1 //===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the SplitAnalysis class as well as mutator functions for 11 // live range splitting. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "regalloc" 16 #include "SplitKit.h" 17 #include "LiveRangeEdit.h" 18 #include "VirtRegMap.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 21 #include "llvm/CodeGen/MachineDominators.h" 22 #include "llvm/CodeGen/MachineInstrBuilder.h" 23 #include "llvm/CodeGen/MachineLoopInfo.h" 24 #include "llvm/CodeGen/MachineRegisterInfo.h" 25 #include "llvm/Support/Debug.h" 26 #include "llvm/Support/raw_ostream.h" 27 #include "llvm/Target/TargetInstrInfo.h" 28 #include "llvm/Target/TargetMachine.h" 29 30 using namespace llvm; 31 32 STATISTIC(NumFinished, "Number of splits finished"); 33 STATISTIC(NumSimple, "Number of splits that were simple"); 34 STATISTIC(NumCopies, "Number of copies inserted for splitting"); 35 STATISTIC(NumRemats, "Number of rematerialized defs for splitting"); 36 STATISTIC(NumRepairs, "Number of invalid live ranges repaired"); 37 38 //===----------------------------------------------------------------------===// 39 // Split Analysis 40 //===----------------------------------------------------------------------===// 41 42 SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm, 43 const LiveIntervals &lis, 44 const MachineLoopInfo &mli) 45 : MF(vrm.getMachineFunction()), 46 VRM(vrm), 47 LIS(lis), 48 Loops(mli), 49 TII(*MF.getTarget().getInstrInfo()), 50 CurLI(0), 51 LastSplitPoint(MF.getNumBlockIDs()) {} 52 53 void SplitAnalysis::clear() { 54 UseSlots.clear(); 55 UseBlocks.clear(); 56 ThroughBlocks.clear(); 57 CurLI = 0; 58 DidRepairRange = false; 59 } 60 61 SlotIndex SplitAnalysis::computeLastSplitPoint(unsigned Num) { 62 const MachineBasicBlock *MBB = MF.getBlockNumbered(Num); 63 const MachineBasicBlock *LPad = MBB->getLandingPadSuccessor(); 64 std::pair<SlotIndex, SlotIndex> &LSP = LastSplitPoint[Num]; 65 66 // Compute split points on the first call. The pair is independent of the 67 // current live interval. 68 if (!LSP.first.isValid()) { 69 MachineBasicBlock::const_iterator FirstTerm = MBB->getFirstTerminator(); 70 if (FirstTerm == MBB->end()) 71 LSP.first = LIS.getMBBEndIdx(MBB); 72 else 73 LSP.first = LIS.getInstructionIndex(FirstTerm); 74 75 // If there is a landing pad successor, also find the call instruction. 76 if (!LPad) 77 return LSP.first; 78 // There may not be a call instruction (?) in which case we ignore LPad. 79 LSP.second = LSP.first; 80 for (MachineBasicBlock::const_iterator I = MBB->end(), E = MBB->begin(); 81 I != E;) { 82 --I; 83 if (I->isCall()) { 84 LSP.second = LIS.getInstructionIndex(I); 85 break; 86 } 87 } 88 } 89 90 // If CurLI is live into a landing pad successor, move the last split point 91 // back to the call that may throw. 92 if (LPad && LSP.second.isValid() && LIS.isLiveInToMBB(*CurLI, LPad)) 93 return LSP.second; 94 else 95 return LSP.first; 96 } 97 98 MachineBasicBlock::iterator 99 SplitAnalysis::getLastSplitPointIter(MachineBasicBlock *MBB) { 100 SlotIndex LSP = getLastSplitPoint(MBB->getNumber()); 101 if (LSP == LIS.getMBBEndIdx(MBB)) 102 return MBB->end(); 103 return LIS.getInstructionFromIndex(LSP); 104 } 105 106 /// analyzeUses - Count instructions, basic blocks, and loops using CurLI. 107 void SplitAnalysis::analyzeUses() { 108 assert(UseSlots.empty() && "Call clear first"); 109 110 // First get all the defs from the interval values. This provides the correct 111 // slots for early clobbers. 112 for (LiveInterval::const_vni_iterator I = CurLI->vni_begin(), 113 E = CurLI->vni_end(); I != E; ++I) 114 if (!(*I)->isPHIDef() && !(*I)->isUnused()) 115 UseSlots.push_back((*I)->def); 116 117 // Get use slots form the use-def chain. 118 const MachineRegisterInfo &MRI = MF.getRegInfo(); 119 for (MachineRegisterInfo::use_nodbg_iterator 120 I = MRI.use_nodbg_begin(CurLI->reg), E = MRI.use_nodbg_end(); I != E; 121 ++I) 122 if (!I.getOperand().isUndef()) 123 UseSlots.push_back(LIS.getInstructionIndex(&*I).getRegSlot()); 124 125 array_pod_sort(UseSlots.begin(), UseSlots.end()); 126 127 // Remove duplicates, keeping the smaller slot for each instruction. 128 // That is what we want for early clobbers. 129 UseSlots.erase(std::unique(UseSlots.begin(), UseSlots.end(), 130 SlotIndex::isSameInstr), 131 UseSlots.end()); 132 133 // Compute per-live block info. 134 if (!calcLiveBlockInfo()) { 135 // FIXME: calcLiveBlockInfo found inconsistencies in the live range. 136 // I am looking at you, RegisterCoalescer! 137 DidRepairRange = true; 138 ++NumRepairs; 139 DEBUG(dbgs() << "*** Fixing inconsistent live interval! ***\n"); 140 const_cast<LiveIntervals&>(LIS) 141 .shrinkToUses(const_cast<LiveInterval*>(CurLI)); 142 UseBlocks.clear(); 143 ThroughBlocks.clear(); 144 bool fixed = calcLiveBlockInfo(); 145 (void)fixed; 146 assert(fixed && "Couldn't fix broken live interval"); 147 } 148 149 DEBUG(dbgs() << "Analyze counted " 150 << UseSlots.size() << " instrs in " 151 << UseBlocks.size() << " blocks, through " 152 << NumThroughBlocks << " blocks.\n"); 153 } 154 155 /// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks 156 /// where CurLI is live. 157 bool SplitAnalysis::calcLiveBlockInfo() { 158 ThroughBlocks.resize(MF.getNumBlockIDs()); 159 NumThroughBlocks = NumGapBlocks = 0; 160 if (CurLI->empty()) 161 return true; 162 163 LiveInterval::const_iterator LVI = CurLI->begin(); 164 LiveInterval::const_iterator LVE = CurLI->end(); 165 166 SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE; 167 UseI = UseSlots.begin(); 168 UseE = UseSlots.end(); 169 170 // Loop over basic blocks where CurLI is live. 171 MachineFunction::iterator MFI = LIS.getMBBFromIndex(LVI->start); 172 for (;;) { 173 BlockInfo BI; 174 BI.MBB = MFI; 175 SlotIndex Start, Stop; 176 tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); 177 178 // If the block contains no uses, the range must be live through. At one 179 // point, RegisterCoalescer could create dangling ranges that ended 180 // mid-block. 181 if (UseI == UseE || *UseI >= Stop) { 182 ++NumThroughBlocks; 183 ThroughBlocks.set(BI.MBB->getNumber()); 184 // The range shouldn't end mid-block if there are no uses. This shouldn't 185 // happen. 