1 //===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the SplitAnalysis class as well as mutator functions for 11 // live range splitting. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "SplitKit.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 18 #include "llvm/CodeGen/LiveRangeEdit.h" 19 #include "llvm/CodeGen/MachineDominators.h" 20 #include "llvm/CodeGen/MachineInstrBuilder.h" 21 #include "llvm/CodeGen/MachineLoopInfo.h" 22 #include "llvm/CodeGen/MachineRegisterInfo.h" 23 #include "llvm/CodeGen/VirtRegMap.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/raw_ostream.h" 26 #include "llvm/Target/TargetInstrInfo.h" 27 #include "llvm/Target/TargetMachine.h" 28 29 using namespace llvm; 30 31 #define DEBUG_TYPE "regalloc" 32 33 STATISTIC(NumFinished, "Number of splits finished"); 34 STATISTIC(NumSimple, "Number of splits that were simple"); 35 STATISTIC(NumCopies, "Number of copies inserted for splitting"); 36 STATISTIC(NumRemats, "Number of rematerialized defs for splitting"); 37 STATISTIC(NumRepairs, "Number of invalid live ranges repaired"); 38 39 //===----------------------------------------------------------------------===// 40 // Split Analysis 41 //===----------------------------------------------------------------------===// 42 43 SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm, const LiveIntervals &lis, 44 const MachineLoopInfo &mli) 45 : MF(vrm.getMachineFunction()), VRM(vrm), LIS(lis), Loops(mli), 46 TII(*MF.getSubtarget().getInstrInfo()), CurLI(nullptr), 47 LastSplitPoint(MF.getNumBlockIDs()) {} 48 49 void SplitAnalysis::clear() { 50 UseSlots.clear(); 51 UseBlocks.clear(); 52 ThroughBlocks.clear(); 53 CurLI = nullptr; 54 DidRepairRange = false; 55 } 56 57 SlotIndex SplitAnalysis::computeLastSplitPoint(unsigned Num) { 58 const MachineBasicBlock *MBB = MF.getBlockNumbered(Num); 59 const MachineBasicBlock *LPad = MBB->getLandingPadSuccessor(); 60 std::pair<SlotIndex, SlotIndex> &LSP = LastSplitPoint[Num]; 61 SlotIndex MBBEnd = LIS.getMBBEndIdx(MBB); 62 63 // Compute split points on the first call. The pair is independent of the 64 // current live interval. 65 if (!LSP.first.isValid()) { 66 MachineBasicBlock::const_iterator FirstTerm = MBB->getFirstTerminator(); 67 if (FirstTerm == MBB->end()) 68 LSP.first = MBBEnd; 69 else 70 LSP.first = LIS.getInstructionIndex(FirstTerm); 71 72 // If there is a landing pad successor, also find the call instruction. 73 if (!LPad) 74 return LSP.first; 75 // There may not be a call instruction (?) in which case we ignore LPad. 76 LSP.second = LSP.first; 77 for (MachineBasicBlock::const_iterator I = MBB->end(), E = MBB->begin(); 78 I != E;) { 79 --I; 80 if (I->isCall()) { 81 LSP.second = LIS.getInstructionIndex(I); 82 break; 83 } 84 } 85 } 86 87 // If CurLI is live into a landing pad successor, move the last split point 88 // back to the call that may throw. 89 if (!LPad || !LSP.second || !LIS.isLiveInToMBB(*CurLI, LPad)) 90 return LSP.first; 91 92 // Find the value leaving MBB. 93 const VNInfo *VNI = CurLI->getVNInfoBefore(MBBEnd); 94 if (!VNI) 95 return LSP.first; 96 97 // If the value leaving MBB was defined after the call in MBB, it can't 98 // really be live-in to the landing pad. This can happen if the landing pad 99 // has a PHI, and this register is undef on the exceptional edge. 100 // <rdar://problem/10664933> 101 if (!SlotIndex::isEarlierInstr(VNI->def, LSP.second) && VNI->def < MBBEnd) 102 return LSP.first; 103 104 // Value is properly live-in to the landing pad. 105 // Only allow splits before the call. 106 return LSP.second; 107 } 108 109 MachineBasicBlock::iterator 110 SplitAnalysis::getLastSplitPointIter(MachineBasicBlock *MBB) { 111 SlotIndex LSP = getLastSplitPoint(MBB->getNumber()); 112 if (LSP == LIS.getMBBEndIdx(MBB)) 113 return MBB->end(); 114 return LIS.getInstructionFromIndex(LSP); 115 } 116 117 /// analyzeUses - Count instructions, basic blocks, and loops using CurLI. 118 void SplitAnalysis::analyzeUses() { 119 assert(UseSlots.empty() && "Call clear first"); 120 121 // First get all the defs from the interval values. This provides the correct 122 // slots for early clobbers. 123 for (LiveInterval::const_vni_iterator I = CurLI->vni_begin(), 124 E = CurLI->vni_end(); I != E; ++I) 125 if (!(*I)->isPHIDef() && !(*I)->isUnused()) 126 UseSlots.push_back((*I)->def); 127 128 // Get use slots form the use-def chain. 129 const MachineRegisterInfo &MRI = MF.getRegInfo(); 130 for (MachineOperand &MO : MRI.use_nodbg_operands(CurLI->reg)) 131 if (!MO.isUndef()) 132 UseSlots.push_back(LIS.getInstructionIndex(MO.getParent()).getRegSlot()); 133 134 array_pod_sort(UseSlots.begin(), UseSlots.end()); 135 136 // Remove duplicates, keeping the smaller slot for each instruction. 137 // That is what we want for early clobbers. 138 UseSlots.erase(std::unique(UseSlots.begin(), UseSlots.end(), 139 SlotIndex::isSameInstr), 140 UseSlots.end()); 141 142 // Compute per-live block info. 143 if (!calcLiveBlockInfo()) { 144 // FIXME: calcLiveBlockInfo found inconsistencies in the live range. 145 // I am looking at you, RegisterCoalescer! 146 DidRepairRange = true; 147 ++NumRepairs; 148 DEBUG(dbgs() << "*** Fixing inconsistent live interval! ***\n"); 149 const_cast<LiveIntervals&>(LIS) 150 .shrinkToUses(const_cast<LiveInterval*>(CurLI)); 151 UseBlocks.clear(); 152 ThroughBlocks.clear(); 153 bool fixed = calcLiveBlockInfo(); 154 (void)fixed; 155 assert(fixed && "Couldn't fix broken live interval"); 156 } 157 158 DEBUG(dbgs() << "Analyze counted " 159 << UseSlots.size() << " instrs in " 160 << UseBlocks.size() << " blocks, through " 161 << NumThroughBlocks << " blocks.\n"); 162 } 163 164 /// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks 165 /// where CurLI is live. 166 bool SplitAnalysis::calcLiveBlockInfo() { 167 ThroughBlocks.resize(MF.getNumBlockIDs()); 168 NumThroughBlocks = NumGapBlocks = 0; 169 if (CurLI->empty()) 170 return true; 171 172 LiveInterval::const_iterator LVI = CurLI->begin(); 173 LiveInterval::const_iterator LVE = CurLI->end(); 174 175 SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE; 176 UseI = UseSlots.begin(); 177 UseE = UseSlots.end(); 178 179 // Loop over basic blocks where CurLI is live. 180 MachineFunction::iterator MFI = LIS.getMBBFromIndex(LVI->start); 181 for (;;) { 182 BlockInfo BI; 183 BI.MBB = MFI; 184 SlotIndex Start, Stop; 185 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); 186 187 // If the block contains no uses, the range must be live through. At one 188 // point, RegisterCoalescer could create dangling ranges that ended 189 // mid-block. 