1 //===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the SplitAnalysis class as well as mutator functions for 11 // live range splitting. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "splitter" 16 #include "SplitKit.h" 17 #include "VirtRegMap.h" 18 #include "llvm/CodeGen/CalcSpillWeights.h" 19 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 20 #include "llvm/CodeGen/MachineInstrBuilder.h" 21 #include "llvm/CodeGen/MachineLoopInfo.h" 22 #include "llvm/CodeGen/MachineRegisterInfo.h" 23 #include "llvm/Support/CommandLine.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/raw_ostream.h" 26 #include "llvm/Target/TargetInstrInfo.h" 27 #include "llvm/Target/TargetMachine.h" 28 29 using namespace llvm; 30 31 static cl::opt<bool> 32 AllowSplit("spiller-splits-edges", 33 cl::desc("Allow critical edge splitting during spilling")); 34 35 //===----------------------------------------------------------------------===// 36 // Split Analysis 37 //===----------------------------------------------------------------------===// 38 39 SplitAnalysis::SplitAnalysis(const MachineFunction &mf, 40 const LiveIntervals &lis, 41 const MachineLoopInfo &mli) 42 : mf_(mf), 43 lis_(lis), 44 loops_(mli), 45 tii_(*mf.getTarget().getInstrInfo()), 46 curli_(0) {} 47 48 void SplitAnalysis::clear() { 49 usingInstrs_.clear(); 50 usingBlocks_.clear(); 51 usingLoops_.clear(); 52 curli_ = 0; 53 } 54 55 bool SplitAnalysis::canAnalyzeBranch(const MachineBasicBlock *MBB) { 56 MachineBasicBlock *T, *F; 57 SmallVector<MachineOperand, 4> Cond; 58 return !tii_.AnalyzeBranch(const_cast<MachineBasicBlock&>(*MBB), T, F, Cond); 59 } 60 61 /// analyzeUses - Count instructions, basic blocks, and loops using curli. 62 void SplitAnalysis::analyzeUses() { 63 const MachineRegisterInfo &MRI = mf_.getRegInfo(); 64 for (MachineRegisterInfo::reg_iterator I = MRI.reg_begin(curli_->reg); 65 MachineInstr *MI = I.skipInstruction();) { 66 if (MI->isDebugValue() || !usingInstrs_.insert(MI)) 67 continue; 68 MachineBasicBlock *MBB = MI->getParent(); 69 if (usingBlocks_[MBB]++) 70 continue; 71 if (MachineLoop *Loop = loops_.getLoopFor(MBB)) 72 usingLoops_[Loop]++; 73 } 74 DEBUG(dbgs() << " counted " 75 << usingInstrs_.size() << " instrs, " 76 << usingBlocks_.size() << " blocks, " 77 << usingLoops_.size() << " loops.\n"); 78 } 79 80 /// removeUse - Update statistics by noting that MI no longer uses curli. 81 void SplitAnalysis::removeUse(const MachineInstr *MI) { 82 if (!usingInstrs_.erase(MI)) 83 return; 84 85 // Decrement MBB count. 86 const MachineBasicBlock *MBB = MI->getParent(); 87 BlockCountMap::iterator bi = usingBlocks_.find(MBB); 88 assert(bi != usingBlocks_.end() && "MBB missing"); 89 assert(bi->second && "0 count in map"); 90 if (--bi->second) 91 return; 92 // No more uses in MBB. 93 usingBlocks_.erase(bi); 94 95 // Decrement loop count. 96 MachineLoop *Loop = loops_.getLoopFor(MBB); 97 if (!Loop) 98 return; 99 LoopCountMap::iterator li = usingLoops_.find(Loop); 100 assert(li != usingLoops_.end() && "Loop missing"); 101 assert(li->second && "0 count in map"); 102 if (--li->second) 103 return; 104 // No more blocks in Loop. 105 usingLoops_.erase(li); 106 } 107 108 // Get three sets of basic blocks surrounding a loop: Blocks inside the loop, 109 // predecessor blocks, and exit blocks. 110 void SplitAnalysis::getLoopBlocks(const MachineLoop *Loop, LoopBlocks &Blocks) { 111 Blocks.clear(); 112 113 // Blocks in the loop. 114 Blocks.Loop.insert(Loop->block_begin(), Loop->block_end()); 115 116 // Predecessor blocks. 117 const MachineBasicBlock *Header = Loop->getHeader(); 118 for (MachineBasicBlock::const_pred_iterator I = Header->pred_begin(), 119 E = Header->pred_end(); I != E; ++I) 120 if (!Blocks.Loop.count(*I)) 121 Blocks.Preds.insert(*I); 122 123 // Exit blocks. 124 for (MachineLoop::block_iterator I = Loop->block_begin(), 125 E = Loop->block_end(); I != E; ++I) { 126 const MachineBasicBlock *MBB = *I; 127 for (MachineBasicBlock::const_succ_iterator SI = MBB->succ_begin(), 128 SE = MBB->succ_end(); SI != SE; ++SI) 129 if (!Blocks.Loop.count(*SI)) 130 Blocks.Exits.insert(*SI); 131 } 132 } 133 134 /// analyzeLoopPeripheralUse - Return an enum describing how curli_ is used in 135 /// and around the Loop. 136 SplitAnalysis::LoopPeripheralUse SplitAnalysis:: 137 analyzeLoopPeripheralUse(const SplitAnalysis::LoopBlocks &Blocks) { 138 LoopPeripheralUse use = ContainedInLoop; 139 for (BlockCountMap::iterator I = usingBlocks_.begin(), E = usingBlocks_.end(); 140 I != E; ++I) { 141 const MachineBasicBlock *MBB = I->first; 142 // Is this a peripheral block? 143 if (use < MultiPeripheral && 144 (Blocks.Preds.count(MBB) || Blocks.Exits.count(MBB))) { 145 if (I->second > 1) use = MultiPeripheral; 146 else use = SinglePeripheral; 147 continue; 148 } 149 // Is it a loop block? 