1 //===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the SplitAnalysis class as well as mutator functions for 11 // live range splitting. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "regalloc" 16 #include "SplitKit.h" 17 #include "LiveRangeEdit.h" 18 #include "VirtRegMap.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 21 #include "llvm/CodeGen/MachineDominators.h" 22 #include "llvm/CodeGen/MachineInstrBuilder.h" 23 #include "llvm/CodeGen/MachineRegisterInfo.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/raw_ostream.h" 26 #include "llvm/Target/TargetInstrInfo.h" 27 #include "llvm/Target/TargetMachine.h" 28 29 using namespace llvm; 30 31 STATISTIC(NumFinished, "Number of splits finished"); 32 STATISTIC(NumSimple, "Number of splits that were simple"); 33 STATISTIC(NumCopies, "Number of copies inserted for splitting"); 34 STATISTIC(NumRemats, "Number of rematerialized defs for splitting"); 35 STATISTIC(NumRepairs, "Number of invalid live ranges repaired"); 36 37 //===----------------------------------------------------------------------===// 38 // Split Analysis 39 //===----------------------------------------------------------------------===// 40 41 SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm, 42 const LiveIntervals &lis, 43 const MachineLoopInfo &mli) 44 : MF(vrm.getMachineFunction()), 45 VRM(vrm), 46 LIS(lis), 47 Loops(mli), 48 TII(*MF.getTarget().getInstrInfo()), 49 CurLI(0), 50 LastSplitPoint(MF.getNumBlockIDs()) {} 51 52 void SplitAnalysis::clear() { 53 UseSlots.clear(); 54 UseBlocks.clear(); 55 ThroughBlocks.clear(); 56 CurLI = 0; 57 DidRepairRange = false; 58 } 59 60 SlotIndex SplitAnalysis::computeLastSplitPoint(unsigned Num) { 61 const MachineBasicBlock *MBB = MF.getBlockNumbered(Num); 62 const MachineBasicBlock *LPad = MBB->getLandingPadSuccessor(); 63 std::pair<SlotIndex, SlotIndex> &LSP = LastSplitPoint[Num]; 64 65 // Compute split points on the first call. The pair is independent of the 66 // current live interval. 67 if (!LSP.first.isValid()) { 68 MachineBasicBlock::const_iterator FirstTerm = MBB->getFirstTerminator(); 69 if (FirstTerm == MBB->end()) 70 LSP.first = LIS.getMBBEndIdx(MBB); 71 else 72 LSP.first = LIS.getInstructionIndex(FirstTerm); 73 74 // If there is a landing pad successor, also find the call instruction. 75 if (!LPad) 76 return LSP.first; 77 // There may not be a call instruction (?) in which case we ignore LPad. 78 LSP.second = LSP.first; 79 for (MachineBasicBlock::const_iterator I = MBB->end(), E = MBB->begin(); 80 I != E;) { 81 --I; 82 if (I->getDesc().isCall()) { 83 LSP.second = LIS.getInstructionIndex(I); 84 break; 85 } 86 } 87 } 88 89 // If CurLI is live into a landing pad successor, move the last split point 90 // back to the call that may throw. 91 if (LPad && LSP.second.isValid() && LIS.isLiveInToMBB(*CurLI, LPad)) 92 return LSP.second; 93 else 94 return LSP.first; 95 } 96 97 /// analyzeUses - Count instructions, basic blocks, and loops using CurLI. 98 void SplitAnalysis::analyzeUses() { 99 assert(UseSlots.empty() && "Call clear first"); 100 101 // First get all the defs from the interval values. This provides the correct 102 // slots for early clobbers. 103 for (LiveInterval::const_vni_iterator I = CurLI->vni_begin(), 104 E = CurLI->vni_end(); I != E; ++I) 105 if (!(*I)->isPHIDef() && !(*I)->isUnused()) 106 UseSlots.push_back((*I)->def); 107 108 // Get use slots form the use-def chain. 109 const MachineRegisterInfo &MRI = MF.getRegInfo(); 110 for (MachineRegisterInfo::use_nodbg_iterator 111 I = MRI.use_nodbg_begin(CurLI->reg), E = MRI.use_nodbg_end(); I != E; 112 ++I) 113 if (!I.getOperand().isUndef()) 114 UseSlots.push_back(LIS.getInstructionIndex(&*I).getDefIndex()); 115 116 array_pod_sort(UseSlots.begin(), UseSlots.end()); 117 118 // Remove duplicates, keeping the smaller slot for each instruction. 119 // That is what we want for early clobbers. 120 UseSlots.erase(std::unique(UseSlots.begin(), UseSlots.end(), 121 SlotIndex::isSameInstr), 122 UseSlots.end()); 123 124 // Compute per-live block info. 125 if (!calcLiveBlockInfo()) { 126 // FIXME: calcLiveBlockInfo found inconsistencies in the live range. 127 // I am looking at you, RegisterCoalescer! 128 DidRepairRange = true; 129 ++NumRepairs; 130 DEBUG(dbgs() << "*** Fixing inconsistent live interval! ***\n"); 131 const_cast<LiveIntervals&>(LIS) 132 .shrinkToUses(const_cast<LiveInterval*>(CurLI)); 133 UseBlocks.clear(); 134 ThroughBlocks.clear(); 135 bool fixed = calcLiveBlockInfo(); 136 (void)fixed; 137 assert(fixed && "Couldn't fix broken live interval"); 138 } 139 140 DEBUG(dbgs() << "Analyze counted " 141 << UseSlots.size() << " instrs in " 142 << UseBlocks.size() << " blocks, through " 143 << NumThroughBlocks << " blocks.\n"); 144 } 145 146 /// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks 147 /// where CurLI is live. 148 bool SplitAnalysis::calcLiveBlockInfo() { 149 ThroughBlocks.resize(MF.getNumBlockIDs()); 150 NumThroughBlocks = NumGapBlocks = 0; 151 if (CurLI->empty()) 152 return true; 153 154 LiveInterval::const_iterator LVI = CurLI->begin(); 155 LiveInterval::const_iterator LVE = CurLI->end(); 156 157 SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE; 158 UseI = UseSlots.begin(); 159 UseE = UseSlots.end(); 160 161 // Loop over basic blocks where CurLI is live. 162 MachineFunction::iterator MFI = LIS.getMBBFromIndex(LVI->start); 163 for (;;) { 164 BlockInfo BI; 165 BI.MBB = MFI; 166 SlotIndex Start, Stop; 167 tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); 168 169 // If the block contains no uses, the range must be live through. At one 170 // point, RegisterCoalescer could create dangling ranges that ended 171 // mid-block. 172 if (UseI == UseE || *UseI >= Stop) { 173 ++NumThroughBlocks; 174 ThroughBlocks.set(BI.MBB->getNumber()); 175 // The range shouldn't end mid-block if there are no uses. This shouldn't 176 // happen. 