190 if (UseI == UseE || *UseI >= Stop) { 191 ++NumThroughBlocks; 192 ThroughBlocks.set(BI.MBB->getNumber()); 193 // The range shouldn't end mid-block if there are no uses. This shouldn't 194 // happen. 195 if (LVI->end < Stop) 196 return false; 197 } else { 198 // This block has uses. Find the first and last uses in the block. 199 BI.FirstInstr = *UseI; 200 assert(BI.FirstInstr >= Start); 201 do ++UseI; 202 while (UseI != UseE && *UseI < Stop); 203 BI.LastInstr = UseI[-1]; 204 assert(BI.LastInstr < Stop); 205 206 // LVI is the first live segment overlapping MBB. 207 BI.LiveIn = LVI->start <= Start; 208 209 // When not live in, the first use should be a def. 210 if (!BI.LiveIn) { 211 assert(LVI->start == LVI->valno->def && "Dangling Segment start"); 212 assert(LVI->start == BI.FirstInstr && "First instr should be a def"); 213 BI.FirstDef = BI.FirstInstr; 214 } 215 216 // Look for gaps in the live range. 217 BI.LiveOut = true; 218 while (LVI->end < Stop) { 219 SlotIndex LastStop = LVI->end; 220 if (++LVI == LVE || LVI->start >= Stop) { 221 BI.LiveOut = false; 222 BI.LastInstr = LastStop; 223 break; 224 } 225 226 if (LastStop < LVI->start) { 227 // There is a gap in the live range. Create duplicate entries for the 228 // live-in snippet and the live-out snippet. 229 ++NumGapBlocks; 230 231 // Push the Live-in part. 232 BI.LiveOut = false; 233 UseBlocks.push_back(BI); 234 UseBlocks.back().LastInstr = LastStop; 235 236 // Set up BI for the live-out part. 237 BI.LiveIn = false; 238 BI.LiveOut = true; 239 BI.FirstInstr = BI.FirstDef = LVI->start; 240 } 241 242 // A Segment that starts in the middle of the block must be a def. 243 assert(LVI->start == LVI->valno->def && "Dangling Segment start"); 244 if (!BI.FirstDef) 245 BI.FirstDef = LVI->start; 246 } 247 248 UseBlocks.push_back(BI); 249 250 // LVI is now at LVE or LVI->end >= Stop. 251 if (LVI == LVE) 252 break; 253 } 254 255 // Live segment ends exactly at Stop. Move to the next segment. 256 if (LVI->end == Stop && ++LVI == LVE) 257 break; 258 259 // Pick the next basic block. 260 if (LVI->start < Stop) 261 ++MFI; 262 else 263 MFI = LIS.getMBBFromIndex(LVI->start); 264 } 265 266 assert(getNumLiveBlocks() == countLiveBlocks(CurLI) && "Bad block count"); 267 return true; 268 } 269 270 unsigned SplitAnalysis::countLiveBlocks(const LiveInterval *cli) const { 271 if (cli->empty()) 272 return 0; 273 LiveInterval *li = const_cast<LiveInterval*>(cli); 274 LiveInterval::iterator LVI = li->begin(); 275 LiveInterval::iterator LVE = li->end(); 276 unsigned Count = 0; 277 278 // Loop over basic blocks where li is live. 279 MachineFunction::const_iterator MFI = LIS.getMBBFromIndex(LVI->start); 280 SlotIndex Stop = LIS.getMBBEndIdx(MFI); 281 for (;;) { 282 ++Count; 283 LVI = li->advanceTo(LVI, Stop); 284 if (LVI == LVE) 285 return Count; 286 do { 287 ++MFI; 288 Stop = LIS.getMBBEndIdx(MFI); 289 } while (Stop <= LVI->start); 290 } 291 } 292 293 bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const { 294 unsigned OrigReg = VRM.getOriginal(CurLI->reg); 295 const LiveInterval &Orig = LIS.getInterval(OrigReg); 296 assert(!Orig.empty() && "Splitting empty interval?"); 297 LiveInterval::const_iterator I = Orig.find(Idx); 298 299 // Range containing Idx should begin at Idx. 300 if (I != Orig.end() && I->start <= Idx) 301 return I->start == Idx; 302 303 // Range does not contain Idx, previous must end at Idx. 304 return I != Orig.begin() && (--I)->end == Idx; 305 } 306 307 void SplitAnalysis::analyze(const LiveInterval *li) { 308 clear(); 309 CurLI = li; 310 analyzeUses(); 311 } 312 313 314 //===----------------------------------------------------------------------===// 315 // Split Editor 316 //===----------------------------------------------------------------------===// 317 318 /// Create a new SplitEditor for editing the LiveInterval analyzed by SA. 319 SplitEditor::SplitEditor(SplitAnalysis &sa, LiveIntervals &lis, VirtRegMap &vrm, 320 MachineDominatorTree &mdt, 321 MachineBlockFrequencyInfo &mbfi) 322 : SA(sa), LIS(lis), VRM(vrm), MRI(vrm.getMachineFunction().getRegInfo()), 323 MDT(mdt), TII(*vrm.getMachineFunction() 324 .getTarget() 325 .getSubtargetImpl() 326 ->getInstrInfo()), 327 TRI(*vrm.getMachineFunction() 328 .getTarget() 329 .getSubtargetImpl() 330 ->getRegisterInfo()), 331 MBFI(mbfi), Edit(nullptr), OpenIdx(0), SpillMode(SM_Partition), 332 RegAssign(Allocator) {} 333 334 void SplitEditor::reset(LiveRangeEdit &LRE, ComplementSpillMode SM) { 335 Edit = &LRE; 336 SpillMode = SM; 337 OpenIdx = 0; 338 RegAssign.clear(); 339 Values.clear(); 340 341 // Reset the LiveRangeCalc instances needed for this spill mode. 342 LRCalc[0].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT, 343 &LIS.getVNInfoAllocator()); 344 if (SpillMode) 345 LRCalc[1].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT, 346 &LIS.getVNInfoAllocator()); 347 348 // We don't need an AliasAnalysis since we will only be performing 349 // cheap-as-a-copy remats anyway. 350 Edit->anyRematerializable(nullptr); 351 } 352 353 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 354 void SplitEditor::dump() const { 355 if (RegAssign.empty()) { 356 dbgs() << " empty\n"; 357 return; 358 } 359 360 for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I) 361 dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value(); 362 dbgs() << '\n'; 363 } 364 #endif 365 366 VNInfo *SplitEditor::defValue(unsigned RegIdx, 367 const VNInfo *ParentVNI, 368 SlotIndex Idx) { 369 assert(ParentVNI && "Mapping NULL value"); 370 assert(Idx.isValid() && "Invalid SlotIndex"); 371 assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI"); 372 LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx)); 373 374 // Create a new value. 375 VNInfo *VNI = LI->getNextValue(Idx, LIS.getVNInfoAllocator()); 376 377 // Use insert for lookup, so we can add missing values with a second lookup. 378 std::pair<ValueMap::iterator, bool> InsP = 379 Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id), 380 ValueForcePair(VNI, false))); 381 382 // This was the first time (RegIdx, ParentVNI) was mapped. 383 // Keep it as a simple def without any liveness. 