1 //===- SplitKit.cpp - Toolkit for splitting live ranges -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the SplitAnalysis class as well as mutator functions for 11 // live range splitting. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "SplitKit.h" 16 #include "LiveRangeCalc.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/CodeGen/LiveInterval.h" 25 #include "llvm/CodeGen/LiveIntervals.h" 26 #include "llvm/CodeGen/LiveRangeEdit.h" 27 #include "llvm/CodeGen/MachineBasicBlock.h" 28 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 29 #include "llvm/CodeGen/MachineDominators.h" 30 #include "llvm/CodeGen/MachineFunction.h" 31 #include "llvm/CodeGen/MachineInstr.h" 32 #include "llvm/CodeGen/MachineInstrBuilder.h" 33 #include "llvm/CodeGen/MachineLoopInfo.h" 34 #include "llvm/CodeGen/MachineOperand.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/CodeGen/SlotIndexes.h" 37 #include "llvm/CodeGen/TargetInstrInfo.h" 38 #include "llvm/CodeGen/TargetOpcodes.h" 39 #include "llvm/CodeGen/TargetRegisterInfo.h" 40 #include "llvm/CodeGen/TargetSubtargetInfo.h" 41 #include "llvm/CodeGen/VirtRegMap.h" 42 #include "llvm/Config/llvm-config.h" 43 #include "llvm/IR/DebugLoc.h" 44 #include "llvm/MC/LaneBitmask.h" 45 #include "llvm/Support/Allocator.h" 46 #include "llvm/Support/BlockFrequency.h" 47 #include "llvm/Support/Compiler.h" 48 #include "llvm/Support/Debug.h" 49 #include "llvm/Support/ErrorHandling.h" 50 #include "llvm/Support/raw_ostream.h" 51 #include <algorithm> 52 #include <cassert> 53 #include <iterator> 54 #include <limits> 55 #include <tuple> 56 #include <utility> 57 58 using namespace llvm; 59 60 #define DEBUG_TYPE "regalloc" 61 62 STATISTIC(NumFinished, "Number of splits finished"); 63 STATISTIC(NumSimple, "Number of splits that were simple"); 64 STATISTIC(NumCopies, "Number of copies inserted for splitting"); 65 STATISTIC(NumRemats, "Number of rematerialized defs for splitting"); 66 STATISTIC(NumRepairs, "Number of invalid live ranges repaired"); 67 68 //===----------------------------------------------------------------------===// 69 // Last Insert Point Analysis 70 //===----------------------------------------------------------------------===// 71 72 InsertPointAnalysis::InsertPointAnalysis(const LiveIntervals &lis, 73 unsigned BBNum) 74 : LIS(lis), LastInsertPoint(BBNum) {} 75 76 SlotIndex 77 InsertPointAnalysis::computeLastInsertPoint(const LiveInterval &CurLI, 78 const MachineBasicBlock &MBB) { 79 unsigned Num = MBB.getNumber(); 80 std::pair<SlotIndex, SlotIndex> &LIP = LastInsertPoint[Num]; 81 SlotIndex MBBEnd = LIS.getMBBEndIdx(&MBB); 82 83 SmallVector<const MachineBasicBlock *, 1> EHPadSuccessors; 84 for (const MachineBasicBlock *SMBB : MBB.successors()) 85 if (SMBB->isEHPad()) 86 EHPadSuccessors.push_back(SMBB); 87 88 // Compute insert points on the first call. The pair is independent of the 89 // current live interval. 90 if (!LIP.first.isValid()) { 91 MachineBasicBlock::const_iterator FirstTerm = MBB.getFirstTerminator(); 92 if (FirstTerm == MBB.end()) 93 LIP.first = MBBEnd; 94 else 95 LIP.first = LIS.getInstructionIndex(*FirstTerm); 96 97 // If there is a landing pad successor, also find the call instruction. 98 if (EHPadSuccessors.empty()) 99 return LIP.first; 100 // There may not be a call instruction (?) in which case we ignore LPad. 101 LIP.second = LIP.first; 102 for (MachineBasicBlock::const_iterator I = MBB.end(), E = MBB.begin(); 103 I != E;) { 104 --I; 105 if (I->isCall()) { 106 LIP.second = LIS.getInstructionIndex(*I); 107 break; 108 } 109 } 110 } 111 112 // If CurLI is live into a landing pad successor, move the last insert point 113 // back to the call that may throw. 114 if (!LIP.second) 115 return LIP.first; 116 117 if (none_of(EHPadSuccessors, [&](const MachineBasicBlock *EHPad) { 118 return LIS.isLiveInToMBB(CurLI, EHPad); 119 })) 120 return LIP.first; 121 122 // Find the value leaving MBB. 123 const VNInfo *VNI = CurLI.getVNInfoBefore(MBBEnd); 124 if (!VNI) 125 return LIP.first; 126 127 // If the value leaving MBB was defined after the call in MBB, it can't 128 // really be live-in to the landing pad. This can happen if the landing pad 129 // has a PHI, and this register is undef on the exceptional edge. 130 // <rdar://problem/10664933> 131 if (!SlotIndex::isEarlierInstr(VNI->def, LIP.second) && VNI->def < MBBEnd) 132 return LIP.first; 133 134 // Value is properly live-in to the landing pad. 135 // Only allow inserts before the call. 136 return LIP.second; 137 } 138 139 MachineBasicBlock::iterator 140 InsertPointAnalysis::getLastInsertPointIter(const LiveInterval &CurLI, 141 MachineBasicBlock &MBB) { 142 SlotIndex LIP = getLastInsertPoint(CurLI, MBB); 143 if (LIP == LIS.getMBBEndIdx(&MBB)) 144 return MBB.end(); 145 return LIS.getInstructionFromIndex(LIP); 146 } 147 148 //===----------------------------------------------------------------------===// 149 // Split Analysis 150 //===----------------------------------------------------------------------===// 151 152 SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm, const LiveIntervals &lis, 153 const MachineLoopInfo &mli) 154 : MF(vrm.getMachineFunction()), VRM(vrm), LIS(lis), Loops(mli), 155 TII(*MF.getSubtarget().getInstrInfo()), IPA(lis, MF.getNumBlockIDs()) {} 156 157 void SplitAnalysis::clear() { 158 UseSlots.clear(); 159 UseBlocks.clear(); 160 ThroughBlocks.clear(); 161 CurLI = nullptr; 162 DidRepairRange = false; 163 } 164 165 /// analyzeUses - Count instructions, basic blocks, and loops using CurLI. 166 void SplitAnalysis::analyzeUses() { 167 assert(UseSlots.empty() && "Call clear first"); 168 169 // First get all the defs from the interval values. This provides the correct 170 // slots for early clobbers. 171 for (const VNInfo *VNI : CurLI->valnos) 172 if (!VNI->isPHIDef() && !VNI->isUnused()) 173 UseSlots.push_back(VNI->def); 174 175 // Get use slots form the use-def chain. 176 const MachineRegisterInfo &MRI = MF.getRegInfo(); 177 for (MachineOperand &MO : MRI.use_nodbg_operands(CurLI->reg)) 178 if (!MO.isUndef()) 179 UseSlots.push_back(LIS.getInstructionIndex(*MO.getParent()).getRegSlot()); 180 181 array_pod_sort(UseSlots.begin(), UseSlots.end()); 182 183 // Remove duplicates, keeping the smaller slot for each instruction. 184 // That is what we want for early clobbers. 185 UseSlots.erase(std::unique(UseSlots.begin(), UseSlots.end(), 186 SlotIndex::isSameInstr), 187 UseSlots.end()); 188 189 // Compute per-live block info. 190 if (!calcLiveBlockInfo()) { 191 // FIXME: calcLiveBlockInfo found inconsistencies in the live range. 192 // I am looking at you, RegisterCoalescer! 193 DidRepairRange = true; 194 ++NumRepairs; 195 DEBUG(dbgs() << "*** Fixing inconsistent live interval! ***\n"); 196 const_cast<LiveIntervals&>(LIS) 197 .shrinkToUses(const_cast<LiveInterval*>(CurLI)); 198 UseBlocks.clear(); 199 ThroughBlocks.clear(); 200 bool fixed = calcLiveBlockInfo(); 201 (void)fixed; 202 assert(fixed && "Couldn't fix broken live interval"); 203 } 204 205 DEBUG(dbgs() << "Analyze counted " 206 << UseSlots.size() << " instrs in " 207 << UseBlocks.size() << " blocks, through " 208 << NumThroughBlocks << " blocks.\n"); 209 } 210 211 /// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks 212 /// where CurLI is live. 213 bool SplitAnalysis::calcLiveBlockInfo() { 214 ThroughBlocks.resize(MF.getNumBlockIDs()); 215 NumThroughBlocks = NumGapBlocks = 0; 216 if (CurLI->empty()) 217 return true; 218 219 LiveInterval::const_iterator LVI = CurLI->begin(); 220 LiveInterval::const_iterator LVE = CurLI->end(); 221 222 SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE; 223 UseI = UseSlots.begin(); 224 UseE = UseSlots.end(); 225 226 // Loop over basic blocks where CurLI is live. 227 MachineFunction::iterator MFI = 228 LIS.getMBBFromIndex(LVI->start)->getIterator(); 229 while (true) { 230 BlockInfo BI; 231 BI.MBB = &*MFI; 232 SlotIndex Start, Stop; 233 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); 234 235 // If the block contains no uses, the range must be live through. At one 236 // point, RegisterCoalescer could create dangling ranges that ended 237 // mid-block. 238 if (UseI == UseE || *UseI >= Stop) { 239 ++NumThroughBlocks; 240 ThroughBlocks.set(BI.MBB->getNumber()); 241 // The range shouldn't end mid-block if there are no uses. This shouldn't 242 // happen. 