1 //===- SplitKit.cpp - Toolkit for splitting live ranges -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the SplitAnalysis class as well as mutator functions for 10 // live range splitting. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SplitKit.h" 15 #include "LiveRangeCalc.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseSet.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/CodeGen/LiveInterval.h" 24 #include "llvm/CodeGen/LiveIntervals.h" 25 #include "llvm/CodeGen/LiveRangeEdit.h" 26 #include "llvm/CodeGen/MachineBasicBlock.h" 27 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 28 #include "llvm/CodeGen/MachineDominators.h" 29 #include "llvm/CodeGen/MachineFunction.h" 30 #include "llvm/CodeGen/MachineInstr.h" 31 #include "llvm/CodeGen/MachineInstrBuilder.h" 32 #include "llvm/CodeGen/MachineLoopInfo.h" 33 #include "llvm/CodeGen/MachineOperand.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/SlotIndexes.h" 36 #include "llvm/CodeGen/TargetInstrInfo.h" 37 #include "llvm/CodeGen/TargetOpcodes.h" 38 #include "llvm/CodeGen/TargetRegisterInfo.h" 39 #include "llvm/CodeGen/TargetSubtargetInfo.h" 40 #include "llvm/CodeGen/VirtRegMap.h" 41 #include "llvm/Config/llvm-config.h" 42 #include "llvm/IR/DebugLoc.h" 43 #include "llvm/MC/LaneBitmask.h" 44 #include "llvm/Support/Allocator.h" 45 #include "llvm/Support/BlockFrequency.h" 46 #include "llvm/Support/Compiler.h" 47 #include "llvm/Support/Debug.h" 48 #include "llvm/Support/ErrorHandling.h" 49 #include "llvm/Support/raw_ostream.h" 50 #include <algorithm> 51 #include <cassert> 52 #include <iterator> 53 #include <limits> 54 #include <tuple> 55 #include <utility> 56 57 using namespace llvm; 58 59 #define DEBUG_TYPE "regalloc" 60 61 STATISTIC(NumFinished, "Number of splits finished"); 62 STATISTIC(NumSimple, "Number of splits that were simple"); 63 STATISTIC(NumCopies, "Number of copies inserted for splitting"); 64 STATISTIC(NumRemats, "Number of rematerialized defs for splitting"); 65 STATISTIC(NumRepairs, "Number of invalid live ranges repaired"); 66 67 //===----------------------------------------------------------------------===// 68 // Last Insert Point Analysis 69 //===----------------------------------------------------------------------===// 70 71 InsertPointAnalysis::InsertPointAnalysis(const LiveIntervals &lis, 72 unsigned BBNum) 73 : LIS(lis), LastInsertPoint(BBNum) {} 74 75 SlotIndex 76 InsertPointAnalysis::computeLastInsertPoint(const LiveInterval &CurLI, 77 const MachineBasicBlock &MBB) { 78 unsigned Num = MBB.getNumber(); 79 std::pair<SlotIndex, SlotIndex> &LIP = LastInsertPoint[Num]; 80 SlotIndex MBBEnd = LIS.getMBBEndIdx(&MBB); 81 82 SmallVector<const MachineBasicBlock *, 1> EHPadSuccessors; 83 for (const MachineBasicBlock *SMBB : MBB.successors()) 84 if (SMBB->isEHPad()) 85 EHPadSuccessors.push_back(SMBB); 86 87 // Compute insert points on the first call. The pair is independent of the 88 // current live interval. 89 if (!LIP.first.isValid()) { 90 MachineBasicBlock::const_iterator FirstTerm = MBB.getFirstTerminator(); 91 if (FirstTerm == MBB.end()) 92 LIP.first = MBBEnd; 93 else 94 LIP.first = LIS.getInstructionIndex(*FirstTerm); 95 96 // If there is a landing pad successor, also find the call instruction. 97 if (EHPadSuccessors.empty()) 98 return LIP.first; 99 // There may not be a call instruction (?) in which case we ignore LPad. 100 LIP.second = LIP.first; 101 for (MachineBasicBlock::const_iterator I = MBB.end(), E = MBB.begin(); 102 I != E;) { 103 --I; 104 if (I->isCall()) { 105 LIP.second = LIS.getInstructionIndex(*I); 106 break; 107 } 108 } 109 } 110 111 // If CurLI is live into a landing pad successor, move the last insert point 112 // back to the call that may throw. 113 if (!LIP.second) 114 return LIP.first; 115 116 if (none_of(EHPadSuccessors, [&](const MachineBasicBlock *EHPad) { 117 return LIS.isLiveInToMBB(CurLI, EHPad); 118 })) 119 return LIP.first; 120 121 // Find the value leaving MBB. 122 const VNInfo *VNI = CurLI.getVNInfoBefore(MBBEnd); 123 if (!VNI) 124 return LIP.first; 125 126 // If the value leaving MBB was defined after the call in MBB, it can't 127 // really be live-in to the landing pad. This can happen if the landing pad 128 // has a PHI, and this register is undef on the exceptional edge. 129 // <rdar://problem/10664933> 130 if (!SlotIndex::isEarlierInstr(VNI->def, LIP.second) && VNI->def < MBBEnd) 131 return LIP.first; 132 133 // Value is properly live-in to the landing pad. 134 // Only allow inserts before the call. 135 return LIP.second; 136 } 137 138 MachineBasicBlock::iterator 139 InsertPointAnalysis::getLastInsertPointIter(const LiveInterval &CurLI, 140 MachineBasicBlock &MBB) { 141 SlotIndex LIP = getLastInsertPoint(CurLI, MBB); 142 if (LIP == LIS.getMBBEndIdx(&MBB)) 143 return MBB.end(); 144 return LIS.getInstructionFromIndex(LIP); 145 } 146 147 //===----------------------------------------------------------------------===// 148 // Split Analysis 149 //===----------------------------------------------------------------------===// 150 151 SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm, const LiveIntervals &lis, 152 const MachineLoopInfo &mli) 153 : MF(vrm.getMachineFunction()), VRM(vrm), LIS(lis), Loops(mli), 154 TII(*MF.getSubtarget().getInstrInfo()), IPA(lis, MF.getNumBlockIDs()) {} 155 156 void SplitAnalysis::clear() { 157 UseSlots.clear(); 158 UseBlocks.clear(); 159 ThroughBlocks.clear(); 160 CurLI = nullptr; 161 DidRepairRange = false; 162 } 163 164 /// analyzeUses - Count instructions, basic blocks, and loops using CurLI. 