384 if (InsP.second) 385 return VNI; 386 387 // If the previous value was a simple mapping, add liveness for it now. 388 if (VNInfo *OldVNI = InsP.first->second.getPointer()) { 389 SlotIndex Def = OldVNI->def; 390 LI->addSegment(LiveInterval::Segment(Def, Def.getDeadSlot(), OldVNI)); 391 // No longer a simple mapping. Switch to a complex, non-forced mapping. 392 InsP.first->second = ValueForcePair(); 393 } 394 395 // This is a complex mapping, add liveness for VNI 396 SlotIndex Def = VNI->def; 397 LI->addSegment(LiveInterval::Segment(Def, Def.getDeadSlot(), VNI)); 398 399 return VNI; 400 } 401 402 void SplitEditor::forceRecompute(unsigned RegIdx, const VNInfo *ParentVNI) { 403 assert(ParentVNI && "Mapping NULL value"); 404 ValueForcePair &VFP = Values[std::make_pair(RegIdx, ParentVNI->id)]; 405 VNInfo *VNI = VFP.getPointer(); 406 407 // ParentVNI was either unmapped or already complex mapped. Either way, just 408 // set the force bit. 409 if (!VNI) { 410 VFP.setInt(true); 411 return; 412 } 413 414 // This was previously a single mapping. Make sure the old def is represented 415 // by a trivial live range. 416 SlotIndex Def = VNI->def; 417 LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx)); 418 LI->addSegment(LiveInterval::Segment(Def, Def.getDeadSlot(), VNI)); 419 // Mark as complex mapped, forced. 420 VFP = ValueForcePair(nullptr, true); 421 } 422 423 VNInfo *SplitEditor::defFromParent(unsigned RegIdx, 424 VNInfo *ParentVNI, 425 SlotIndex UseIdx, 426 MachineBasicBlock &MBB, 427 MachineBasicBlock::iterator I) { 428 MachineInstr *CopyMI = nullptr; 429 SlotIndex Def; 430 LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx)); 431 432 // We may be trying to avoid interference that ends at a deleted instruction, 433 // so always begin RegIdx 0 early and all others late. 434 bool Late = RegIdx != 0; 435 436 // Attempt cheap-as-a-copy rematerialization. 437 LiveRangeEdit::Remat RM(ParentVNI); 438 if (Edit->canRematerializeAt(RM, UseIdx, true)) { 439 Def = Edit->rematerializeAt(MBB, I, LI->reg, RM, TRI, Late); 440 ++NumRemats; 441 } else { 442 // Can't remat, just insert a copy from parent. 443 CopyMI = BuildMI(MBB, I, DebugLoc(), TII.get(TargetOpcode::COPY), LI->reg) 444 .addReg(Edit->getReg()); 445 Def = LIS.getSlotIndexes()->insertMachineInstrInMaps(CopyMI, Late) 446 .getRegSlot(); 447 ++NumCopies; 448 } 449 450 // Define the value in Reg. 451 return defValue(RegIdx, ParentVNI, Def); 452 } 453 454 /// Create a new virtual register and live interval. 455 unsigned SplitEditor::openIntv() { 456 // Create the complement as index 0. 457 if (Edit->empty()) 458 Edit->createEmptyInterval(); 459 460 // Create the open interval. 461 OpenIdx = Edit->size(); 462 Edit->createEmptyInterval(); 463 return OpenIdx; 464 } 465 466 void SplitEditor::selectIntv(unsigned Idx) { 467 assert(Idx != 0 && "Cannot select the complement interval"); 468 assert(Idx < Edit->size() && "Can only select previously opened interval"); 469 DEBUG(dbgs() << " selectIntv " << OpenIdx << " -> " << Idx << '\n'); 470 OpenIdx = Idx; 471 } 472 473 SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) { 474 assert(OpenIdx && "openIntv not called before enterIntvBefore"); 475 DEBUG(dbgs() << " enterIntvBefore " << Idx); 476 Idx = Idx.getBaseIndex(); 477 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 478 if (!ParentVNI) { 479 DEBUG(dbgs() << ": not live\n"); 480 return Idx; 481 } 482 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 483 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 484 assert(MI && "enterIntvBefore called with invalid index"); 485 486 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI); 487 return VNI->def; 488 } 489 490 SlotIndex SplitEditor::enterIntvAfter(SlotIndex Idx) { 491 assert(OpenIdx && "openIntv not called before enterIntvAfter"); 492 DEBUG(dbgs() << " enterIntvAfter " << Idx); 493 Idx = Idx.getBoundaryIndex(); 494 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 495 if (!ParentVNI) { 496 DEBUG(dbgs() << ": not live\n"); 497 return Idx; 498 } 499 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 500 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 501 assert(MI && "enterIntvAfter called with invalid index"); 502 503 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), 504 std::next(MachineBasicBlock::iterator(MI))); 505 return VNI->def; 506 } 507 508 SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) { 509 assert(OpenIdx && "openIntv not called before enterIntvAtEnd"); 510 SlotIndex End = LIS.getMBBEndIdx(&MBB); 511 SlotIndex Last = End.getPrevSlot(); 512 DEBUG(dbgs() << " enterIntvAtEnd BB#" << MBB.getNumber() << ", " << Last); 513 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last); 514 if (!ParentVNI) { 515 DEBUG(dbgs() << ": not live\n"); 516 return End; 517 } 518 DEBUG(dbgs() << ": valno " << ParentVNI->id); 519 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB, 520 SA.getLastSplitPointIter(&MBB)); 521 RegAssign.insert(VNI->def, End, OpenIdx); 522 DEBUG(dump()); 523 return VNI->def; 524 } 525 526 /// useIntv - indicate that all instructions in MBB should use OpenLI. 527 void SplitEditor::useIntv(const MachineBasicBlock &MBB) { 528 useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB)); 529 } 530 531 void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) { 532 assert(OpenIdx && "openIntv not called before useIntv"); 533 DEBUG(dbgs() << " useIntv [" << Start << ';' << End << "):"); 534 RegAssign.insert(Start, End, OpenIdx); 535 DEBUG(dump()); 536 } 537 538 SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) { 539 assert(OpenIdx && "openIntv not called before leaveIntvAfter"); 540 DEBUG(dbgs() << " leaveIntvAfter " << Idx); 541 542 // The interval must be live beyond the instruction at Idx. 543 SlotIndex Boundary = Idx.getBoundaryIndex(); 544 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Boundary); 545 if (!ParentVNI) { 546 DEBUG(dbgs() << ": not live\n"); 547 return Boundary.getNextSlot(); 548 } 549 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 550 MachineInstr *MI = LIS.getInstructionFromIndex(Boundary); 551 assert(MI && "No instruction at index"); 552 553 // In spill mode, make live ranges as short as possible by inserting the copy 554 // before MI. This is only possible if that instruction doesn't redefine the 555 // value. The