186 if (LVI->end < Stop) 187 return false; 188 } else { 189 // This block has uses. Find the first and last uses in the block. 190 BI.FirstInstr = *UseI; 191 assert(BI.FirstInstr >= Start); 192 do ++UseI; 193 while (UseI != UseE && *UseI < Stop); 194 BI.LastInstr = UseI[-1]; 195 assert(BI.LastInstr < Stop); 196 197 // LVI is the first live segment overlapping MBB. 198 BI.LiveIn = LVI->start <= Start; 199 200 // When not live in, the first use should be a def. 201 if (!BI.LiveIn) { 202 assert(LVI->start == LVI->valno->def && "Dangling LiveRange start"); 203 assert(LVI->start == BI.FirstInstr && "First instr should be a def"); 204 BI.FirstDef = BI.FirstInstr; 205 } 206 207 // Look for gaps in the live range. 208 BI.LiveOut = true; 209 while (LVI->end < Stop) { 210 SlotIndex LastStop = LVI->end; 211 if (++LVI == LVE || LVI->start >= Stop) { 212 BI.LiveOut = false; 213 BI.LastInstr = LastStop; 214 break; 215 } 216 217 if (LastStop < LVI->start) { 218 // There is a gap in the live range. Create duplicate entries for the 219 // live-in snippet and the live-out snippet. 220 ++NumGapBlocks; 221 222 // Push the Live-in part. 223 BI.LiveOut = false; 224 UseBlocks.push_back(BI); 225 UseBlocks.back().LastInstr = LastStop; 226 227 // Set up BI for the live-out part. 228 BI.LiveIn = false; 229 BI.LiveOut = true; 230 BI.FirstInstr = BI.FirstDef = LVI->start; 231 } 232 233 // A LiveRange that starts in the middle of the block must be a def. 234 assert(LVI->start == LVI->valno->def && "Dangling LiveRange start"); 235 if (!BI.FirstDef) 236 BI.FirstDef = LVI->start; 237 } 238 239 UseBlocks.push_back(BI); 240 241 // LVI is now at LVE or LVI->end >= Stop. 242 if (LVI == LVE) 243 break; 244 } 245 246 // Live segment ends exactly at Stop. Move to the next segment. 247 if (LVI->end == Stop && ++LVI == LVE) 248 break; 249 250 // Pick the next basic block. 251 if (LVI->start < Stop) 252 ++MFI; 253 else 254 MFI = LIS.getMBBFromIndex(LVI->start); 255 } 256 257 assert(getNumLiveBlocks() == countLiveBlocks(CurLI) && "Bad block count"); 258 return true; 259 } 260 261 unsigned SplitAnalysis::countLiveBlocks(const LiveInterval *cli) const { 262 if (cli->empty()) 263 return 0; 264 LiveInterval *li = const_cast<LiveInterval*>(cli); 265 LiveInterval::iterator LVI = li->begin(); 266 LiveInterval::iterator LVE = li->end(); 267 unsigned Count = 0; 268 269 // Loop over basic blocks where li is live. 270 MachineFunction::const_iterator MFI = LIS.getMBBFromIndex(LVI->start); 271 SlotIndex Stop = LIS.getMBBEndIdx(MFI); 272 for (;;) { 273 ++Count; 274 LVI = li->advanceTo(LVI, Stop); 275 if (LVI == LVE) 276 return Count; 277 do { 278 ++MFI; 279 Stop = LIS.getMBBEndIdx(MFI); 280 } while (Stop <= LVI->start); 281 } 282 } 283 284 bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const { 285 unsigned OrigReg = VRM.getOriginal(CurLI->reg); 286 const LiveInterval &Orig = LIS.getInterval(OrigReg); 287 assert(!Orig.empty() && "Splitting empty interval?"); 288 LiveInterval::const_iterator I = Orig.find(Idx); 289 290 // Range containing Idx should begin at Idx. 291 if (I != Orig.end() && I->start <= Idx) 292 return I->start == Idx; 293 294 // Range does not contain Idx, previous must end at Idx. 295 return I != Orig.begin() && (--I)->end == Idx; 296 } 297 298 void SplitAnalysis::analyze(const LiveInterval *li) { 299 clear(); 300 CurLI = li; 301 analyzeUses(); 302 } 303 304 305 //===----------------------------------------------------------------------===// 306 // Split Editor 307 //===----------------------------------------------------------------------===// 308 309 /// Create a new SplitEditor for editing the LiveInterval analyzed by SA. 310 SplitEditor::SplitEditor(SplitAnalysis &sa, 311 LiveIntervals &lis, 312 VirtRegMap &vrm, 313 MachineDominatorTree &mdt) 314 : SA(sa), LIS(lis), VRM(vrm), 315 MRI(vrm.getMachineFunction().getRegInfo()), 316 MDT(mdt), 317 TII(*vrm.getMachineFunction().getTarget().getInstrInfo()), 318 TRI(*vrm.getMachineFunction().getTarget().getRegisterInfo()), 319 Edit(0), 320 OpenIdx(0), 321 SpillMode(SM_Partition), 322 RegAssign(Allocator) 323 {} 324 325 void SplitEditor::reset(LiveRangeEdit &LRE, ComplementSpillMode SM) { 326 Edit = &LRE; 327 SpillMode = SM; 328 OpenIdx = 0; 329 RegAssign.clear(); 330 Values.clear(); 331 332 // Reset the LiveRangeCalc instances needed for this spill mode. 333 LRCalc[0].reset(&VRM.getMachineFunction()); 334 if (SpillMode) 335 LRCalc[1].reset(&VRM.getMachineFunction()); 336 337 // We don't need an AliasAnalysis since we will only be performing 338 // cheap-as-a-copy remats anyway. 339 Edit->anyRematerializable(LIS, TII, 0); 340 } 341 342 void SplitEditor::dump() const { 343 if (RegAssign.empty()) { 344 dbgs() << " empty\n"; 345 return; 346 } 347 348 for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I) 349 dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value(); 350 dbgs() << '\n'; 351 } 352 353 VNInfo *SplitEditor::defValue(unsigned RegIdx, 354 const VNInfo *ParentVNI, 355 SlotIndex Idx) { 356 assert(ParentVNI && "Mapping NULL value"); 357 assert(Idx.isValid() && "Invalid SlotIndex"); 358 assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI"); 359 LiveInterval *LI = Edit->get(RegIdx); 360 361 // Create a new value. 362 VNInfo *VNI = LI->getNextValue(Idx, 0, LIS.getVNInfoAllocator()); 363 364 // Use insert for lookup, so we can add missing values with a second lookup. 365 std::pair<ValueMap::iterator, bool> InsP = 366 Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id), 367 ValueForcePair(VNI, false))); 368 369 // This was the first time (RegIdx, ParentVNI) was mapped. 370 // Keep it as a simple def without any liveness. 371 if (InsP.second) 372 return VNI; 373 374 // If the previous value was a simple mapping, add liveness for it now. 375 if (VNInfo *OldVNI = InsP.first->second.getPointer()) { 376 SlotIndex Def = OldVNI->def; 377 LI->addRange(LiveRange(Def, Def.getDeadSlot(), OldVNI)); 378 // No longer a simple mapping. Switch to a complex, non-forced mapping. 