243 if (LVI->end < Stop) 244 return false; 245 } else { 246 // This block has uses. Find the first and last uses in the block. 247 BI.FirstInstr = *UseI; 248 assert(BI.FirstInstr >= Start); 249 do ++UseI; 250 while (UseI != UseE && *UseI < Stop); 251 BI.LastInstr = UseI[-1]; 252 assert(BI.LastInstr < Stop); 253 254 // LVI is the first live segment overlapping MBB. 255 BI.LiveIn = LVI->start <= Start; 256 257 // When not live in, the first use should be a def. 258 if (!BI.LiveIn) { 259 assert(LVI->start == LVI->valno->def && "Dangling Segment start"); 260 assert(LVI->start == BI.FirstInstr && "First instr should be a def"); 261 BI.FirstDef = BI.FirstInstr; 262 } 263 264 // Look for gaps in the live range. 265 BI.LiveOut = true; 266 while (LVI->end < Stop) { 267 SlotIndex LastStop = LVI->end; 268 if (++LVI == LVE || LVI->start >= Stop) { 269 BI.LiveOut = false; 270 BI.LastInstr = LastStop; 271 break; 272 } 273 274 if (LastStop < LVI->start) { 275 // There is a gap in the live range. Create duplicate entries for the 276 // live-in snippet and the live-out snippet. 277 ++NumGapBlocks; 278 279 // Push the Live-in part. 280 BI.LiveOut = false; 281 UseBlocks.push_back(BI); 282 UseBlocks.back().LastInstr = LastStop; 283 284 // Set up BI for the live-out part. 285 BI.LiveIn = false; 286 BI.LiveOut = true; 287 BI.FirstInstr = BI.FirstDef = LVI->start; 288 } 289 290 // A Segment that starts in the middle of the block must be a def. 291 assert(LVI->start == LVI->valno->def && "Dangling Segment start"); 292 if (!BI.FirstDef) 293 BI.FirstDef = LVI->start; 294 } 295 296 UseBlocks.push_back(BI); 297 298 // LVI is now at LVE or LVI->end >= Stop. 299 if (LVI == LVE) 300 break; 301 } 302 303 // Live segment ends exactly at Stop. Move to the next segment. 304 if (LVI->end == Stop && ++LVI == LVE) 305 break; 306 307 // Pick the next basic block. 308 if (LVI->start < Stop) 309 ++MFI; 310 else 311 MFI = LIS.getMBBFromIndex(LVI->start)->getIterator(); 312 } 313 314 assert(getNumLiveBlocks() == countLiveBlocks(CurLI) && "Bad block count"); 315 return true; 316 } 317 318 unsigned SplitAnalysis::countLiveBlocks(const LiveInterval *cli) const { 319 if (cli->empty()) 320 return 0; 321 LiveInterval *li = const_cast<LiveInterval*>(cli); 322 LiveInterval::iterator LVI = li->begin(); 323 LiveInterval::iterator LVE = li->end(); 324 unsigned Count = 0; 325 326 // Loop over basic blocks where li is live. 327 MachineFunction::const_iterator MFI = 328 LIS.getMBBFromIndex(LVI->start)->getIterator(); 329 SlotIndex Stop = LIS.getMBBEndIdx(&*MFI); 330 while (true) { 331 ++Count; 332 LVI = li->advanceTo(LVI, Stop); 333 if (LVI == LVE) 334 return Count; 335 do { 336 ++MFI; 337 Stop = LIS.getMBBEndIdx(&*MFI); 338 } while (Stop <= LVI->start); 339 } 340 } 341 342 bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const { 343 unsigned OrigReg = VRM.getOriginal(CurLI->reg); 344 const LiveInterval &Orig = LIS.getInterval(OrigReg); 345 assert(!Orig.empty() && "Splitting empty interval?"); 346 LiveInterval::const_iterator I = Orig.find(Idx); 347 348 // Range containing Idx should begin at Idx. 349 if (I != Orig.end() && I->start <= Idx) 350 return I->start == Idx; 351 352 // Range does not contain Idx, previous must end at Idx. 353 return I != Orig.begin() && (--I)->end == Idx; 354 } 355 356 void SplitAnalysis::analyze(const LiveInterval *li) { 357 clear(); 358 CurLI = li; 359 analyzeUses(); 360 } 361 362 //===----------------------------------------------------------------------===// 363 // Split Editor 364 //===----------------------------------------------------------------------===// 365 366 /// Create a new SplitEditor for editing the LiveInterval analyzed by SA. 367 SplitEditor::SplitEditor(SplitAnalysis &sa, AliasAnalysis &aa, 368 LiveIntervals &lis, VirtRegMap &vrm, 369 MachineDominatorTree &mdt, 370 MachineBlockFrequencyInfo &mbfi) 371 : SA(sa), AA(aa), LIS(lis), VRM(vrm), 372 MRI(vrm.getMachineFunction().getRegInfo()), MDT(mdt), 373 TII(*vrm.getMachineFunction().getSubtarget().getInstrInfo()), 374 TRI(*vrm.getMachineFunction().getSubtarget().getRegisterInfo()), 375 MBFI(mbfi), RegAssign(Allocator) {} 376 377 void SplitEditor::reset(LiveRangeEdit &LRE, ComplementSpillMode SM) { 378 Edit = &LRE; 379 SpillMode = SM; 380 OpenIdx = 0; 381 RegAssign.clear(); 382 Values.clear(); 383 384 // Reset the LiveRangeCalc instances needed for this spill mode. 385 LRCalc[0].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT, 386 &LIS.getVNInfoAllocator()); 387 if (SpillMode) 388 LRCalc[1].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT, 389 &LIS.getVNInfoAllocator()); 390 391 // We don't need an AliasAnalysis since we will only be performing 392 // cheap-as-a-copy remats anyway. 393 Edit->anyRematerializable(nullptr); 394 } 395 396 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 397 LLVM_DUMP_METHOD void SplitEditor::dump() const { 398 if (RegAssign.empty()) { 399 dbgs() << " empty\n"; 400 return; 401 } 402 403 for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I) 404 dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value(); 405 dbgs() << '\n'; 406 } 407 #endif 408 409 LiveInterval::SubRange &SplitEditor::getSubRangeForMask(LaneBitmask LM, 410 LiveInterval &LI) { 411 for (LiveInterval::SubRange &S : LI.subranges()) 412 if (S.LaneMask == LM) 413 return S; 414 llvm_unreachable("SubRange for this mask not found"); 415 } 416 417 void SplitEditor::addDeadDef(LiveInterval &LI, VNInfo *VNI, bool Original) { 418 if (!LI.hasSubRanges()) { 419 LI.createDeadDef(VNI); 420 return; 421 } 422 423 SlotIndex Def = VNI->def; 424 if (Original) { 425 // If we are transferring a def from the original interval, make sure 426 // to only update the subranges for which the original subranges had 427 // a def at this location. 428 for (LiveInterval::SubRange &S : LI.subranges()) { 429 auto &PS = getSubRangeForMask(S.LaneMask, Edit->getParent()); 430 VNInfo *PV = PS.getVNInfoAt(Def); 431 if (PV != nullptr && PV->def == Def) 432 S.createDeadDef(Def, LIS.getVNInfoAllocator()); 433 } 434 } else { 435 // This is a new def: either from rematerialization, or from an inserted 436 // copy. Since rematerialization can regenerate a definition of a sub- 437 // register, we need to check which subranges need to be updated. 438 const MachineInstr *DefMI = LIS.getInstructionFromIndex(Def); 439 assert(DefMI != nullptr); 440 LaneBitmask LM; 441 for (const MachineOperand &DefOp : DefMI->defs()) { 442 unsigned R = DefOp.getReg(); 443 if (R != LI.reg) 444 continue; 445 if (unsigned SR = DefOp.getSubReg()) 446 LM |= TRI.getSubRegIndexLaneMask(SR); 447 else { 448 LM = MRI.getMaxLaneMaskForVReg(R); 449 break; 450 } 451 } 452 for (LiveInterval::SubRange &S : LI.subranges()) 453 if ((S.LaneMask & LM).any()) 454 S.createDeadDef(Def, LIS.getVNInfoAllocator()); 455 } 456 } 457 458 VNInfo *SplitEditor::defValue(unsigned RegIdx, 459 const VNInfo *ParentVNI, 460 SlotIndex Idx, 461 bool Original) { 462 assert(ParentVNI && "Mapping NULL value"); 463 assert(Idx.isValid() && "Invalid SlotIndex"); 464 assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI"); 465 LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx)); 466 467 // Create a new value. 468 VNInfo *VNI = LI->getNextValue(Idx, LIS.getVNInfoAllocator()); 469 470 bool Force = LI->hasSubRanges(); 471 ValueForcePair FP(Force ? nullptr : VNI, Force); 472 // Use insert for lookup, so we can add missing values with a second lookup. 473 std::pair<ValueMap::iterator, bool> InsP = 474 Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id), FP)); 475 476 // This was the first time (RegIdx, ParentVNI) was mapped, and it is not 477 // forced. Keep it as a simple def without any liveness. 478 if (!Force && InsP.second) 479 return VNI; 480 481 // If the previous value was a simple mapping, add liveness for it now. 482 if (VNInfo *OldVNI = InsP.first->second.getPointer()) { 483 addDeadDef(*LI, OldVNI, Original); 484 485 // No longer a simple mapping. Switch to a complex mapping. If the 486 // interval has subranges, make it a forced mapping. 