177 if (LVI->end < Stop) 178 return false; 179 } else { 180 // This block has uses. Find the first and last uses in the block. 181 BI.FirstInstr = *UseI; 182 assert(BI.FirstInstr >= Start); 183 do ++UseI; 184 while (UseI != UseE && *UseI < Stop); 185 BI.LastInstr = UseI[-1]; 186 assert(BI.LastInstr < Stop); 187 188 // LVI is the first live segment overlapping MBB. 189 BI.LiveIn = LVI->start <= Start; 190 191 // When not live in, the first use should be a def. 192 if (!BI.LiveIn) { 193 assert(LVI->start == LVI->valno->def && "Dangling LiveRange start"); 194 assert(LVI->start == BI.FirstInstr && "First instr should be a def"); 195 BI.FirstDef = BI.FirstInstr; 196 } 197 198 // Look for gaps in the live range. 199 BI.LiveOut = true; 200 while (LVI->end < Stop) { 201 SlotIndex LastStop = LVI->end; 202 if (++LVI == LVE || LVI->start >= Stop) { 203 BI.LiveOut = false; 204 BI.LastInstr = LastStop; 205 break; 206 } 207 208 if (LastStop < LVI->start) { 209 // There is a gap in the live range. Create duplicate entries for the 210 // live-in snippet and the live-out snippet. 211 ++NumGapBlocks; 212 213 // Push the Live-in part. 214 BI.LiveOut = false; 215 UseBlocks.push_back(BI); 216 UseBlocks.back().LastInstr = LastStop; 217 218 // Set up BI for the live-out part. 219 BI.LiveIn = false; 220 BI.LiveOut = true; 221 BI.FirstInstr = BI.FirstDef = LVI->start; 222 } 223 224 // A LiveRange that starts in the middle of the block must be a def. 225 assert(LVI->start == LVI->valno->def && "Dangling LiveRange start"); 226 if (!BI.FirstDef) 227 BI.FirstDef = LVI->start; 228 } 229 230 UseBlocks.push_back(BI); 231 232 // LVI is now at LVE or LVI->end >= Stop. 233 if (LVI == LVE) 234 break; 235 } 236 237 // Live segment ends exactly at Stop. Move to the next segment. 238 if (LVI->end == Stop && ++LVI == LVE) 239 break; 240 241 // Pick the next basic block. 242 if (LVI->start < Stop) 243 ++MFI; 244 else 245 MFI = LIS.getMBBFromIndex(LVI->start); 246 } 247 248 assert(getNumLiveBlocks() == countLiveBlocks(CurLI) && "Bad block count"); 249 return true; 250 } 251 252 unsigned SplitAnalysis::countLiveBlocks(const LiveInterval *cli) const { 253 if (cli->empty()) 254 return 0; 255 LiveInterval *li = const_cast<LiveInterval*>(cli); 256 LiveInterval::iterator LVI = li->begin(); 257 LiveInterval::iterator LVE = li->end(); 258 unsigned Count = 0; 259 260 // Loop over basic blocks where li is live. 261 MachineFunction::const_iterator MFI = LIS.getMBBFromIndex(LVI->start); 262 SlotIndex Stop = LIS.getMBBEndIdx(MFI); 263 for (;;) { 264 ++Count; 265 LVI = li->advanceTo(LVI, Stop); 266 if (LVI == LVE) 267 return Count; 268 do { 269 ++MFI; 270 Stop = LIS.getMBBEndIdx(MFI); 271 } while (Stop <= LVI->start); 272 } 273 } 274 275 bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const { 276 unsigned OrigReg = VRM.getOriginal(CurLI->reg); 277 const LiveInterval &Orig = LIS.getInterval(OrigReg); 278 assert(!Orig.empty() && "Splitting empty interval?"); 279 LiveInterval::const_iterator I = Orig.find(Idx); 280 281 // Range containing Idx should begin at Idx. 282 if (I != Orig.end() && I->start <= Idx) 283 return I->start == Idx; 284 285 // Range does not contain Idx, previous must end at Idx. 286 return I != Orig.begin() && (--I)->end == Idx; 287 } 288 289 void SplitAnalysis::analyze(const LiveInterval *li) { 290 clear(); 291 CurLI = li; 292 analyzeUses(); 293 } 294 295 296 //===----------------------------------------------------------------------===// 297 // Split Editor 298 //===----------------------------------------------------------------------===// 299 300 /// Create a new SplitEditor for editing the LiveInterval analyzed by SA. 301 SplitEditor::SplitEditor(SplitAnalysis &sa, 302 LiveIntervals &lis, 303 VirtRegMap &vrm, 304 MachineDominatorTree &mdt) 305 : SA(sa), LIS(lis), VRM(vrm), 306 MRI(vrm.getMachineFunction().getRegInfo()), 307 MDT(mdt), 308 TII(*vrm.getMachineFunction().getTarget().getInstrInfo()), 309 TRI(*vrm.getMachineFunction().getTarget().getRegisterInfo()), 310 Edit(0), 311 OpenIdx(0), 312 SpillMode(SM_Partition), 313 RegAssign(Allocator) 314 {} 315 316 void SplitEditor::reset(LiveRangeEdit &LRE, ComplementSpillMode SM) { 317 Edit = &LRE; 318 SpillMode = SM; 319 OpenIdx = 0; 320 RegAssign.clear(); 321 Values.clear(); 322 323 // Reset the LiveRangeCalc instances needed for this spill mode. 324 LRCalc[0].reset(&VRM.getMachineFunction()); 325 if (SpillMode) 326 LRCalc[1].reset(&VRM.getMachineFunction()); 327 328 // We don't need an AliasAnalysis since we will only be performing 329 // cheap-as-a-copy remats anyway. 330 Edit->anyRematerializable(LIS, TII, 0); 331 } 332 333 void SplitEditor::dump() const { 334 if (RegAssign.empty()) { 335 dbgs() << " empty\n"; 336 return; 337 } 338 339 for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I) 340 dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value(); 341 dbgs() << '\n'; 342 } 343 344 VNInfo *SplitEditor::defValue(unsigned RegIdx, 345 const VNInfo *ParentVNI, 346 SlotIndex Idx) { 347 assert(ParentVNI && "Mapping NULL value"); 348 assert(Idx.isValid() && "Invalid SlotIndex"); 349 assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI"); 350 LiveInterval *LI = Edit->get(RegIdx); 351 352 // Create a new value. 353 VNInfo *VNI = LI->getNextValue(Idx, 0, LIS.getVNInfoAllocator()); 354 355 // Use insert for lookup, so we can add missing values with a second lookup. 356 std::pair<ValueMap::iterator, bool> InsP = 357 Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id), 358 ValueForcePair(VNI, false))); 359 360 // This was the first time (RegIdx, ParentVNI) was mapped. 361 // Keep it as a simple def without any liveness. 362 if (InsP.second) 363 return VNI; 364 365 // If the previous value was a simple mapping, add liveness for it now. 366 if (VNInfo *OldVNI = InsP.first->second.getPointer()) { 367 SlotIndex Def = OldVNI->def; 368 LI->addRange(LiveRange(Def, Def.getNextSlot(), OldVNI)); 369 // No longer a simple mapping. Switch to a complex, non-forced mapping. 