379 InsP.first->second = ValueForcePair(); 380 } 381 382 // This is a complex mapping, add liveness for VNI 383 SlotIndex Def = VNI->def; 384 LI->addRange(LiveRange(Def, Def.getDeadSlot(), VNI)); 385 386 return VNI; 387 } 388 389 void SplitEditor::forceRecompute(unsigned RegIdx, const VNInfo *ParentVNI) { 390 assert(ParentVNI && "Mapping NULL value"); 391 ValueForcePair &VFP = Values[std::make_pair(RegIdx, ParentVNI->id)]; 392 VNInfo *VNI = VFP.getPointer(); 393 394 // ParentVNI was either unmapped or already complex mapped. Either way, just 395 // set the force bit. 396 if (!VNI) { 397 VFP.setInt(true); 398 return; 399 } 400 401 // This was previously a single mapping. Make sure the old def is represented 402 // by a trivial live range. 403 SlotIndex Def = VNI->def; 404 Edit->get(RegIdx)->addRange(LiveRange(Def, Def.getDeadSlot(), VNI)); 405 // Mark as complex mapped, forced. 406 VFP = ValueForcePair(0, true); 407 } 408 409 VNInfo *SplitEditor::defFromParent(unsigned RegIdx, 410 VNInfo *ParentVNI, 411 SlotIndex UseIdx, 412 MachineBasicBlock &MBB, 413 MachineBasicBlock::iterator I) { 414 MachineInstr *CopyMI = 0; 415 SlotIndex Def; 416 LiveInterval *LI = Edit->get(RegIdx); 417 418 // We may be trying to avoid interference that ends at a deleted instruction, 419 // so always begin RegIdx 0 early and all others late. 420 bool Late = RegIdx != 0; 421 422 // Attempt cheap-as-a-copy rematerialization. 423 LiveRangeEdit::Remat RM(ParentVNI); 424 if (Edit->canRematerializeAt(RM, UseIdx, true, LIS)) { 425 Def = Edit->rematerializeAt(MBB, I, LI->reg, RM, LIS, TII, TRI, Late); 426 ++NumRemats; 427 } else { 428 // Can't remat, just insert a copy from parent. 429 CopyMI = BuildMI(MBB, I, DebugLoc(), TII.get(TargetOpcode::COPY), LI->reg) 430 .addReg(Edit->getReg()); 431 Def = LIS.getSlotIndexes()->insertMachineInstrInMaps(CopyMI, Late) 432 .getRegSlot(); 433 ++NumCopies; 434 } 435 436 // Define the value in Reg. 437 VNInfo *VNI = defValue(RegIdx, ParentVNI, Def); 438 VNI->setCopy(CopyMI); 439 return VNI; 440 } 441 442 /// Create a new virtual register and live interval. 443 unsigned SplitEditor::openIntv() { 444 // Create the complement as index 0. 445 if (Edit->empty()) 446 Edit->create(LIS, VRM); 447 448 // Create the open interval. 449 OpenIdx = Edit->size(); 450 Edit->create(LIS, VRM); 451 return OpenIdx; 452 } 453 454 void SplitEditor::selectIntv(unsigned Idx) { 455 assert(Idx != 0 && "Cannot select the complement interval"); 456 assert(Idx < Edit->size() && "Can only select previously opened interval"); 457 DEBUG(dbgs() << " selectIntv " << OpenIdx << " -> " << Idx << '\n'); 458 OpenIdx = Idx; 459 } 460 461 SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) { 462 assert(OpenIdx && "openIntv not called before enterIntvBefore"); 463 DEBUG(dbgs() << " enterIntvBefore " << Idx); 464 Idx = Idx.getBaseIndex(); 465 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 466 if (!ParentVNI) { 467 DEBUG(dbgs() << ": not live\n"); 468 return Idx; 469 } 470 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 471 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 472 assert(MI && "enterIntvBefore called with invalid index"); 473 474 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI); 475 return VNI->def; 476 } 477 478 SlotIndex SplitEditor::enterIntvAfter(SlotIndex Idx) { 479 assert(OpenIdx && "openIntv not called before enterIntvAfter"); 480 DEBUG(dbgs() << " enterIntvAfter " << Idx); 481 Idx = Idx.getBoundaryIndex(); 482 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 483 if (!ParentVNI) { 484 DEBUG(dbgs() << ": not live\n"); 485 return Idx; 486 } 487 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 488 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 489 assert(MI && "enterIntvAfter called with invalid index"); 490 491 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), 492 llvm::next(MachineBasicBlock::iterator(MI))); 493 return VNI->def; 494 } 495 496 SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) { 497 assert(OpenIdx && "openIntv not called before enterIntvAtEnd"); 498 SlotIndex End = LIS.getMBBEndIdx(&MBB); 499 SlotIndex Last = End.getPrevSlot(); 500 DEBUG(dbgs() << " enterIntvAtEnd BB#" << MBB.getNumber() << ", " << Last); 501 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last); 502 if (!ParentVNI) { 503 DEBUG(dbgs() << ": not live\n"); 504 return End; 505 } 506 DEBUG(dbgs() << ": valno " << ParentVNI->id); 507 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB, 508 SA.getLastSplitPointIter(&MBB)); 509 RegAssign.insert(VNI->def, End, OpenIdx); 510 DEBUG(dump()); 511 return VNI->def; 512 } 513 514 /// useIntv - indicate that all instructions in MBB should use OpenLI. 515 void SplitEditor::useIntv(const MachineBasicBlock &MBB) { 516 useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB)); 517 } 518 519 void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) { 520 assert(OpenIdx && "openIntv not called before useIntv"); 521 DEBUG(dbgs() << " useIntv [" << Start << ';' << End << "):"); 522 RegAssign.insert(Start, End, OpenIdx); 523 DEBUG(dump()); 524 } 525 526 SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) { 527 assert(OpenIdx && "openIntv not called before leaveIntvAfter"); 528 DEBUG(dbgs() << " leaveIntvAfter " << Idx); 529 530 // The interval must be live beyond the instruction at Idx. 531 SlotIndex Boundary = Idx.getBoundaryIndex(); 532 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Boundary); 533 if (!ParentVNI) { 534 DEBUG(dbgs() << ": not live\n"); 535 return Boundary.getNextSlot(); 536 } 537 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 538 MachineInstr *MI = LIS.getInstructionFromIndex(Boundary); 539 assert(MI && "No instruction at index"); 540 541 // In spill mode, make live ranges as short as possible by inserting the copy 542 // before MI. This is only possible if that instruction doesn't redefine the 543 // value. The inserted COPY is not a kill, and we don't need to recompute 544 // the source live range. The spiller also won't try to hoist this copy. 545 if (SpillMode && !SlotIndex::isSameInstr(ParentVNI->def, Idx) && 546 MI->readsVirtualRegister(Edit->getReg())) { 547 forceRecompute(0, ParentVNI); 548 defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI); 549 return Idx; 550 } 551 552 VNInfo *VNI = defFromParent(0, ParentVNI, Boundary, *MI->getParent(), 553 llvm::next(MachineBasicBlock::iterator(MI))); 554 return VNI->def; 555 } 556 557 SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) { 558 assert(OpenIdx && "openIntv not called before leaveIntvBefore"); 559 DEBUG(dbgs() << " leaveIntvBefore " << Idx); 560 561 // The interval must be live into the instruction at Idx. 562 Idx = Idx.getBaseIndex(); 563 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 564 if (!ParentVNI) { 565 DEBUG(dbgs() << ": not live\n"); 566 return Idx.getNextSlot(); 567 } 568 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 569 570 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 571 assert(MI && "No instruction at index"); 572 VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI); 573 return VNI->def; 574 } 575 576 SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) { 577 assert(OpenIdx && "openIntv not called before leaveIntvAtTop"); 578 SlotIndex Start = LIS.getMBBStartIdx(&MBB); 579 DEBUG(dbgs() << " leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start); 580 581 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start); 582 if (!ParentVNI) { 583 DEBUG(dbgs() << ": not live\n"); 584 return Start; 585 } 586 587 VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB, 588 MBB.SkipPHIsAndLabels(MBB.begin())); 589 RegAssign.insert(Start, VNI->def, OpenIdx); 590 DEBUG(dump()); 591 return VNI->def; 592 } 593 594 void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) { 595 assert(OpenIdx && "openIntv not called before overlapIntv"); 596 const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start); 597 assert(ParentVNI == Edit->getParent().getVNInfoBefore(End) && 598 "Parent changes value in extended range"); 599 assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) && 600 "Range cannot span basic blocks"); 601 602 // The complement interval will be extended as needed by LRCalc.extend(). 603 if (ParentVNI) 604 forceRecompute(0, ParentVNI); 605 DEBUG(dbgs() << " overlapIntv [" << Start << ';' << End << "):"); 606 RegAssign.insert(Start, End, OpenIdx); 607 DEBUG(dump()); 608 } 609 610 //===----------------------------------------------------------------------===// 611 // Spill modes 612 //===----------------------------------------------------------------------===// 613 614 void SplitEditor::removeBackCopies(SmallVectorImpl<VNInfo*> &Copies) { 615 LiveInterval *LI = Edit->get(0); 616 DEBUG(dbgs() << "Removing " << Copies.size() << " back-copies.\n"); 617 RegAssignMap::iterator AssignI; 618 AssignI.setMap(RegAssign); 619 620 for (unsigned i = 0, e = Copies.size(); i != e; ++i) { 621 VNInfo *VNI = Copies[i]; 622 SlotIndex Def = VNI->def; 623 MachineInstr *MI = LIS.getInstructionFromIndex(Def); 624 assert(MI && "No instruction for back-copy"); 625 626 MachineBasicBlock *MBB = MI->getParent(); 627 MachineBasicBlock::iterator MBBI(MI); 628 bool AtBegin; 629 do AtBegin = MBBI == MBB->begin(); 630 while (!AtBegin && (--MBBI)->isDebugValue()); 631 632 DEBUG(dbgs() << "Removing " << Def << '\t' << *MI); 633 LI->removeValNo(VNI); 634 LIS.RemoveMachineInstrFromMaps(MI); 635 MI->eraseFromParent(); 636 637 // Adjust RegAssign if a register assignment is killed at VNI->def. We 638 // want to avoid calculating the live range of the source register if 639 // possible. 640 AssignI.find(VNI->def.getPrevSlot()); 641 if (!AssignI.valid() || AssignI.start() >= Def) 642 continue; 643 // If MI doesn't kill the assigned register, just leave it. 644 if (AssignI.stop() != Def) 645 continue; 646 unsigned RegIdx = AssignI.value(); 647 if (AtBegin || !MBBI->readsVirtualRegister(Edit->getReg())) { 648 DEBUG(dbgs() << " cannot find simple kill of RegIdx " << RegIdx << '\n'); 649 forceRecompute(RegIdx, Edit->getParent().getVNInfoAt(Def)); 650 } else { 651 SlotIndex Kill = LIS.getInstructionIndex(MBBI).getRegSlot(); 652 DEBUG(dbgs() << " move kill to " << Kill << '\t' << *MBBI); 653 AssignI.setStop(Kill); 654 } 655 } 656 } 657 658 MachineBasicBlock* 659 SplitEditor::findShallowDominator(MachineBasicBlock *MBB, 660 MachineBasicBlock *DefMBB) { 661 if (MBB == DefMBB) 662 return MBB; 663 assert(MDT.dominates(DefMBB, MBB) && "MBB must be dominated by the def."); 664 665 const MachineLoopInfo &Loops = SA.Loops; 666 const MachineLoop *DefLoop = Loops.getLoopFor(DefMBB); 667 MachineDomTreeNode *DefDomNode = MDT[DefMBB]; 668 669 // Best candidate so far. 670 MachineBasicBlock *BestMBB = MBB; 671 unsigned BestDepth = UINT_MAX; 672 673 for (;;) { 674 const MachineLoop *Loop = Loops.getLoopFor(MBB); 675 676 // MBB isn't in a loop, it doesn't get any better. All dominators have a 677 // higher frequency by definition. 678 if (!Loop) { 679 DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#" 680 << MBB->getNumber() << " at depth 0\n"); 681 return MBB; 682 } 683 684 // We'll never be able to exit the DefLoop. 685 if (Loop == DefLoop) { 686 DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#" 687 << MBB->getNumber() << " in the same loop\n"); 688 return MBB; 689 } 690 691 // Least busy dominator seen so far. 692 unsigned Depth = Loop->getLoopDepth(); 693 if (Depth < BestDepth) { 694 BestMBB = MBB; 695 BestDepth = Depth; 696 DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#" 697 << MBB->getNumber() << " at depth " << Depth << '\n'); 698 } 699 700 // Leave loop by going to the immediate dominator of the loop header. 701 // This is a bigger stride than simply walking up the dominator tree. 702 MachineDomTreeNode *IDom = MDT[Loop->getHeader()]->getIDom(); 703 704 // Too far up the dominator tree? 705 if (!IDom || !MDT.dominates(DefDomNode, IDom)) 706 return BestMBB; 707 708 MBB = IDom->getBlock(); 709 } 710 } 711 712 void SplitEditor::hoistCopiesForSize() { 713 // Get the complement interval, always RegIdx 0. 714 LiveInterval *LI = Edit->get(0); 715 LiveInterval *Parent = &Edit->getParent(); 716 717 // Track the nearest common dominator for all back-copies for each ParentVNI, 718 // indexed by ParentVNI->id. 719 typedef std::pair<MachineBasicBlock*, SlotIndex> DomPair; 720 SmallVector<DomPair, 8> NearestDom(Parent->getNumValNums()); 721 722 // Find the nearest common dominator for parent values with multiple 723 // back-copies. If a single back-copy dominates, put it in DomPair.second. 