150 if (Blocks.Loop.count(MBB)) 151 continue; 152 // It must be an unrelated block. 153 return OutsideLoop; 154 } 155 return use; 156 } 157 158 /// getCriticalExits - It may be necessary to partially break critical edges 159 /// leaving the loop if an exit block has phi uses of curli. Collect the exit 160 /// blocks that need special treatment into CriticalExits. 161 void SplitAnalysis::getCriticalExits(const SplitAnalysis::LoopBlocks &Blocks, 162 BlockPtrSet &CriticalExits) { 163 CriticalExits.clear(); 164 165 // A critical exit block contains a phi def of curli, and has a predecessor 166 // that is not in the loop nor a loop predecessor. 167 // For such an exit block, the edges carrying the new variable must be moved 168 // to a new pre-exit block. 169 for (BlockPtrSet::iterator I = Blocks.Exits.begin(), E = Blocks.Exits.end(); 170 I != E; ++I) { 171 const MachineBasicBlock *Succ = *I; 172 SlotIndex SuccIdx = lis_.getMBBStartIdx(Succ); 173 VNInfo *SuccVNI = curli_->getVNInfoAt(SuccIdx); 174 // This exit may not have curli live in at all. No need to split. 175 if (!SuccVNI) 176 continue; 177 // If this is not a PHI def, it is either using a value from before the 178 // loop, or a value defined inside the loop. Both are safe. 179 if (!SuccVNI->isPHIDef() || SuccVNI->def.getBaseIndex() != SuccIdx) 180 continue; 181 // This exit block does have a PHI. Does it also have a predecessor that is 182 // not a loop block or loop predecessor? 183 for (MachineBasicBlock::const_pred_iterator PI = Succ->pred_begin(), 184 PE = Succ->pred_end(); PI != PE; ++PI) { 185 const MachineBasicBlock *Pred = *PI; 186 if (Blocks.Loop.count(Pred) || Blocks.Preds.count(Pred)) 187 continue; 188 // This is a critical exit block, and we need to split the exit edge. 189 CriticalExits.insert(Succ); 190 break; 191 } 192 } 193 } 194 195 /// canSplitCriticalExits - Return true if it is possible to insert new exit 196 /// blocks before the blocks in CriticalExits. 197 bool 198 SplitAnalysis::canSplitCriticalExits(const SplitAnalysis::LoopBlocks &Blocks, 199 BlockPtrSet &CriticalExits) { 200 // If we don't allow critical edge splitting, require no critical exits. 201 if (!AllowSplit) 202 return CriticalExits.empty(); 203 204 for (BlockPtrSet::iterator I = CriticalExits.begin(), E = CriticalExits.end(); 205 I != E; ++I) { 206 const MachineBasicBlock *Succ = *I; 207 // We want to insert a new pre-exit MBB before Succ, and change all the 208 // in-loop blocks to branch to the pre-exit instead of Succ. 209 // Check that all the in-loop predecessors can be changed. 210 for (MachineBasicBlock::const_pred_iterator PI = Succ->pred_begin(), 211 PE = Succ->pred_end(); PI != PE; ++PI) { 212 const MachineBasicBlock *Pred = *PI; 213 // The external predecessors won't be altered. 214 if (!Blocks.Loop.count(Pred) && !Blocks.Preds.count(Pred)) 215 continue; 216 if (!canAnalyzeBranch(Pred)) 217 return false; 218 } 219 220 // If Succ's layout predecessor falls through, that too must be analyzable. 221 // We need to insert the pre-exit block in the gap. 222 MachineFunction::const_iterator MFI = Succ; 223 if (MFI == mf_.begin()) 224 continue; 225 if (!canAnalyzeBranch(--MFI)) 226 return false; 227 } 228 // No problems found. 229 return true; 230 } 231 232 void SplitAnalysis::analyze(const LiveInterval *li) { 233 clear(); 234 curli_ = li; 235 analyzeUses(); 236 } 237 238 const MachineLoop *SplitAnalysis::getBestSplitLoop() { 239 assert(curli_ && "Call analyze() before getBestSplitLoop"); 240 if (usingLoops_.empty()) 241 return 0; 242 243 LoopPtrSet Loops, SecondLoops; 244 LoopBlocks Blocks; 245 BlockPtrSet CriticalExits; 246 247 // Find first-class and second class candidate loops. 248 // We prefer to split around loops where curli is used outside the periphery. 249 for (LoopCountMap::const_iterator I = usingLoops_.begin(), 250 E = usingLoops_.end(); I != E; ++I) { 251 const MachineLoop *Loop = I->first; 252 getLoopBlocks(Loop, Blocks); 253 254 // FIXME: We need an SSA updater to properly handle multiple exit blocks. 255 if (Blocks.Exits.size() > 1) { 256 DEBUG(dbgs() << " multiple exits from " << *Loop); 257 continue; 258 } 259 260 LoopPtrSet *LPS = 0; 261 switch(analyzeLoopPeripheralUse(Blocks)) { 262 case OutsideLoop: 263 LPS = &Loops; 264 break; 265 case MultiPeripheral: 266 LPS = &SecondLoops; 267 break; 268 case ContainedInLoop: 269 DEBUG(dbgs() << " contained in " << *Loop); 270 continue; 271 case SinglePeripheral: 272 DEBUG(dbgs() << " single peripheral use in " << *Loop); 273 continue; 274 } 275 // Will it be possible to split around this loop? 276 getCriticalExits(Blocks, CriticalExits); 277 DEBUG(dbgs() << " " << CriticalExits.size() << " critical exits from " 278 << *Loop); 279 if (!canSplitCriticalExits(Blocks, CriticalExits)) 280 continue; 281 // This is a possible split. 