165 void SplitAnalysis::analyzeUses() { 166 assert(UseSlots.empty() && "Call clear first"); 167 168 // First get all the defs from the interval values. This provides the correct 169 // slots for early clobbers. 170 for (const VNInfo *VNI : CurLI->valnos) 171 if (!VNI->isPHIDef() && !VNI->isUnused()) 172 UseSlots.push_back(VNI->def); 173 174 // Get use slots form the use-def chain. 175 const MachineRegisterInfo &MRI = MF.getRegInfo(); 176 for (MachineOperand &MO : MRI.use_nodbg_operands(CurLI->reg)) 177 if (!MO.isUndef()) 178 UseSlots.push_back(LIS.getInstructionIndex(*MO.getParent()).getRegSlot()); 179 180 array_pod_sort(UseSlots.begin(), UseSlots.end()); 181 182 // Remove duplicates, keeping the smaller slot for each instruction. 183 // That is what we want for early clobbers. 184 UseSlots.erase(std::unique(UseSlots.begin(), UseSlots.end(), 185 SlotIndex::isSameInstr), 186 UseSlots.end()); 187 188 // Compute per-live block info. 189 if (!calcLiveBlockInfo()) { 190 // FIXME: calcLiveBlockInfo found inconsistencies in the live range. 191 // I am looking at you, RegisterCoalescer! 192 DidRepairRange = true; 193 ++NumRepairs; 194 LLVM_DEBUG(dbgs() << "*** Fixing inconsistent live interval! ***\n"); 195 const_cast<LiveIntervals&>(LIS) 196 .shrinkToUses(const_cast<LiveInterval*>(CurLI)); 197 UseBlocks.clear(); 198 ThroughBlocks.clear(); 199 bool fixed = calcLiveBlockInfo(); 200 (void)fixed; 201 assert(fixed && "Couldn't fix broken live interval"); 202 } 203 204 LLVM_DEBUG(dbgs() << "Analyze counted " << UseSlots.size() << " instrs in " 205 << UseBlocks.size() << " blocks, through " 206 << NumThroughBlocks << " blocks.\n"); 207 } 208 209 /// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks 210 /// where CurLI is live. 211 bool SplitAnalysis::calcLiveBlockInfo() { 212 ThroughBlocks.resize(MF.getNumBlockIDs()); 213 NumThroughBlocks = NumGapBlocks = 0; 214 if (CurLI->empty()) 215 return true; 216 217 LiveInterval::const_iterator LVI = CurLI->begin(); 218 LiveInterval::const_iterator LVE = CurLI->end(); 219 220 SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE; 221 UseI = UseSlots.begin(); 222 UseE = UseSlots.end(); 223 224 // Loop over basic blocks where CurLI is live. 225 MachineFunction::iterator MFI = 226 LIS.getMBBFromIndex(LVI->start)->getIterator(); 227 while (true) { 228 BlockInfo BI; 229 BI.MBB = &*MFI; 230 SlotIndex Start, Stop; 231 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); 232 233 // If the block contains no uses, the range must be live through. At one 234 // point, RegisterCoalescer could create dangling ranges that ended 235 // mid-block. 236 if (UseI == UseE || *UseI >= Stop) { 237 ++NumThroughBlocks; 238 ThroughBlocks.set(BI.MBB->getNumber()); 239 // The range shouldn't end mid-block if there are no uses. This shouldn't 240 // happen. 241 if (LVI->end < Stop) 242 return false; 243 } else { 244 // This block has uses. Find the first and last uses in the block. 245 BI.FirstInstr = *UseI; 246 assert(BI.FirstInstr >= Start); 247 do ++UseI; 248 while (UseI != UseE && *UseI < Stop); 249 BI.LastInstr = UseI[-1]; 250 assert(BI.LastInstr < Stop); 251 252 // LVI is the first live segment overlapping MBB. 253 BI.LiveIn = LVI->start <= Start; 254 255 // When not live in, the first use should be a def. 256 if (!BI.LiveIn) { 257 assert(LVI->start == LVI->valno->def && "Dangling Segment start"); 258 assert(LVI->start == BI.FirstInstr && "First instr should be a def"); 259 BI.FirstDef = BI.FirstInstr; 260 } 261 262 // Look for gaps in the live range. 263 BI.LiveOut = true; 264 while (LVI->end < Stop) { 265 SlotIndex LastStop = LVI->end; 266 if (++LVI == LVE || LVI->start >= Stop) { 267 BI.LiveOut = false; 268 BI.LastInstr = LastStop; 269 break; 270 } 271 272 if (LastStop < LVI->start) { 273 // There is a gap in the live range. Create duplicate entries for the 274 // live-in snippet and the live-out snippet. 275 ++NumGapBlocks; 276 277 // Push the Live-in part. 278 BI.LiveOut = false; 279 UseBlocks.push_back(BI); 280 UseBlocks.back().LastInstr = LastStop; 281 282 // Set up BI for the live-out part. 283 BI.LiveIn = false; 284 BI.LiveOut = true; 285 BI.FirstInstr = BI.FirstDef = LVI->start; 286 } 287 288 // A Segment that starts in the middle of the block must be a def. 289 assert(LVI->start == LVI->valno->def && "Dangling Segment start"); 290 if (!BI.FirstDef) 291 BI.FirstDef = LVI->start; 292 } 293 294 UseBlocks.push_back(BI); 295 296 // LVI is now at LVE or LVI->end >= Stop. 297 if (LVI == LVE) 298 break; 299 } 300 301 // Live segment ends exactly at Stop. Move to the next segment. 302 if (LVI->end == Stop && ++LVI == LVE) 303 break; 304 305 // Pick the next basic block. 