724 for (LiveInterval::vni_iterator VI = LI->vni_begin(), VE = LI->vni_end(); 725 VI != VE; ++VI) { 726 VNInfo *VNI = *VI; 727 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def); 728 assert(ParentVNI && "Parent not live at complement def"); 729 730 // Don't hoist remats. The complement is probably going to disappear 731 // completely anyway. 732 if (Edit->didRematerialize(ParentVNI)) 733 continue; 734 735 MachineBasicBlock *ValMBB = LIS.getMBBFromIndex(VNI->def); 736 DomPair &Dom = NearestDom[ParentVNI->id]; 737 738 // Keep directly defined parent values. This is either a PHI or an 739 // instruction in the complement range. All other copies of ParentVNI 740 // should be eliminated. 741 if (VNI->def == ParentVNI->def) { 742 DEBUG(dbgs() << "Direct complement def at " << VNI->def << '\n'); 743 Dom = DomPair(ValMBB, VNI->def); 744 continue; 745 } 746 // Skip the singly mapped values. There is nothing to gain from hoisting a 747 // single back-copy. 748 if (Values.lookup(std::make_pair(0, ParentVNI->id)).getPointer()) { 749 DEBUG(dbgs() << "Single complement def at " << VNI->def << '\n'); 750 continue; 751 } 752 753 if (!Dom.first) { 754 // First time we see ParentVNI. VNI dominates itself. 755 Dom = DomPair(ValMBB, VNI->def); 756 } else if (Dom.first == ValMBB) { 757 // Two defs in the same block. Pick the earlier def. 758 if (!Dom.second.isValid() || VNI->def < Dom.second) 759 Dom.second = VNI->def; 760 } else { 761 // Different basic blocks. Check if one dominates. 762 MachineBasicBlock *Near = 763 MDT.findNearestCommonDominator(Dom.first, ValMBB); 764 if (Near == ValMBB) 765 // Def ValMBB dominates. 766 Dom = DomPair(ValMBB, VNI->def); 767 else if (Near != Dom.first) 768 // None dominate. Hoist to common dominator, need new def. 769 Dom = DomPair(Near, SlotIndex()); 770 } 771 772 DEBUG(dbgs() << "Multi-mapped complement " << VNI->id << '@' << VNI->def 773 << " for parent " << ParentVNI->id << '@' << ParentVNI->def 774 << " hoist to BB#" << Dom.first->getNumber() << ' ' 775 << Dom.second << '\n'); 776 } 777 778 // Insert the hoisted copies. 779 for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) { 780 DomPair &Dom = NearestDom[i]; 781 if (!Dom.first || Dom.second.isValid()) 782 continue; 783 // This value needs a hoisted copy inserted at the end of Dom.first. 784 VNInfo *ParentVNI = Parent->getValNumInfo(i); 785 MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(ParentVNI->def); 786 // Get a less loopy dominator than Dom.first. 787 Dom.first = findShallowDominator(Dom.first, DefMBB); 788 SlotIndex Last = LIS.getMBBEndIdx(Dom.first).getPrevSlot(); 789 Dom.second = 790 defFromParent(0, ParentVNI, Last, *Dom.first, 791 SA.getLastSplitPointIter(Dom.first))->def; 792 } 793 794 // Remove redundant back-copies that are now known to be dominated by another 795 // def with the same value. 796 SmallVector<VNInfo*, 8> BackCopies; 797 for (LiveInterval::vni_iterator VI = LI->vni_begin(), VE = LI->vni_end(); 798 VI != VE; ++VI) { 799 VNInfo *VNI = *VI; 800 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def); 801 const DomPair &Dom = NearestDom[ParentVNI->id]; 802 if (!Dom.first || Dom.second == VNI->def) 803 continue; 804 BackCopies.push_back(VNI); 805 forceRecompute(0, ParentVNI); 806 } 807 removeBackCopies(BackCopies); 808 } 809 810 811 /// transferValues - Transfer all possible values to the new live ranges. 812 /// Values that were rematerialized are left alone, they need LRCalc.extend(). 813 bool SplitEditor::transferValues() { 814 bool Skipped = false; 815 RegAssignMap::const_iterator AssignI = RegAssign.begin(); 816 for (LiveInterval::const_iterator ParentI = Edit->getParent().begin(), 817 ParentE = Edit->getParent().end(); ParentI != ParentE; ++ParentI) { 818 DEBUG(dbgs() << " blit " << *ParentI << ':'); 819 VNInfo *ParentVNI = ParentI->valno; 820 // RegAssign has holes where RegIdx 0 should be used. 821 SlotIndex Start = ParentI->start; 822 AssignI.advanceTo(Start); 823 do { 824 unsigned RegIdx; 825 SlotIndex End = ParentI->end; 826 if (!AssignI.valid()) { 827 RegIdx = 0; 828 } else if (AssignI.start() <= Start) { 829 RegIdx = AssignI.value(); 830 if (AssignI.stop() < End) { 831 End = AssignI.stop(); 832 ++AssignI; 833 } 834 } else { 835 RegIdx = 0; 836 End = std::min(End, AssignI.start()); 837 } 838 839 // The interval [Start;End) is continuously mapped to RegIdx, ParentVNI. 840 DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx); 841 LiveInterval *LI = Edit->get(RegIdx); 842 843 // Check for a simply defined value that can be blitted directly. 844 ValueForcePair VFP = Values.lookup(std::make_pair(RegIdx, ParentVNI->id)); 845 if (VNInfo *VNI = VFP.getPointer()) { 846 DEBUG(dbgs() << ':' << VNI->id); 847 LI->addRange(LiveRange(Start, End, VNI)); 848 Start = End; 849 continue; 850 } 851 852 // Skip values with forced recomputation. 853 if (VFP.getInt()) { 854 DEBUG(dbgs() << "(recalc)"); 855 Skipped = true; 856 Start = End; 857 continue; 858 } 859 860 LiveRangeCalc &LRC = getLRCalc(RegIdx); 861 862 // This value has multiple defs in RegIdx, but it wasn't rematerialized, 863 // so the live range is accurate. Add live-in blocks in [Start;End) to the 864 // LiveInBlocks. 865 MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start); 866 SlotIndex BlockStart, BlockEnd; 867 tie(BlockStart, BlockEnd) = LIS.getSlotIndexes()->getMBBRange(MBB); 868 869 // The first block may be live-in, or it may have its own def. 870 if (Start != BlockStart) { 871 VNInfo *VNI = LI->extendInBlock(BlockStart, std::min(BlockEnd, End)); 872 assert(VNI && "Missing def for complex mapped value"); 873 DEBUG(dbgs() << ':' << VNI->id << "*BB#" << MBB->getNumber()); 874 // MBB has its own def. Is it also live-out? 875 if (BlockEnd <= End) 876 LRC.setLiveOutValue(MBB, VNI); 877 878 // Skip to the next block for live-in. 879 ++MBB; 880 BlockStart = BlockEnd; 881 } 882 883 // Handle the live-in blocks covered by [Start;End). 884 assert(Start <= BlockStart && "Expected live-in block"); 885 while (BlockStart < End) { 886 DEBUG(dbgs() << ">BB#" << MBB->getNumber()); 887 BlockEnd = LIS.getMBBEndIdx(MBB); 888 if (BlockStart == ParentVNI->def) { 889 // This block has the def of a parent PHI, so it isn't live-in. 890 assert(ParentVNI->isPHIDef() && "Non-phi defined at block start?"); 891 VNInfo *VNI = LI->extendInBlock(BlockStart, std::min(BlockEnd, End)); 892 assert(VNI && "Missing def for complex mapped parent PHI"); 893 if (End >= BlockEnd) 894 LRC.setLiveOutValue(MBB, VNI); // Live-out as well. 895 } else { 896 // This block needs a live-in value. The last block covered may not 897 // be live-out. 898 if (End < BlockEnd) 899 LRC.addLiveInBlock(LI, MDT[MBB], End); 900 else { 901 // Live-through, and we don't know the value. 