlier splits.
1569   return isOriginalEndpoint(BI.FirstInstr);
1570 }
1571 
1572 void SplitEditor::splitSingleBlock(const SplitAnalysis::BlockInfo &BI) {
1573   openIntv();
1574   SlotIndex LastSplitPoint = SA.getLastSplitPoint(BI.MBB->getNumber());
1575   SlotIndex SegStart = enterIntvBefore(std::min(BI.FirstInstr,
1576     LastSplitPoint));
1577   if (!BI.LiveOut || BI.LastInstr < LastSplitPoint) {
1578     useIntv(SegStart, leaveIntvAfter(BI.LastInstr));
1579   } else {
1580       // The last use is after the last valid split point.
1581     SlotIndex SegStop = leaveIntvBefore(LastSplitPoint);
1582     useIntv(SegStart, SegStop);
1583     overlapIntv(SegStop, BI.LastInstr);
1584   }
1585 }
1586 
1587 //===----------------------------------------------------------------------===//
1588 //                    Global Live Range Splitting Support
1589 //===----------------------------------------------------------------------===//
1590 
1591 // These methods support a method of global live range splitting that uses a
1592 // global algorithm to decide intervals for CFG edges. They will insert split
1593 // points and color intervals in basic blocks while avoiding interference.
1594 //
1595 // Note that splitSingleBlock is also useful for blocks where both CFG edges
1596 // are on the stack.
1597 
1598 void SplitEditor::splitLiveThroughBlock(unsigned MBBNum,
1599                                         unsigned IntvIn, SlotIndex LeaveBefore,
1600                                         unsigned IntvOut, SlotIndex EnterAfter){
1601   SlotIndex Start, Stop;
1602   std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(MBBNum);
1603 
1604   LLVM_DEBUG(dbgs() << "%bb." << MBBNum << " [" << Start << ';' << Stop
1605                     << ") intf " << LeaveBefore << '-' << EnterAfter
1606                     << ", live-through " << IntvIn << " -> " << IntvOut);
1607 
1608   assert((IntvIn || IntvOut) && "Use splitSingleBlock for isolated blocks");
1609 
1610   assert((!LeaveBefore || LeaveBefore < Stop) && "Interference after block");
1611   assert((!IntvIn || !LeaveBefore || LeaveBefore > Start) && "Impossible intf");
1612   assert((!EnterAfter || EnterAfter >= Start) && "Interference before block");
1613 
1614   MachineBasicBlock *MBB = VRM.getMachineFunction().getBlockNumbered(MBBNum);
1615 
1616   if (!IntvOut) {
1617     LLVM_DEBUG(dbgs() << ", spill on entry.\n");
1618     //
1619     //        <<<<<<<<<    Possible LeaveBefore interference.
1620     //    |-----------|    Live through.
1621     //    -____________    Spill on entry.
1622     //
1623     selectIntv(IntvIn);
1624     SlotIndex Idx = leaveIntvAtTop(*MBB);
1625     assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1626     (void)Idx;
1627     return;
1628   }
1629 
1630   if (!IntvIn) {
1631     LLVM_DEBUG(dbgs() << ", reload on exit.\n");
1632     //
1633     //    >>>>>>>          Possible EnterAfter interference.
1634     //    |-----------|    Live through.
1635     //    ___________--    Reload on exit.
1636     //
1637     selectIntv(IntvOut);
1638     SlotIndex Idx = enterIntvAtEnd(*MBB);
1639     assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1640     (void)Idx;
1641     return;
1642   }
1643 
1644   if (IntvIn == IntvOut && !LeaveBefore && !EnterAfter) {
1645     LLVM_DEBUG(dbgs() << ", straight through.\n");
1646     //
1647     //    |-----------|    Live through.
1648     //    -------------    Straight through, same intv, no interference.
1649     //
1650     selectIntv(IntvOut);
1651     useIntv(Start, Stop);
1652     return;
1653   }
1654 
1655   // We cannot legally insert splits after LSP.