370 InsP.first->second = ValueForcePair(); 371 } 372 373 // This is a complex mapping, add liveness for VNI 374 SlotIndex Def = VNI->def; 375 LI->addRange(LiveRange(Def, Def.getNextSlot(), VNI)); 376 377 return VNI; 378 } 379 380 void SplitEditor::forceRecompute(unsigned RegIdx, const VNInfo *ParentVNI) { 381 assert(ParentVNI && "Mapping NULL value"); 382 ValueForcePair &VFP = Values[std::make_pair(RegIdx, ParentVNI->id)]; 383 VNInfo *VNI = VFP.getPointer(); 384 385 // ParentVNI was either unmapped or already complex mapped. Either way, just 386 // set the force bit. 387 if (!VNI) { 388 VFP.setInt(true); 389 return; 390 } 391 392 // This was previously a single mapping. Make sure the old def is represented 393 // by a trivial live range. 394 SlotIndex Def = VNI->def; 395 Edit->get(RegIdx)->addRange(LiveRange(Def, Def.getNextSlot(), VNI)); 396 // Mark as complex mapped, forced. 397 VFP = ValueForcePair(0, true); 398 } 399 400 VNInfo *SplitEditor::defFromParent(unsigned RegIdx, 401 VNInfo *ParentVNI, 402 SlotIndex UseIdx, 403 MachineBasicBlock &MBB, 404 MachineBasicBlock::iterator I) { 405 MachineInstr *CopyMI = 0; 406 SlotIndex Def; 407 LiveInterval *LI = Edit->get(RegIdx); 408 409 // We may be trying to avoid interference that ends at a deleted instruction, 410 // so always begin RegIdx 0 early and all others late. 411 bool Late = RegIdx != 0; 412 413 // Attempt cheap-as-a-copy rematerialization. 414 LiveRangeEdit::Remat RM(ParentVNI); 415 if (Edit->canRematerializeAt(RM, UseIdx, true, LIS)) { 416 Def = Edit->rematerializeAt(MBB, I, LI->reg, RM, LIS, TII, TRI, Late); 417 ++NumRemats; 418 } else { 419 // Can't remat, just insert a copy from parent. 420 CopyMI = BuildMI(MBB, I, DebugLoc(), TII.get(TargetOpcode::COPY), LI->reg) 421 .addReg(Edit->getReg()); 422 Def = LIS.getSlotIndexes()->insertMachineInstrInMaps(CopyMI, Late) 423 .getDefIndex(); 424 ++NumCopies; 425 } 426 427 // Define the value in Reg. 428 VNInfo *VNI = defValue(RegIdx, ParentVNI, Def); 429 VNI->setCopy(CopyMI); 430 return VNI; 431 } 432 433 /// Create a new virtual register and live interval. 434 unsigned SplitEditor::openIntv() { 435 // Create the complement as index 0. 436 if (Edit->empty()) 437 Edit->create(LIS, VRM); 438 439 // Create the open interval. 440 OpenIdx = Edit->size(); 441 Edit->create(LIS, VRM); 442 return OpenIdx; 443 } 444 445 void SplitEditor::selectIntv(unsigned Idx) { 446 assert(Idx != 0 && "Cannot select the complement interval"); 447 assert(Idx < Edit->size() && "Can only select previously opened interval"); 448 DEBUG(dbgs() << " selectIntv " << OpenIdx << " -> " << Idx << '\n'); 449 OpenIdx = Idx; 450 } 451 452 SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) { 453 assert(OpenIdx && "openIntv not called before enterIntvBefore"); 454 DEBUG(dbgs() << " enterIntvBefore " << Idx); 455 Idx = Idx.getBaseIndex(); 456 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 457 if (!ParentVNI) { 458 DEBUG(dbgs() << ": not live\n"); 459 return Idx; 460 } 461 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 462 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 463 assert(MI && "enterIntvBefore called with invalid index"); 464 465 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI); 466 return VNI->def; 467 } 468 469 SlotIndex SplitEditor::enterIntvAfter(SlotIndex Idx) { 470 assert(OpenIdx && "openIntv not called before enterIntvAfter"); 471 DEBUG(dbgs() << " enterIntvAfter " << Idx); 472 Idx = Idx.getBoundaryIndex(); 473 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 474 if (!ParentVNI) { 475 DEBUG(dbgs() << ": not live\n"); 476 return Idx; 477 } 478 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 479 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 480 assert(MI && "enterIntvAfter called with invalid index"); 481 482 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), 483 llvm::next(MachineBasicBlock::iterator(MI))); 484 return VNI->def; 485 } 486 487 SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) { 488 assert(OpenIdx && "openIntv not called before enterIntvAtEnd"); 489 SlotIndex End = LIS.getMBBEndIdx(&MBB); 490 SlotIndex Last = End.getPrevSlot(); 491 DEBUG(dbgs() << " enterIntvAtEnd BB#" << MBB.getNumber() << ", " << Last); 492 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last); 493 if (!ParentVNI) { 494 DEBUG(dbgs() << ": not live\n"); 495 return End; 496 } 497 DEBUG(dbgs() << ": valno " << ParentVNI->id); 498 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB, 499 LIS.getLastSplitPoint(Edit->getParent(), &MBB)); 500 RegAssign.insert(VNI->def, End, OpenIdx); 501 DEBUG(dump()); 502 return VNI->def; 503 } 504 505 /// useIntv - indicate that all instructions in MBB should use OpenLI. 506 void SplitEditor::useIntv(const MachineBasicBlock &MBB) { 507 useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB)); 508 } 509 510 void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) { 511 assert(OpenIdx && "openIntv not called before useIntv"); 512 DEBUG(dbgs() << " useIntv [" << Start << ';' << End << "):"); 513 RegAssign.insert(Start, End, OpenIdx); 514 DEBUG(dump()); 515 } 516 517 SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) { 518 assert(OpenIdx && "openIntv not called before leaveIntvAfter"); 519 DEBUG(dbgs() << " leaveIntvAfter " << Idx); 520 521 // The interval must be live beyond the instruction at Idx. 522 Idx = Idx.getBoundaryIndex(); 523 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 524 if (!ParentVNI) { 525 DEBUG(dbgs() << ": not live\n"); 526 return Idx.getNextSlot(); 527 } 528 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 529 530 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 531 assert(MI && "No instruction at index"); 532 VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), 