902 LRC.addLiveInBlock(LI, MDT[MBB]); 903 LRC.setLiveOutValue(MBB, 0); 904 } 905 } 906 BlockStart = BlockEnd; 907 ++MBB; 908 } 909 Start = End; 910 } while (Start != ParentI->end); 911 DEBUG(dbgs() << '\n'); 912 } 913 914 LRCalc[0].calculateValues(LIS.getSlotIndexes(), &MDT, 915 &LIS.getVNInfoAllocator()); 916 if (SpillMode) 917 LRCalc[1].calculateValues(LIS.getSlotIndexes(), &MDT, 918 &LIS.getVNInfoAllocator()); 919 920 return Skipped; 921 } 922 923 void SplitEditor::extendPHIKillRanges() { 924 // Extend live ranges to be live-out for successor PHI values. 925 for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(), 926 E = Edit->getParent().vni_end(); I != E; ++I) { 927 const VNInfo *PHIVNI = *I; 928 if (PHIVNI->isUnused() || !PHIVNI->isPHIDef()) 929 continue; 930 unsigned RegIdx = RegAssign.lookup(PHIVNI->def); 931 LiveInterval *LI = Edit->get(RegIdx); 932 LiveRangeCalc &LRC = getLRCalc(RegIdx); 933 MachineBasicBlock *MBB = LIS.getMBBFromIndex(PHIVNI->def); 934 for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), 935 PE = MBB->pred_end(); PI != PE; ++PI) { 936 SlotIndex End = LIS.getMBBEndIdx(*PI); 937 SlotIndex LastUse = End.getPrevSlot(); 938 // The predecessor may not have a live-out value. That is OK, like an 939 // undef PHI operand. 940 if (Edit->getParent().liveAt(LastUse)) { 941 assert(RegAssign.lookup(LastUse) == RegIdx && 942 "Different register assignment in phi predecessor"); 943 LRC.extend(LI, End, 944 LIS.getSlotIndexes(), &MDT, &LIS.getVNInfoAllocator()); 945 } 946 } 947 } 948 } 949 950 /// rewriteAssigned - Rewrite all uses of Edit->getReg(). 951 void SplitEditor::rewriteAssigned(bool ExtendRanges) { 952 for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Edit->getReg()), 953 RE = MRI.reg_end(); RI != RE;) { 954 MachineOperand &MO = RI.getOperand(); 955 MachineInstr *MI = MO.getParent(); 956 ++RI; 957 // LiveDebugVariables should have handled all DBG_VALUE instructions. 958 if (MI->isDebugValue()) { 959 DEBUG(dbgs() << "Zapping " << *MI); 960 MO.setReg(0); 961 continue; 962 } 963 964 // <undef> operands don't really read the register, so it doesn't matter 965 // which register we choose. When the use operand is tied to a def, we must 966 // use the same register as the def, so just do that always. 967 SlotIndex Idx = LIS.getInstructionIndex(MI); 968 if (MO.isDef() || MO.isUndef()) 969 Idx = Idx.getRegSlot(MO.isEarlyClobber()); 970 971 // Rewrite to the mapped register at Idx. 972 unsigned RegIdx = RegAssign.lookup(Idx); 973 LiveInterval *LI = Edit->get(RegIdx); 974 MO.setReg(LI->reg); 975 DEBUG(dbgs() << " rewr BB#" << MI->getParent()->getNumber() << '\t' 976 << Idx << ':' << RegIdx << '\t' << *MI); 977 978 // Extend liveness to Idx if the instruction reads reg. 979 if (!ExtendRanges || MO.isUndef()) 980 continue; 981 982 // Skip instructions that don't read Reg. 983 if (MO.isDef()) { 984 if (!MO.getSubReg() && !MO.isEarlyClobber()) 985 continue; 986 // We may wan't to extend a live range for a partial redef, or for a use 987 // tied to an early clobber. 988 Idx = Idx.getPrevSlot(); 989 if (!Edit->getParent().liveAt(Idx)) 990 continue; 991 } else 992 Idx = Idx.getRegSlot(true); 993 994 getLRCalc(RegIdx).extend(LI, Idx.getNextSlot(), LIS.getSlotIndexes(), 995 &MDT, &LIS.getVNInfoAllocator()); 996 } 997 } 998 999 void SplitEditor::deleteRematVictims() { 1000 SmallVector<MachineInstr*, 8> Dead; 1001 for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I){ 1002 LiveInterval *LI = *I; 1003 for (LiveInterval::const_iterator LII = LI->begin(), LIE = LI->end(); 1004 LII != LIE; ++LII) { 1005 // Dead defs end at the dead slot. 1006 if (LII->end != LII->valno->def.getDeadSlot()) 1007 continue; 1008 MachineInstr *MI = LIS.getInstructionFromIndex(LII->valno->def); 1009 assert(MI && "Missing instruction for dead def"); 1010 MI->addRegisterDead(LI->reg, &TRI); 1011 1012 if (!MI->allDefsAreDead()) 1013 continue; 1014 1015 DEBUG(dbgs() << "All defs dead: " << *MI); 1016 Dead.push_back(MI); 1017 } 1018 } 1019 1020 if (Dead.empty()) 1021 return; 1022 1023 Edit->eliminateDeadDefs(Dead, LIS, VRM, TII); 1024 } 1025 1026 void SplitEditor::finish(SmallVectorImpl<unsigned> *LRMap) { 1027 ++NumFinished; 1028 1029 // At this point, the live intervals in Edit contain VNInfos corresponding to 1030 // the inserted copies. 1031 1032 // Add the original defs from the parent interval. 1033 for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(), 1034 E = Edit->getParent().vni_end(); I != E; ++I) { 1035 const VNInfo *ParentVNI = *I; 1036 if (ParentVNI->isUnused()) 1037 continue; 1038 unsigned RegIdx = RegAssign.lookup(ParentVNI->def); 1039 VNInfo *VNI = defValue(RegIdx, ParentVNI, ParentVNI->def); 1040 VNI->setIsPHIDef(ParentVNI->isPHIDef()); 1041 VNI->setCopy(ParentVNI->getCopy()); 1042 1043 // Force rematted values to be recomputed everywhere. 1044 // The new live ranges may be truncated. 1045 if (Edit->didRematerialize(ParentVNI)) 1046 for (unsigned i = 0, e = Edit->size(); i != e; ++i) 1047 forceRecompute(i, ParentVNI); 1048 } 1049 1050 // Hoist back-copies to the complement interval when in spill mode. 1051 switch (SpillMode) { 1052 case SM_Partition: 1053 // Leave all back-copies as is. 1054 break; 1055 case SM_Size: 1056 hoistCopiesForSize(); 1057 break; 1058 case SM_Speed: 1059 llvm_unreachable("Spill mode 'speed' not implemented yet"); 1060 break; 1061 } 1062 1063 // Transfer the simply mapped values, check if any are skipped. 1064 bool Skipped = transferValues(); 1065 if (Skipped) 1066 extendPHIKillRanges(); 1067 else 1068 ++NumSimple; 1069 1070 // Rewrite virtual registers, possibly extending ranges. 1071 rewriteAssigned(Skipped); 1072 1073 // Delete defs that were rematted everywhere. 1074 if (Skipped) 1075 deleteRematVictims(); 1076 1077 // Get rid of unused values and set phi-kill flags. 1078 for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I) 1079 (*I)->RenumberValues(LIS); 1080 1081 // Provide a reverse mapping from original indices to Edit ranges. 