487 InsP.first->second = ValueForcePair(nullptr, Force); 488 } 489 490 // This is a complex mapping, add liveness for VNI 491 addDeadDef(*LI, VNI, Original); 492 return VNI; 493 } 494 495 void SplitEditor::forceRecompute(unsigned RegIdx, const VNInfo &ParentVNI) { 496 ValueForcePair &VFP = Values[std::make_pair(RegIdx, ParentVNI.id)]; 497 VNInfo *VNI = VFP.getPointer(); 498 499 // ParentVNI was either unmapped or already complex mapped. Either way, just 500 // set the force bit. 501 if (!VNI) { 502 VFP.setInt(true); 503 return; 504 } 505 506 // This was previously a single mapping. Make sure the old def is represented 507 // by a trivial live range. 508 addDeadDef(LIS.getInterval(Edit->get(RegIdx)), VNI, false); 509 510 // Mark as complex mapped, forced. 511 VFP = ValueForcePair(nullptr, true); 512 } 513 514 SlotIndex SplitEditor::buildSingleSubRegCopy(unsigned FromReg, unsigned ToReg, 515 MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore, 516 unsigned SubIdx, LiveInterval &DestLI, bool Late, SlotIndex Def) { 517 const MCInstrDesc &Desc = TII.get(TargetOpcode::COPY); 518 bool FirstCopy = !Def.isValid(); 519 MachineInstr *CopyMI = BuildMI(MBB, InsertBefore, DebugLoc(), Desc) 520 .addReg(ToReg, RegState::Define | getUndefRegState(FirstCopy) 521 | getInternalReadRegState(!FirstCopy), SubIdx) 522 .addReg(FromReg, 0, SubIdx); 523 524 BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator(); 525 if (FirstCopy) { 526 SlotIndexes &Indexes = *LIS.getSlotIndexes(); 527 Def = Indexes.insertMachineInstrInMaps(*CopyMI, Late).getRegSlot(); 528 } else { 529 CopyMI->bundleWithPred(); 530 } 531 LaneBitmask LaneMask = TRI.getSubRegIndexLaneMask(SubIdx); 532 DestLI.refineSubRanges(Allocator, LaneMask, 533 [Def, &Allocator](LiveInterval::SubRange& SR) { 534 SR.createDeadDef(Def, Allocator); 535 }); 536 return Def; 537 } 538 539 SlotIndex SplitEditor::buildCopy(unsigned FromReg, unsigned ToReg, 540 LaneBitmask LaneMask, MachineBasicBlock &MBB, 541 MachineBasicBlock::iterator InsertBefore, bool Late, unsigned RegIdx) { 542 const MCInstrDesc &Desc = TII.get(TargetOpcode::COPY); 543 if (LaneMask.all() || LaneMask == MRI.getMaxLaneMaskForVReg(FromReg)) { 544 // The full vreg is copied. 545 MachineInstr *CopyMI = 546 BuildMI(MBB, InsertBefore, DebugLoc(), Desc, ToReg).addReg(FromReg); 547 SlotIndexes &Indexes = *LIS.getSlotIndexes(); 548 return Indexes.insertMachineInstrInMaps(*CopyMI, Late).getRegSlot(); 549 } 550 551 // Only a subset of lanes needs to be copied. The following is a simple 552 // heuristic to construct a sequence of COPYs. We could add a target 553 // specific callback if this turns out to be suboptimal. 554 LiveInterval &DestLI = LIS.getInterval(Edit->get(RegIdx)); 555 556 // First pass: Try to find a perfectly matching subregister index. If none 557 // exists find the one covering the most lanemask bits. 558 SmallVector<unsigned, 8> PossibleIndexes; 559 unsigned BestIdx = 0; 560 unsigned BestCover = 0; 561 const TargetRegisterClass *RC = MRI.getRegClass(FromReg); 562 assert(RC == MRI.getRegClass(ToReg) && "Should have same reg class"); 563 for (unsigned Idx = 1, E = TRI.getNumSubRegIndices(); Idx < E; ++Idx) { 564 // Is this index even compatible with the given class? 565 if (TRI.getSubClassWithSubReg(RC, Idx) != RC) 566 continue; 567 LaneBitmask SubRegMask = TRI.getSubRegIndexLaneMask(Idx); 568 // Early exit if we found a perfect match. 569 if (SubRegMask == LaneMask) { 570 BestIdx = Idx; 571 break; 572 } 573 574 // The index must not cover any lanes outside \p LaneMask. 575 if ((SubRegMask & ~LaneMask).any()) 576 continue; 577 578 unsigned PopCount = SubRegMask.getNumLanes(); 579 PossibleIndexes.push_back(Idx); 580 if (PopCount > BestCover) { 581 BestCover = PopCount; 582 BestIdx = Idx; 583 } 584 } 585 586 // Abort if we cannot possibly implement the COPY with the given indexes. 587 if (BestIdx == 0) 588 report_fatal_error("Impossible to implement partial COPY"); 589 590 SlotIndex Def = buildSingleSubRegCopy(FromReg, ToReg, MBB, InsertBefore, 591 BestIdx, DestLI, Late, SlotIndex()); 592 593 // Greedy heuristic: Keep iterating keeping the best covering subreg index 594 // each time. 595 LaneBitmask LanesLeft = LaneMask & ~(TRI.getSubRegIndexLaneMask(BestIdx)); 596 while (LanesLeft.any()) { 597 unsigned BestIdx = 0; 598 int BestCover = std::numeric_limits<int>::min(); 599 for (unsigned Idx : PossibleIndexes) { 600 LaneBitmask SubRegMask = TRI.getSubRegIndexLaneMask(Idx); 601 // Early exit if we found a perfect match. 602 if (SubRegMask == LanesLeft) { 603 BestIdx = Idx; 604 break; 605 } 606 607 // Try to cover as much of the remaining lanes as possible but 608 // as few of the already covered lanes as possible. 609 int Cover = (SubRegMask & LanesLeft).getNumLanes() 610 - (SubRegMask & ~LanesLeft).getNumLanes(); 611 if (Cover > BestCover) { 612 BestCover = Cover; 613 BestIdx = Idx; 614 } 615 } 616 617 if (BestIdx == 0) 618 report_fatal_error("Impossible to implement partial COPY"); 619 620 buildSingleSubRegCopy(FromReg, ToReg, MBB, InsertBefore, BestIdx, 621 DestLI, Late, Def); 622 LanesLeft &= ~TRI.getSubRegIndexLaneMask(BestIdx); 623 } 624 625 return Def; 626 } 627 628 VNInfo *SplitEditor::defFromParent(unsigned RegIdx, 629 VNInfo *ParentVNI, 630 SlotIndex UseIdx, 631 MachineBasicBlock &MBB, 632 MachineBasicBlock::iterator I) { 633 SlotIndex Def; 634 LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx)); 635 636 // We may be trying to avoid interference that ends at a deleted instruction, 637 // so always begin RegIdx 0 early and all others late. 638 bool Late = RegIdx != 0; 639 640 // Attempt cheap-as-a-copy rematerialization. 641 unsigned Original = VRM.getOriginal(Edit->get(RegIdx)); 642 LiveInterval &OrigLI = LIS.getInterval(Original); 643 VNInfo *OrigVNI = OrigLI.getVNInfoAt(UseIdx); 644 645 unsigned Reg = LI->reg; 646 bool DidRemat = false; 647 if (OrigVNI) { 648 LiveRangeEdit::Remat RM(ParentVNI); 649 RM.OrigMI = LIS.getInstructionFromIndex(OrigVNI->def); 650 if (Edit->canRematerializeAt(RM, OrigVNI, UseIdx, true)) { 651 Def = Edit->rematerializeAt(MBB, I, Reg, RM, TRI, Late); 652 ++NumRemats; 653 DidRemat = true; 654 } 655 } 656 if (!DidRemat) { 657 LaneBitmask LaneMask; 658 if (LI->hasSubRanges()) { 659 LaneMask = LaneBitmask::getNone(); 660 for (LiveInterval::SubRange &S : LI->subranges()) 661 LaneMask |= S.LaneMask; 662 } else { 663 LaneMask = LaneBitmask::getAll(); 664 } 665 666 ++NumCopies; 667 Def = buildCopy(Edit->getReg(), Reg, LaneMask, MBB, I, Late, RegIdx); 668 } 669 670 // Define the value in Reg. 671 return defValue(RegIdx, ParentVNI, Def, false); 672 } 673 674 /// Create a new virtual register and live interval. 675 unsigned SplitEditor::openIntv() { 676 // Create the complement as index 0. 677 if (Edit->empty()) 678 Edit->createEmptyInterval(); 679 680 // Create the open interval. 681 OpenIdx = Edit->size(); 682 Edit->createEmptyInterval(); 683 return OpenIdx; 684 } 685 686 void SplitEditor::selectIntv(unsigned Idx) { 687 assert(Idx != 0 && "Cannot select the complement interval"); 688 assert(Idx < Edit->size() && "Can only select previously opened interval"); 689 DEBUG(dbgs() << " selectIntv " << OpenIdx << " -> " << Idx << '\n'); 690 OpenIdx = Idx; 691 } 692 693 SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) { 694 assert(OpenIdx && "openIntv not called before enterIntvBefore"); 695 DEBUG(dbgs() << " enterIntvBefore " << Idx); 696 Idx = Idx.getBaseIndex(); 697 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 698 if (!ParentVNI) { 699 DEBUG(dbgs() << ": not live\n"); 700 return Idx; 701 } 702 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 703 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 704 assert(MI && "enterIntvBefore called with invalid index"); 705 706 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI); 707 return VNI->def; 708 } 709 710 SlotIndex SplitEditor::enterIntvAfter(SlotIndex Idx) { 711 assert(OpenIdx && "openIntv not called before enterIntvAfter"); 712 DEBUG(dbgs() << " enterIntvAfter " << Idx); 713 Idx = Idx.getBoundaryIndex(); 714 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 715 if (!ParentVNI) { 716 DEBUG(dbgs() << ": not live\n"); 717 return Idx; 718 } 719 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 720 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 721 assert(MI && "enterIntvAfter called with invalid index"); 722 723 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), 724 std::next(MachineBasicBlock::iterator(MI))); 725 return VNI->def; 726 } 727 728 SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) { 729 assert(OpenIdx && "openIntv not called before enterIntvAtEnd"); 730 SlotIndex End = LIS.getMBBEndIdx(&MBB); 731 SlotIndex Last = End.getPrevSlot(); 732 DEBUG(dbgs() << " enterIntvAtEnd " << printMBBReference(MBB) << ", " 733 << Last); 734 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last); 735 if (!ParentVNI) { 736 DEBUG(dbgs() << ": not live\n"); 737 return End; 738 } 739 DEBUG(dbgs() << ": valno " << ParentVNI->id); 740 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB, 741 SA.getLastSplitPointIter(&MBB)); 742 RegAssign.insert(VNI->def, End, OpenIdx); 743 DEBUG(dump()); 744 return VNI->def; 745 } 746 747 /// useIntv - indicate that all instructions in MBB should use OpenLI. 