inserted COPY is not a kill, and we don't need to recompute 556 // the source live range. The spiller also won't try to hoist this copy. 557 if (SpillMode && !SlotIndex::isSameInstr(ParentVNI->def, Idx) && 558 MI->readsVirtualRegister(Edit->getReg())) { 559 forceRecompute(0, ParentVNI); 560 defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI); 561 return Idx; 562 } 563 564 VNInfo *VNI = defFromParent(0, ParentVNI, Boundary, *MI->getParent(), 565 std::next(MachineBasicBlock::iterator(MI))); 566 return VNI->def; 567 } 568 569 SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) { 570 assert(OpenIdx && "openIntv not called before leaveIntvBefore"); 571 DEBUG(dbgs() << " leaveIntvBefore " << Idx); 572 573 // The interval must be live into the instruction at Idx. 574 Idx = Idx.getBaseIndex(); 575 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 576 if (!ParentVNI) { 577 DEBUG(dbgs() << ": not live\n"); 578 return Idx.getNextSlot(); 579 } 580 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 581 582 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 583 assert(MI && "No instruction at index"); 584 VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI); 585 return VNI->def; 586 } 587 588 SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) { 589 assert(OpenIdx && "openIntv not called before leaveIntvAtTop"); 590 SlotIndex Start = LIS.getMBBStartIdx(&MBB); 591 DEBUG(dbgs() << " leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start); 592 593 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start); 594 if (!ParentVNI) { 595 DEBUG(dbgs() << ": not live\n"); 596 return Start; 597 } 598 599 VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB, 600 MBB.SkipPHIsAndLabels(MBB.begin())); 601 RegAssign.insert(Start, VNI->def, OpenIdx); 602 DEBUG(dump()); 603 return VNI->def; 604 } 605 606 void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) { 607 assert(OpenIdx && "openIntv not called before overlapIntv"); 608 const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start); 609 assert(ParentVNI == Edit->getParent().getVNInfoBefore(End) && 610 "Parent changes value in extended range"); 611 assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) && 612 "Range cannot span basic blocks"); 613 614 // The complement interval will be extended as needed by LRCalc.extend(). 615 if (ParentVNI) 616 forceRecompute(0, ParentVNI); 617 DEBUG(dbgs() << " overlapIntv [" << Start << ';' << End << "):"); 618 RegAssign.insert(Start, End, OpenIdx); 619 DEBUG(dump()); 620 } 621 622 //===----------------------------------------------------------------------===// 623 // Spill modes 624 //===----------------------------------------------------------------------===// 625 626 void SplitEditor::removeBackCopies(SmallVectorImpl<VNInfo*> &Copies) { 627 LiveInterval *LI = &LIS.getInterval(Edit->get(0)); 628 DEBUG(dbgs() << "Removing " << Copies.size() << " back-copies.\n"); 629 RegAssignMap::iterator AssignI; 630 AssignI.setMap(RegAssign); 631 632 for (unsigned i = 0, e = Copies.size(); i != e; ++i) { 633 VNInfo *VNI = Copies[i]; 634 SlotIndex Def = VNI->def; 635 MachineInstr *MI = LIS.getInstructionFromIndex(Def); 636 assert(MI && "No instruction for back-copy"); 637 638 MachineBasicBlock *MBB = MI->getParent(); 639 MachineBasicBlock::iterator MBBI(MI); 640 bool AtBegin; 641 do AtBegin = MBBI == MBB->begin(); 642 while (!AtBegin && (--MBBI)->isDebugValue()); 643 644 DEBUG(dbgs() << "Removing " << Def << '\t' << *MI); 645 LI->removeValNo(VNI); 646 LIS.RemoveMachineInstrFromMaps(MI); 647 MI->eraseFromParent(); 648 649 // Adjust RegAssign if a register assignment is killed at VNI->def. We 650 // want to avoid calculating the live range of the source register if 651 // possible. 652 AssignI.find(Def.getPrevSlot()); 653 if (!AssignI.valid() || AssignI.start() >= Def) 654 continue; 655 // If MI doesn't kill the assigned register, just leave it. 656 if (AssignI.stop() != Def) 657 continue; 658 unsigned RegIdx = AssignI.value(); 659 if (AtBegin || !MBBI->readsVirtualRegister(Edit->getReg())) { 660 DEBUG(dbgs() << " cannot find simple kill of RegIdx " << RegIdx << '\n'); 661 forceRecompute(RegIdx, Edit->getParent().getVNInfoAt(Def)); 662 } else { 663 SlotIndex Kill = LIS.getInstructionIndex(MBBI).getRegSlot(); 664 DEBUG(dbgs() << " move kill to " << Kill << '\t' << *MBBI); 665 AssignI.setStop(Kill); 666 } 667 } 668 } 669 670 MachineBasicBlock* 671 SplitEditor::findShallowDominator(MachineBasicBlock *MBB, 672 MachineBasicBlock *DefMBB) { 673 if (MBB == DefMBB) 674 return MBB; 675 assert(MDT.dominates(DefMBB, MBB) && "MBB must be dominated by the def."); 676 677 const MachineLoopInfo &Loops = SA.Loops; 678 const MachineLoop *DefLoop = Loops.getLoopFor(DefMBB); 679 MachineDomTreeNode *DefDomNode = MDT[DefMBB]; 680 681 // Best candidate so far. 682 MachineBasicBlock *BestMBB = MBB; 683 unsigned BestDepth = UINT_MAX; 684 685 for (;;) { 686 const MachineLoop *Loop = Loops.getLoopFor(MBB); 687 688 // MBB isn't in a loop, it doesn't get any better. All dominators have a 689 // higher frequency by definition. 690 if (!Loop) { 691 DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#" 692 << MBB->getNumber() << " at depth 0\n"); 693 return MBB; 694 } 695 696 // We'll never be able to exit the DefLoop. 697 if (Loop == DefLoop) { 698 DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#" 699 << MBB->getNumber() << " in the same loop\n"); 700 return MBB; 701 } 702 703 // Least busy dominator seen so far. 704 unsigned Depth = Loop->getLoopDepth(); 705 if (Depth < BestDepth) { 706 BestMBB = MBB; 707 BestDepth = Depth; 708 DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#" 709 << MBB->getNumber() << " at depth " << Depth << '\n'); 710 } 711 712 // Leave loop by going to the immediate dominator of the loop header. 713 // This is a bigger stride than simply walking up the dominator tree. 714 MachineDomTreeNode *IDom = MDT[Loop->getHeader()]->getIDom(); 715 716 // Too far up the dominator tree? 717 if (!IDom || !MDT.dominates(DefDomNode, IDom)) 718 return BestMBB; 719 720 MBB = IDom->getBlock(); 721 } 722 } 723 724 void SplitEditor::hoistCopiesForSize() { 725 // Get the complement interval, always RegIdx 0. 