306 if (LVI->start < Stop) 307 ++MFI; 308 else 309 MFI = LIS.getMBBFromIndex(LVI->start)->getIterator(); 310 } 311 312 assert(getNumLiveBlocks() == countLiveBlocks(CurLI) && "Bad block count"); 313 return true; 314 } 315 316 unsigned SplitAnalysis::countLiveBlocks(const LiveInterval *cli) const { 317 if (cli->empty()) 318 return 0; 319 LiveInterval *li = const_cast<LiveInterval*>(cli); 320 LiveInterval::iterator LVI = li->begin(); 321 LiveInterval::iterator LVE = li->end(); 322 unsigned Count = 0; 323 324 // Loop over basic blocks where li is live. 325 MachineFunction::const_iterator MFI = 326 LIS.getMBBFromIndex(LVI->start)->getIterator(); 327 SlotIndex Stop = LIS.getMBBEndIdx(&*MFI); 328 while (true) { 329 ++Count; 330 LVI = li->advanceTo(LVI, Stop); 331 if (LVI == LVE) 332 return Count; 333 do { 334 ++MFI; 335 Stop = LIS.getMBBEndIdx(&*MFI); 336 } while (Stop <= LVI->start); 337 } 338 } 339 340 bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const { 341 unsigned OrigReg = VRM.getOriginal(CurLI->reg); 342 const LiveInterval &Orig = LIS.getInterval(OrigReg); 343 assert(!Orig.empty() && "Splitting empty interval?"); 344 LiveInterval::const_iterator I = Orig.find(Idx); 345 346 // Range containing Idx should begin at Idx. 347 if (I != Orig.end() && I->start <= Idx) 348 return I->start == Idx; 349 350 // Range does not contain Idx, previous must end at Idx. 351 return I != Orig.begin() && (--I)->end == Idx; 352 } 353 354 void SplitAnalysis::analyze(const LiveInterval *li) { 355 clear(); 356 CurLI = li; 357 analyzeUses(); 358 } 359 360 //===----------------------------------------------------------------------===// 361 // Split Editor 362 //===----------------------------------------------------------------------===// 363 364 /// Create a new SplitEditor for editing the LiveInterval analyzed by SA. 365 SplitEditor::SplitEditor(SplitAnalysis &sa, AliasAnalysis &aa, 366 LiveIntervals &lis, VirtRegMap &vrm, 367 MachineDominatorTree &mdt, 368 MachineBlockFrequencyInfo &mbfi) 369 : SA(sa), AA(aa), LIS(lis), VRM(vrm), 370 MRI(vrm.getMachineFunction().getRegInfo()), MDT(mdt), 371 TII(*vrm.getMachineFunction().getSubtarget().getInstrInfo()), 372 TRI(*vrm.getMachineFunction().getSubtarget().getRegisterInfo()), 373 MBFI(mbfi), RegAssign(Allocator) {} 374 375 void SplitEditor::reset(LiveRangeEdit &LRE, ComplementSpillMode SM) { 376 Edit = &LRE; 377 SpillMode = SM; 378 OpenIdx = 0; 379 RegAssign.clear(); 380 Values.clear(); 381 382 // Reset the LiveRangeCalc instances needed for this spill mode. 383 LRCalc[0].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT, 384 &LIS.getVNInfoAllocator()); 385 if (SpillMode) 386 LRCalc[1].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT, 387 &LIS.getVNInfoAllocator()); 388 389 // We don't need an AliasAnalysis since we will only be performing 390 // cheap-as-a-copy remats anyway. 391 Edit->anyRematerializable(nullptr); 392 } 393 394 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 395 LLVM_DUMP_METHOD void SplitEditor::dump() const { 396 if (RegAssign.empty()) { 397 dbgs() << " empty\n"; 398 return; 399 } 400 401 for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I) 402 dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value(); 403 dbgs() << '\n'; 404 } 405 #endif 406 407 LiveInterval::SubRange &SplitEditor::getSubRangeForMask(LaneBitmask LM, 408 LiveInterval &LI) { 409 for (LiveInterval::SubRange &S : LI.subranges()) 410 if (S.LaneMask == LM) 411 return S; 412 llvm_unreachable("SubRange for this mask not found"); 413 } 414 415 void SplitEditor::addDeadDef(LiveInterval &LI, VNInfo *VNI, bool Original) { 416 if (!LI.hasSubRanges()) { 417 LI.createDeadDef(VNI); 418 return; 419 } 420 421 SlotIndex Def = VNI->def; 422 if (Original) { 423 // If we are transferring a def from the original interval, make sure 424 // to only update the subranges for which the original subranges had 425 // a def at this location. 426 for (LiveInterval::SubRange &S : LI.subranges()) { 427 auto &PS = getSubRangeForMask(S.LaneMask, Edit->getParent()); 428 VNInfo *PV = PS.getVNInfoAt(Def); 429 if (PV != nullptr && PV->def == Def) 430 S.createDeadDef(Def, LIS.getVNInfoAllocator()); 431 } 432 } else { 433 // This is a new def: either from rematerialization, or from an inserted 434 // copy. Since rematerialization can regenerate a definition of a sub- 435 // register, we need to check which subranges need to be updated. 436 const MachineInstr *DefMI = LIS.getInstructionFromIndex(Def); 437 assert(DefMI != nullptr); 438 LaneBitmask LM; 439 for (const MachineOperand &DefOp : DefMI->defs()) { 440 unsigned R = DefOp.getReg(); 441 if (R != LI.reg) 442 continue; 443 if (unsigned SR = DefOp.getSubReg()) 444 LM |= TRI.getSubRegIndexLaneMask(SR); 445 else { 446 LM = MRI.getMaxLaneMaskForVReg(R); 447 break; 448 } 449 } 450 for (LiveInterval::SubRange &S : LI.subranges()) 451 if ((S.LaneMask & LM).any()) 452 S.createDeadDef(Def, LIS.getVNInfoAllocator()); 453 } 454 } 455 456 VNInfo *SplitEditor::defValue(unsigned RegIdx, 457 const VNInfo *ParentVNI, 458 SlotIndex Idx, 459 bool Original) { 460 assert(ParentVNI && "Mapping NULL value"); 461 assert(Idx.isValid() && "Invalid SlotIndex"); 462 assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI"); 463 LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx)); 464 465 // Create a new value. 466 VNInfo *VNI = LI->getNextValue(Idx, LIS.getVNInfoAllocator()); 467 468 bool Force = LI->hasSubRanges(); 469 ValueForcePair FP(Force ? nullptr : VNI, Force); 470 // Use insert for lookup, so we can add missing values with a second lookup. 471 std::pair<ValueMap::iterator, bool> InsP = 472 Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id), FP)); 473 474 // This was the first time (RegIdx, ParentVNI) was mapped, and it is not 475 // forced. Keep it as a simple def without any liveness. 