748 void SplitEditor::useIntv(const MachineBasicBlock &MBB) { 749 useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB)); 750 } 751 752 void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) { 753 assert(OpenIdx && "openIntv not called before useIntv"); 754 DEBUG(dbgs() << " useIntv [" << Start << ';' << End << "):"); 755 RegAssign.insert(Start, End, OpenIdx); 756 DEBUG(dump()); 757 } 758 759 SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) { 760 assert(OpenIdx && "openIntv not called before leaveIntvAfter"); 761 DEBUG(dbgs() << " leaveIntvAfter " << Idx); 762 763 // The interval must be live beyond the instruction at Idx. 764 SlotIndex Boundary = Idx.getBoundaryIndex(); 765 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Boundary); 766 if (!ParentVNI) { 767 DEBUG(dbgs() << ": not live\n"); 768 return Boundary.getNextSlot(); 769 } 770 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 771 MachineInstr *MI = LIS.getInstructionFromIndex(Boundary); 772 assert(MI && "No instruction at index"); 773 774 // In spill mode, make live ranges as short as possible by inserting the copy 775 // before MI. This is only possible if that instruction doesn't redefine the 776 // value. The inserted COPY is not a kill, and we don't need to recompute 777 // the source live range. The spiller also won't try to hoist this copy. 778 if (SpillMode && !SlotIndex::isSameInstr(ParentVNI->def, Idx) && 779 MI->readsVirtualRegister(Edit->getReg())) { 780 forceRecompute(0, *ParentVNI); 781 defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI); 782 return Idx; 783 } 784 785 VNInfo *VNI = defFromParent(0, ParentVNI, Boundary, *MI->getParent(), 786 std::next(MachineBasicBlock::iterator(MI))); 787 return VNI->def; 788 } 789 790 SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) { 791 assert(OpenIdx && "openIntv not called before leaveIntvBefore"); 792 DEBUG(dbgs() << " leaveIntvBefore " << Idx); 793 794 // The interval must be live into the instruction at Idx. 795 Idx = Idx.getBaseIndex(); 796 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 797 if (!ParentVNI) { 798 DEBUG(dbgs() << ": not live\n"); 799 return Idx.getNextSlot(); 800 } 801 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 802 803 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 804 assert(MI && "No instruction at index"); 805 VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI); 806 return VNI->def; 807 } 808 809 SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) { 810 assert(OpenIdx && "openIntv not called before leaveIntvAtTop"); 811 SlotIndex Start = LIS.getMBBStartIdx(&MBB); 812 DEBUG(dbgs() << " leaveIntvAtTop " << printMBBReference(MBB) << ", " 813 << Start); 814 815 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start); 816 if (!ParentVNI) { 817 DEBUG(dbgs() << ": not live\n"); 818 return Start; 819 } 820 821 VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB, 822 MBB.SkipPHIsLabelsAndDebug(MBB.begin())); 823 RegAssign.insert(Start, VNI->def, OpenIdx); 824 DEBUG(dump()); 825 return VNI->def; 826 } 827 828 void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) { 829 assert(OpenIdx && "openIntv not called before overlapIntv"); 830 const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start); 831 assert(ParentVNI == Edit->getParent().getVNInfoBefore(End) && 832 "Parent changes value in extended range"); 833 assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) && 834 "Range cannot span basic blocks"); 835 836 // The complement interval will be extended as needed by LRCalc.extend(). 837 if (ParentVNI) 838 forceRecompute(0, *ParentVNI); 839 DEBUG(dbgs() << " overlapIntv [" << Start << ';' << End << "):"); 840 RegAssign.insert(Start, End, OpenIdx); 841 DEBUG(dump()); 842 } 843 844 //===----------------------------------------------------------------------===// 845 // Spill modes 846 //===----------------------------------------------------------------------===// 847 848 void SplitEditor::removeBackCopies(SmallVectorImpl<VNInfo*> &Copies) { 849 LiveInterval *LI = &LIS.getInterval(Edit->get(0)); 850 DEBUG(dbgs() << "Removing " << Copies.size() << " back-copies.\n"); 851 RegAssignMap::iterator AssignI; 852 AssignI.setMap(RegAssign); 853 854 for (unsigned i = 0, e = Copies.size(); i != e; ++i) { 855 SlotIndex Def = Copies[i]->def; 856 MachineInstr *MI = LIS.getInstructionFromIndex(Def); 857 assert(MI && "No instruction for back-copy"); 858 859 MachineBasicBlock *MBB = MI->getParent(); 860 MachineBasicBlock::iterator MBBI(MI); 861 bool AtBegin; 862 do AtBegin = MBBI == MBB->begin(); 863 while (!AtBegin && (--MBBI)->isDebugValue()); 864 865 DEBUG(dbgs() << "Removing " << Def << '\t' << *MI); 866 LIS.removeVRegDefAt(*LI, Def); 867 LIS.RemoveMachineInstrFromMaps(*MI); 868 MI->eraseFromParent(); 869 870 // Adjust RegAssign if a register assignment is killed at Def. We want to 871 // avoid calculating the live range of the source register if possible. 872 AssignI.find(Def.getPrevSlot()); 873 if (!AssignI.valid() || AssignI.start() >= Def) 874 continue; 875 // If MI doesn't kill the assigned register, just leave it. 876 if (AssignI.stop() != Def) 877 continue; 878 unsigned RegIdx = AssignI.value(); 879 if (AtBegin || !MBBI->readsVirtualRegister(Edit->getReg())) { 880 DEBUG(dbgs() << " cannot find simple kill of RegIdx " << RegIdx << '\n'); 881 forceRecompute(RegIdx, *Edit->getParent().getVNInfoAt(Def)); 882 } else { 883 SlotIndex Kill = LIS.getInstructionIndex(*MBBI).getRegSlot(); 884 DEBUG(dbgs() << " move kill to " << Kill << '\t' << *MBBI); 885 AssignI.setStop(Kill); 886 } 887 } 888 } 889 890 MachineBasicBlock* 891 SplitEditor::findShallowDominator(MachineBasicBlock *MBB, 892 MachineBasicBlock *DefMBB) { 893 if (MBB == DefMBB) 894 return MBB; 895 assert(MDT.dominates(DefMBB, MBB) && "MBB must be dominated by the def."); 896 897 const MachineLoopInfo &Loops = SA.Loops; 898 const MachineLoop *DefLoop = Loops.getLoopFor(DefMBB); 899 MachineDomTreeNode *DefDomNode = MDT[DefMBB]; 900 901 // Best candidate so far. 902 MachineBasicBlock *BestMBB = MBB; 903 unsigned BestDepth = std::numeric_limits<unsigned>::max(); 904 905 while (true) { 906 const MachineLoop *Loop = Loops.getLoopFor(MBB); 907 908 // MBB isn't in a loop, it doesn't get any better. All dominators have a 909 // higher frequency by definition. 910 if (!Loop) { 911 DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB) << " dominates " 912 << printMBBReference(*MBB) << " at depth 0\n"); 913 return MBB; 914 } 915 916 // We'll never be able to exit the DefLoop. 917 if (Loop == DefLoop) { 918 DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB) << " dominates " 919 << printMBBReference(*MBB) << " in the same loop\n"); 920 return MBB; 921 } 922 923 // Least busy dominator seen so far. 924 unsigned Depth = Loop->getLoopDepth(); 925 if (Depth < BestDepth) { 926 BestMBB = MBB; 927 BestDepth = Depth; 928 DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB) << " dominates " 929 << printMBBReference(*MBB) << " at depth " << Depth << '\n'); 930 } 931 932 // Leave loop by going to the immediate dominator of the loop header. 933 // This is a bigger stride than simply walking up the dominator tree. 934 MachineDomTreeNode *IDom = MDT[Loop->getHeader()]->getIDom(); 935 936 // Too far up the dominator tree? 937 if (!IDom || !MDT.dominates(DefDomNode, IDom)) 938 return BestMBB; 939 940 MBB = IDom->getBlock(); 941 } 942 } 943 944 void SplitEditor::computeRedundantBackCopies( 945 DenseSet<unsigned> &NotToHoistSet, SmallVectorImpl<VNInfo *> &BackCopies) { 946 LiveInterval *LI = &LIS.getInterval(Edit->get(0)); 947 LiveInterval *Parent = &Edit->getParent(); 948 SmallVector<SmallPtrSet<VNInfo *, 8>, 8> EqualVNs(Parent->getNumValNums()); 949 SmallPtrSet<VNInfo *, 8> DominatedVNIs; 950 951 // Aggregate VNIs having the same value as ParentVNI. 