726 LiveInterval *LI = &LIS.getInterval(Edit->get(0)); 727 LiveInterval *Parent = &Edit->getParent(); 728 729 // Track the nearest common dominator for all back-copies for each ParentVNI, 730 // indexed by ParentVNI->id. 731 typedef std::pair<MachineBasicBlock*, SlotIndex> DomPair; 732 SmallVector<DomPair, 8> NearestDom(Parent->getNumValNums()); 733 734 // Find the nearest common dominator for parent values with multiple 735 // back-copies. If a single back-copy dominates, put it in DomPair.second. 736 for (LiveInterval::vni_iterator VI = LI->vni_begin(), VE = LI->vni_end(); 737 VI != VE; ++VI) { 738 VNInfo *VNI = *VI; 739 if (VNI->isUnused()) 740 continue; 741 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def); 742 assert(ParentVNI && "Parent not live at complement def"); 743 744 // Don't hoist remats. The complement is probably going to disappear 745 // completely anyway. 746 if (Edit->didRematerialize(ParentVNI)) 747 continue; 748 749 MachineBasicBlock *ValMBB = LIS.getMBBFromIndex(VNI->def); 750 DomPair &Dom = NearestDom[ParentVNI->id]; 751 752 // Keep directly defined parent values. This is either a PHI or an 753 // instruction in the complement range. All other copies of ParentVNI 754 // should be eliminated. 755 if (VNI->def == ParentVNI->def) { 756 DEBUG(dbgs() << "Direct complement def at " << VNI->def << '\n'); 757 Dom = DomPair(ValMBB, VNI->def); 758 continue; 759 } 760 // Skip the singly mapped values. There is nothing to gain from hoisting a 761 // single back-copy. 762 if (Values.lookup(std::make_pair(0, ParentVNI->id)).getPointer()) { 763 DEBUG(dbgs() << "Single complement def at " << VNI->def << '\n'); 764 continue; 765 } 766 767 if (!Dom.first) { 768 // First time we see ParentVNI. VNI dominates itself. 769 Dom = DomPair(ValMBB, VNI->def); 770 } else if (Dom.first == ValMBB) { 771 // Two defs in the same block. Pick the earlier def. 772 if (!Dom.second.isValid() || VNI->def < Dom.second) 773 Dom.second = VNI->def; 774 } else { 775 // Different basic blocks. Check if one dominates. 776 MachineBasicBlock *Near = 777 MDT.findNearestCommonDominator(Dom.first, ValMBB); 778 if (Near == ValMBB) 779 // Def ValMBB dominates. 780 Dom = DomPair(ValMBB, VNI->def); 781 else if (Near != Dom.first) 782 // None dominate. Hoist to common dominator, need new def. 783 Dom = DomPair(Near, SlotIndex()); 784 } 785 786 DEBUG(dbgs() << "Multi-mapped complement " << VNI->id << '@' << VNI->def 787 << " for parent " << ParentVNI->id << '@' << ParentVNI->def 788 << " hoist to BB#" << Dom.first->getNumber() << ' ' 789 << Dom.second << '\n'); 790 } 791 792 // Insert the hoisted copies. 793 for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) { 794 DomPair &Dom = NearestDom[i]; 795 if (!Dom.first || Dom.second.isValid()) 796 continue; 797 // This value needs a hoisted copy inserted at the end of Dom.first. 798 VNInfo *ParentVNI = Parent->getValNumInfo(i); 799 MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(ParentVNI->def); 800 // Get a less loopy dominator than Dom.first. 801 Dom.first = findShallowDominator(Dom.first, DefMBB); 802 SlotIndex Last = LIS.getMBBEndIdx(Dom.first).getPrevSlot(); 803 Dom.second = 804 defFromParent(0, ParentVNI, Last, *Dom.first, 805 SA.getLastSplitPointIter(Dom.first))->def; 806 } 807 808 // Remove redundant back-copies that are now known to be dominated by another 809 // def with the same value. 810 SmallVector<VNInfo*, 8> BackCopies; 811 for (LiveInterval::vni_iterator VI = LI->vni_begin(), VE = LI->vni_end(); 812 VI != VE; ++VI) { 813 VNInfo *VNI = *VI; 814 if (VNI->isUnused()) 815 continue; 816 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def); 817 const DomPair &Dom = NearestDom[ParentVNI->id]; 818 if (!Dom.first || Dom.second == VNI->def) 819 continue; 820 BackCopies.push_back(VNI); 821 forceRecompute(0, ParentVNI); 822 } 823 removeBackCopies(BackCopies); 824 } 825 826 827 /// transferValues - Transfer all possible values to the new live ranges. 828 /// Values that were rematerialized are left alone, they need LRCalc.extend(). 829 bool SplitEditor::transferValues() { 830 bool Skipped = false; 831 RegAssignMap::const_iterator AssignI = RegAssign.begin(); 832 for (LiveInterval::const_iterator ParentI = Edit->getParent().begin(), 833 ParentE = Edit->getParent().end(); ParentI != ParentE; ++ParentI) { 834 DEBUG(dbgs() << " blit " << *ParentI << ':'); 835 VNInfo *ParentVNI = ParentI->valno; 836 // RegAssign has holes where RegIdx 0 should be used. 837 SlotIndex Start = ParentI->start; 838 AssignI.advanceTo(Start); 839 do { 840 unsigned RegIdx; 841 SlotIndex End = ParentI->end; 842 if (!AssignI.valid()) { 843 RegIdx = 0; 844 } else if (AssignI.start() <= Start) { 845 RegIdx = AssignI.value(); 846 if (AssignI.stop() < End) { 847 End = AssignI.stop(); 848 ++AssignI; 849 } 850 } else { 851 RegIdx = 0; 852 End = std::min(End, AssignI.start()); 853 } 854 855 // The interval [Start;End) is continuously mapped to RegIdx, ParentVNI. 856 DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx); 857 LiveRange &LR = LIS.getInterval(Edit->get(RegIdx)); 858 859 // Check for a simply defined value that can be blitted directly. 860 ValueForcePair VFP = Values.lookup(std::make_pair(RegIdx, ParentVNI->id)); 861 if (VNInfo *VNI = VFP.getPointer()) { 862 DEBUG(dbgs() << ':' << VNI->id); 863 LR.addSegment(LiveInterval::Segment(Start, End, VNI)); 864 Start = End; 865 continue; 866 } 867 868 // Skip values with forced recomputation. 869 if (VFP.getInt()) { 870 DEBUG(dbgs() << "(recalc)"); 871 Skipped = true; 872 Start = End; 873 continue; 874 } 875 876 LiveRangeCalc &LRC = getLRCalc(RegIdx); 877 878 // This value has multiple defs in RegIdx, but it wasn't rematerialized, 879 // so the live range is accurate. Add live-in blocks in [Start;End) to the 880 // LiveInBlocks. 881 MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start); 882 SlotIndex BlockStart, BlockEnd; 883 std::tie(BlockStart, BlockEnd) = LIS.getSlotIndexes()->getMBBRange(MBB); 884 885 // The first block may be live-in, or it may have its own def. 886 if (Start != BlockStart) { 887 VNInfo *VNI = LR.extendInBlock(BlockStart, std::min(BlockEnd, End)); 888 assert(VNI && "Missing def for complex mapped value"); 889 DEBUG(dbgs() << ':' << VNI->id << "*BB#" << MBB->getNumber()); 890 // MBB has its own def. Is it also live-out? 891 if (BlockEnd <= End) 892 LRC.setLiveOutValue(MBB, VNI); 893 894 // Skip to the next block for live-in. 895 ++MBB; 896 BlockStart = BlockEnd; 897 } 898 899 // Handle the live-in blocks covered by [Start;End). 