1656   SlotIndex LSP = SA.getLastSplitPoint(MBBNum);
1657   assert((!IntvOut || !EnterAfter || EnterAfter < LSP) && "Impossible intf");
1658 
1659   if (IntvIn != IntvOut && (!LeaveBefore || !EnterAfter ||
1660                   LeaveBefore.getBaseIndex() > EnterAfter.getBoundaryIndex())) {
1661     LLVM_DEBUG(dbgs() << ", switch avoiding interference.\n");
1662     //
1663     //    >>>>     <<<<    Non-overlapping EnterAfter/LeaveBefore interference.
1664     //    |-----------|    Live through.
1665     //    ------=======    Switch intervals between interference.
1666     //
1667     selectIntv(IntvOut);
1668     SlotIndex Idx;
1669     if (LeaveBefore && LeaveBefore < LSP) {
1670       Idx = enterIntvBefore(LeaveBefore);
1671       useIntv(Idx, Stop);
1672     } else {
1673       Idx = enterIntvAtEnd(*MBB);
1674     }
1675     selectIntv(IntvIn);
1676     useIntv(Start, Idx);
1677     assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1678     assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1679     return;
1680   }
1681 
1682   LLVM_DEBUG(dbgs() << ", create local intv for interference.\n");
1683   //
1684   //    >>><><><><<<<    Overlapping EnterAfter/LeaveBefore interference.
1685   //    |-----------|    Live through.
1686   //    ==---------==    Switch intervals before/after interference.
1687   //
1688   assert(LeaveBefore <= EnterAfter && "Missed case");
1689 
1690   selectIntv(IntvOut);
1691   SlotIndex Idx = enterIntvAfter(EnterAfter);
1692   useIntv(Idx, Stop);
1693   assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1694 
1695   selectIntv(IntvIn);
1696   Idx = leaveIntvBefore(LeaveBefore);
1697   useIntv(Start, Idx);
1698   assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1699 }
1700 
1701 void SplitEditor::splitRegInBlock(const SplitAnalysis::BlockInfo &BI,
1702                                   unsigned IntvIn, SlotIndex LeaveBefore) {
1703   SlotIndex Start, Stop;
1704   std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
1705 
1706   LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " [" << Start << ';'
1707                     << Stop << "), uses " << BI.FirstInstr << '-'
1708                     << BI.LastInstr << ", reg-in " << IntvIn
1709                     << ", leave before " << LeaveBefore
1710                     << (BI.LiveOut ? ", stack-out" : ", killed in block"));
1711 
1712   assert(IntvIn && "Must have register in");
1713   assert(BI.LiveIn && "Must be live-in");
1714   assert((!LeaveBefore || LeaveBefore > Start) && "Bad interference");
1715 
1716   if (!BI.LiveOut && (!LeaveBefore || LeaveBefore >= BI.LastInstr)) {
1717     LLVM_DEBUG(dbgs() << " before interference.\n");
1718     //
1719     //               <<<    Interference after kill.
1720     //     |---o---x   |    Killed in block.
1721     //     =========        Use IntvIn everywhere.
1722     //
1723     selectIntv(IntvIn);
1724     useIntv(Start, BI.LastInstr);
1725     return;
1726   }
1727 
1728   SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber());
1729 
1730   if (!LeaveBefore || LeaveBefore > BI.LastInstr.getBoundaryIndex()) {
1731     //
1732     //               <<<    Possible interference after last use.
1733     //     |---o---o---|    Live-out on stack.
1734     //     =========____    Leave IntvIn after last use.
1735     //
1736     //                 <    Interference after last use.
1737     //     |---o---o--o|    Live-out on stack, late last use.
1738     //     ============     Copy to stack after LSP, overlap IntvIn.
1739     //            \_____    Stack interval is live-out.
1740     //
1741     if (BI.LastInstr < LSP) {
1742       LLVM_DEBUG(dbgs() << ", spill after last use before interference.\n");
1743       selectIntv(IntvIn);
1744       SlotIndex Idx = leaveIntvAfter(BI.LastInstr);
1745       useIntv(Start, Idx);
1746       assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1747     } else {
1748       LLVM_DEBUG(dbgs() << ", spill before last split point.\n");
1749       selectIntv(IntvIn);
1750       SlotIndex Idx = leaveIntvBefore(LSP);
1751       overlapIntv(Idx, BI.LastInstr);
1752       useIntv(Start, Idx);
1753       assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1754     }
1755     return;
1756   }
1757 
1758   // The interference is overlapping somewhere we wanted to use IntvIn. That
1759   // means we need to create a local interval that can be allocated a
1760   // different register.