533 llvm::next(MachineBasicBlock::iterator(MI))); 534 return VNI->def; 535 } 536 537 SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) { 538 assert(OpenIdx && "openIntv not called before leaveIntvBefore"); 539 DEBUG(dbgs() << " leaveIntvBefore " << Idx); 540 541 // The interval must be live into the instruction at Idx. 542 Idx = Idx.getBaseIndex(); 543 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 544 if (!ParentVNI) { 545 DEBUG(dbgs() << ": not live\n"); 546 return Idx.getNextSlot(); 547 } 548 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 549 550 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 551 assert(MI && "No instruction at index"); 552 VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI); 553 return VNI->def; 554 } 555 556 SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) { 557 assert(OpenIdx && "openIntv not called before leaveIntvAtTop"); 558 SlotIndex Start = LIS.getMBBStartIdx(&MBB); 559 DEBUG(dbgs() << " leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start); 560 561 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start); 562 if (!ParentVNI) { 563 DEBUG(dbgs() << ": not live\n"); 564 return Start; 565 } 566 567 VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB, 568 MBB.SkipPHIsAndLabels(MBB.begin())); 569 RegAssign.insert(Start, VNI->def, OpenIdx); 570 DEBUG(dump()); 571 return VNI->def; 572 } 573 574 void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) { 575 assert(OpenIdx && "openIntv not called before overlapIntv"); 576 const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start); 577 assert(ParentVNI == Edit->getParent().getVNInfoAt(End.getPrevSlot()) && 578 "Parent changes value in extended range"); 579 assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) && 580 "Range cannot span basic blocks"); 581 582 // The complement interval will be extended as needed by LRCalc.extend(). 583 if (ParentVNI) 584 forceRecompute(0, ParentVNI); 585 DEBUG(dbgs() << " overlapIntv [" << Start << ';' << End << "):"); 586 RegAssign.insert(Start, End, OpenIdx); 587 DEBUG(dump()); 588 } 589 590 //===----------------------------------------------------------------------===// 591 // Spill modes 592 //===----------------------------------------------------------------------===// 593 594 void SplitEditor::removeBackCopies(SmallVectorImpl<VNInfo*> &Copies) { 595 LiveInterval *LI = Edit->get(0); 596 DEBUG(dbgs() << "Removing " << Copies.size() << " back-copies.\n"); 597 RegAssignMap::iterator AssignI; 598 AssignI.setMap(RegAssign); 599 600 for (unsigned i = 0, e = Copies.size(); i != e; ++i) { 601 VNInfo *VNI = Copies[i]; 602 SlotIndex Def = VNI->def; 603 MachineInstr *MI = LIS.getInstructionFromIndex(Def); 604 assert(MI && "No instruction for back-copy"); 605 606 MachineBasicBlock *MBB = MI->getParent(); 607 MachineBasicBlock::iterator MBBI(MI); 608 bool AtBegin; 609 do AtBegin = MBBI == MBB->begin(); 610 while (!AtBegin && (--MBBI)->isDebugValue()); 611 612 DEBUG(dbgs() << "Removing " << Def << '\t' << *MI); 613 LI->removeValNo(VNI); 614 LIS.RemoveMachineInstrFromMaps(MI); 615 MI->eraseFromParent(); 616 617 // Adjust RegAssign if a register assignment is killed at VNI->def. We 618 // want to avoid calculating the live range of the source register if 619 // possible. 620 AssignI.find(VNI->def.getPrevSlot()); 621 if (!AssignI.valid() || AssignI.start() >= Def) 622 continue; 623 // If MI doesn't kill the assigned register, just leave it. 624 if (AssignI.stop() != Def) 625 continue; 626 unsigned RegIdx = AssignI.value(); 627 if (AtBegin || !MBBI->readsVirtualRegister(Edit->getReg())) { 628 DEBUG(dbgs() << " cannot find simple kill of RegIdx " << RegIdx << '\n'); 629 forceRecompute(RegIdx, Edit->getParent().getVNInfoAt(Def)); 630 } else { 631 SlotIndex Kill = LIS.getInstructionIndex(MBBI).getDefIndex(); 632 DEBUG(dbgs() << " move kill to " << Kill << '\t' << *MBBI); 633 AssignI.setStop(Kill); 634 } 635 } 636 } 637 638 void SplitEditor::hoistCopiesForSize() { 639 // Get the complement interval, always RegIdx 0. 640 LiveInterval *LI = Edit->get(0); 641 LiveInterval *Parent = &Edit->getParent(); 642 643 // Track the nearest common dominator for all back-copies for each ParentVNI, 644 // indexed by ParentVNI->id. 645 typedef std::pair<MachineBasicBlock*, SlotIndex> DomPair; 646 SmallVector<DomPair, 8> NearestDom(Parent->getNumValNums()); 647 648 // Find the nearest common dominator for parent values with multiple 649 // back-copies. If a single back-copy dominates, put it in DomPair.second. 650 for (LiveInterval::vni_iterator VI = LI->vni_begin(), VE = LI->vni_end(); 651 VI != VE; ++VI) { 652 VNInfo *VNI = *VI; 653 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def); 654 assert(ParentVNI && "Parent not live at complement def"); 655 656 // Don't hoist remats. The complement is probably going to disappear 657 // completely anyway. 658 if (Edit->didRematerialize(ParentVNI)) 659 continue; 660 661 MachineBasicBlock *ValMBB = LIS.getMBBFromIndex(VNI->def); 662 DomPair &Dom = NearestDom[ParentVNI->id]; 663 664 // Keep directly defined parent values. This is either a PHI or an 665 // instruction in the complement range. All other copies of ParentVNI 666 // should be eliminated. 667 if (VNI->def == ParentVNI->def) { 668 DEBUG(dbgs() << "Direct complement def at " << VNI->def << '\n'); 669 Dom = DomPair(ValMBB, VNI->def); 670 continue; 671 } 672 // Skip the singly mapped values. There is nothing to gain from hoisting a 673 // single back-copy. 674 if (Values.lookup(std::make_pair(0, ParentVNI->id)).getPointer()) { 675 DEBUG(dbgs() << "Single complement def at " << VNI->def << '\n'); 676 continue; 677 } 678 679 if (!Dom.first) { 680 // First time we see ParentVNI. VNI dominates itself. 