282 assert(LPS); 283 LPS->insert(Loop); 284 } 285 286 DEBUG(dbgs() << " getBestSplitLoop found " << Loops.size() << " + " 287 << SecondLoops.size() << " candidate loops.\n"); 288 289 // If there are no first class loops available, look at second class loops. 290 if (Loops.empty()) 291 Loops = SecondLoops; 292 293 if (Loops.empty()) 294 return 0; 295 296 // Pick the earliest loop. 297 // FIXME: Are there other heuristics to consider? 298 const MachineLoop *Best = 0; 299 SlotIndex BestIdx; 300 for (LoopPtrSet::const_iterator I = Loops.begin(), E = Loops.end(); I != E; 301 ++I) { 302 SlotIndex Idx = lis_.getMBBStartIdx((*I)->getHeader()); 303 if (!Best || Idx < BestIdx) 304 Best = *I, BestIdx = Idx; 305 } 306 DEBUG(dbgs() << " getBestSplitLoop found " << *Best); 307 return Best; 308 } 309 310 /// getMultiUseBlocks - if curli has more than one use in a basic block, it 311 /// may be an advantage to split curli for the duration of the block. 312 bool SplitAnalysis::getMultiUseBlocks(BlockPtrSet &Blocks) { 313 // If curli is local to one block, there is no point to splitting it. 314 if (usingBlocks_.size() <= 1) 315 return false; 316 // Add blocks with multiple uses. 317 for (BlockCountMap::iterator I = usingBlocks_.begin(), E = usingBlocks_.end(); 318 I != E; ++I) 319 switch (I->second) { 320 case 0: 321 case 1: 322 continue; 323 case 2: { 324 // It doesn't pay to split a 2-instr block if it redefines curli. 325 VNInfo *VN1 = curli_->getVNInfoAt(lis_.getMBBStartIdx(I->first)); 326 VNInfo *VN2 = 327 curli_->getVNInfoAt(lis_.getMBBEndIdx(I->first).getPrevIndex()); 328 // live-in and live-out with a different value. 329 if (VN1 && VN2 && VN1 != VN2) 330 continue; 331 } // Fall through. 332 default: 333 Blocks.insert(I->first); 334 } 335 return !Blocks.empty(); 336 } 337 338 //===----------------------------------------------------------------------===// 339 // LiveIntervalMap 340 //===----------------------------------------------------------------------===// 341 342 // Work around the fact that the std::pair constructors are broken for pointer 343 // pairs in some implementations. makeVV(x, 0) works. 344 static inline std::pair<const VNInfo*, VNInfo*> 345 makeVV(const VNInfo *a, VNInfo *b) { 346 return std::make_pair(a, b); 347 } 348 349 void LiveIntervalMap::reset(LiveInterval *li) { 350 li_ = li; 351 valueMap_.clear(); 352 } 353 354 bool LiveIntervalMap::isComplexMapped(const VNInfo *ParentVNI) const { 355 ValueMap::const_iterator i = valueMap_.find(ParentVNI); 356 return i != valueMap_.end() && i->second == 0; 357 } 358 359 // defValue - Introduce a li_ def for ParentVNI that could be later than 360 // ParentVNI->def. 361 VNInfo *LiveIntervalMap::defValue(const VNInfo *ParentVNI, SlotIndex Idx) { 362 assert(li_ && "call reset first"); 363 assert(ParentVNI && "Mapping NULL value"); 364 assert(Idx.isValid() && "Invalid SlotIndex"); 365 assert(parentli_.getVNInfoAt(Idx) == ParentVNI && "Bad ParentVNI"); 366 367 // Create a new value. 368 VNInfo *VNI = li_->getNextValue(Idx, 0, lis_.getVNInfoAllocator()); 369 370 // Use insert for lookup, so we can add missing values with a second lookup. 371 std::pair<ValueMap::iterator,bool> InsP = 372 valueMap_.insert(makeVV(ParentVNI, Idx == ParentVNI->def ? VNI : 0)); 373 374 // This is now a complex def. Mark with a NULL in valueMap. 375 if (!InsP.second) 376 InsP.first->second = 0; 377 378 return VNI; 379 } 380 381 382 // mapValue - Find the mapped value for ParentVNI at Idx. 383 // Potentially create phi-def values. 384 VNInfo *LiveIntervalMap::mapValue(const VNInfo *ParentVNI, SlotIndex Idx, 385 bool *simple) { 386 assert(li_ && "call reset first"); 387 assert(ParentVNI && "Mapping NULL value"); 388 assert(Idx.isValid() && "Invalid SlotIndex"); 389 assert(parentli_.getVNInfoAt(Idx) == ParentVNI && "Bad ParentVNI"); 390 391 // Use insert for lookup, so we can add missing values with a second lookup. 392 std::pair<ValueMap::iterator,bool> InsP = 393 valueMap_.insert(makeVV(ParentVNI, 0)); 394 395 // This was an unknown value. Create a simple mapping. 396 if (InsP.second) { 397 if (simple) *simple = true; 398 return InsP.first->second = li_->createValueCopy(ParentVNI, 399 lis_.getVNInfoAllocator()); 400 } 401 402 // This was a simple mapped value. 403 if (InsP.first->second) { 404 if (simple) *simple = true; 405 return InsP.first->second; 406 } 407 408 // This is a complex mapped value. There may be multiple defs, and we may need 409 // to create phi-defs. 410 if (simple) *simple = false; 411 MachineBasicBlock *IdxMBB = lis_.getMBBFromIndex(Idx); 412 assert(IdxMBB && "No MBB at Idx"); 413 414 // Is there a def in the same MBB we can extend? 