476 if (!Force && InsP.second) 477 return VNI; 478 479 // If the previous value was a simple mapping, add liveness for it now. 480 if (VNInfo *OldVNI = InsP.first->second.getPointer()) { 481 addDeadDef(*LI, OldVNI, Original); 482 483 // No longer a simple mapping. Switch to a complex mapping. If the 484 // interval has subranges, make it a forced mapping. 485 InsP.first->second = ValueForcePair(nullptr, Force); 486 } 487 488 // This is a complex mapping, add liveness for VNI 489 addDeadDef(*LI, VNI, Original); 490 return VNI; 491 } 492 493 void SplitEditor::forceRecompute(unsigned RegIdx, const VNInfo &ParentVNI) { 494 ValueForcePair &VFP = Values[std::make_pair(RegIdx, ParentVNI.id)]; 495 VNInfo *VNI = VFP.getPointer(); 496 497 // ParentVNI was either unmapped or already complex mapped. Either way, just 498 // set the force bit. 499 if (!VNI) { 500 VFP.setInt(true); 501 return; 502 } 503 504 // This was previously a single mapping. Make sure the old def is represented 505 // by a trivial live range. 506 addDeadDef(LIS.getInterval(Edit->get(RegIdx)), VNI, false); 507 508 // Mark as complex mapped, forced. 509 VFP = ValueForcePair(nullptr, true); 510 } 511 512 SlotIndex SplitEditor::buildSingleSubRegCopy(unsigned FromReg, unsigned ToReg, 513 MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore, 514 unsigned SubIdx, LiveInterval &DestLI, bool Late, SlotIndex Def) { 515 const MCInstrDesc &Desc = TII.get(TargetOpcode::COPY); 516 bool FirstCopy = !Def.isValid(); 517 MachineInstr *CopyMI = BuildMI(MBB, InsertBefore, DebugLoc(), Desc) 518 .addReg(ToReg, RegState::Define | getUndefRegState(FirstCopy) 519 | getInternalReadRegState(!FirstCopy), SubIdx) 520 .addReg(FromReg, 0, SubIdx); 521 522 BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator(); 523 if (FirstCopy) { 524 SlotIndexes &Indexes = *LIS.getSlotIndexes(); 525 Def = Indexes.insertMachineInstrInMaps(*CopyMI, Late).getRegSlot(); 526 } else { 527 CopyMI->bundleWithPred(); 528 } 529 LaneBitmask LaneMask = TRI.getSubRegIndexLaneMask(SubIdx); 530 DestLI.refineSubRanges(Allocator, LaneMask, 531 [Def, &Allocator](LiveInterval::SubRange& SR) { 532 SR.createDeadDef(Def, Allocator); 533 }); 534 return Def; 535 } 536 537 SlotIndex SplitEditor::buildCopy(unsigned FromReg, unsigned ToReg, 538 LaneBitmask LaneMask, MachineBasicBlock &MBB, 539 MachineBasicBlock::iterator InsertBefore, bool Late, unsigned RegIdx) { 540 const MCInstrDesc &Desc = TII.get(TargetOpcode::COPY); 541 if (LaneMask.all() || LaneMask == MRI.getMaxLaneMaskForVReg(FromReg)) { 542 // The full vreg is copied. 543 MachineInstr *CopyMI = 544 BuildMI(MBB, InsertBefore, DebugLoc(), Desc, ToReg).addReg(FromReg); 545 SlotIndexes &Indexes = *LIS.getSlotIndexes(); 546 return Indexes.insertMachineInstrInMaps(*CopyMI, Late).getRegSlot(); 547 } 548 549 // Only a subset of lanes needs to be copied. The following is a simple 550 // heuristic to construct a sequence of COPYs. We could add a target 551 // specific callback if this turns out to be suboptimal. 552 LiveInterval &DestLI = LIS.getInterval(Edit->get(RegIdx)); 553 554 // First pass: Try to find a perfectly matching subregister index. If none 555 // exists find the one covering the most lanemask bits. 556 SmallVector<unsigned, 8> PossibleIndexes; 557 unsigned BestIdx = 0; 558 unsigned BestCover = 0; 559 const TargetRegisterClass *RC = MRI.getRegClass(FromReg); 560 assert(RC == MRI.getRegClass(ToReg) && "Should have same reg class"); 561 for (unsigned Idx = 1, E = TRI.getNumSubRegIndices(); Idx < E; ++Idx) { 562 // Is this index even compatible with the given class? 563 if (TRI.getSubClassWithSubReg(RC, Idx) != RC) 564 continue; 565 LaneBitmask SubRegMask = TRI.getSubRegIndexLaneMask(Idx); 566 // Early exit if we found a perfect match. 567 if (SubRegMask == LaneMask) { 568 BestIdx = Idx; 569 break; 570 } 571 572 // The index must not cover any lanes outside \p LaneMask. 573 if ((SubRegMask & ~LaneMask).any()) 574 continue; 575 576 unsigned PopCount = SubRegMask.getNumLanes(); 577 PossibleIndexes.push_back(Idx); 578 if (PopCount > BestCover) { 579 BestCover = PopCount; 580 BestIdx = Idx; 581 } 582 } 583 584 // Abort if we cannot possibly implement the COPY with the given indexes. 585 if (BestIdx == 0) 586 report_fatal_error("Impossible to implement partial COPY"); 587 588 SlotIndex Def = buildSingleSubRegCopy(FromReg, ToReg, MBB, InsertBefore, 589 BestIdx, DestLI, Late, SlotIndex()); 590 591 // Greedy heuristic: Keep iterating keeping the best covering subreg index 592 // each time. 593 LaneBitmask LanesLeft = LaneMask & ~(TRI.getSubRegIndexLaneMask(BestIdx)); 594 while (LanesLeft.any()) { 595 unsigned BestIdx = 0; 596 int BestCover = std::numeric_limits<int>::min(); 597 for (unsigned Idx : PossibleIndexes) { 598 LaneBitmask SubRegMask = TRI.getSubRegIndexLaneMask(Idx); 599 // Early exit if we found a perfect match. 600 if (SubRegMask == LanesLeft) { 601 BestIdx = Idx; 602 break; 603 } 604 605 // Try to cover as much of the remaining lanes as possible but 606 // as few of the already covered lanes as possible. 