681 Dom = DomPair(ValMBB, VNI->def); 682 } else if (Dom.first == ValMBB) { 683 // Two defs in the same block. Pick the earlier def. 684 if (!Dom.second.isValid() || VNI->def < Dom.second) 685 Dom.second = VNI->def; 686 } else { 687 // Different basic blocks. Check if one dominates. 688 MachineBasicBlock *Near = 689 MDT.findNearestCommonDominator(Dom.first, ValMBB); 690 if (Near == ValMBB) 691 // Def ValMBB dominates. 692 Dom = DomPair(ValMBB, VNI->def); 693 else if (Near != Dom.first) 694 // None dominate. Hoist to common dominator, need new def. 695 Dom = DomPair(Near, SlotIndex()); 696 } 697 698 DEBUG(dbgs() << "Multi-mapped complement " << VNI->id << '@' << VNI->def 699 << " for parent " << ParentVNI->id << '@' << ParentVNI->def 700 << " hoist to BB#" << Dom.first->getNumber() << ' ' 701 << Dom.second << '\n'); 702 } 703 704 // Insert the hoisted copies. 705 for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) { 706 DomPair &Dom = NearestDom[i]; 707 if (!Dom.first || Dom.second.isValid()) 708 continue; 709 // This value needs a hoisted copy inserted at the end of Dom.second. 710 SlotIndex Last = LIS.getMBBEndIdx(Dom.first).getPrevSlot(); 711 Dom.second = 712 defFromParent(0, Parent->getValNumInfo(i), Last, *Dom.first, 713 LIS.getLastSplitPoint(Edit->getParent(), Dom.first))->def; 714 } 715 716 // Remove redundant back-copies that are now known to be dominated by another 717 // def with the same value. 718 SmallVector<VNInfo*, 8> BackCopies; 719 for (LiveInterval::vni_iterator VI = LI->vni_begin(), VE = LI->vni_end(); 720 VI != VE; ++VI) { 721 VNInfo *VNI = *VI; 722 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def); 723 const DomPair &Dom = NearestDom[ParentVNI->id]; 724 if (!Dom.first || Dom.second == VNI->def) 725 continue; 726 BackCopies.push_back(VNI); 727 forceRecompute(0, ParentVNI); 728 } 729 removeBackCopies(BackCopies); 730 } 731 732 733 /// transferValues - Transfer all possible values to the new live ranges. 734 /// Values that were rematerialized are left alone, they need LRCalc.extend(). 735 bool SplitEditor::transferValues() { 736 bool Skipped = false; 737 RegAssignMap::const_iterator AssignI = RegAssign.begin(); 738 for (LiveInterval::const_iterator ParentI = Edit->getParent().begin(), 739 ParentE = Edit->getParent().end(); ParentI != ParentE; ++ParentI) { 740 DEBUG(dbgs() << " blit " << *ParentI << ':'); 741 VNInfo *ParentVNI = ParentI->valno; 742 // RegAssign has holes where RegIdx 0 should be used. 743 SlotIndex Start = ParentI->start; 744 AssignI.advanceTo(Start); 745 do { 746 unsigned RegIdx; 747 SlotIndex End = ParentI->end; 748 if (!AssignI.valid()) { 749 RegIdx = 0; 750 } else if (AssignI.start() <= Start) { 751 RegIdx = AssignI.value(); 752 if (AssignI.stop() < End) { 753 End = AssignI.stop(); 754 ++AssignI; 755 } 756 } else { 757 RegIdx = 0; 758 End = std::min(End, AssignI.start()); 759 } 760 761 // The interval [Start;End) is continuously mapped to RegIdx, ParentVNI. 762 DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx); 763 LiveInterval *LI = Edit->get(RegIdx); 764 765 // Check for a simply defined value that can be blitted directly. 766 ValueForcePair VFP = Values.lookup(std::make_pair(RegIdx, ParentVNI->id)); 767 if (VNInfo *VNI = VFP.getPointer()) { 768 DEBUG(dbgs() << ':' << VNI->id); 769 LI->addRange(LiveRange(Start, End, VNI)); 770 Start = End; 771 continue; 772 } 773 774 // Skip values with forced recomputation. 775 if (VFP.getInt()) { 776 DEBUG(dbgs() << "(recalc)"); 777 Skipped = true; 778 Start = End; 779 continue; 780 } 781 782 LiveRangeCalc &LRC = getLRCalc(RegIdx); 783 784 // This value has multiple defs in RegIdx, but it wasn't rematerialized, 785 // so the live range is accurate. Add live-in blocks in [Start;End) to the 786 // LiveInBlocks. 787 MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start); 788 SlotIndex BlockStart, BlockEnd; 789 tie(BlockStart, BlockEnd) = LIS.getSlotIndexes()->getMBBRange(MBB); 790 791 // The first block may be live-in, or it may have its own def. 792 if (Start != BlockStart) { 793 VNInfo *VNI = LI->extendInBlock(BlockStart, std::min(BlockEnd, End)); 794 assert(VNI && "Missing def for complex mapped value"); 795 DEBUG(dbgs() << ':' << VNI->id << "*BB#" << MBB->getNumber()); 796 // MBB has its own def. Is it also live-out? 797 if (BlockEnd <= End) 798 LRC.setLiveOutValue(MBB, VNI); 799 800 // Skip to the next block for live-in. 801 ++MBB; 802 BlockStart = BlockEnd; 803 } 804 805 // Handle the live-in blocks covered by [Start;End). 806 assert(Start <= BlockStart && "Expected live-in block"); 807 while (BlockStart < End) { 808 DEBUG(dbgs() << ">BB#" << MBB->getNumber()); 809 BlockEnd = LIS.getMBBEndIdx(MBB); 810 if (BlockStart == ParentVNI->def) { 811 // This block has the def of a parent PHI, so it isn't live-in. 812 assert(ParentVNI->isPHIDef() && "Non-phi defined at block start?"); 813 VNInfo *VNI = LI->extendInBlock(BlockStart, std::min(BlockEnd, End)); 814 assert(VNI && "Missing def for complex mapped parent PHI"); 815 if (End >= BlockEnd) 816 LRC.setLiveOutValue(MBB, VNI); // Live-out as well. 817 } else { 818 // This block needs a live-in value. The last block covered may not 819 // be live-out. 820 if (End < BlockEnd) 821 LRC.addLiveInBlock(LI, MDT[MBB], End); 822 else { 823 // Live-through, and we don't know the value. 824 LRC.addLiveInBlock(LI, MDT[MBB]); 825 LRC.setLiveOutValue(MBB, 0); 826 } 827 } 828 BlockStart = BlockEnd; 829 ++MBB; 830 } 831 Start = End; 832 } while (Start != ParentI->end); 833 DEBUG(dbgs() << '\n'); 834 } 835 836 LRCalc[0].calculateValues(LIS.getSlotIndexes(), &MDT, 837 &LIS.getVNInfoAllocator()); 838 if (SpillMode) 839 LRCalc[1].calculateValues(LIS.getSlotIndexes(), &MDT, 840 &LIS.getVNInfoAllocator()); 841 842 return Skipped; 843 } 844 845 void SplitEditor::extendPHIKillRanges() { 846 // Extend live ranges to be live-out for successor PHI values. 