415 if (VNInfo *VNI = extendTo(IdxMBB, Idx)) 416 return VNI; 417 418 // Now for the fun part. We know that ParentVNI potentially has multiple defs, 419 // and we may need to create even more phi-defs to preserve VNInfo SSA form. 420 // Perform a depth-first search for predecessor blocks where we know the 421 // dominating VNInfo. Insert phi-def VNInfos along the path back to IdxMBB. 422 423 // Track MBBs where we have created or learned the dominating value. 424 // This may change during the DFS as we create new phi-defs. 425 typedef DenseMap<MachineBasicBlock*, VNInfo*> MBBValueMap; 426 MBBValueMap DomValue; 427 typedef SplitAnalysis::BlockPtrSet BlockPtrSet; 428 BlockPtrSet Visited; 429 430 // Iterate over IdxMBB predecessors in a depth-first order. 431 // Skip begin() since that is always IdxMBB. 432 for (idf_ext_iterator<MachineBasicBlock*, BlockPtrSet> 433 IDFI = llvm::next(idf_ext_begin(IdxMBB, Visited)), 434 IDFE = idf_ext_end(IdxMBB, Visited); IDFI != IDFE;) { 435 MachineBasicBlock *MBB = *IDFI; 436 SlotIndex End = lis_.getMBBEndIdx(MBB).getPrevSlot(); 437 438 // We are operating on the restricted CFG where ParentVNI is live. 439 if (parentli_.getVNInfoAt(End) != ParentVNI) { 440 IDFI.skipChildren(); 441 continue; 442 } 443 444 // Do we have a dominating value in this block? 445 VNInfo *VNI = extendTo(MBB, End); 446 if (!VNI) { 447 ++IDFI; 448 continue; 449 } 450 451 // Yes, VNI dominates MBB. Make sure we visit MBB again from other paths. 452 Visited.erase(MBB); 453 454 // Track the path back to IdxMBB, creating phi-defs 455 // as needed along the way. 456 for (unsigned PI = IDFI.getPathLength()-1; PI != 0; --PI) { 457 // Start from MBB's immediate successor. End at IdxMBB. 458 MachineBasicBlock *Succ = IDFI.getPath(PI-1); 459 std::pair<MBBValueMap::iterator, bool> InsP = 460 DomValue.insert(MBBValueMap::value_type(Succ, VNI)); 461 462 // This is the first time we backtrack to Succ. 463 if (InsP.second) 464 continue; 465 466 // We reached Succ again with the same VNI. Nothing is going to change. 467 VNInfo *OVNI = InsP.first->second; 468 if (OVNI == VNI) 469 break; 470 471 // Succ already has a phi-def. No need to continue. 472 SlotIndex Start = lis_.getMBBStartIdx(Succ); 473 if (OVNI->def == Start) 474 break; 475 476 // We have a collision between the old and new VNI at Succ. That means 477 // neither dominates and we need a new phi-def. 478 VNI = li_->getNextValue(Start, 0, lis_.getVNInfoAllocator()); 479 VNI->setIsPHIDef(true); 480 InsP.first->second = VNI; 481 482 // Replace OVNI with VNI in the remaining path. 483 for (; PI > 1 ; --PI) { 484 MBBValueMap::iterator I = DomValue.find(IDFI.getPath(PI-2)); 485 if (I == DomValue.end() || I->second != OVNI) 486 break; 487 I->second = VNI; 488 } 489 } 490 491 // No need to search the children, we found a dominating value. 492 IDFI.skipChildren(); 493 } 494 495 // The search should at least find a dominating value for IdxMBB. 496 assert(!DomValue.empty() && "Couldn't find a reaching definition"); 497 498 // Since we went through the trouble of a full DFS visiting all reaching defs, 499 // the values in DomValue are now accurate. No more phi-defs are needed for 500 // these blocks, so we can color the live ranges. 501 // This makes the next mapValue call much faster. 502 VNInfo *IdxVNI = 0; 503 for (MBBValueMap::iterator I = DomValue.begin(), E = DomValue.end(); I != E; 504 ++I) { 505 MachineBasicBlock *MBB = I->first; 506 VNInfo *VNI = I->second; 507 SlotIndex Start = lis_.getMBBStartIdx(MBB); 508 if (MBB == IdxMBB) { 509 // Don't add full liveness to IdxMBB, stop at Idx. 510 if (Start != Idx) 511 li_->addRange(LiveRange(Start, Idx.getNextSlot(), VNI)); 512 // The caller had better add some liveness to IdxVNI, or it leaks. 513 IdxVNI = VNI; 514 } else 515 li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), VNI)); 516 } 517 518 assert(IdxVNI && "Didn't find value for Idx"); 519 return IdxVNI; 520 } 521 522 // extendTo - Find the last li_ value defined in MBB at or before Idx. The 523 // parentli_ is assumed to be live at Idx. Extend the live range to Idx. 524 // Return the found VNInfo, or NULL. 525 VNInfo *LiveIntervalMap::extendTo(MachineBasicBlock *MBB, SlotIndex Idx) { 526 assert(li_ && "call reset first"); 527 LiveInterval::iterator I = std::upper_bound(li_->begin(), li_->end(), Idx); 528 if (I == li_->begin()) 529 return 0; 530 --I; 531 if (I->end <= lis_.getMBBStartIdx(MBB)) 532 return 0; 533 if (I->end <= Idx) 534 I->end = Idx.getNextSlot(); 535 return I->valno; 536 } 537 538 // addSimpleRange - Add a simple range from parentli_ to li_. 539 // ParentVNI must be live in the [Start;End) interval. 