952 for (VNInfo *VNI : LI->valnos) { 953 if (VNI->isUnused()) 954 continue; 955 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def); 956 EqualVNs[ParentVNI->id].insert(VNI); 957 } 958 959 // For VNI aggregation of each ParentVNI, collect dominated, i.e., 960 // redundant VNIs to BackCopies. 961 for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) { 962 VNInfo *ParentVNI = Parent->getValNumInfo(i); 963 if (!NotToHoistSet.count(ParentVNI->id)) 964 continue; 965 SmallPtrSetIterator<VNInfo *> It1 = EqualVNs[ParentVNI->id].begin(); 966 SmallPtrSetIterator<VNInfo *> It2 = It1; 967 for (; It1 != EqualVNs[ParentVNI->id].end(); ++It1) { 968 It2 = It1; 969 for (++It2; It2 != EqualVNs[ParentVNI->id].end(); ++It2) { 970 if (DominatedVNIs.count(*It1) || DominatedVNIs.count(*It2)) 971 continue; 972 973 MachineBasicBlock *MBB1 = LIS.getMBBFromIndex((*It1)->def); 974 MachineBasicBlock *MBB2 = LIS.getMBBFromIndex((*It2)->def); 975 if (MBB1 == MBB2) { 976 DominatedVNIs.insert((*It1)->def < (*It2)->def ? (*It2) : (*It1)); 977 } else if (MDT.dominates(MBB1, MBB2)) { 978 DominatedVNIs.insert(*It2); 979 } else if (MDT.dominates(MBB2, MBB1)) { 980 DominatedVNIs.insert(*It1); 981 } 982 } 983 } 984 if (!DominatedVNIs.empty()) { 985 forceRecompute(0, *ParentVNI); 986 for (auto VNI : DominatedVNIs) { 987 BackCopies.push_back(VNI); 988 } 989 DominatedVNIs.clear(); 990 } 991 } 992 } 993 994 /// For SM_Size mode, find a common dominator for all the back-copies for 995 /// the same ParentVNI and hoist the backcopies to the dominator BB. 996 /// For SM_Speed mode, if the common dominator is hot and it is not beneficial 997 /// to do the hoisting, simply remove the dominated backcopies for the same 998 /// ParentVNI. 999 void SplitEditor::hoistCopies() { 1000 // Get the complement interval, always RegIdx 0. 1001 LiveInterval *LI = &LIS.getInterval(Edit->get(0)); 1002 LiveInterval *Parent = &Edit->getParent(); 1003 1004 // Track the nearest common dominator for all back-copies for each ParentVNI, 1005 // indexed by ParentVNI->id. 1006 using DomPair = std::pair<MachineBasicBlock *, SlotIndex>; 1007 SmallVector<DomPair, 8> NearestDom(Parent->getNumValNums()); 1008 // The total cost of all the back-copies for each ParentVNI. 1009 SmallVector<BlockFrequency, 8> Costs(Parent->getNumValNums()); 1010 // The ParentVNI->id set for which hoisting back-copies are not beneficial 1011 // for Speed. 1012 DenseSet<unsigned> NotToHoistSet; 1013 1014 // Find the nearest common dominator for parent values with multiple 1015 // back-copies. If a single back-copy dominates, put it in DomPair.second. 1016 for (VNInfo *VNI : LI->valnos) { 1017 if (VNI->isUnused()) 1018 continue; 1019 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def); 1020 assert(ParentVNI && "Parent not live at complement def"); 1021 1022 // Don't hoist remats. The complement is probably going to disappear 1023 // completely anyway. 1024 if (Edit->didRematerialize(ParentVNI)) 1025 continue; 1026 1027 MachineBasicBlock *ValMBB = LIS.getMBBFromIndex(VNI->def); 1028 1029 DomPair &Dom = NearestDom[ParentVNI->id]; 1030 1031 // Keep directly defined parent values. This is either a PHI or an 1032 // instruction in the complement range. All other copies of ParentVNI 1033 // should be eliminated. 1034 if (VNI->def == ParentVNI->def) { 1035 DEBUG(dbgs() << "Direct complement def at " << VNI->def << '\n'); 1036 Dom = DomPair(ValMBB, VNI->def); 1037 continue; 1038 } 1039 // Skip the singly mapped values. There is nothing to gain from hoisting a 1040 // single back-copy. 1041 if (Values.lookup(std::make_pair(0, ParentVNI->id)).getPointer()) { 1042 DEBUG(dbgs() << "Single complement def at " << VNI->def << '\n'); 1043 continue; 1044 } 1045 1046 if (!Dom.first) { 1047 // First time we see ParentVNI. VNI dominates itself. 1048 Dom = DomPair(ValMBB, VNI->def); 1049 } else if (Dom.first == ValMBB) { 1050 // Two defs in the same block. Pick the earlier def. 1051 if (!Dom.second.isValid() || VNI->def < Dom.second) 1052 Dom.second = VNI->def; 1053 } else { 1054 // Different basic blocks. Check if one dominates. 1055 MachineBasicBlock *Near = 1056 MDT.findNearestCommonDominator(Dom.first, ValMBB); 1057 if (Near == ValMBB) 1058 // Def ValMBB dominates. 1059 Dom = DomPair(ValMBB, VNI->def); 1060 else if (Near != Dom.first) 1061 // None dominate. Hoist to common dominator, need new def. 1062 Dom = DomPair(Near, SlotIndex()); 1063 Costs[ParentVNI->id] += MBFI.getBlockFreq(ValMBB); 1064 } 1065 1066 DEBUG(dbgs() << "Multi-mapped complement " << VNI->id << '@' << VNI->def 1067 << " for parent " << ParentVNI->id << '@' << ParentVNI->def 1068 << " hoist to " << printMBBReference(*Dom.first) << ' ' 1069 << Dom.second << '\n'); 1070 } 1071 1072 // Insert the hoisted copies. 1073 for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) { 1074 DomPair &Dom = NearestDom[i]; 1075 if (!Dom.first || Dom.second.isValid()) 1076 continue; 1077 // This value needs a hoisted copy inserted at the end of Dom.first. 1078 VNInfo *ParentVNI = Parent->getValNumInfo(i); 1079 MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(ParentVNI->def); 1080 // Get a less loopy dominator than Dom.first. 1081 Dom.first = findShallowDominator(Dom.first, DefMBB); 1082 if (SpillMode == SM_Speed && 1083 MBFI.getBlockFreq(Dom.first) > Costs[ParentVNI->id]) { 1084 NotToHoistSet.insert(ParentVNI->id); 1085 continue; 1086 } 1087 SlotIndex Last = LIS.getMBBEndIdx(Dom.first).getPrevSlot(); 1088 Dom.second = 1089 defFromParent(0, ParentVNI, Last, *Dom.first, 1090 SA.getLastSplitPointIter(Dom.first))->def; 1091 } 1092 1093 // Remove redundant back-copies that are now known to be dominated by another 1094 // def with the same value. 1095 SmallVector<VNInfo*, 8> BackCopies; 1096 for (VNInfo *VNI : LI->valnos) { 1097 if (VNI->isUnused()) 1098 continue; 1099 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def); 1100 const DomPair &Dom = NearestDom[ParentVNI->id]; 1101 if (!Dom.first || Dom.second == VNI->def || 1102 NotToHoistSet.count(ParentVNI->id)) 1103 continue; 1104 BackCopies.push_back(VNI); 1105 forceRecompute(0, *ParentVNI); 1106 } 1107 1108 // If it is not beneficial to hoist all the BackCopies, simply remove 1109 // redundant BackCopies in speed mode. 1110 if (SpillMode == SM_Speed && !NotToHoistSet.empty()) 1111 computeRedundantBackCopies(NotToHoistSet, BackCopies); 1112 1113 removeBackCopies(BackCopies); 1114 } 1115 1116 /// transferValues - Transfer all possible values to the new live ranges. 1117 /// Values that were rematerialized are left alone, they need LRCalc.extend(). 1118 bool SplitEditor::transferValues() { 1119 bool Skipped = false; 1120 RegAssignMap::const_iterator AssignI = RegAssign.begin(); 1121 for (const LiveRange::Segment &S : Edit->getParent()) { 1122 DEBUG(dbgs() << " blit " << S << ':'); 1123 VNInfo *ParentVNI = S.valno; 1124 // RegAssign has holes where RegIdx 0 should be used. 1125 SlotIndex Start = S.start; 1126 AssignI.advanceTo(Start); 1127 do { 1128 unsigned RegIdx; 1129 SlotIndex End = S.end; 1130 if (!AssignI.valid()) { 1131 RegIdx = 0; 1132 } else if (AssignI.start() <= Start) { 1133 RegIdx = AssignI.value(); 1134 if (AssignI.stop() < End) { 1135 End = AssignI.stop(); 1136 ++AssignI; 1137 } 1138 } else { 1139 RegIdx = 0; 1140 End = std::min(End, AssignI.start()); 1141 } 1142 1143 // The interval [Start;End) is continuously mapped to RegIdx, ParentVNI. 1144 DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx 1145 << '(' << printReg(Edit->get(RegIdx)) << ')'); 1146 LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx)); 1147 1148 // Check for a simply defined value that can be blitted directly. 1149 ValueForcePair VFP = Values.lookup(std::make_pair(RegIdx, ParentVNI->id)); 1150 if (VNInfo *VNI = VFP.getPointer()) { 1151 DEBUG(dbgs() << ':' << VNI->id); 1152 LI.addSegment(LiveInterval::Segment(Start, End, VNI)); 1153 Start = End; 1154 continue; 1155 } 1156 1157 // Skip values with forced recomputation. 