607 int Cover = (SubRegMask & LanesLeft).getNumLanes() 608 - (SubRegMask & ~LanesLeft).getNumLanes(); 609 if (Cover > BestCover) { 610 BestCover = Cover; 611 BestIdx = Idx; 612 } 613 } 614 615 if (BestIdx == 0) 616 report_fatal_error("Impossible to implement partial COPY"); 617 618 buildSingleSubRegCopy(FromReg, ToReg, MBB, InsertBefore, BestIdx, 619 DestLI, Late, Def); 620 LanesLeft &= ~TRI.getSubRegIndexLaneMask(BestIdx); 621 } 622 623 return Def; 624 } 625 626 VNInfo *SplitEditor::defFromParent(unsigned RegIdx, 627 VNInfo *ParentVNI, 628 SlotIndex UseIdx, 629 MachineBasicBlock &MBB, 630 MachineBasicBlock::iterator I) { 631 SlotIndex Def; 632 LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx)); 633 634 // We may be trying to avoid interference that ends at a deleted instruction, 635 // so always begin RegIdx 0 early and all others late. 636 bool Late = RegIdx != 0; 637 638 // Attempt cheap-as-a-copy rematerialization. 639 unsigned Original = VRM.getOriginal(Edit->get(RegIdx)); 640 LiveInterval &OrigLI = LIS.getInterval(Original); 641 VNInfo *OrigVNI = OrigLI.getVNInfoAt(UseIdx); 642 643 unsigned Reg = LI->reg; 644 bool DidRemat = false; 645 if (OrigVNI) { 646 LiveRangeEdit::Remat RM(ParentVNI); 647 RM.OrigMI = LIS.getInstructionFromIndex(OrigVNI->def); 648 if (Edit->canRematerializeAt(RM, OrigVNI, UseIdx, true)) { 649 Def = Edit->rematerializeAt(MBB, I, Reg, RM, TRI, Late); 650 ++NumRemats; 651 DidRemat = true; 652 } 653 } 654 if (!DidRemat) { 655 LaneBitmask LaneMask; 656 if (LI->hasSubRanges()) { 657 LaneMask = LaneBitmask::getNone(); 658 for (LiveInterval::SubRange &S : LI->subranges()) 659 LaneMask |= S.LaneMask; 660 } else { 661 LaneMask = LaneBitmask::getAll(); 662 } 663 664 ++NumCopies; 665 Def = buildCopy(Edit->getReg(), Reg, LaneMask, MBB, I, Late, RegIdx); 666 } 667 668 // Define the value in Reg. 669 return defValue(RegIdx, ParentVNI, Def, false); 670 } 671 672 /// Create a new virtual register and live interval. 673 unsigned SplitEditor::openIntv() { 674 // Create the complement as index 0. 675 if (Edit->empty()) 676 Edit->createEmptyInterval(); 677 678 // Create the open interval. 679 OpenIdx = Edit->size(); 680 Edit->createEmptyInterval(); 681 return OpenIdx; 682 } 683 684 void SplitEditor::selectIntv(unsigned Idx) { 685 assert(Idx != 0 && "Cannot select the complement interval"); 686 assert(Idx < Edit->size() && "Can only select previously opened interval"); 687 LLVM_DEBUG(dbgs() << " selectIntv " << OpenIdx << " -> " << Idx << '\n'); 688 OpenIdx = Idx; 689 } 690 691 SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) { 692 assert(OpenIdx && "openIntv not called before enterIntvBefore"); 693 LLVM_DEBUG(dbgs() << " enterIntvBefore " << Idx); 694 Idx = Idx.getBaseIndex(); 695 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 696 if (!ParentVNI) { 697 LLVM_DEBUG(dbgs() << ": not live\n"); 698 return Idx; 699 } 700 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 701 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 702 assert(MI && "enterIntvBefore called with invalid index"); 703 704 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI); 705 return VNI->def; 706 } 707 708 SlotIndex SplitEditor::enterIntvAfter(SlotIndex Idx) { 709 assert(OpenIdx && "openIntv not called before enterIntvAfter"); 710 LLVM_DEBUG(dbgs() << " enterIntvAfter " << Idx); 711 Idx = Idx.getBoundaryIndex(); 712 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 713 if (!ParentVNI) { 714 LLVM_DEBUG(dbgs() << ": not live\n"); 715 return Idx; 716 } 717 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 718 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 719 assert(MI && "enterIntvAfter called with invalid index"); 720 721 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), 722 std::next(MachineBasicBlock::iterator(MI))); 723 return VNI->def; 724 } 725 726 SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) { 727 assert(OpenIdx && "openIntv not called before enterIntvAtEnd"); 728 SlotIndex End = LIS.getMBBEndIdx(&MBB); 729 SlotIndex Last = End.getPrevSlot(); 730 LLVM_DEBUG(dbgs() << " enterIntvAtEnd " << printMBBReference(MBB) << ", " 731 << Last); 732 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last); 733 if (!ParentVNI) { 734 LLVM_DEBUG(dbgs() << ": not live\n"); 735 return End; 736 } 737 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id); 738 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB, 739 SA.getLastSplitPointIter(&MBB)); 740 RegAssign.insert(VNI->def, End, OpenIdx); 741 LLVM_DEBUG(dump()); 742 return VNI->def; 743 } 744 745 /// useIntv - indicate that all instructions in MBB should use OpenLI. 746 void SplitEditor::useIntv(const MachineBasicBlock &MBB) { 747 useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB)); 748 } 749 750 void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) { 751 assert(OpenIdx && "openIntv not called before useIntv"); 752 LLVM_DEBUG(dbgs() << " useIntv [" << Start << ';' << End << "):"); 753 RegAssign.insert(Start, End, OpenIdx); 754 LLVM_DEBUG(dump()); 755 } 756 757 SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) { 758 assert(OpenIdx && "openIntv not called before leaveIntvAfter"); 759 LLVM_DEBUG(dbgs() << " leaveIntvAfter " << Idx); 760 761 // The interval must be live beyond the instruction at Idx. 762 SlotIndex Boundary = Idx.getBoundaryIndex(); 763 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Boundary); 764 if (!ParentVNI) { 765 LLVM_DEBUG(dbgs() << ": not live\n"); 766 return Boundary.getNextSlot(); 767 } 768 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 769 