847 for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(), 848 E = Edit->getParent().vni_end(); I != E; ++I) { 849 const VNInfo *PHIVNI = *I; 850 if (PHIVNI->isUnused() || !PHIVNI->isPHIDef()) 851 continue; 852 unsigned RegIdx = RegAssign.lookup(PHIVNI->def); 853 LiveInterval *LI = Edit->get(RegIdx); 854 LiveRangeCalc &LRC = getLRCalc(RegIdx); 855 MachineBasicBlock *MBB = LIS.getMBBFromIndex(PHIVNI->def); 856 for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), 857 PE = MBB->pred_end(); PI != PE; ++PI) { 858 SlotIndex End = LIS.getMBBEndIdx(*PI); 859 SlotIndex LastUse = End.getPrevSlot(); 860 // The predecessor may not have a live-out value. That is OK, like an 861 // undef PHI operand. 862 if (Edit->getParent().liveAt(LastUse)) { 863 assert(RegAssign.lookup(LastUse) == RegIdx && 864 "Different register assignment in phi predecessor"); 865 LRC.extend(LI, End, 866 LIS.getSlotIndexes(), &MDT, &LIS.getVNInfoAllocator()); 867 } 868 } 869 } 870 } 871 872 /// rewriteAssigned - Rewrite all uses of Edit->getReg(). 873 void SplitEditor::rewriteAssigned(bool ExtendRanges) { 874 for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Edit->getReg()), 875 RE = MRI.reg_end(); RI != RE;) { 876 MachineOperand &MO = RI.getOperand(); 877 MachineInstr *MI = MO.getParent(); 878 ++RI; 879 // LiveDebugVariables should have handled all DBG_VALUE instructions. 880 if (MI->isDebugValue()) { 881 DEBUG(dbgs() << "Zapping " << *MI); 882 MO.setReg(0); 883 continue; 884 } 885 886 // <undef> operands don't really read the register, so it doesn't matter 887 // which register we choose. When the use operand is tied to a def, we must 888 // use the same register as the def, so just do that always. 889 SlotIndex Idx = LIS.getInstructionIndex(MI); 890 if (MO.isDef() || MO.isUndef()) 891 Idx = MO.isEarlyClobber() ? Idx.getUseIndex() : Idx.getDefIndex(); 892 893 // Rewrite to the mapped register at Idx. 894 unsigned RegIdx = RegAssign.lookup(Idx); 895 LiveInterval *LI = Edit->get(RegIdx); 896 MO.setReg(LI->reg); 897 DEBUG(dbgs() << " rewr BB#" << MI->getParent()->getNumber() << '\t' 898 << Idx << ':' << RegIdx << '\t' << *MI); 899 900 // Extend liveness to Idx if the instruction reads reg. 901 if (!ExtendRanges || MO.isUndef()) 902 continue; 903 904 // Skip instructions that don't read Reg. 905 if (MO.isDef()) { 906 if (!MO.getSubReg() && !MO.isEarlyClobber()) 907 continue; 908 // We may wan't to extend a live range for a partial redef, or for a use 909 // tied to an early clobber. 910 Idx = Idx.getPrevSlot(); 911 if (!Edit->getParent().liveAt(Idx)) 912 continue; 913 } else 914 Idx = Idx.getUseIndex(); 915 916 getLRCalc(RegIdx).extend(LI, Idx.getNextSlot(), LIS.getSlotIndexes(), 917 &MDT, &LIS.getVNInfoAllocator()); 918 } 919 } 920 921 void SplitEditor::deleteRematVictims() { 922 SmallVector<MachineInstr*, 8> Dead; 923 for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I){ 924 LiveInterval *LI = *I; 925 for (LiveInterval::const_iterator LII = LI->begin(), LIE = LI->end(); 926 LII != LIE; ++LII) { 927 // Dead defs end at the store slot. 928 if (LII->end != LII->valno->def.getNextSlot()) 929 continue; 930 MachineInstr *MI = LIS.getInstructionFromIndex(LII->valno->def); 931 assert(MI && "Missing instruction for dead def"); 932 MI->addRegisterDead(LI->reg, &TRI); 933 934 if (!MI->allDefsAreDead()) 935 continue; 936 937 DEBUG(dbgs() << "All defs dead: " << *MI); 938 Dead.push_back(MI); 939 } 940 } 941 942 if (Dead.empty()) 943 return; 944 945 Edit->eliminateDeadDefs(Dead, LIS, VRM, TII); 946 } 947 948 void SplitEditor::finish(SmallVectorImpl<unsigned> *LRMap) { 949 ++NumFinished; 950 951 // At this point, the live intervals in Edit contain VNInfos corresponding to 952 // the inserted copies. 953 954 // Add the original defs from the parent interval. 955 for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(), 956 E = Edit->getParent().vni_end(); I != E; ++I) { 957 const VNInfo *ParentVNI = *I; 958 if (ParentVNI->isUnused()) 959 continue; 960 unsigned RegIdx = RegAssign.lookup(ParentVNI->def); 961 VNInfo *VNI = defValue(RegIdx, ParentVNI, ParentVNI->def); 962 VNI->setIsPHIDef(ParentVNI->isPHIDef()); 963 VNI->setCopy(ParentVNI->getCopy()); 964 965 // Force rematted values to be recomputed everywhere. 966 // The new live ranges may be truncated. 967 if (Edit->didRematerialize(ParentVNI)) 968 for (unsigned i = 0, e = Edit->size(); i != e; ++i) 969 forceRecompute(i, ParentVNI); 970 } 971 972 // Hoist back-copies to the complement interval when in spill mode. 973 switch (SpillMode) { 974 case SM_Partition: 975 // Leave all back-copies as is. 976 break; 977 case SM_Size: 978 hoistCopiesForSize(); 979 break; 980 case SM_Speed: 981 llvm_unreachable("Spill mode 'speed' not implemented yet"); 982 break; 983 } 984 985 // Transfer the simply mapped values, check if any are skipped. 986 bool Skipped = transferValues(); 987 if (Skipped) 988 extendPHIKillRanges(); 989 else 990 ++NumSimple; 991 992 // Rewrite virtual registers, possibly extending ranges. 993 rewriteAssigned(Skipped); 994 995 // Delete defs that were rematted everywhere. 996 if (Skipped) 997 deleteRematVictims(); 998 999 // Get rid of unused values and set phi-kill flags. 1000 for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I) 1001 (*I)->RenumberValues(LIS); 1002 1003 // Provide a reverse mapping from original indices to Edit ranges. 1004 if (LRMap) { 1005 LRMap->clear(); 1006 for (unsigned i = 0, e = Edit->size(); i != e; ++i) 1007 LRMap->push_back(i); 1008 } 1009 1010 // Now check if any registers were separated into multiple components. 1011 ConnectedVNInfoEqClasses ConEQ(LIS); 1012 for (unsigned i = 0, e = Edit->size(); i != e; ++i) { 1013 // Don't use iterators, they are invalidated by create() below. 