1158 if (VFP.getInt()) { 1159 DEBUG(dbgs() << "(recalc)"); 1160 Skipped = true; 1161 Start = End; 1162 continue; 1163 } 1164 1165 LiveRangeCalc &LRC = getLRCalc(RegIdx); 1166 1167 // This value has multiple defs in RegIdx, but it wasn't rematerialized, 1168 // so the live range is accurate. Add live-in blocks in [Start;End) to the 1169 // LiveInBlocks. 1170 MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start)->getIterator(); 1171 SlotIndex BlockStart, BlockEnd; 1172 std::tie(BlockStart, BlockEnd) = LIS.getSlotIndexes()->getMBBRange(&*MBB); 1173 1174 // The first block may be live-in, or it may have its own def. 1175 if (Start != BlockStart) { 1176 VNInfo *VNI = LI.extendInBlock(BlockStart, std::min(BlockEnd, End)); 1177 assert(VNI && "Missing def for complex mapped value"); 1178 DEBUG(dbgs() << ':' << VNI->id << "*" << printMBBReference(*MBB)); 1179 // MBB has its own def. Is it also live-out? 1180 if (BlockEnd <= End) 1181 LRC.setLiveOutValue(&*MBB, VNI); 1182 1183 // Skip to the next block for live-in. 1184 ++MBB; 1185 BlockStart = BlockEnd; 1186 } 1187 1188 // Handle the live-in blocks covered by [Start;End). 1189 assert(Start <= BlockStart && "Expected live-in block"); 1190 while (BlockStart < End) { 1191 DEBUG(dbgs() << ">" << printMBBReference(*MBB)); 1192 BlockEnd = LIS.getMBBEndIdx(&*MBB); 1193 if (BlockStart == ParentVNI->def) { 1194 // This block has the def of a parent PHI, so it isn't live-in. 1195 assert(ParentVNI->isPHIDef() && "Non-phi defined at block start?"); 1196 VNInfo *VNI = LI.extendInBlock(BlockStart, std::min(BlockEnd, End)); 1197 assert(VNI && "Missing def for complex mapped parent PHI"); 1198 if (End >= BlockEnd) 1199 LRC.setLiveOutValue(&*MBB, VNI); // Live-out as well. 1200 } else { 1201 // This block needs a live-in value. The last block covered may not 1202 // be live-out. 1203 if (End < BlockEnd) 1204 LRC.addLiveInBlock(LI, MDT[&*MBB], End); 1205 else { 1206 // Live-through, and we don't know the value. 1207 LRC.addLiveInBlock(LI, MDT[&*MBB]); 1208 LRC.setLiveOutValue(&*MBB, nullptr); 1209 } 1210 } 1211 BlockStart = BlockEnd; 1212 ++MBB; 1213 } 1214 Start = End; 1215 } while (Start != S.end); 1216 DEBUG(dbgs() << '\n'); 1217 } 1218 1219 LRCalc[0].calculateValues(); 1220 if (SpillMode) 1221 LRCalc[1].calculateValues(); 1222 1223 return Skipped; 1224 } 1225 1226 static bool removeDeadSegment(SlotIndex Def, LiveRange &LR) { 1227 const LiveRange::Segment *Seg = LR.getSegmentContaining(Def); 1228 if (Seg == nullptr) 1229 return true; 1230 if (Seg->end != Def.getDeadSlot()) 1231 return false; 1232 // This is a dead PHI. Remove it. 1233 LR.removeSegment(*Seg, true); 1234 return true; 1235 } 1236 1237 void SplitEditor::extendPHIRange(MachineBasicBlock &B, LiveRangeCalc &LRC, 1238 LiveRange &LR, LaneBitmask LM, 1239 ArrayRef<SlotIndex> Undefs) { 1240 for (MachineBasicBlock *P : B.predecessors()) { 1241 SlotIndex End = LIS.getMBBEndIdx(P); 1242 SlotIndex LastUse = End.getPrevSlot(); 1243 // The predecessor may not have a live-out value. That is OK, like an 1244 // undef PHI operand. 1245 LiveInterval &PLI = Edit->getParent(); 1246 // Need the cast because the inputs to ?: would otherwise be deemed 1247 // "incompatible": SubRange vs LiveInterval. 1248 LiveRange &PSR = !LM.all() ? getSubRangeForMask(LM, PLI) 1249 : static_cast<LiveRange&>(PLI); 1250 if (PSR.liveAt(LastUse)) 1251 LRC.extend(LR, End, /*PhysReg=*/0, Undefs); 1252 } 1253 } 1254 1255 void SplitEditor::extendPHIKillRanges() { 1256 // Extend live ranges to be live-out for successor PHI values. 1257 1258 // Visit each PHI def slot in the parent live interval. If the def is dead, 1259 // remove it. Otherwise, extend the live interval to reach the end indexes 1260 // of all predecessor blocks. 1261 1262 LiveInterval &ParentLI = Edit->getParent(); 1263 for (const VNInfo *V : ParentLI.valnos) { 1264 if (V->isUnused() || !V->isPHIDef()) 1265 continue; 1266 1267 unsigned RegIdx = RegAssign.lookup(V->def); 1268 LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx)); 1269 LiveRangeCalc &LRC = getLRCalc(RegIdx); 1270 MachineBasicBlock &B = *LIS.getMBBFromIndex(V->def); 1271 if (!removeDeadSegment(V->def, LI)) 1272 extendPHIRange(B, LRC, LI, LaneBitmask::getAll(), /*Undefs=*/{}); 1273 } 1274 1275 SmallVector<SlotIndex, 4> Undefs; 1276 LiveRangeCalc SubLRC; 1277 1278 for (LiveInterval::SubRange &PS : ParentLI.subranges()) { 1279 for (const VNInfo *V : PS.valnos) { 1280 if (V->isUnused() || !V->isPHIDef()) 1281 continue; 1282 unsigned RegIdx = RegAssign.lookup(V->def); 1283 LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx)); 1284 LiveInterval::SubRange &S = getSubRangeForMask(PS.LaneMask, LI); 1285 if (removeDeadSegment(V->def, S)) 1286 continue; 1287 1288 MachineBasicBlock &B = *LIS.getMBBFromIndex(V->def); 1289 SubLRC.reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT, 1290 &LIS.getVNInfoAllocator()); 1291 Undefs.clear(); 1292 LI.computeSubRangeUndefs(Undefs, PS.LaneMask, MRI, *LIS.getSlotIndexes()); 1293 extendPHIRange(B, SubLRC, S, PS.LaneMask, Undefs); 1294 } 1295 } 1296 } 1297 1298 /// rewriteAssigned - Rewrite all uses of Edit->getReg(). 1299 void SplitEditor::rewriteAssigned(bool ExtendRanges) { 1300 struct ExtPoint { 1301 ExtPoint(const MachineOperand &O, unsigned R, SlotIndex N) 1302 : MO(O), RegIdx(R), Next(N) {} 1303 1304 MachineOperand MO; 1305 unsigned RegIdx; 1306 SlotIndex Next; 1307 }; 1308 1309 SmallVector<ExtPoint,4> ExtPoints; 1310 1311 for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Edit->getReg()), 1312 RE = MRI.reg_end(); RI != RE;) { 1313 MachineOperand &MO = *RI; 1314 MachineInstr *MI = MO.getParent(); 1315 ++RI; 1316 // LiveDebugVariables should have handled all DBG_VALUE instructions. 1317 if (MI->isDebugValue()) { 1318 DEBUG(dbgs() << "Zapping " << *MI); 1319 MO.setReg(0); 1320 continue; 1321 } 1322 1323 // <undef> operands don't really read the register, so it doesn't matter 1324 // which register we choose. When the use operand is tied to a def, we must 1325 // use the same register as the def, so just do that always. 1326 SlotIndex Idx = LIS.getInstructionIndex(*MI); 1327 if (MO.isDef() || MO.isUndef()) 1328 Idx = Idx.getRegSlot(MO.isEarlyClobber()); 1329 1330 // Rewrite to the mapped register at Idx. 1331 unsigned RegIdx = RegAssign.lookup(Idx); 1332 LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx)); 1333 MO.setReg(LI.reg); 1334 DEBUG(dbgs() << " rewr " << printMBBReference(*MI->getParent()) << '\t' 1335 << Idx << ':' << RegIdx << '\t' << *MI); 1336 1337 // Extend liveness to Idx if the instruction reads reg. 1338 if (!ExtendRanges || MO.isUndef()) 1339 continue; 1340 1341 // Skip instructions that don't read Reg. 1342 if (MO.isDef()) { 1343 if (!MO.getSubReg() && !MO.isEarlyClobber()) 1344 continue; 1345 // We may want to extend a live range for a partial redef, or for a use 1346 // tied to an early clobber. 1347 Idx = Idx.getPrevSlot(); 1348 if (!Edit->getParent().liveAt(Idx)) 1349 continue; 1350 } else 1351 Idx = Idx.getRegSlot(true); 1352 1353 SlotIndex Next = Idx.getNextSlot(); 1354 if (LI.hasSubRanges()) { 1355 // We have to delay extending subranges until we have seen all operands 1356 // defining the register. This is because a <def,read-undef> operand 1357 // will create an "undef" point, and we cannot extend any subranges 1358 // until all of them have been accounted for. 1359 if (MO.isUse()) 1360 ExtPoints.push_back(ExtPoint(MO, RegIdx, Next)); 1361 } else { 1362 LiveRangeCalc &LRC = getLRCalc(RegIdx); 1363 LRC.extend(LI, Next, 0, ArrayRef<SlotIndex>()); 1364 } 1365 } 1366 1367 for (ExtPoint &EP : ExtPoints) { 1368 LiveInterval &LI = LIS.getInterval(Edit->get(EP.RegIdx)); 1369 assert(LI.hasSubRanges()); 1370 1371 LiveRangeCalc SubLRC; 1372 unsigned Reg = EP.MO.getReg(), Sub = EP.MO.getSubReg(); 1373 LaneBitmask LM = Sub != 0 ? TRI.getSubRegIndexLaneMask(Sub) 1374 : MRI.getMaxLaneMaskForVReg(Reg); 1375 for (LiveInterval::SubRange &S : LI.subranges()) { 1376 if ((S.LaneMask & LM).none()) 1377 continue; 1378 // The problem here can be that the new register may have been created 1379 // for a partially defined original register. For example: 1380 // %0:subreg_hireg<def,read-undef> = ... 1381 // ... 