540 void LiveIntervalMap::addSimpleRange(SlotIndex Start, SlotIndex End, 541 const VNInfo *ParentVNI) { 542 assert(li_ && "call reset first"); 543 bool simple; 544 VNInfo *VNI = mapValue(ParentVNI, Start, &simple); 545 // A simple mapping is easy. 546 if (simple) { 547 li_->addRange(LiveRange(Start, End, VNI)); 548 return; 549 } 550 551 // ParentVNI is a complex value. We must map per MBB. 552 MachineFunction::iterator MBB = lis_.getMBBFromIndex(Start); 553 MachineFunction::iterator MBBE = lis_.getMBBFromIndex(End); 554 555 if (MBB == MBBE) { 556 li_->addRange(LiveRange(Start, End, VNI)); 557 return; 558 } 559 560 // First block. 561 li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), VNI)); 562 563 // Run sequence of full blocks. 564 for (++MBB; MBB != MBBE; ++MBB) { 565 Start = lis_.getMBBStartIdx(MBB); 566 li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), 567 mapValue(ParentVNI, Start))); 568 } 569 570 // Final block. 571 Start = lis_.getMBBStartIdx(MBB); 572 if (Start != End) 573 li_->addRange(LiveRange(Start, End, mapValue(ParentVNI, Start))); 574 } 575 576 /// addRange - Add live ranges to li_ where [Start;End) intersects parentli_. 577 /// All needed values whose def is not inside [Start;End) must be defined 578 /// beforehand so mapValue will work. 579 void LiveIntervalMap::addRange(SlotIndex Start, SlotIndex End) { 580 assert(li_ && "call reset first"); 581 LiveInterval::const_iterator B = parentli_.begin(), E = parentli_.end(); 582 LiveInterval::const_iterator I = std::lower_bound(B, E, Start); 583 584 // Check if --I begins before Start and overlaps. 585 if (I != B) { 586 --I; 587 if (I->end > Start) 588 addSimpleRange(Start, std::min(End, I->end), I->valno); 589 ++I; 590 } 591 592 // The remaining ranges begin after Start. 593 for (;I != E && I->start < End; ++I) 594 addSimpleRange(I->start, std::min(End, I->end), I->valno); 595 } 596 597 VNInfo *LiveIntervalMap::defByCopyFrom(unsigned Reg, 598 const VNInfo *ParentVNI, 599 MachineBasicBlock &MBB, 600 MachineBasicBlock::iterator I) { 601 const TargetInstrDesc &TID = MBB.getParent()->getTarget().getInstrInfo()-> 602 get(TargetOpcode::COPY); 603 MachineInstr *MI = BuildMI(MBB, I, DebugLoc(), TID, li_->reg).addReg(Reg); 604 SlotIndex DefIdx = lis_.InsertMachineInstrInMaps(MI).getDefIndex(); 605 VNInfo *VNI = defValue(ParentVNI, DefIdx); 606 VNI->setCopy(MI); 607 li_->addRange(LiveRange(DefIdx, DefIdx.getNextSlot(), VNI)); 608 return VNI; 609 } 610 611 //===----------------------------------------------------------------------===// 612 // Split Editor 613 //===----------------------------------------------------------------------===// 614 615 /// Create a new SplitEditor for editing the LiveInterval analyzed by SA. 616 SplitEditor::SplitEditor(SplitAnalysis &sa, LiveIntervals &lis, VirtRegMap &vrm, 617 SmallVectorImpl<LiveInterval*> &intervals) 618 : sa_(sa), lis_(lis), vrm_(vrm), 619 mri_(vrm.getMachineFunction().getRegInfo()), 620 tii_(*vrm.getMachineFunction().getTarget().getInstrInfo()), 621 curli_(sa_.getCurLI()), 622 dupli_(lis_, *curli_), 623 openli_(lis_, *curli_), 624 intervals_(intervals), 625 firstInterval(intervals_.size()) 626 { 627 assert(curli_ && "SplitEditor created from empty SplitAnalysis"); 628 629 // Make sure curli_ is assigned a stack slot, so all our intervals get the 630 // same slot as curli_. 631 if (vrm_.getStackSlot(curli_->reg) == VirtRegMap::NO_STACK_SLOT) 632 vrm_.assignVirt2StackSlot(curli_->reg); 633 634 } 635 636 LiveInterval *SplitEditor::createInterval() { 637 unsigned Reg = mri_.createVirtualRegister(mri_.getRegClass(curli_->reg)); 638 LiveInterval &Intv = lis_.getOrCreateInterval(Reg); 639 vrm_.grow(); 640 vrm_.assignVirt2StackSlot(Reg, vrm_.getStackSlot(curli_->reg)); 641 return &Intv; 642 } 643 644 bool SplitEditor::intervalsLiveAt(SlotIndex Idx) const { 645 for (int i = firstInterval, e = intervals_.size(); i != e; ++i) 646 if (intervals_[i]->liveAt(Idx)) 647 return true; 648 return false; 649 } 650 651 /// Create a new virtual register and live interval. 652 void SplitEditor::openIntv() { 653 assert(!openli_.getLI() && "Previous LI not closed before openIntv"); 654 655 if (!dupli_.getLI()) 656 dupli_.reset(createInterval()); 657 658 openli_.reset(createInterval()); 659 intervals_.push_back(openli_.getLI()); 660 } 661 662 /// enterIntvBefore - Enter openli before the instruction at Idx. If curli is 663 /// not live before Idx, a COPY is not inserted. 