1014 LiveInterval *li = Edit->get(i); 1015 unsigned NumComp = ConEQ.Classify(li); 1016 if (NumComp <= 1) 1017 continue; 1018 DEBUG(dbgs() << " " << NumComp << " components: " << *li << '\n'); 1019 SmallVector<LiveInterval*, 8> dups; 1020 dups.push_back(li); 1021 for (unsigned j = 1; j != NumComp; ++j) 1022 dups.push_back(&Edit->create(LIS, VRM)); 1023 ConEQ.Distribute(&dups[0], MRI); 1024 // The new intervals all map back to i. 1025 if (LRMap) 1026 LRMap->resize(Edit->size(), i); 1027 } 1028 1029 // Calculate spill weight and allocation hints for new intervals. 1030 Edit->calculateRegClassAndHint(VRM.getMachineFunction(), LIS, SA.Loops); 1031 1032 assert(!LRMap || LRMap->size() == Edit->size()); 1033 } 1034 1035 1036 //===----------------------------------------------------------------------===// 1037 // Single Block Splitting 1038 //===----------------------------------------------------------------------===// 1039 1040 bool SplitAnalysis::shouldSplitSingleBlock(const BlockInfo &BI, 1041 bool SingleInstrs) const { 1042 // Always split for multiple instructions. 1043 if (!BI.isOneInstr()) 1044 return true; 1045 // Don't split for single instructions unless explicitly requested. 1046 if (!SingleInstrs) 1047 return false; 1048 // Splitting a live-through range always makes progress. 1049 if (BI.LiveIn && BI.LiveOut) 1050 return true; 1051 // No point in isolating a copy. It has no register class constraints. 1052 if (LIS.getInstructionFromIndex(BI.FirstInstr)->isCopyLike()) 1053 return false; 1054 // Finally, don't isolate an end point that was created by earlier splits. 1055 return isOriginalEndpoint(BI.FirstInstr); 1056 } 1057 1058 void SplitEditor::splitSingleBlock(const SplitAnalysis::BlockInfo &BI) { 1059 openIntv(); 1060 SlotIndex LastSplitPoint = SA.getLastSplitPoint(BI.MBB->getNumber()); 1061 SlotIndex SegStart = enterIntvBefore(std::min(BI.FirstInstr, 1062 LastSplitPoint)); 1063 if (!BI.LiveOut || BI.LastInstr < LastSplitPoint) { 1064 useIntv(SegStart, leaveIntvAfter(BI.LastInstr)); 1065 } else { 1066 // The last use is after the last valid split point. 1067 SlotIndex SegStop = leaveIntvBefore(LastSplitPoint); 1068 useIntv(SegStart, SegStop); 1069 overlapIntv(SegStop, BI.LastInstr); 1070 } 1071 } 1072 1073 1074 //===----------------------------------------------------------------------===// 1075 // Global Live Range Splitting Support 1076 //===----------------------------------------------------------------------===// 1077 1078 // These methods support a method of global live range splitting that uses a 1079 // global algorithm to decide intervals for CFG edges. They will insert split 1080 // points and color intervals in basic blocks while avoiding interference. 1081 // 1082 // Note that splitSingleBlock is also useful for blocks where both CFG edges 1083 // are on the stack. 1084 1085 void SplitEditor::splitLiveThroughBlock(unsigned MBBNum, 1086 unsigned IntvIn, SlotIndex LeaveBefore, 1087 unsigned IntvOut, SlotIndex EnterAfter){ 1088 SlotIndex Start, Stop; 1089 tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(MBBNum); 1090 1091 DEBUG(dbgs() << "BB#" << MBBNum << " [" << Start << ';' << Stop 1092 << ") intf " << LeaveBefore << '-' << EnterAfter 1093 << ", live-through " << IntvIn << " -> " << IntvOut); 1094 1095 assert((IntvIn || IntvOut) && "Use splitSingleBlock for isolated blocks"); 1096 1097 assert((!LeaveBefore || LeaveBefore < Stop) && "Interference after block"); 1098 assert((!IntvIn || !LeaveBefore || LeaveBefore > Start) && "Impossible intf"); 1099 assert((!EnterAfter || EnterAfter >= Start) && "Interference before block"); 1100 1101 MachineBasicBlock *MBB = VRM.getMachineFunction().getBlockNumbered(MBBNum); 1102 1103 if (!IntvOut) { 1104 DEBUG(dbgs() << ", spill on entry.\n"); 1105 // 1106 // <<<<<<<<< Possible LeaveBefore interference. 1107 // |-----------| Live through. 1108 // -____________ Spill on entry. 1109 // 1110 selectIntv(IntvIn); 1111 SlotIndex Idx = leaveIntvAtTop(*MBB); 1112 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1113 (void)Idx; 1114 return; 1115 } 1116 1117 if (!IntvIn) { 1118 DEBUG(dbgs() << ", reload on exit.\n"); 1119 // 1120 // >>>>>>> Possible EnterAfter interference. 1121 // |-----------| Live through. 1122 // ___________-- Reload on exit. 1123 // 1124 selectIntv(IntvOut); 1125 SlotIndex Idx = enterIntvAtEnd(*MBB); 1126 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1127 (void)Idx; 1128 return; 1129 } 1130 1131 if (IntvIn == IntvOut && !LeaveBefore && !EnterAfter) { 1132 DEBUG(dbgs() << ", straight through.\n"); 1133 // 1134 // |-----------| Live through. 1135 // ------------- Straight through, same intv, no interference. 1136 // 1137 selectIntv(IntvOut); 1138 useIntv(Start, Stop); 1139 return; 1140 } 1141 1142 // We cannot legally insert splits after LSP. 1143 SlotIndex LSP = SA.getLastSplitPoint(MBBNum); 1144 assert((!IntvOut || !EnterAfter || EnterAfter < LSP) && "Impossible intf"); 1145 1146 if (IntvIn != IntvOut && (!LeaveBefore || !EnterAfter || 1147 LeaveBefore.getBaseIndex() > EnterAfter.getBoundaryIndex())) { 1148 DEBUG(dbgs() << ", switch avoiding interference.\n"); 1149 // 1150 // >>>> <<<< Non-overlapping EnterAfter/LeaveBefore interference. 1151 // |-----------| Live through. 1152 // ------======= Switch intervals between interference. 1153 // 1154 selectIntv(IntvOut); 1155 SlotIndex Idx; 1156 if (LeaveBefore && LeaveBefore < LSP) { 1157 Idx = enterIntvBefore(LeaveBefore); 1158 useIntv(Idx, Stop); 1159 } else { 1160 Idx = enterIntvAtEnd(*MBB); 1161 } 1162 selectIntv(IntvIn); 1163 useIntv(Start, Idx); 1164 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1165 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1166 return; 1167 } 1168 1169 DEBUG(dbgs() << ", create local intv for interference.\n"); 1170 // 1171 // >>><><><><<<< Overlapping EnterAfter/LeaveBefore interference. 1172 // |-----------| Live through. 1173 // ==---------== Switch intervals before/after interference. 