1761   unsigned LocalIntv = openIntv();
1762   (void)LocalIntv;
1763   LLVM_DEBUG(dbgs() << ", creating local interval " << LocalIntv << ".\n");
1764 
1765   if (!BI.LiveOut || BI.LastInstr < LSP) {
1766     //
1767     //           <<<<<<<    Interference overlapping uses.
1768     //     |---o---o---|    Live-out on stack.
1769     //     =====----____    Leave IntvIn before interference, then spill.
1770     //
1771     SlotIndex To = leaveIntvAfter(BI.LastInstr);
1772     SlotIndex From = enterIntvBefore(LeaveBefore);
1773     useIntv(From, To);
1774     selectIntv(IntvIn);
1775     useIntv(Start, From);
1776     assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
1777     return;
1778   }
1779 
1780   //           <<<<<<<    Interference overlapping uses.
1781   //     |---o---o--o|    Live-out on stack, late last use.
1782   //     =====-------     Copy to stack before LSP, overlap LocalIntv.
1783   //            \_____    Stack interval is live-out.
1784   //
1785   SlotIndex To = leaveIntvBefore(LSP);
1786   overlapIntv(To, BI.LastInstr);
1787   SlotIndex From = enterIntvBefore(std::min(To, LeaveBefore));
1788   useIntv(From, To);
1789   selectIntv(IntvIn);
1790   useIntv(Start, From);
1791   assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
1792 }
1793 
1794 void SplitEditor::splitRegOutBlock(const SplitAnalysis::BlockInfo &BI,
1795                                    unsigned IntvOut, SlotIndex EnterAfter) {
1796   SlotIndex Start, Stop;
1797   std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
1798 
1799   LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " [" << Start << ';'
1800                     << Stop << "), uses " << BI.FirstInstr << '-'
1801                     << BI.LastInstr << ", reg-out " << IntvOut
1802                     << ", enter after " << EnterAfter
1803                     << (BI.LiveIn ? ", stack-in" : ", defined in block"));
1804 
1805   SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber());
1806 
1807   assert(IntvOut && "Must have register out");
1808   assert(BI.LiveOut && "Must be live-out");
1809   assert((!EnterAfter || EnterAfter < LSP) && "Bad interference");
1810 
1811   if (!BI.LiveIn && (!EnterAfter || EnterAfter <= BI.FirstInstr)) {
1812     LLVM_DEBUG(dbgs() << " after interference.\n");
1813     //
1814     //    >>>>             Interference before def.
1815     //    |   o---o---|    Defined in block.
1816     //        =========    Use IntvOut everywhere.
1817     //
1818     selectIntv(IntvOut);
1819     useIntv(BI.FirstInstr, Stop);
1820     return;
1821   }
1822 
1823   if (!EnterAfter || EnterAfter < BI.FirstInstr.getBaseIndex()) {
1824     LLVM_DEBUG(dbgs() << ", reload after interference.\n");
1825     //
1826     //    >>>>             Interference before def.
1827     //    |---o---o---|    Live-through, stack-in.
1828     //    ____=========    Enter IntvOut before first use.
1829     //
1830     selectIntv(IntvOut);
1831     SlotIndex Idx = enterIntvBefore(std::min(LSP, BI.FirstInstr));
1832     useIntv(Idx, Stop);
1833     assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1834     return;
1835   }
1836 
1837   // The interference is overlapping somewhere we wanted to use IntvOut. That
1838   // means we need to create a local interval that can be allocated a
1839   // different register.
1840   LLVM_DEBUG(dbgs() << ", interference overlaps uses.\n");
1841   //
1842   //    >>>>>>>          Interference overlapping uses.
1843   //    |---o---o---|    Live-through, stack-in.
1844   //    ____---======    Create local interval for interference range.
1845   //
1846   selectIntv(IntvOut);
1847   SlotIndex Idx = enterIntvAfter(EnterAfter);
1848   useIntv(Idx, Stop);
1849   assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1850 
1851   openIntv();
1852   SlotIndex From = enterIntvBefore(std::min(Idx, BI.FirstInstr));
1853   useIntv(From, Idx);
1854 }
1855