664 void SplitEditor::enterIntvBefore(SlotIndex Idx) { 665 assert(openli_.getLI() && "openIntv not called before enterIntvBefore"); 666 VNInfo *ParentVNI = curli_->getVNInfoAt(Idx.getUseIndex()); 667 if (!ParentVNI) { 668 DEBUG(dbgs() << " enterIntvBefore " << Idx << ": not live\n"); 669 return; 670 } 671 truncatedValues.insert(ParentVNI); 672 MachineInstr *MI = lis_.getInstructionFromIndex(Idx); 673 assert(MI && "enterIntvBefore called with invalid index"); 674 openli_.defByCopyFrom(curli_->reg, ParentVNI, *MI->getParent(), MI); 675 DEBUG(dbgs() << " enterIntvBefore " << Idx << ": " << *openli_.getLI() 676 << '\n'); 677 } 678 679 /// enterIntvAtEnd - Enter openli at the end of MBB. 680 void SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) { 681 assert(openli_.getLI() && "openIntv not called before enterIntvAtEnd"); 682 SlotIndex End = lis_.getMBBEndIdx(&MBB); 683 VNInfo *ParentVNI = curli_->getVNInfoAt(End.getPrevSlot()); 684 if (!ParentVNI) { 685 DEBUG(dbgs() << " enterIntvAtEnd " << End << ": not live\n"); 686 return; 687 } 688 truncatedValues.insert(ParentVNI); 689 VNInfo *VNI = openli_.defByCopyFrom(curli_->reg, ParentVNI, 690 MBB, MBB.getFirstTerminator()); 691 // Make sure openli is live out of MBB. 692 openli_.getLI()->addRange(LiveRange(VNI->def, End, VNI)); 693 DEBUG(dbgs() << " enterIntvAtEnd: " << *openli_.getLI() << '\n'); 694 } 695 696 /// useIntv - indicate that all instructions in MBB should use openli. 697 void SplitEditor::useIntv(const MachineBasicBlock &MBB) { 698 useIntv(lis_.getMBBStartIdx(&MBB), lis_.getMBBEndIdx(&MBB)); 699 } 700 701 void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) { 702 assert(openli_.getLI() && "openIntv not called before useIntv"); 703 openli_.addRange(Start, End); 704 DEBUG(dbgs() << " use [" << Start << ';' << End << "): " 705 << *openli_.getLI() << '\n'); 706 } 707 708 /// leaveIntvAfter - Leave openli after the instruction at Idx. 709 void SplitEditor::leaveIntvAfter(SlotIndex Idx) { 710 assert(openli_.getLI() && "openIntv not called before leaveIntvAfter"); 711 712 // The interval must be live beyond the instruction at Idx. 713 VNInfo *ParentVNI = curli_->getVNInfoAt(Idx.getBoundaryIndex()); 714 if (!ParentVNI) { 715 DEBUG(dbgs() << " leaveIntvAfter " << Idx << ": not live\n"); 716 return; 717 } 718 719 MachineBasicBlock::iterator MII = lis_.getInstructionFromIndex(Idx); 720 MachineBasicBlock *MBB = MII->getParent(); 721 VNInfo *VNI = dupli_.defByCopyFrom(openli_.getLI()->reg, ParentVNI, *MBB, 722 llvm::next(MII)); 723 724 // Finally we must make sure that openli is properly extended from Idx to the 725 // new copy. 726 openli_.addSimpleRange(Idx.getBoundaryIndex(), VNI->def, ParentVNI); 727 DEBUG(dbgs() << " leaveIntvAfter " << Idx << ": " << *openli_.getLI() 728 << '\n'); 729 } 730 731 /// leaveIntvAtTop - Leave the interval at the top of MBB. 732 /// Currently, only one value can leave the interval. 733 void SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) { 734 assert(openli_.getLI() && "openIntv not called before leaveIntvAtTop"); 735 736 SlotIndex Start = lis_.getMBBStartIdx(&MBB); 737 VNInfo *ParentVNI = curli_->getVNInfoAt(Start); 738 739 // Is curli even live-in to MBB? 740 if (!ParentVNI) { 741 DEBUG(dbgs() << " leaveIntvAtTop at " << Start << ": not live\n"); 742 return; 743 } 744 745 // We are going to insert a back copy, so we must have a dupli_. 746 VNInfo *VNI = dupli_.defByCopyFrom(openli_.getLI()->reg, ParentVNI, 747 MBB, MBB.begin()); 748 749 // Finally we must make sure that openli is properly extended from Start to 750 // the new copy. 751 openli_.addSimpleRange(Start, VNI->def, ParentVNI); 752 DEBUG(dbgs() << " leaveIntvAtTop at " << Start << ": " << *openli_.getLI() 753 << '\n'); 754 } 755 756 /// closeIntv - Indicate that we are done editing the currently open 757 /// LiveInterval, and ranges can be trimmed. 758 void SplitEditor::closeIntv() { 759 assert(openli_.getLI() && "openIntv not called before closeIntv"); 760 761 DEBUG(dbgs() << " closeIntv cleaning up\n"); 762 DEBUG(dbgs() << " open " << *openli_.getLI() << '\n'); 763 openli_.reset(0); 764 } 765 766 void 767 SplitEditor::addTruncSimpleRange(SlotIndex Start, SlotIndex End, VNInfo *VNI) { 768 SlotIndex sidx = Start; 769 770 // Break [Start;End) into segments that don't overlap any intervals. 771 for (;;) { 772 SlotIndex next = sidx, eidx = End; 773 // Find overlapping intervals. 774 for (int i = firstInterval, e = intervals_.size(); i != e && sidx < eidx; 775 ++i) { 776 LiveInterval::const_iterator I = intervals_[i]->find(sidx); 777 LiveInterval::const_iterator E = intervals_[i]->end(); 778 if (I == E) 779 continue; 780 // Interval I is overlapping [sidx;eidx). Trim sidx. 781 if (I->start <= sidx) { 782 sidx = I->end; 783 if (++I == E) 784 continue; 785 } 786 // Trim eidx too if needed. 787 if (I->start >= eidx) 788 continue; 789 eidx = I->start; 790 if (I->end > next) 791 next = I->end; 792 } 793 // Now, [sidx;eidx) doesn't overlap anything in intervals_. 794 if (sidx < eidx) 795 dupli_.addSimpleRange(sidx, eidx, VNI); 796 // If the interval end was truncated, we can try again from next. 797 if (next <= sidx) 798 break; 799 sidx = next; 800 } 801 } 802 803 /// rewrite - after all the new live ranges have been created, rewrite 804 /// instructions using curli to use the new intervals. 805 bool SplitEditor::rewrite() { 806 assert(!openli_.getLI() && "Previous LI not closed before rewrite"); 807 808 // First we need to fill in the live ranges in dupli. 