900 assert(Start <= BlockStart && "Expected live-in block"); 901 while (BlockStart < End) { 902 DEBUG(dbgs() << ">BB#" << MBB->getNumber()); 903 BlockEnd = LIS.getMBBEndIdx(MBB); 904 if (BlockStart == ParentVNI->def) { 905 // This block has the def of a parent PHI, so it isn't live-in. 906 assert(ParentVNI->isPHIDef() && "Non-phi defined at block start?"); 907 VNInfo *VNI = LR.extendInBlock(BlockStart, std::min(BlockEnd, End)); 908 assert(VNI && "Missing def for complex mapped parent PHI"); 909 if (End >= BlockEnd) 910 LRC.setLiveOutValue(MBB, VNI); // Live-out as well. 911 } else { 912 // This block needs a live-in value. The last block covered may not 913 // be live-out. 914 if (End < BlockEnd) 915 LRC.addLiveInBlock(LR, MDT[MBB], End); 916 else { 917 // Live-through, and we don't know the value. 918 LRC.addLiveInBlock(LR, MDT[MBB]); 919 LRC.setLiveOutValue(MBB, nullptr); 920 } 921 } 922 BlockStart = BlockEnd; 923 ++MBB; 924 } 925 Start = End; 926 } while (Start != ParentI->end); 927 DEBUG(dbgs() << '\n'); 928 } 929 930 LRCalc[0].calculateValues(); 931 if (SpillMode) 932 LRCalc[1].calculateValues(); 933 934 return Skipped; 935 } 936 937 void SplitEditor::extendPHIKillRanges() { 938 // Extend live ranges to be live-out for successor PHI values. 939 for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(), 940 E = Edit->getParent().vni_end(); I != E; ++I) { 941 const VNInfo *PHIVNI = *I; 942 if (PHIVNI->isUnused() || !PHIVNI->isPHIDef()) 943 continue; 944 unsigned RegIdx = RegAssign.lookup(PHIVNI->def); 945 LiveRange &LR = LIS.getInterval(Edit->get(RegIdx)); 946 LiveRangeCalc &LRC = getLRCalc(RegIdx); 947 MachineBasicBlock *MBB = LIS.getMBBFromIndex(PHIVNI->def); 948 for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), 949 PE = MBB->pred_end(); PI != PE; ++PI) { 950 SlotIndex End = LIS.getMBBEndIdx(*PI); 951 SlotIndex LastUse = End.getPrevSlot(); 952 // The predecessor may not have a live-out value. That is OK, like an 953 // undef PHI operand. 954 if (Edit->getParent().liveAt(LastUse)) { 955 assert(RegAssign.lookup(LastUse) == RegIdx && 956 "Different register assignment in phi predecessor"); 957 LRC.extend(LR, End); 958 } 959 } 960 } 961 } 962 963 /// rewriteAssigned - Rewrite all uses of Edit->getReg(). 964 void SplitEditor::rewriteAssigned(bool ExtendRanges) { 965 for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Edit->getReg()), 966 RE = MRI.reg_end(); RI != RE;) { 967 MachineOperand &MO = *RI; 968 MachineInstr *MI = MO.getParent(); 969 ++RI; 970 // LiveDebugVariables should have handled all DBG_VALUE instructions. 971 if (MI->isDebugValue()) { 972 DEBUG(dbgs() << "Zapping " << *MI); 973 MO.setReg(0); 974 continue; 975 } 976 977 // <undef> operands don't really read the register, so it doesn't matter 978 // which register we choose. When the use operand is tied to a def, we must 979 // use the same register as the def, so just do that always. 980 SlotIndex Idx = LIS.getInstructionIndex(MI); 981 if (MO.isDef() || MO.isUndef()) 982 Idx = Idx.getRegSlot(MO.isEarlyClobber()); 983 984 // Rewrite to the mapped register at Idx. 985 unsigned RegIdx = RegAssign.lookup(Idx); 986 LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx)); 987 MO.setReg(LI->reg); 988 DEBUG(dbgs() << " rewr BB#" << MI->getParent()->getNumber() << '\t' 989 << Idx << ':' << RegIdx << '\t' << *MI); 990 991 // Extend liveness to Idx if the instruction reads reg. 992 if (!ExtendRanges || MO.isUndef()) 993 continue; 994 995 // Skip instructions that don't read Reg. 996 if (MO.isDef()) { 997 if (!MO.getSubReg() && !MO.isEarlyClobber()) 998 continue; 999 // We may wan't to extend a live range for a partial redef, or for a use 1000 // tied to an early clobber. 1001 Idx = Idx.getPrevSlot(); 1002 if (!Edit->getParent().liveAt(Idx)) 1003 continue; 1004 } else 1005 Idx = Idx.getRegSlot(true); 1006 1007 getLRCalc(RegIdx).extend(*LI, Idx.getNextSlot()); 1008 } 1009 } 1010 1011 void SplitEditor::deleteRematVictims() { 1012 SmallVector<MachineInstr*, 8> Dead; 1013 for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I){ 1014 LiveInterval *LI = &LIS.getInterval(*I); 1015 for (LiveInterval::const_iterator LII = LI->begin(), LIE = LI->end(); 1016 LII != LIE; ++LII) { 1017 // Dead defs end at the dead slot. 1018 if (LII->end != LII->valno->def.getDeadSlot()) 1019 continue; 1020 MachineInstr *MI = LIS.getInstructionFromIndex(LII->valno->def); 1021 assert(MI && "Missing instruction for dead def"); 1022 MI->addRegisterDead(LI->reg, &TRI); 1023 1024 if (!MI->allDefsAreDead()) 1025 continue; 1026 1027 DEBUG(dbgs() << "All defs dead: " << *MI); 1028 Dead.push_back(MI); 1029 } 1030 } 1031 1032 if (Dead.empty()) 1033 return; 1034 1035 Edit->eliminateDeadDefs(Dead); 1036 } 1037 1038 void SplitEditor::finish(SmallVectorImpl<unsigned> *LRMap) { 1039 ++NumFinished; 1040 1041 // At this point, the live intervals in Edit contain VNInfos corresponding to 1042 // the inserted copies. 1043 1044 // Add the original defs from the parent interval. 1045 for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(), 1046 E = Edit->getParent().vni_end(); I != E; ++I) { 1047 const VNInfo *ParentVNI = *I; 1048 if (ParentVNI->isUnused()) 1049 continue; 1050 unsigned RegIdx = RegAssign.lookup(ParentVNI->def); 1051 defValue(RegIdx, ParentVNI, ParentVNI->def); 1052 1053 // Force rematted values to be recomputed everywhere. 1054 // The new live ranges may be truncated. 1055 if (Edit->didRematerialize(ParentVNI)) 1056 for (unsigned i = 0, e = Edit->size(); i != e; ++i) 1057 forceRecompute(i, ParentVNI); 1058 } 1059 1060 // Hoist back-copies to the complement interval when in spill mode. 1061 switch (SpillMode) { 1062 case SM_Partition: 1063 // Leave all back-copies as is. 1064 break; 1065 case SM_Size: 1066 hoistCopiesForSize(); 1067 break; 1068 case SM_Speed: 1069 llvm_unreachable("Spill mode 'speed' not implemented yet"); 1070 } 1071 1072 // Transfer the simply mapped values, check if any are skipped. 1073 bool Skipped = transferValues(); 1074 if (Skipped) 1075 extendPHIKillRanges(); 1076 else 1077 ++NumSimple; 1078 1079 // Rewrite virtual registers, possibly extending ranges. 1080 rewriteAssigned(Skipped); 1081 1082 // Delete defs that were rematted everywhere. 1083 if (Skipped) 1084 deleteRematVictims(); 1085 1086 // Get rid of unused values and set phi-kill flags. 