MachineInstr *MI = LIS.getInstructionFromIndex(Boundary); 770 assert(MI && "No instruction at index"); 771 772 // In spill mode, make live ranges as short as possible by inserting the copy 773 // before MI. This is only possible if that instruction doesn't redefine the 774 // value. The inserted COPY is not a kill, and we don't need to recompute 775 // the source live range. The spiller also won't try to hoist this copy. 776 if (SpillMode && !SlotIndex::isSameInstr(ParentVNI->def, Idx) && 777 MI->readsVirtualRegister(Edit->getReg())) { 778 forceRecompute(0, *ParentVNI); 779 defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI); 780 return Idx; 781 } 782 783 VNInfo *VNI = defFromParent(0, ParentVNI, Boundary, *MI->getParent(), 784 std::next(MachineBasicBlock::iterator(MI))); 785 return VNI->def; 786 } 787 788 SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) { 789 assert(OpenIdx && "openIntv not called before leaveIntvBefore"); 790 LLVM_DEBUG(dbgs() << " leaveIntvBefore " << Idx); 791 792 // The interval must be live into the instruction at Idx. 793 Idx = Idx.getBaseIndex(); 794 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 795 if (!ParentVNI) { 796 LLVM_DEBUG(dbgs() << ": not live\n"); 797 return Idx.getNextSlot(); 798 } 799 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 800 801 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 802 assert(MI && "No instruction at index"); 803 VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI); 804 return VNI->def; 805 } 806 807 SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) { 808 assert(OpenIdx && "openIntv not called before leaveIntvAtTop"); 809 SlotIndex Start = LIS.getMBBStartIdx(&MBB); 810 LLVM_DEBUG(dbgs() << " leaveIntvAtTop " << printMBBReference(MBB) << ", " 811 << Start); 812 813 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start); 814 if (!ParentVNI) { 815 LLVM_DEBUG(dbgs() << ": not live\n"); 816 return Start; 817 } 818 819 VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB, 820 MBB.SkipPHIsLabelsAndDebug(MBB.begin())); 821 RegAssign.insert(Start, VNI->def, OpenIdx); 822 LLVM_DEBUG(dump()); 823 return VNI->def; 824 } 825 826 void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) { 827 assert(OpenIdx && "openIntv not called before overlapIntv"); 828 const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start); 829 assert(ParentVNI == Edit->getParent().getVNInfoBefore(End) && 830 "Parent changes value in extended range"); 831 assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) && 832 "Range cannot span basic blocks"); 833 834 // The complement interval will be extended as needed by LRCalc.extend(). 835 if (ParentVNI) 836 forceRecompute(0, *ParentVNI); 837 LLVM_DEBUG(dbgs() << " overlapIntv [" << Start << ';' << End << "):"); 838 RegAssign.insert(Start, End, OpenIdx); 839 LLVM_DEBUG(dump()); 840 } 841 842 //===----------------------------------------------------------------------===// 843 // Spill modes 844 //===----------------------------------------------------------------------===// 845 846 void SplitEditor::removeBackCopies(SmallVectorImpl<VNInfo*> &Copies) { 847 LiveInterval *LI = &LIS.getInterval(Edit->get(0)); 848 LLVM_DEBUG(dbgs() << "Removing " << Copies.size() << " back-copies.\n"); 849 RegAssignMap::iterator AssignI; 850 AssignI.setMap(RegAssign); 851 852 for (unsigned i = 0, e = Copies.size(); i != e; ++i) { 853 SlotIndex Def = Copies[i]->def; 854 MachineInstr *MI = LIS.getInstructionFromIndex(Def); 855 assert(MI && "No instruction for back-copy"); 856 857 MachineBasicBlock *MBB = MI->getParent(); 858 MachineBasicBlock::iterator MBBI(MI); 859 bool AtBegin; 860 do AtBegin = MBBI == MBB->begin(); 861 while (!AtBegin && (--MBBI)->isDebugInstr()); 862 863 LLVM_DEBUG(dbgs() << "Removing " << Def << '\t' << *MI); 864 LIS.removeVRegDefAt(*LI, Def); 865 LIS.RemoveMachineInstrFromMaps(*MI); 866 MI->eraseFromParent(); 867 868 // Adjust RegAssign if a register assignment is killed at Def. We want to 869 // avoid calculating the live range of the source register if possible. 870 AssignI.find(Def.getPrevSlot()); 871 if (!AssignI.valid() || AssignI.start() >= Def) 872 continue; 873 // If MI doesn't kill the assigned register, just leave it. 874 if (AssignI.stop() != Def) 875 continue; 876 unsigned RegIdx = AssignI.value(); 877 if (AtBegin || !MBBI->readsVirtualRegister(Edit->getReg())) { 878 LLVM_DEBUG(dbgs() << " cannot find simple kill of RegIdx " << RegIdx 879 << '\n'); 880 forceRecompute(RegIdx, *Edit->getParent().getVNInfoAt(Def)); 881 } else { 882 SlotIndex Kill = LIS.getInstructionIndex(*MBBI).getRegSlot(); 883 LLVM_DEBUG(dbgs() << " move kill to " << Kill << '\t' << *MBBI); 884 AssignI.setStop(Kill); 885 } 886 } 887 } 888 889 MachineBasicBlock* 890 SplitEditor::findShallowDominator(MachineBasicBlock *MBB, 891 MachineBasicBlock *DefMBB) { 892 if (MBB == DefMBB) 893 return MBB; 894 assert(MDT.dominates(DefMBB, MBB) && "MBB must be dominated by the def."); 895 896 const MachineLoopInfo &Loops = SA.Loops; 897 const MachineLoop *DefLoop = Loops.getLoopFor(DefMBB); 898 MachineDomTreeNode *DefDomNode = MDT[DefMBB]; 899 900 // Best candidate so far. 901 MachineBasicBlock *BestMBB = MBB; 902 unsigned BestDepth = std::numeric_limits<unsigned>::max(); 903 904 while (true) { 905 const MachineLoop *Loop = Loops.getLoopFor(MBB); 906 907 // MBB isn't in a loop, it doesn't get any better. All dominators have a 908 // higher frequency by definition. 