1382 // %1 = COPY %0 1383 if (S.empty()) 1384 continue; 1385 SubLRC.reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT, 1386 &LIS.getVNInfoAllocator()); 1387 SmallVector<SlotIndex, 4> Undefs; 1388 LI.computeSubRangeUndefs(Undefs, S.LaneMask, MRI, *LIS.getSlotIndexes()); 1389 SubLRC.extend(S, EP.Next, 0, Undefs); 1390 } 1391 } 1392 1393 for (unsigned R : *Edit) { 1394 LiveInterval &LI = LIS.getInterval(R); 1395 if (!LI.hasSubRanges()) 1396 continue; 1397 LI.clear(); 1398 LI.removeEmptySubRanges(); 1399 LIS.constructMainRangeFromSubranges(LI); 1400 } 1401 } 1402 1403 void SplitEditor::deleteRematVictims() { 1404 SmallVector<MachineInstr*, 8> Dead; 1405 for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I){ 1406 LiveInterval *LI = &LIS.getInterval(*I); 1407 for (const LiveRange::Segment &S : LI->segments) { 1408 // Dead defs end at the dead slot. 1409 if (S.end != S.valno->def.getDeadSlot()) 1410 continue; 1411 if (S.valno->isPHIDef()) 1412 continue; 1413 MachineInstr *MI = LIS.getInstructionFromIndex(S.valno->def); 1414 assert(MI && "Missing instruction for dead def"); 1415 MI->addRegisterDead(LI->reg, &TRI); 1416 1417 if (!MI->allDefsAreDead()) 1418 continue; 1419 1420 DEBUG(dbgs() << "All defs dead: " << *MI); 1421 Dead.push_back(MI); 1422 } 1423 } 1424 1425 if (Dead.empty()) 1426 return; 1427 1428 Edit->eliminateDeadDefs(Dead, None, &AA); 1429 } 1430 1431 void SplitEditor::forceRecomputeVNI(const VNInfo &ParentVNI) { 1432 // Fast-path for common case. 1433 if (!ParentVNI.isPHIDef()) { 1434 for (unsigned I = 0, E = Edit->size(); I != E; ++I) 1435 forceRecompute(I, ParentVNI); 1436 return; 1437 } 1438 1439 // Trace value through phis. 1440 SmallPtrSet<const VNInfo *, 8> Visited; ///< whether VNI was/is in worklist. 1441 SmallVector<const VNInfo *, 4> WorkList; 1442 Visited.insert(&ParentVNI); 1443 WorkList.push_back(&ParentVNI); 1444 1445 const LiveInterval &ParentLI = Edit->getParent(); 1446 const SlotIndexes &Indexes = *LIS.getSlotIndexes(); 1447 do { 1448 const VNInfo &VNI = *WorkList.back(); 1449 WorkList.pop_back(); 1450 for (unsigned I = 0, E = Edit->size(); I != E; ++I) 1451 forceRecompute(I, VNI); 1452 if (!VNI.isPHIDef()) 1453 continue; 1454 1455 MachineBasicBlock &MBB = *Indexes.getMBBFromIndex(VNI.def); 1456 for (const MachineBasicBlock *Pred : MBB.predecessors()) { 1457 SlotIndex PredEnd = Indexes.getMBBEndIdx(Pred); 1458 VNInfo *PredVNI = ParentLI.getVNInfoBefore(PredEnd); 1459 assert(PredVNI && "Value available in PhiVNI predecessor"); 1460 if (Visited.insert(PredVNI).second) 1461 WorkList.push_back(PredVNI); 1462 } 1463 } while(!WorkList.empty()); 1464 } 1465 1466 void SplitEditor::finish(SmallVectorImpl<unsigned> *LRMap) { 1467 ++NumFinished; 1468 1469 // At this point, the live intervals in Edit contain VNInfos corresponding to 1470 // the inserted copies. 1471 1472 // Add the original defs from the parent interval. 1473 for (const VNInfo *ParentVNI : Edit->getParent().valnos) { 1474 if (ParentVNI->isUnused()) 1475 continue; 1476 unsigned RegIdx = RegAssign.lookup(ParentVNI->def); 1477 defValue(RegIdx, ParentVNI, ParentVNI->def, true); 1478 1479 // Force rematted values to be recomputed everywhere. 1480 // The new live ranges may be truncated. 1481 if (Edit->didRematerialize(ParentVNI)) 1482 forceRecomputeVNI(*ParentVNI); 1483 } 1484 1485 // Hoist back-copies to the complement interval when in spill mode. 1486 switch (SpillMode) { 1487 case SM_Partition: 1488 // Leave all back-copies as is. 1489 break; 1490 case SM_Size: 1491 case SM_Speed: 1492 // hoistCopies will behave differently between size and speed. 1493 hoistCopies(); 1494 } 1495 1496 // Transfer the simply mapped values, check if any are skipped. 1497 bool Skipped = transferValues(); 1498 1499 // Rewrite virtual registers, possibly extending ranges. 1500 rewriteAssigned(Skipped); 1501 1502 if (Skipped) 1503 extendPHIKillRanges(); 1504 else 1505 ++NumSimple; 1506 1507 // Delete defs that were rematted everywhere. 1508 if (Skipped) 1509 deleteRematVictims(); 1510 1511 // Get rid of unused values and set phi-kill flags. 1512 for (unsigned Reg : *Edit) { 1513 LiveInterval &LI = LIS.getInterval(Reg); 1514 LI.removeEmptySubRanges(); 1515 LI.RenumberValues(); 1516 } 1517 1518 // Provide a reverse mapping from original indices to Edit ranges. 1519 if (LRMap) { 1520 LRMap->clear(); 1521 for (unsigned i = 0, e = Edit->size(); i != e; ++i) 1522 LRMap->push_back(i); 1523 } 1524 1525 // Now check if any registers were separated into multiple components. 1526 ConnectedVNInfoEqClasses ConEQ(LIS); 1527 for (unsigned i = 0, e = Edit->size(); i != e; ++i) { 1528 // Don't use iterators, they are invalidated by create() below. 1529 unsigned VReg = Edit->get(i); 1530 LiveInterval &LI = LIS.getInterval(VReg); 1531 SmallVector<LiveInterval*, 8> SplitLIs; 1532 LIS.splitSeparateComponents(LI, SplitLIs); 1533 unsigned Original = VRM.getOriginal(VReg); 1534 for (LiveInterval *SplitLI : SplitLIs) 1535 VRM.setIsSplitFromReg(SplitLI->reg, Original); 1536 1537 // The new intervals all map back to i. 1538 if (LRMap) 1539 LRMap->resize(Edit->size(), i); 1540 } 1541 1542 // Calculate spill weight and allocation hints for new intervals. 1543 Edit->calculateRegClassAndHint(VRM.getMachineFunction(), SA.Loops, MBFI); 1544 1545 assert(!LRMap || LRMap->size() == Edit->size()); 1546 } 1547 1548 //===----------------------------------------------------------------------===// 1549 // Single Block Splitting 1550 //===----------------------------------------------------------------------===// 1551 1552 bool SplitAnalysis::shouldSplitSingleBlock(const BlockInfo &BI, 1553 bool SingleInstrs) const { 1554 // Always split for multiple instructions. 1555 if (!BI.isOneInstr()) 1556 return true; 1557 // Don't split for single instructions unless explicitly requested. 1558 if (!SingleInstrs) 1559 return false; 1560 // Splitting a live-through range always makes progress. 1561 if (BI.LiveIn && BI.LiveOut) 1562 return true; 1563 // No point in isolating a copy. It has no register class constraints. 1564 if (LIS.getInstructionFromIndex(BI.FirstInstr)->isCopyLike()) 1565 return false; 1566 // Finally, don't isolate an end point that was created by earlier splits. 1567 return isOriginalEndpoint(BI.FirstInstr); 1568 } 1569 1570 void SplitEditor::splitSingleBlock(const SplitAnalysis::BlockInfo &BI) { 1571 openIntv(); 1572 SlotIndex LastSplitPoint = SA.getLastSplitPoint(BI.MBB->getNumber()); 1573 SlotIndex SegStart = enterIntvBefore(std::min(BI.FirstInstr, 1574 LastSplitPoint)); 1575 if (!BI.LiveOut || BI.LastInstr < LastSplitPoint) { 1576 useIntv(SegStart, leaveIntvAfter(BI.LastInstr)); 1577 } else { 1578 // The last use is after the last valid split point. 1579 SlotIndex SegStop = leaveIntvBefore(LastSplitPoint); 1580 useIntv(SegStart, SegStop); 1581 overlapIntv(SegStop, BI.LastInstr); 1582 } 1583 } 1584 1585 //===----------------------------------------------------------------------===// 1586 // Global Live Range Splitting Support 1587 //===----------------------------------------------------------------------===// 1588 1589 // These methods support a method of global live range splitting that uses a 1590 // global algorithm to decide intervals for CFG edges. They will insert split 1591 // points and color intervals in basic blocks while avoiding interference. 1592 // 1593 // Note that splitSingleBlock is also useful for blocks where both CFG edges 1594 // are on the stack. 1595 1596 void SplitEditor::splitLiveThroughBlock(unsigned MBBNum, 1597 unsigned IntvIn, SlotIndex LeaveBefore, 1598 unsigned IntvOut, SlotIndex EnterAfter){ 1599 SlotIndex Start, Stop; 1600 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(MBBNum); 1601 1602 DEBUG(dbgs() << "%bb." << MBBNum << " [" << Start << ';' << Stop << ") intf " 1603 << LeaveBefore << '-' << EnterAfter << ", live-through " 1604 << IntvIn << " -> " << IntvOut); 1605 1606 assert((IntvIn || IntvOut) && "Use splitSingleBlock for isolated blocks"); 1607 1608 assert((!LeaveBefore || LeaveBefore < Stop) && "Interference after block"); 1609 assert((!IntvIn || !LeaveBefore || LeaveBefore > Start) && "Impossible intf"); 1610 assert((!EnterAfter || EnterAfter >= Start) && "Interference before block"); 1611 1612 MachineBasicBlock *MBB = VRM.getMachineFunction().getBlockNumbered(MBBNum); 1613 1614 if (!IntvOut) { 1615 DEBUG(dbgs() << ", spill on entry.