1087 for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I) { 1088 LiveInterval &LI = LIS.getInterval(*I); 1089 LI.RenumberValues(); 1090 } 1091 1092 // Provide a reverse mapping from original indices to Edit ranges. 1093 if (LRMap) { 1094 LRMap->clear(); 1095 for (unsigned i = 0, e = Edit->size(); i != e; ++i) 1096 LRMap->push_back(i); 1097 } 1098 1099 // Now check if any registers were separated into multiple components. 1100 ConnectedVNInfoEqClasses ConEQ(LIS); 1101 for (unsigned i = 0, e = Edit->size(); i != e; ++i) { 1102 // Don't use iterators, they are invalidated by create() below. 1103 LiveInterval *li = &LIS.getInterval(Edit->get(i)); 1104 unsigned NumComp = ConEQ.Classify(li); 1105 if (NumComp <= 1) 1106 continue; 1107 DEBUG(dbgs() << " " << NumComp << " components: " << *li << '\n'); 1108 SmallVector<LiveInterval*, 8> dups; 1109 dups.push_back(li); 1110 for (unsigned j = 1; j != NumComp; ++j) 1111 dups.push_back(&Edit->createEmptyInterval()); 1112 ConEQ.Distribute(&dups[0], MRI); 1113 // The new intervals all map back to i. 1114 if (LRMap) 1115 LRMap->resize(Edit->size(), i); 1116 } 1117 1118 // Calculate spill weight and allocation hints for new intervals. 1119 Edit->calculateRegClassAndHint(VRM.getMachineFunction(), SA.Loops, MBFI); 1120 1121 assert(!LRMap || LRMap->size() == Edit->size()); 1122 } 1123 1124 1125 //===----------------------------------------------------------------------===// 1126 // Single Block Splitting 1127 //===----------------------------------------------------------------------===// 1128 1129 bool SplitAnalysis::shouldSplitSingleBlock(const BlockInfo &BI, 1130 bool SingleInstrs) const { 1131 // Always split for multiple instructions. 1132 if (!BI.isOneInstr()) 1133 return true; 1134 // Don't split for single instructions unless explicitly requested. 1135 if (!SingleInstrs) 1136 return false; 1137 // Splitting a live-through range always makes progress. 1138 if (BI.LiveIn && BI.LiveOut) 1139 return true; 1140 // No point in isolating a copy. It has no register class constraints. 1141 if (LIS.getInstructionFromIndex(BI.FirstInstr)->isCopyLike()) 1142 return false; 1143 // Finally, don't isolate an end point that was created by earlier splits. 1144 return isOriginalEndpoint(BI.FirstInstr); 1145 } 1146 1147 void SplitEditor::splitSingleBlock(const SplitAnalysis::BlockInfo &BI) { 1148 openIntv(); 1149 SlotIndex LastSplitPoint = SA.getLastSplitPoint(BI.MBB->getNumber()); 1150 SlotIndex SegStart = enterIntvBefore(std::min(BI.FirstInstr, 1151 LastSplitPoint)); 1152 if (!BI.LiveOut || BI.LastInstr < LastSplitPoint) { 1153 useIntv(SegStart, leaveIntvAfter(BI.LastInstr)); 1154 } else { 1155 // The last use is after the last valid split point. 1156 SlotIndex SegStop = leaveIntvBefore(LastSplitPoint); 1157 useIntv(SegStart, SegStop); 1158 overlapIntv(SegStop, BI.LastInstr); 1159 } 1160 } 1161 1162 1163 //===----------------------------------------------------------------------===// 1164 // Global Live Range Splitting Support 1165 //===----------------------------------------------------------------------===// 1166 1167 // These methods support a method of global live range splitting that uses a 1168 // global algorithm to decide intervals for CFG edges. They will insert split 1169 // points and color intervals in basic blocks while avoiding interference. 1170 // 1171 // Note that splitSingleBlock is also useful for blocks where both CFG edges 1172 // are on the stack. 1173 1174 void SplitEditor::splitLiveThroughBlock(unsigned MBBNum, 1175 unsigned IntvIn, SlotIndex LeaveBefore, 1176 unsigned IntvOut, SlotIndex EnterAfter){ 1177 SlotIndex Start, Stop; 1178 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(MBBNum); 1179 1180 DEBUG(dbgs() << "BB#" << MBBNum << " [" << Start << ';' << Stop 1181 << ") intf " << LeaveBefore << '-' << EnterAfter 1182 << ", live-through " << IntvIn << " -> " << IntvOut); 1183 1184 assert((IntvIn || IntvOut) && "Use splitSingleBlock for isolated blocks"); 1185 1186 assert((!LeaveBefore || LeaveBefore < Stop) && "Interference after block"); 1187 assert((!IntvIn || !LeaveBefore || LeaveBefore > Start) && "Impossible intf"); 1188 assert((!EnterAfter || EnterAfter >= Start) && "Interference before block"); 1189 1190 MachineBasicBlock *MBB = VRM.getMachineFunction().getBlockNumbered(MBBNum); 1191 1192 if (!IntvOut) { 1193 DEBUG(dbgs() << ", spill on entry.\n"); 1194 // 1195 // <<<<<<<<< Possible LeaveBefore interference. 1196 // |-----------| Live through. 1197 // -____________ Spill on entry. 1198 // 1199 selectIntv(IntvIn); 1200 SlotIndex Idx = leaveIntvAtTop(*MBB); 1201 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1202 (void)Idx; 1203 return; 1204 } 1205 1206 if (!IntvIn) { 1207 DEBUG(dbgs() << ", reload on exit.\n"); 1208 // 1209 // >>>>>>> Possible EnterAfter interference. 1210 // |-----------| Live through. 1211 // ___________-- Reload on exit. 1212 // 1213 selectIntv(IntvOut); 1214 SlotIndex Idx = enterIntvAtEnd(*MBB); 1215 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1216 (void)Idx; 1217 return; 1218 } 1219 1220 if (IntvIn == IntvOut && !LeaveBefore && !EnterAfter) { 1221 DEBUG(dbgs() << ", straight through.\n"); 1222 // 1223 // |-----------| Live through. 1224 // ------------- Straight through, same intv, no interference. 1225 // 1226 selectIntv(IntvOut); 1227 useIntv(Start, Stop); 1228 return; 1229 } 1230 1231 // We cannot legally insert splits after LSP. 1232 SlotIndex LSP = SA.getLastSplitPoint(MBBNum); 1233 assert((!IntvOut || !EnterAfter || EnterAfter < LSP) && "Impossible intf"); 1234 1235 if (IntvIn != IntvOut && (!LeaveBefore || !EnterAfter || 1236 LeaveBefore.getBaseIndex() > EnterAfter.getBoundaryIndex())) { 1237 DEBUG(dbgs() << ", switch avoiding interference.\n"); 1238 // 1239 // >>>> <<<< Non-overlapping EnterAfter/LeaveBefore interference. 1240 // |-----------| Live through. 1241 // ------======= Switch intervals between interference. 1242 // 1243 selectIntv(IntvOut); 1244 SlotIndex Idx; 1245 if (LeaveBefore && LeaveBefore < LSP) { 1246 Idx = enterIntvBefore(LeaveBefore); 1247 useIntv(Idx, Stop); 1248 } else { 1249 Idx = enterIntvAtEnd(*MBB); 1250 } 1251 selectIntv(IntvIn); 1252 useIntv(Start, Idx); 1253 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1254 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1255 return; 1256 } 1257 1258 DEBUG(dbgs() << ", create local intv for interference.