909 if (!Loop) { 910 LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB) 911 << " dominates " << printMBBReference(*MBB) 912 << " at depth 0\n"); 913 return MBB; 914 } 915 916 // We'll never be able to exit the DefLoop. 917 if (Loop == DefLoop) { 918 LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB) 919 << " dominates " << printMBBReference(*MBB) 920 << " in the same loop\n"); 921 return MBB; 922 } 923 924 // Least busy dominator seen so far. 925 unsigned Depth = Loop->getLoopDepth(); 926 if (Depth < BestDepth) { 927 BestMBB = MBB; 928 BestDepth = Depth; 929 LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB) 930 << " dominates " << printMBBReference(*MBB) 931 << " at depth " << Depth << '\n'); 932 } 933 934 // Leave loop by going to the immediate dominator of the loop header. 935 // This is a bigger stride than simply walking up the dominator tree. 936 MachineDomTreeNode *IDom = MDT[Loop->getHeader()]->getIDom(); 937 938 // Too far up the dominator tree? 939 if (!IDom || !MDT.dominates(DefDomNode, IDom)) 940 return BestMBB; 941 942 MBB = IDom->getBlock(); 943 } 944 } 945 946 void SplitEditor::computeRedundantBackCopies( 947 DenseSet<unsigned> &NotToHoistSet, SmallVectorImpl<VNInfo *> &BackCopies) { 948 LiveInterval *LI = &LIS.getInterval(Edit->get(0)); 949 LiveInterval *Parent = &Edit->getParent(); 950 SmallVector<SmallPtrSet<VNInfo *, 8>, 8> EqualVNs(Parent->getNumValNums()); 951 SmallPtrSet<VNInfo *, 8> DominatedVNIs; 952 953 // Aggregate VNIs having the same value as ParentVNI. 954 for (VNInfo *VNI : LI->valnos) { 955 if (VNI->isUnused()) 956 continue; 957 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def); 958 EqualVNs[ParentVNI->id].insert(VNI); 959 } 960 961 // For VNI aggregation of each ParentVNI, collect dominated, i.e., 962 // redundant VNIs to BackCopies. 963 for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) { 964 VNInfo *ParentVNI = Parent->getValNumInfo(i); 965 if (!NotToHoistSet.count(ParentVNI->id)) 966 continue; 967 SmallPtrSetIterator<VNInfo *> It1 = EqualVNs[ParentVNI->id].begin(); 968 SmallPtrSetIterator<VNInfo *> It2 = It1; 969 for (; It1 != EqualVNs[ParentVNI->id].end(); ++It1) { 970 It2 = It1; 971 for (++It2; It2 != EqualVNs[ParentVNI->id].end(); ++It2) { 972 if (DominatedVNIs.count(*It1) || DominatedVNIs.count(*It2)) 973 continue; 974 975 MachineBasicBlock *MBB1 = LIS.getMBBFromIndex((*It1)->def); 976 MachineBasicBlock *MBB2 = LIS.getMBBFromIndex((*It2)->def); 977 if (MBB1 == MBB2) { 978 DominatedVNIs.insert((*It1)->def < (*It2)->def ? (*It2) : (*It1)); 979 } else if (MDT.dominates(MBB1, MBB2)) { 980 DominatedVNIs.insert(*It2); 981 } else if (MDT.dominates(MBB2, MBB1)) { 982 DominatedVNIs.insert(*It1); 983 } 984 } 985 } 986 if (!DominatedVNIs.empty()) { 987 forceRecompute(0, *ParentVNI); 988 for (auto VNI : DominatedVNIs) { 989 BackCopies.push_back(VNI); 990 } 991 DominatedVNIs.clear(); 992 } 993 } 994 } 995 996 /// For SM_Size mode, find a common dominator for all the back-copies for 997 /// the same ParentVNI and hoist the backcopies to the dominator BB. 998 /// For SM_Speed mode, if the common dominator is hot and it is not beneficial 999 /// to do the hoisting, simply remove the dominated backcopies for the same 1000 /// ParentVNI. 1001 void SplitEditor::hoistCopies() { 1002 // Get the complement interval, always RegIdx 0. 1003 LiveInterval *LI = &LIS.getInterval(Edit->get(0)); 1004 LiveInterval *Parent = &Edit->getParent(); 1005 1006 // Track the nearest common dominator for all back-copies for each ParentVNI, 1007 // indexed by ParentVNI->id. 1008 using DomPair = std::pair<MachineBasicBlock *, SlotIndex>; 1009 SmallVector<DomPair, 8> NearestDom(Parent->getNumValNums()); 1010 // The total cost of all the back-copies for each ParentVNI. 1011 SmallVector<BlockFrequency, 8> Costs(Parent->getNumValNums()); 1012 // The ParentVNI->id set for which hoisting back-copies are not beneficial 1013 // for Speed. 1014 DenseSet<unsigned> NotToHoistSet; 1015 1016 // Find the nearest common dominator for parent values with multiple 1017 // back-copies. If a single back-copy dominates, put it in DomPair.second. 1018 for (VNInfo *VNI : LI->valnos) { 1019 if (VNI->isUnused()) 1020 continue; 1021 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def); 1022 assert(ParentVNI && "Parent not live at complement def"); 1023 1024 // Don't hoist remats. The complement is probably going to disappear 1025 // completely anyway. 1026 if (Edit->didRematerialize(ParentVNI)) 1027 continue; 1028 1029 MachineBasicBlock *ValMBB = LIS.getMBBFromIndex(VNI->def); 1030 1031 DomPair &Dom = NearestDom[ParentVNI->id]; 1032 1033 // Keep directly defined parent values. This is either a PHI or an 1034 // instruction in the complement range. All other copies of ParentVNI 1035 // should be eliminated. 1036 if (VNI->def == ParentVNI->def) { 1037 LLVM_DEBUG(dbgs() << "Direct complement def at " << VNI->def << '\n'); 1038 Dom = DomPair(ValMBB, VNI->def); 1039 continue; 1040 } 1041 // Skip the singly mapped values. There is nothing to gain from hoisting a 1042 // single back-copy. 1043 if (Values.lookup(std::make_pair(0, ParentVNI->id)).getPointer()) { 1044 LLVM_DEBUG(dbgs() << "Single complement def at " << VNI->def << '\n'); 1045 continue; 1046 } 1047 1048 if (!Dom.first) { 1049 // First time we see ParentVNI. VNI dominates itself. 