809 // If values were redefined, we need a full recoloring with SSA update. 810 // If values were truncated, we only need to truncate the ranges. 811 // If values were partially rematted, we should shrink to uses. 812 // If values were fully rematted, they should be omitted. 813 // FIXME: If a single value is redefined, just move the def and truncate. 814 815 // Values that are fully contained in the split intervals. 816 SmallPtrSet<const VNInfo*, 8> deadValues; 817 818 // Map all curli values that should have live defs in dupli. 819 for (LiveInterval::const_vni_iterator I = curli_->vni_begin(), 820 E = curli_->vni_end(); I != E; ++I) { 821 const VNInfo *VNI = *I; 822 // Original def is contained in the split intervals. 823 if (intervalsLiveAt(VNI->def)) { 824 // Did this value escape? 825 if (dupli_.isMapped(VNI)) 826 truncatedValues.insert(VNI); 827 else 828 deadValues.insert(VNI); 829 continue; 830 } 831 // Add minimal live range at the definition. 832 VNInfo *DVNI = dupli_.defValue(VNI, VNI->def); 833 dupli_.getLI()->addRange(LiveRange(VNI->def, VNI->def.getNextSlot(), DVNI)); 834 } 835 836 // Add all ranges to dupli. 837 for (LiveInterval::const_iterator I = curli_->begin(), E = curli_->end(); 838 I != E; ++I) { 839 const LiveRange &LR = *I; 840 if (truncatedValues.count(LR.valno)) { 841 // recolor after removing intervals_. 842 addTruncSimpleRange(LR.start, LR.end, LR.valno); 843 } else if (!deadValues.count(LR.valno)) { 844 // recolor without truncation. 845 dupli_.addSimpleRange(LR.start, LR.end, LR.valno); 846 } 847 } 848 849 850 const LiveInterval *curli = sa_.getCurLI(); 851 for (MachineRegisterInfo::reg_iterator RI = mri_.reg_begin(curli->reg), 852 RE = mri_.reg_end(); RI != RE;) { 853 MachineOperand &MO = RI.getOperand(); 854 MachineInstr *MI = MO.getParent(); 855 ++RI; 856 if (MI->isDebugValue()) { 857 DEBUG(dbgs() << "Zapping " << *MI); 858 // FIXME: We can do much better with debug values. 859 MO.setReg(0); 860 continue; 861 } 862 SlotIndex Idx = lis_.getInstructionIndex(MI); 863 Idx = MO.isUse() ? Idx.getUseIndex() : Idx.getDefIndex(); 864 LiveInterval *LI = dupli_.getLI(); 865 for (unsigned i = firstInterval, e = intervals_.size(); i != e; ++i) { 866 LiveInterval *testli = intervals_[i]; 867 if (testli->liveAt(Idx)) { 868 LI = testli; 869 break; 870 } 871 } 872 if (LI) { 873 MO.setReg(LI->reg); 874 sa_.removeUse(MI); 875 DEBUG(dbgs() << " rewrite " << Idx << '\t' << *MI); 876 } 877 } 878 879 // dupli_ goes in last, after rewriting. 880 if (dupli_.getLI()) { 881 if (dupli_.getLI()->empty()) { 882 DEBUG(dbgs() << " dupli became empty?\n"); 883 lis_.removeInterval(dupli_.getLI()->reg); 884 dupli_.reset(0); 885 } else { 886 dupli_.getLI()->RenumberValues(lis_); 887 intervals_.push_back(dupli_.getLI()); 888 } 889 } 890 891 // Calculate spill weight and allocation hints for new intervals. 892 VirtRegAuxInfo vrai(vrm_.getMachineFunction(), lis_, sa_.loops_); 893 for (unsigned i = firstInterval, e = intervals_.size(); i != e; ++i) { 894 LiveInterval &li = *intervals_[i]; 895 vrai.CalculateRegClass(li.reg); 896 vrai.CalculateWeightAndHint(li); 897 DEBUG(dbgs() << " new interval " << mri_.getRegClass(li.reg)->getName() 898 << ":" << li << '\n'); 899 } 900 return dupli_.getLI(); 901 } 902 903 904 //===----------------------------------------------------------------------===// 905 // Loop Splitting 906 //===----------------------------------------------------------------------===// 907 908 bool SplitEditor::splitAroundLoop(const MachineLoop *Loop) { 909 SplitAnalysis::LoopBlocks Blocks; 910 sa_.getLoopBlocks(Loop, Blocks); 911 912 // Break critical edges as needed. 913 SplitAnalysis::BlockPtrSet CriticalExits; 914 sa_.getCriticalExits(Blocks, CriticalExits); 915 assert(CriticalExits.empty() && "Cannot break critical exits yet"); 916 917 // Create new live interval for the loop. 918 openIntv(); 919 920 // Insert copies in the predecessors. 921 for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Preds.begin(), 922 E = Blocks.Preds.end(); I != E; ++I) { 923 MachineBasicBlock &MBB = const_cast<MachineBasicBlock&>(**I); 924 enterIntvAtEnd(MBB); 925 } 926 927 // Switch all loop blocks. 928 for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Loop.begin(), 929 E = Blocks.Loop.end(); I != E; ++I) 930 useIntv(**I); 931 932 // Insert back copies in the exit blocks. 933 for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Exits.begin(), 934 E = Blocks.Exits.end(); I != E; ++I) { 935 MachineBasicBlock &MBB = const_cast<MachineBasicBlock&>(**I); 936 leaveIntvAtTop(MBB); 937 } 938 939 // Done. 940 closeIntv(); 941 return rewrite(); 942 } 943 944 945 //===----------------------------------------------------------------------===// 946 // Single Block Splitting 947 //===----------------------------------------------------------------------===// 948 949 /// splitSingleBlocks - Split curli into a separate live interval inside each 950 /// basic block in Blocks. Return true if curli has been completely replaced, 951 /// false if curli is still intact, and needs to be spilled or split further. 