\n"); 1616 // 1617 // <<<<<<<<< Possible LeaveBefore interference. 1618 // |-----------| Live through. 1619 // -____________ Spill on entry. 1620 // 1621 selectIntv(IntvIn); 1622 SlotIndex Idx = leaveIntvAtTop(*MBB); 1623 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1624 (void)Idx; 1625 return; 1626 } 1627 1628 if (!IntvIn) { 1629 DEBUG(dbgs() << ", reload on exit.\n"); 1630 // 1631 // >>>>>>> Possible EnterAfter interference. 1632 // |-----------| Live through. 1633 // ___________-- Reload on exit. 1634 // 1635 selectIntv(IntvOut); 1636 SlotIndex Idx = enterIntvAtEnd(*MBB); 1637 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1638 (void)Idx; 1639 return; 1640 } 1641 1642 if (IntvIn == IntvOut && !LeaveBefore && !EnterAfter) { 1643 DEBUG(dbgs() << ", straight through.\n"); 1644 // 1645 // |-----------| Live through. 1646 // ------------- Straight through, same intv, no interference. 1647 // 1648 selectIntv(IntvOut); 1649 useIntv(Start, Stop); 1650 return; 1651 } 1652 1653 // We cannot legally insert splits after LSP. 1654 SlotIndex LSP = SA.getLastSplitPoint(MBBNum); 1655 assert((!IntvOut || !EnterAfter || EnterAfter < LSP) && "Impossible intf"); 1656 1657 if (IntvIn != IntvOut && (!LeaveBefore || !EnterAfter || 1658 LeaveBefore.getBaseIndex() > EnterAfter.getBoundaryIndex())) { 1659 DEBUG(dbgs() << ", switch avoiding interference.\n"); 1660 // 1661 // >>>> <<<< Non-overlapping EnterAfter/LeaveBefore interference. 1662 // |-----------| Live through. 1663 // ------======= Switch intervals between interference. 1664 // 1665 selectIntv(IntvOut); 1666 SlotIndex Idx; 1667 if (LeaveBefore && LeaveBefore < LSP) { 1668 Idx = enterIntvBefore(LeaveBefore); 1669 useIntv(Idx, Stop); 1670 } else { 1671 Idx = enterIntvAtEnd(*MBB); 1672 } 1673 selectIntv(IntvIn); 1674 useIntv(Start, Idx); 1675 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1676 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1677 return; 1678 } 1679 1680 DEBUG(dbgs() << ", create local intv for interference.\n"); 1681 // 1682 // >>><><><><<<< Overlapping EnterAfter/LeaveBefore interference. 1683 // |-----------| Live through. 1684 // ==---------== Switch intervals before/after interference. 1685 // 1686 assert(LeaveBefore <= EnterAfter && "Missed case"); 1687 1688 selectIntv(IntvOut); 1689 SlotIndex Idx = enterIntvAfter(EnterAfter); 1690 useIntv(Idx, Stop); 1691 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1692 1693 selectIntv(IntvIn); 1694 Idx = leaveIntvBefore(LeaveBefore); 1695 useIntv(Start, Idx); 1696 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1697 } 1698 1699 void SplitEditor::splitRegInBlock(const SplitAnalysis::BlockInfo &BI, 1700 unsigned IntvIn, SlotIndex LeaveBefore) { 1701 SlotIndex Start, Stop; 1702 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); 1703 1704 DEBUG(dbgs() << printMBBReference(*BI.MBB) << " [" << Start << ';' << Stop 1705 << "), uses " << BI.FirstInstr << '-' << BI.LastInstr 1706 << ", reg-in " << IntvIn << ", leave before " << LeaveBefore 1707 << (BI.LiveOut ? ", stack-out" : ", killed in block")); 1708 1709 assert(IntvIn && "Must have register in"); 1710 assert(BI.LiveIn && "Must be live-in"); 1711 assert((!LeaveBefore || LeaveBefore > Start) && "Bad interference"); 1712 1713 if (!BI.LiveOut && (!LeaveBefore || LeaveBefore >= BI.LastInstr)) { 1714 DEBUG(dbgs() << " before interference.\n"); 1715 // 1716 // <<< Interference after kill. 1717 // |---o---x | Killed in block. 1718 // ========= Use IntvIn everywhere. 1719 // 1720 selectIntv(IntvIn); 1721 useIntv(Start, BI.LastInstr); 1722 return; 1723 } 1724 1725 SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber()); 1726 1727 if (!LeaveBefore || LeaveBefore > BI.LastInstr.getBoundaryIndex()) { 1728 // 1729 // <<< Possible interference after last use. 1730 // |---o---o---| Live-out on stack. 1731 // =========____ Leave IntvIn after last use. 1732 // 1733 // < Interference after last use. 1734 // |---o---o--o| Live-out on stack, late last use. 1735 // ============ Copy to stack after LSP, overlap IntvIn. 1736 // \_____ Stack interval is live-out. 1737 // 1738 if (BI.LastInstr < LSP) { 1739 DEBUG(dbgs() << ", spill after last use before interference.\n"); 1740 selectIntv(IntvIn); 1741 SlotIndex Idx = leaveIntvAfter(BI.LastInstr); 1742 useIntv(Start, Idx); 1743 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1744 } else { 1745 DEBUG(dbgs() << ", spill before last split point.\n"); 1746 selectIntv(IntvIn); 1747 SlotIndex Idx = leaveIntvBefore(LSP); 1748 overlapIntv(Idx, BI.LastInstr); 1749 useIntv(Start, Idx); 1750 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1751 } 1752 return; 1753 } 1754 1755 // The interference is overlapping somewhere we wanted to use IntvIn. That 1756 // means we need to create a local interval that can be allocated a 1757 // different register. 1758 unsigned LocalIntv = openIntv(); 1759 (void)LocalIntv; 1760 DEBUG(dbgs() << ", creating local interval " << LocalIntv << ".\n"); 1761 1762 if (!BI.LiveOut || BI.LastInstr < LSP) { 1763 // 1764 // <<<<<<< Interference overlapping uses. 1765 // |---o---o---| Live-out on stack. 1766 // =====----____ Leave IntvIn before interference, then spill. 1767 // 1768 SlotIndex To = leaveIntvAfter(BI.LastInstr); 1769 SlotIndex From = enterIntvBefore(LeaveBefore); 1770 useIntv(From, To); 1771 selectIntv(IntvIn); 1772 useIntv(Start, From); 1773 assert((!LeaveBefore || From <= LeaveBefore) && "Interference"); 1774 return; 1775 } 1776 1777 // <<<<<<< Interference overlapping uses. 1778 // |---o---o--o| Live-out on stack, late last use. 1779 // =====------- Copy to stack before LSP, overlap LocalIntv. 1780 // \_____ Stack interval is live-out. 1781 // 1782 SlotIndex To = leaveIntvBefore(LSP); 1783 overlapIntv(To, BI.LastInstr); 1784 SlotIndex From = enterIntvBefore(std::min(To, LeaveBefore)); 1785 useIntv(From, To); 1786 selectIntv(IntvIn); 1787 useIntv(Start, From); 1788 assert((!LeaveBefore || From <= LeaveBefore) && "Interference"); 1789 } 1790 1791 void SplitEditor::splitRegOutBlock(const SplitAnalysis::BlockInfo &BI, 1792 unsigned IntvOut, SlotIndex EnterAfter) { 1793 SlotIndex Start, Stop; 1794 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); 1795 1796 DEBUG(dbgs() << printMBBReference(*BI.MBB) << " [" << Start << ';' << Stop 1797 << "), uses " << BI.FirstInstr << '-' << BI.LastInstr 1798 << ", reg-out " << IntvOut << ", enter after " << EnterAfter 1799 << (BI.LiveIn ? ", stack-in" : ", defined in block")); 1800 1801 SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber()); 1802 1803 assert(IntvOut && "Must have register out"); 1804 assert(BI.LiveOut && "Must be live-out"); 1805 assert((!EnterAfter || EnterAfter < LSP) && "Bad interference"); 1806 1807 if (!BI.LiveIn && (!EnterAfter || EnterAfter <= BI.FirstInstr)) { 1808 DEBUG(dbgs() << " after interference.\n"); 1809 // 1810 // >>>> Interference before def. 1811 // | o---o---| Defined in block. 1812 // ========= Use IntvOut everywhere. 1813 // 1814 selectIntv(IntvOut); 1815 useIntv(BI.FirstInstr, Stop); 1816 return; 1817 } 1818 1819 if (!EnterAfter || EnterAfter < BI.FirstInstr.getBaseIndex()) { 1820 DEBUG(dbgs() << ", reload after interference.\n"); 1821 // 1822 // >>>> Interference before def. 1823 // |---o---o---| Live-through, stack-in. 1824 // ____========= Enter IntvOut before first use. 1825 // 1826 selectIntv(IntvOut); 1827 SlotIndex Idx = enterIntvBefore(std::min(LSP, BI.FirstInstr)); 1828 useIntv(Idx, Stop); 1829 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1830 return; 1831 } 1832 1833 // The interference is overlapping somewhere we wanted to use IntvOut. That 1834 // means we need to create a local interval that can be allocated a 1835 // different register. 1836 DEBUG(dbgs() << ", interference overlaps uses.\n"); 1837 // 1838 // >>>>>>> Interference overlapping uses. 1839 // |---o---o---| Live-through, stack-in. 1840 // ____---====== Create local interval for interference range. 1841 // 1842 selectIntv(IntvOut); 1843 SlotIndex Idx = enterIntvAfter(EnterAfter); 1844 useIntv(Idx, Stop); 1845 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1846 1847 openIntv(); 1848 SlotIndex From = enterIntvBefore(std::min(Idx, BI.FirstInstr)); 1849 useIntv(From, Idx); 1850 } 1851