1082 if (LRMap) { 1083 LRMap->clear(); 1084 for (unsigned i = 0, e = Edit->size(); i != e; ++i) 1085 LRMap->push_back(i); 1086 } 1087 1088 // Now check if any registers were separated into multiple components. 1089 ConnectedVNInfoEqClasses ConEQ(LIS); 1090 for (unsigned i = 0, e = Edit->size(); i != e; ++i) { 1091 // Don't use iterators, they are invalidated by create() below. 1092 LiveInterval *li = Edit->get(i); 1093 unsigned NumComp = ConEQ.Classify(li); 1094 if (NumComp <= 1) 1095 continue; 1096 DEBUG(dbgs() << " " << NumComp << " components: " << *li << '\n'); 1097 SmallVector<LiveInterval*, 8> dups; 1098 dups.push_back(li); 1099 for (unsigned j = 1; j != NumComp; ++j) 1100 dups.push_back(&Edit->create(LIS, VRM)); 1101 ConEQ.Distribute(&dups[0], MRI); 1102 // The new intervals all map back to i. 1103 if (LRMap) 1104 LRMap->resize(Edit->size(), i); 1105 } 1106 1107 // Calculate spill weight and allocation hints for new intervals. 1108 Edit->calculateRegClassAndHint(VRM.getMachineFunction(), LIS, SA.Loops); 1109 1110 assert(!LRMap || LRMap->size() == Edit->size()); 1111 } 1112 1113 1114 //===----------------------------------------------------------------------===// 1115 // Single Block Splitting 1116 //===----------------------------------------------------------------------===// 1117 1118 bool SplitAnalysis::shouldSplitSingleBlock(const BlockInfo &BI, 1119 bool SingleInstrs) const { 1120 // Always split for multiple instructions. 1121 if (!BI.isOneInstr()) 1122 return true; 1123 // Don't split for single instructions unless explicitly requested. 1124 if (!SingleInstrs) 1125 return false; 1126 // Splitting a live-through range always makes progress. 1127 if (BI.LiveIn && BI.LiveOut) 1128 return true; 1129 // No point in isolating a copy. It has no register class constraints. 1130 if (LIS.getInstructionFromIndex(BI.FirstInstr)->isCopyLike()) 1131 return false; 1132 // Finally, don't isolate an end point that was created by earlier splits. 1133 return isOriginalEndpoint(BI.FirstInstr); 1134 } 1135 1136 void SplitEditor::splitSingleBlock(const SplitAnalysis::BlockInfo &BI) { 1137 openIntv(); 1138 SlotIndex LastSplitPoint = SA.getLastSplitPoint(BI.MBB->getNumber()); 1139 SlotIndex SegStart = enterIntvBefore(std::min(BI.FirstInstr, 1140 LastSplitPoint)); 1141 if (!BI.LiveOut || BI.LastInstr < LastSplitPoint) { 1142 useIntv(SegStart, leaveIntvAfter(BI.LastInstr)); 1143 } else { 1144 // The last use is after the last valid split point. 1145 SlotIndex SegStop = leaveIntvBefore(LastSplitPoint); 1146 useIntv(SegStart, SegStop); 1147 overlapIntv(SegStop, BI.LastInstr); 1148 } 1149 } 1150 1151 1152 //===----------------------------------------------------------------------===// 1153 // Global Live Range Splitting Support 1154 //===----------------------------------------------------------------------===// 1155 1156 // These methods support a method of global live range splitting that uses a 1157 // global algorithm to decide intervals for CFG edges. They will insert split 1158 // points and color intervals in basic blocks while avoiding interference. 1159 // 1160 // Note that splitSingleBlock is also useful for blocks where both CFG edges 1161 // are on the stack. 1162 1163 void SplitEditor::splitLiveThroughBlock(unsigned MBBNum, 1164 unsigned IntvIn, SlotIndex LeaveBefore, 1165 unsigned IntvOut, SlotIndex EnterAfter){ 1166 SlotIndex Start, Stop; 1167 tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(MBBNum); 1168 1169 DEBUG(dbgs() << "BB#" << MBBNum << " [" << Start << ';' << Stop 1170 << ") intf " << LeaveBefore << '-' << EnterAfter 1171 << ", live-through " << IntvIn << " -> " << IntvOut); 1172 1173 assert((IntvIn || IntvOut) && "Use splitSingleBlock for isolated blocks"); 1174 1175 assert((!LeaveBefore || LeaveBefore < Stop) && "Interference after block"); 1176 assert((!IntvIn || !LeaveBefore || LeaveBefore > Start) && "Impossible intf"); 1177 assert((!EnterAfter || EnterAfter >= Start) && "Interference before block"); 1178 1179 MachineBasicBlock *MBB = VRM.getMachineFunction().getBlockNumbered(MBBNum); 1180 1181 if (!IntvOut) { 1182 DEBUG(dbgs() << ", spill on entry.\n"); 1183 // 1184 // <<<<<<<<< Possible LeaveBefore interference. 1185 // |-----------| Live through. 1186 // -____________ Spill on entry. 1187 // 1188 selectIntv(IntvIn); 1189 SlotIndex Idx = leaveIntvAtTop(*MBB); 1190 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1191 (void)Idx; 1192 return; 1193 } 1194 1195 if (!IntvIn) { 1196 DEBUG(dbgs() << ", reload on exit.\n"); 1197 // 1198 // >>>>>>> Possible EnterAfter interference. 1199 // |-----------| Live through. 1200 // ___________-- Reload on exit. 1201 // 1202 selectIntv(IntvOut); 1203 SlotIndex Idx = enterIntvAtEnd(*MBB); 1204 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1205 (void)Idx; 1206 return; 1207 } 1208 1209 if (IntvIn == IntvOut && !LeaveBefore && !EnterAfter) { 1210 DEBUG(dbgs() << ", straight through.\n"); 1211 // 1212 // |-----------| Live through. 1213 // ------------- Straight through, same intv, no interference. 1214 // 1215 selectIntv(IntvOut); 1216 useIntv(Start, Stop); 1217 return; 1218 } 1219 1220 // We cannot legally insert splits after LSP. 1221 SlotIndex LSP = SA.getLastSplitPoint(MBBNum); 1222 assert((!IntvOut || !EnterAfter || EnterAfter < LSP) && "Impossible intf"); 1223 1224 if (IntvIn != IntvOut && (!LeaveBefore || !EnterAfter || 1225 LeaveBefore.getBaseIndex() > EnterAfter.getBoundaryIndex())) { 1226 DEBUG(dbgs() << ", switch avoiding interference.\n"); 1227 // 1228 // >>>> <<<< Non-overlapping EnterAfter/LeaveBefore interference. 1229 // |-----------| Live through. 1230 // ------======= Switch intervals between interference. 1231 // 1232 selectIntv(IntvOut); 1233 SlotIndex Idx; 1234 if (LeaveBefore && LeaveBefore < LSP) { 1235 Idx = enterIntvBefore(LeaveBefore); 1236 useIntv(Idx, Stop); 1237 } else { 1238 Idx = enterIntvAtEnd(*MBB); 1239 } 1240 selectIntv(IntvIn); 1241 useIntv(Start, Idx); 1242 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1243 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1244 return; 1245 } 1246 1247 DEBUG(dbgs() << ", create local intv for interference.