1174 // 1175 assert(LeaveBefore <= EnterAfter && "Missed case"); 1176 1177 selectIntv(IntvOut); 1178 SlotIndex Idx = enterIntvAfter(EnterAfter); 1179 useIntv(Idx, Stop); 1180 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1181 1182 selectIntv(IntvIn); 1183 Idx = leaveIntvBefore(LeaveBefore); 1184 useIntv(Start, Idx); 1185 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1186 } 1187 1188 1189 void SplitEditor::splitRegInBlock(const SplitAnalysis::BlockInfo &BI, 1190 unsigned IntvIn, SlotIndex LeaveBefore) { 1191 SlotIndex Start, Stop; 1192 tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); 1193 1194 DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " [" << Start << ';' << Stop 1195 << "), uses " << BI.FirstInstr << '-' << BI.LastInstr 1196 << ", reg-in " << IntvIn << ", leave before " << LeaveBefore 1197 << (BI.LiveOut ? ", stack-out" : ", killed in block")); 1198 1199 assert(IntvIn && "Must have register in"); 1200 assert(BI.LiveIn && "Must be live-in"); 1201 assert((!LeaveBefore || LeaveBefore > Start) && "Bad interference"); 1202 1203 if (!BI.LiveOut && (!LeaveBefore || LeaveBefore >= BI.LastInstr)) { 1204 DEBUG(dbgs() << " before interference.\n"); 1205 // 1206 // <<< Interference after kill. 1207 // |---o---x | Killed in block. 1208 // ========= Use IntvIn everywhere. 1209 // 1210 selectIntv(IntvIn); 1211 useIntv(Start, BI.LastInstr); 1212 return; 1213 } 1214 1215 SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber()); 1216 1217 if (!LeaveBefore || LeaveBefore > BI.LastInstr.getBoundaryIndex()) { 1218 // 1219 // <<< Possible interference after last use. 1220 // |---o---o---| Live-out on stack. 1221 // =========____ Leave IntvIn after last use. 1222 // 1223 // < Interference after last use. 1224 // |---o---o--o| Live-out on stack, late last use. 1225 // ============ Copy to stack after LSP, overlap IntvIn. 1226 // \_____ Stack interval is live-out. 1227 // 1228 if (BI.LastInstr < LSP) { 1229 DEBUG(dbgs() << ", spill after last use before interference.\n"); 1230 selectIntv(IntvIn); 1231 SlotIndex Idx = leaveIntvAfter(BI.LastInstr); 1232 useIntv(Start, Idx); 1233 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1234 } else { 1235 DEBUG(dbgs() << ", spill before last split point.\n"); 1236 selectIntv(IntvIn); 1237 SlotIndex Idx = leaveIntvBefore(LSP); 1238 overlapIntv(Idx, BI.LastInstr); 1239 useIntv(Start, Idx); 1240 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1241 } 1242 return; 1243 } 1244 1245 // The interference is overlapping somewhere we wanted to use IntvIn. That 1246 // means we need to create a local interval that can be allocated a 1247 // different register. 1248 unsigned LocalIntv = openIntv(); 1249 (void)LocalIntv; 1250 DEBUG(dbgs() << ", creating local interval " << LocalIntv << ".\n"); 1251 1252 if (!BI.LiveOut || BI.LastInstr < LSP) { 1253 // 1254 // <<<<<<< Interference overlapping uses. 1255 // |---o---o---| Live-out on stack. 1256 // =====----____ Leave IntvIn before interference, then spill. 1257 // 1258 SlotIndex To = leaveIntvAfter(BI.LastInstr); 1259 SlotIndex From = enterIntvBefore(LeaveBefore); 1260 useIntv(From, To); 1261 selectIntv(IntvIn); 1262 useIntv(Start, From); 1263 assert((!LeaveBefore || From <= LeaveBefore) && "Interference"); 1264 return; 1265 } 1266 1267 // <<<<<<< Interference overlapping uses. 1268 // |---o---o--o| Live-out on stack, late last use. 1269 // =====------- Copy to stack before LSP, overlap LocalIntv. 1270 // \_____ Stack interval is live-out. 1271 // 1272 SlotIndex To = leaveIntvBefore(LSP); 1273 overlapIntv(To, BI.LastInstr); 1274 SlotIndex From = enterIntvBefore(std::min(To, LeaveBefore)); 1275 useIntv(From, To); 1276 selectIntv(IntvIn); 1277 useIntv(Start, From); 1278 assert((!LeaveBefore || From <= LeaveBefore) && "Interference"); 1279 } 1280 1281 void SplitEditor::splitRegOutBlock(const SplitAnalysis::BlockInfo &BI, 1282 unsigned IntvOut, SlotIndex EnterAfter) { 1283 SlotIndex Start, Stop; 1284 tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); 1285 1286 DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " [" << Start << ';' << Stop 1287 << "), uses " << BI.FirstInstr << '-' << BI.LastInstr 1288 << ", reg-out " << IntvOut << ", enter after " << EnterAfter 1289 << (BI.LiveIn ? ", stack-in" : ", defined in block")); 1290 1291 SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber()); 1292 1293 assert(IntvOut && "Must have register out"); 1294 assert(BI.LiveOut && "Must be live-out"); 1295 assert((!EnterAfter || EnterAfter < LSP) && "Bad interference"); 1296 1297 if (!BI.LiveIn && (!EnterAfter || EnterAfter <= BI.FirstInstr)) { 1298 DEBUG(dbgs() << " after interference.\n"); 1299 // 1300 // >>>> Interference before def. 1301 // | o---o---| Defined in block. 1302 // ========= Use IntvOut everywhere. 1303 // 1304 selectIntv(IntvOut); 1305 useIntv(BI.FirstInstr, Stop); 1306 return; 1307 } 1308 1309 if (!EnterAfter || EnterAfter < BI.FirstInstr.getBaseIndex()) { 1310 DEBUG(dbgs() << ", reload after interference.\n"); 1311 // 1312 // >>>> Interference before def. 1313 // |---o---o---| Live-through, stack-in. 1314 // ____========= Enter IntvOut before first use. 1315 // 1316 selectIntv(IntvOut); 1317 SlotIndex Idx = enterIntvBefore(std::min(LSP, BI.FirstInstr)); 1318 useIntv(Idx, Stop); 1319 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1320 return; 1321 } 1322 1323 // The interference is overlapping somewhere we wanted to use IntvOut. That 1324 // means we need to create a local interval that can be allocated a 1325 // different register. 1326 DEBUG(dbgs() << ", interference overlaps uses.\n"); 1327 // 1328 // >>>>>>> Interference overlapping uses. 1329 // |---o---o---| Live-through, stack-in. 1330 // ____---====== Create local interval for interference range. 1331 // 1332 selectIntv(IntvOut); 1333 SlotIndex Idx = enterIntvAfter(EnterAfter); 1334 useIntv(Idx, Stop); 1335 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1336 1337 openIntv(); 1338 SlotIndex From = enterIntvBefore(std::min(Idx, BI.FirstInstr)); 1339 useIntv(From, Idx); 1340 } 1341