\n"); 1259 // 1260 // >>><><><><<<< Overlapping EnterAfter/LeaveBefore interference. 1261 // |-----------| Live through. 1262 // ==---------== Switch intervals before/after interference. 1263 // 1264 assert(LeaveBefore <= EnterAfter && "Missed case"); 1265 1266 selectIntv(IntvOut); 1267 SlotIndex Idx = enterIntvAfter(EnterAfter); 1268 useIntv(Idx, Stop); 1269 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1270 1271 selectIntv(IntvIn); 1272 Idx = leaveIntvBefore(LeaveBefore); 1273 useIntv(Start, Idx); 1274 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1275 } 1276 1277 1278 void SplitEditor::splitRegInBlock(const SplitAnalysis::BlockInfo &BI, 1279 unsigned IntvIn, SlotIndex LeaveBefore) { 1280 SlotIndex Start, Stop; 1281 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); 1282 1283 DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " [" << Start << ';' << Stop 1284 << "), uses " << BI.FirstInstr << '-' << BI.LastInstr 1285 << ", reg-in " << IntvIn << ", leave before " << LeaveBefore 1286 << (BI.LiveOut ? ", stack-out" : ", killed in block")); 1287 1288 assert(IntvIn && "Must have register in"); 1289 assert(BI.LiveIn && "Must be live-in"); 1290 assert((!LeaveBefore || LeaveBefore > Start) && "Bad interference"); 1291 1292 if (!BI.LiveOut && (!LeaveBefore || LeaveBefore >= BI.LastInstr)) { 1293 DEBUG(dbgs() << " before interference.\n"); 1294 // 1295 // <<< Interference after kill. 1296 // |---o---x | Killed in block. 1297 // ========= Use IntvIn everywhere. 1298 // 1299 selectIntv(IntvIn); 1300 useIntv(Start, BI.LastInstr); 1301 return; 1302 } 1303 1304 SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber()); 1305 1306 if (!LeaveBefore || LeaveBefore > BI.LastInstr.getBoundaryIndex()) { 1307 // 1308 // <<< Possible interference after last use. 1309 // |---o---o---| Live-out on stack. 1310 // =========____ Leave IntvIn after last use. 1311 // 1312 // < Interference after last use. 1313 // |---o---o--o| Live-out on stack, late last use. 1314 // ============ Copy to stack after LSP, overlap IntvIn. 1315 // \_____ Stack interval is live-out. 1316 // 1317 if (BI.LastInstr < LSP) { 1318 DEBUG(dbgs() << ", spill after last use before interference.\n"); 1319 selectIntv(IntvIn); 1320 SlotIndex Idx = leaveIntvAfter(BI.LastInstr); 1321 useIntv(Start, Idx); 1322 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1323 } else { 1324 DEBUG(dbgs() << ", spill before last split point.\n"); 1325 selectIntv(IntvIn); 1326 SlotIndex Idx = leaveIntvBefore(LSP); 1327 overlapIntv(Idx, BI.LastInstr); 1328 useIntv(Start, Idx); 1329 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1330 } 1331 return; 1332 } 1333 1334 // The interference is overlapping somewhere we wanted to use IntvIn. That 1335 // means we need to create a local interval that can be allocated a 1336 // different register. 1337 unsigned LocalIntv = openIntv(); 1338 (void)LocalIntv; 1339 DEBUG(dbgs() << ", creating local interval " << LocalIntv << ".\n"); 1340 1341 if (!BI.LiveOut || BI.LastInstr < LSP) { 1342 // 1343 // <<<<<<< Interference overlapping uses. 1344 // |---o---o---| Live-out on stack. 1345 // =====----____ Leave IntvIn before interference, then spill. 1346 // 1347 SlotIndex To = leaveIntvAfter(BI.LastInstr); 1348 SlotIndex From = enterIntvBefore(LeaveBefore); 1349 useIntv(From, To); 1350 selectIntv(IntvIn); 1351 useIntv(Start, From); 1352 assert((!LeaveBefore || From <= LeaveBefore) && "Interference"); 1353 return; 1354 } 1355 1356 // <<<<<<< Interference overlapping uses. 1357 // |---o---o--o| Live-out on stack, late last use. 1358 // =====------- Copy to stack before LSP, overlap LocalIntv. 1359 // \_____ Stack interval is live-out. 1360 // 1361 SlotIndex To = leaveIntvBefore(LSP); 1362 overlapIntv(To, BI.LastInstr); 1363 SlotIndex From = enterIntvBefore(std::min(To, LeaveBefore)); 1364 useIntv(From, To); 1365 selectIntv(IntvIn); 1366 useIntv(Start, From); 1367 assert((!LeaveBefore || From <= LeaveBefore) && "Interference"); 1368 } 1369 1370 void SplitEditor::splitRegOutBlock(const SplitAnalysis::BlockInfo &BI, 1371 unsigned IntvOut, SlotIndex EnterAfter) { 1372 SlotIndex Start, Stop; 1373 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); 1374 1375 DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " [" << Start << ';' << Stop 1376 << "), uses " << BI.FirstInstr << '-' << BI.LastInstr 1377 << ", reg-out " << IntvOut << ", enter after " << EnterAfter 1378 << (BI.LiveIn ? ", stack-in" : ", defined in block")); 1379 1380 SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber()); 1381 1382 assert(IntvOut && "Must have register out"); 1383 assert(BI.LiveOut && "Must be live-out"); 1384 assert((!EnterAfter || EnterAfter < LSP) && "Bad interference"); 1385 1386 if (!BI.LiveIn && (!EnterAfter || EnterAfter <= BI.FirstInstr)) { 1387 DEBUG(dbgs() << " after interference.\n"); 1388 // 1389 // >>>> Interference before def. 1390 // | o---o---| Defined in block. 1391 // ========= Use IntvOut everywhere. 1392 // 1393 selectIntv(IntvOut); 1394 useIntv(BI.FirstInstr, Stop); 1395 return; 1396 } 1397 1398 if (!EnterAfter || EnterAfter < BI.FirstInstr.getBaseIndex()) { 1399 DEBUG(dbgs() << ", reload after interference.\n"); 1400 // 1401 // >>>> Interference before def. 1402 // |---o---o---| Live-through, stack-in. 1403 // ____========= Enter IntvOut before first use. 1404 // 1405 selectIntv(IntvOut); 1406 SlotIndex Idx = enterIntvBefore(std::min(LSP, BI.FirstInstr)); 1407 useIntv(Idx, Stop); 1408 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1409 return; 1410 } 1411 1412 // The interference is overlapping somewhere we wanted to use IntvOut. That 1413 // means we need to create a local interval that can be allocated a 1414 // different register. 1415 DEBUG(dbgs() << ", interference overlaps uses.\n"); 1416 // 1417 // >>>>>>> Interference overlapping uses. 1418 // |---o---o---| Live-through, stack-in. 1419 // ____---====== Create local interval for interference range. 1420 // 1421 selectIntv(IntvOut); 1422 SlotIndex Idx = enterIntvAfter(EnterAfter); 1423 useIntv(Idx, Stop); 1424 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1425 1426 openIntv(); 1427 SlotIndex From = enterIntvBefore(std::min(Idx, BI.FirstInstr)); 1428 useIntv(From, Idx); 1429 } 1430