\n"); 1248 // 1249 // >>><><><><<<< Overlapping EnterAfter/LeaveBefore interference. 1250 // |-----------| Live through. 1251 // ==---------== Switch intervals before/after interference. 1252 // 1253 assert(LeaveBefore <= EnterAfter && "Missed case"); 1254 1255 selectIntv(IntvOut); 1256 SlotIndex Idx = enterIntvAfter(EnterAfter); 1257 useIntv(Idx, Stop); 1258 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1259 1260 selectIntv(IntvIn); 1261 Idx = leaveIntvBefore(LeaveBefore); 1262 useIntv(Start, Idx); 1263 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1264 } 1265 1266 1267 void SplitEditor::splitRegInBlock(const SplitAnalysis::BlockInfo &BI, 1268 unsigned IntvIn, SlotIndex LeaveBefore) { 1269 SlotIndex Start, Stop; 1270 tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); 1271 1272 DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " [" << Start << ';' << Stop 1273 << "), uses " << BI.FirstInstr << '-' << BI.LastInstr 1274 << ", reg-in " << IntvIn << ", leave before " << LeaveBefore 1275 << (BI.LiveOut ? ", stack-out" : ", killed in block")); 1276 1277 assert(IntvIn && "Must have register in"); 1278 assert(BI.LiveIn && "Must be live-in"); 1279 assert((!LeaveBefore || LeaveBefore > Start) && "Bad interference"); 1280 1281 if (!BI.LiveOut && (!LeaveBefore || LeaveBefore >= BI.LastInstr)) { 1282 DEBUG(dbgs() << " before interference.\n"); 1283 // 1284 // <<< Interference after kill. 1285 // |---o---x | Killed in block. 1286 // ========= Use IntvIn everywhere. 1287 // 1288 selectIntv(IntvIn); 1289 useIntv(Start, BI.LastInstr); 1290 return; 1291 } 1292 1293 SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber()); 1294 1295 if (!LeaveBefore || LeaveBefore > BI.LastInstr.getBoundaryIndex()) { 1296 // 1297 // <<< Possible interference after last use. 1298 // |---o---o---| Live-out on stack. 1299 // =========____ Leave IntvIn after last use. 1300 // 1301 // < Interference after last use. 1302 // |---o---o--o| Live-out on stack, late last use. 1303 // ============ Copy to stack after LSP, overlap IntvIn. 1304 // \_____ Stack interval is live-out. 1305 // 1306 if (BI.LastInstr < LSP) { 1307 DEBUG(dbgs() << ", spill after last use before interference.\n"); 1308 selectIntv(IntvIn); 1309 SlotIndex Idx = leaveIntvAfter(BI.LastInstr); 1310 useIntv(Start, Idx); 1311 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1312 } else { 1313 DEBUG(dbgs() << ", spill before last split point.\n"); 1314 selectIntv(IntvIn); 1315 SlotIndex Idx = leaveIntvBefore(LSP); 1316 overlapIntv(Idx, BI.LastInstr); 1317 useIntv(Start, Idx); 1318 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1319 } 1320 return; 1321 } 1322 1323 // The interference is overlapping somewhere we wanted to use IntvIn. That 1324 // means we need to create a local interval that can be allocated a 1325 // different register. 1326 unsigned LocalIntv = openIntv(); 1327 (void)LocalIntv; 1328 DEBUG(dbgs() << ", creating local interval " << LocalIntv << ".\n"); 1329 1330 if (!BI.LiveOut || BI.LastInstr < LSP) { 1331 // 1332 // <<<<<<< Interference overlapping uses. 1333 // |---o---o---| Live-out on stack. 1334 // =====----____ Leave IntvIn before interference, then spill. 1335 // 1336 SlotIndex To = leaveIntvAfter(BI.LastInstr); 1337 SlotIndex From = enterIntvBefore(LeaveBefore); 1338 useIntv(From, To); 1339 selectIntv(IntvIn); 1340 useIntv(Start, From); 1341 assert((!LeaveBefore || From <= LeaveBefore) && "Interference"); 1342 return; 1343 } 1344 1345 // <<<<<<< Interference overlapping uses. 1346 // |---o---o--o| Live-out on stack, late last use. 1347 // =====------- Copy to stack before LSP, overlap LocalIntv. 1348 // \_____ Stack interval is live-out. 1349 // 1350 SlotIndex To = leaveIntvBefore(LSP); 1351 overlapIntv(To, BI.LastInstr); 1352 SlotIndex From = enterIntvBefore(std::min(To, LeaveBefore)); 1353 useIntv(From, To); 1354 selectIntv(IntvIn); 1355 useIntv(Start, From); 1356 assert((!LeaveBefore || From <= LeaveBefore) && "Interference"); 1357 } 1358 1359 void SplitEditor::splitRegOutBlock(const SplitAnalysis::BlockInfo &BI, 1360 unsigned IntvOut, SlotIndex EnterAfter) { 1361 SlotIndex Start, Stop; 1362 tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); 1363 1364 DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " [" << Start << ';' << Stop 1365 << "), uses " << BI.FirstInstr << '-' << BI.LastInstr 1366 << ", reg-out " << IntvOut << ", enter after " << EnterAfter 1367 << (BI.LiveIn ? ", stack-in" : ", defined in block")); 1368 1369 SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber()); 1370 1371 assert(IntvOut && "Must have register out"); 1372 assert(BI.LiveOut && "Must be live-out"); 1373 assert((!EnterAfter || EnterAfter < LSP) && "Bad interference"); 1374 1375 if (!BI.LiveIn && (!EnterAfter || EnterAfter <= BI.FirstInstr)) { 1376 DEBUG(dbgs() << " after interference.\n"); 1377 // 1378 // >>>> Interference before def. 1379 // | o---o---| Defined in block. 1380 // ========= Use IntvOut everywhere. 1381 // 1382 selectIntv(IntvOut); 1383 useIntv(BI.FirstInstr, Stop); 1384 return; 1385 } 1386 1387 if (!EnterAfter || EnterAfter < BI.FirstInstr.getBaseIndex()) { 1388 DEBUG(dbgs() << ", reload after interference.\n"); 1389 // 1390 // >>>> Interference before def. 1391 // |---o---o---| Live-through, stack-in. 1392 // ____========= Enter IntvOut before first use. 1393 // 1394 selectIntv(IntvOut); 1395 SlotIndex Idx = enterIntvBefore(std::min(LSP, BI.FirstInstr)); 1396 useIntv(Idx, Stop); 1397 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1398 return; 1399 } 1400 1401 // The interference is overlapping somewhere we wanted to use IntvOut. That 1402 // means we need to create a local interval that can be allocated a 1403 // different register. 1404 DEBUG(dbgs() << ", interference overlaps uses.\n"); 1405 // 1406 // >>>>>>> Interference overlapping uses. 1407 // |---o---o---| Live-through, stack-in. 1408 // ____---====== Create local interval for interference range. 1409 // 1410 selectIntv(IntvOut); 1411 SlotIndex Idx = enterIntvAfter(EnterAfter); 1412 useIntv(Idx, Stop); 1413 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1414 1415 openIntv(); 1416 SlotIndex From = enterIntvBefore(std::min(Idx, BI.FirstInstr)); 1417 useIntv(From, Idx); 1418 } 1419