952 bool SplitEditor::splitSingleBlocks(const SplitAnalysis::BlockPtrSet &Blocks) { 953 DEBUG(dbgs() << " splitSingleBlocks for " << Blocks.size() << " blocks.\n"); 954 // Determine the first and last instruction using curli in each block. 955 typedef std::pair<SlotIndex,SlotIndex> IndexPair; 956 typedef DenseMap<const MachineBasicBlock*,IndexPair> IndexPairMap; 957 IndexPairMap MBBRange; 958 for (SplitAnalysis::InstrPtrSet::const_iterator I = sa_.usingInstrs_.begin(), 959 E = sa_.usingInstrs_.end(); I != E; ++I) { 960 const MachineBasicBlock *MBB = (*I)->getParent(); 961 if (!Blocks.count(MBB)) 962 continue; 963 SlotIndex Idx = lis_.getInstructionIndex(*I); 964 DEBUG(dbgs() << " BB#" << MBB->getNumber() << '\t' << Idx << '\t' << **I); 965 IndexPair &IP = MBBRange[MBB]; 966 if (!IP.first.isValid() || Idx < IP.first) 967 IP.first = Idx; 968 if (!IP.second.isValid() || Idx > IP.second) 969 IP.second = Idx; 970 } 971 972 // Create a new interval for each block. 973 for (SplitAnalysis::BlockPtrSet::const_iterator I = Blocks.begin(), 974 E = Blocks.end(); I != E; ++I) { 975 IndexPair &IP = MBBRange[*I]; 976 DEBUG(dbgs() << " splitting for BB#" << (*I)->getNumber() << ": [" 977 << IP.first << ';' << IP.second << ")\n"); 978 assert(IP.first.isValid() && IP.second.isValid()); 979 980 openIntv(); 981 enterIntvBefore(IP.first); 982 useIntv(IP.first.getBaseIndex(), IP.second.getBoundaryIndex()); 983 leaveIntvAfter(IP.second); 984 closeIntv(); 985 } 986 return rewrite(); 987 } 988 989 990 //===----------------------------------------------------------------------===// 991 // Sub Block Splitting 992 //===----------------------------------------------------------------------===// 993 994 /// getBlockForInsideSplit - If curli is contained inside a single basic block, 995 /// and it wou pay to subdivide the interval inside that block, return it. 996 /// Otherwise return NULL. The returned block can be passed to 997 /// SplitEditor::splitInsideBlock. 998 const MachineBasicBlock *SplitAnalysis::getBlockForInsideSplit() { 999 // The interval must be exclusive to one block. 1000 if (usingBlocks_.size() != 1) 1001 return 0; 1002 // Don't to this for less than 4 instructions. We want to be sure that 1003 // splitting actually reduces the instruction count per interval. 1004 if (usingInstrs_.size() < 4) 1005 return 0; 1006 return usingBlocks_.begin()->first; 1007 } 1008 1009 /// splitInsideBlock - Split curli into multiple intervals inside MBB. Return 1010 /// true if curli has been completely replaced, false if curli is still 1011 /// intact, and needs to be spilled or split further. 1012 bool SplitEditor::splitInsideBlock(const MachineBasicBlock *MBB) { 1013 SmallVector<SlotIndex, 32> Uses; 1014 Uses.reserve(sa_.usingInstrs_.size()); 1015 for (SplitAnalysis::InstrPtrSet::const_iterator I = sa_.usingInstrs_.begin(), 1016 E = sa_.usingInstrs_.end(); I != E; ++I) 1017 if ((*I)->getParent() == MBB) 1018 Uses.push_back(lis_.getInstructionIndex(*I)); 1019 DEBUG(dbgs() << " splitInsideBlock BB#" << MBB->getNumber() << " for " 1020 << Uses.size() << " instructions.\n"); 1021 assert(Uses.size() >= 3 && "Need at least 3 instructions"); 1022 array_pod_sort(Uses.begin(), Uses.end()); 1023 1024 // Simple algorithm: Find the largest gap between uses as determined by slot 1025 // indices. Create new intervals for instructions before the gap and after the 1026 // gap. 1027 unsigned bestPos = 0; 1028 int bestGap = 0; 1029 DEBUG(dbgs() << " dist (" << Uses[0]); 1030 for (unsigned i = 1, e = Uses.size(); i != e; ++i) { 1031 int g = Uses[i-1].distance(Uses[i]); 1032 DEBUG(dbgs() << ") -" << g << "- (" << Uses[i]); 1033 if (g > bestGap) 1034 bestPos = i, bestGap = g; 1035 } 1036 DEBUG(dbgs() << "), best: -" << bestGap << "-\n"); 1037 1038 // bestPos points to the first use after the best gap. 1039 assert(bestPos > 0 && "Invalid gap"); 1040 1041 // FIXME: Don't create intervals for low densities. 1042 1043 // First interval before the gap. Don't create single-instr intervals. 1044 if (bestPos > 1) { 1045 openIntv(); 1046 enterIntvBefore(Uses.front()); 1047 useIntv(Uses.front().getBaseIndex(), Uses[bestPos-1].getBoundaryIndex()); 1048 leaveIntvAfter(Uses[bestPos-1]); 1049 closeIntv(); 1050 } 1051 1052 // Second interval after the gap. 1053 if (bestPos < Uses.size()-1) { 1054 openIntv(); 1055 enterIntvBefore(Uses[bestPos]); 1056 useIntv(Uses[bestPos].getBaseIndex(), Uses.back().getBoundaryIndex()); 1057 leaveIntvAfter(Uses.back()); 1058 closeIntv(); 1059 } 1060 1061 return rewrite(); 1062 } 1063