1050 Dom = DomPair(ValMBB, VNI->def); 1051 } else if (Dom.first == ValMBB) { 1052 // Two defs in the same block. Pick the earlier def. 1053 if (!Dom.second.isValid() || VNI->def < Dom.second) 1054 Dom.second = VNI->def; 1055 } else { 1056 // Different basic blocks. Check if one dominates. 1057 MachineBasicBlock *Near = 1058 MDT.findNearestCommonDominator(Dom.first, ValMBB); 1059 if (Near == ValMBB) 1060 // Def ValMBB dominates. 1061 Dom = DomPair(ValMBB, VNI->def); 1062 else if (Near != Dom.first) 1063 // None dominate. Hoist to common dominator, need new def. 1064 Dom = DomPair(Near, SlotIndex()); 1065 Costs[ParentVNI->id] += MBFI.getBlockFreq(ValMBB); 1066 } 1067 1068 LLVM_DEBUG(dbgs() << "Multi-mapped complement " << VNI->id << '@' 1069 << VNI->def << " for parent " << ParentVNI->id << '@' 1070 << ParentVNI->def << " hoist to " 1071 << printMBBReference(*Dom.first) << ' ' << Dom.second 1072 << '\n'); 1073 } 1074 1075 // Insert the hoisted copies. 1076 for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) { 1077 DomPair &Dom = NearestDom[i]; 1078 if (!Dom.first || Dom.second.isValid()) 1079 continue; 1080 // This value needs a hoisted copy inserted at the end of Dom.first. 1081 VNInfo *ParentVNI = Parent->getValNumInfo(i); 1082 MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(ParentVNI->def); 1083 // Get a less loopy dominator than Dom.first. 1084 Dom.first = findShallowDominator(Dom.first, DefMBB); 1085 if (SpillMode == SM_Speed && 1086 MBFI.getBlockFreq(Dom.first) > Costs[ParentVNI->id]) { 1087 NotToHoistSet.insert(ParentVNI->id); 1088 continue; 1089 } 1090 SlotIndex Last = LIS.getMBBEndIdx(Dom.first).getPrevSlot(); 1091 Dom.second = 1092 defFromParent(0, ParentVNI, Last, *Dom.first, 1093 SA.getLastSplitPointIter(Dom.first))->def; 1094 } 1095 1096 // Remove redundant back-copies that are now known to be dominated by another 1097 // def with the same value. 1098 SmallVector<VNInfo*, 8> BackCopies; 1099 for (VNInfo *VNI : LI->valnos) { 1100 if (VNI->isUnused()) 1101 continue; 1102 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def); 1103 const DomPair &Dom = NearestDom[ParentVNI->id]; 1104 if (!Dom.first || Dom.second == VNI->def || 1105 NotToHoistSet.count(ParentVNI->id)) 1106 continue; 1107 BackCopies.push_back(VNI); 1108 forceRecompute(0, *ParentVNI); 1109 } 1110 1111 // If it is not beneficial to hoist all the BackCopies, simply remove 1112 // redundant BackCopies in speed mode. 1113 if (SpillMode == SM_Speed && !NotToHoistSet.empty()) 1114 computeRedundantBackCopies(NotToHoistSet, BackCopies); 1115 1116 removeBackCopies(BackCopies); 1117 } 1118 1119 /// transferValues - Transfer all possible values to the new live ranges. 1120 /// Values that were rematerialized are left alone, they need LRCalc.extend(). 1121 bool SplitEditor::transferValues() { 1122 bool Skipped = false; 1123 RegAssignMap::const_iterator AssignI = RegAssign.begin(); 1124 for (const LiveRange::Segment &S : Edit->getParent()) { 1125 LLVM_DEBUG(dbgs() << " blit " << S << ':'); 1126 VNInfo *ParentVNI = S.valno; 1127 // RegAssign has holes where RegIdx 0 should be used. 1128 SlotIndex Start = S.start; 1129 AssignI.advanceTo(Start); 1130 do { 1131 unsigned RegIdx; 1132 SlotIndex End = S.end; 1133 if (!AssignI.valid()) { 1134 RegIdx = 0; 1135 } else if (AssignI.start() <= Start) { 1136 RegIdx = AssignI.value(); 1137 if (AssignI.stop() < End) { 1138 End = AssignI.stop(); 1139 ++AssignI; 1140 } 1141 } else { 1142 RegIdx = 0; 1143 End = std::min(End, AssignI.start()); 1144 } 1145 1146 // The interval [Start;End) is continuously mapped to RegIdx, ParentVNI. 1147 LLVM_DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx << '(' 1148 << printReg(Edit->get(RegIdx)) << ')'); 1149 LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx)); 1150 1151 // Check for a simply defined value that can be blitted directly. 1152 ValueForcePair VFP = Values.lookup(std::make_pair(RegIdx, ParentVNI->id)); 1153 if (VNInfo *VNI = VFP.getPointer()) { 1154 LLVM_DEBUG(dbgs() << ':' << VNI->id); 1155 LI.addSegment(LiveInterval::Segment(Start, End, VNI)); 1156 Start = End; 1157 continue; 1158 } 1159 1160 // Skip values with forced recomputation. 1161 if (VFP.getInt()) { 1162 LLVM_DEBUG(dbgs() << "(recalc)"); 1163 Skipped = true; 1164 Start = End; 1165 continue; 1166 } 1167 1168 LiveRangeCalc &LRC = getLRCalc(RegIdx); 1169 1170 // This value has multiple defs in RegIdx, but it wasn't rematerialized, 1171 // so the live range is accurate. Add live-in blocks in [Start;End) to the 1172 // LiveInBlocks. 1173 MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start)->getIterator(); 1174 SlotIndex BlockStart, BlockEnd; 1175 std::tie(BlockStart, BlockEnd) = LIS.getSlotIndexes()->getMBBRange(&*MBB); 1176 1177 // The first block may be live-in, or it may have its own def. 1178 if (Start != BlockStart) { 1179 VNInfo *VNI = LI.extendInBlock(BlockStart, std::min(BlockEnd, End)); 1180 assert(VNI && "Missing def for complex mapped value"); 1181 LLVM_DEBUG(dbgs() << ':' << VNI->id << "*" << printMBBReference(*MBB)); 1182 // MBB has its own def. Is it also live-out? 1183 if (BlockEnd <= End) 1184 LRC.setLiveOutValue(&*MBB, VNI); 1185 1186 // Skip to the next block for live-in. 1187 ++MBB; 1188 BlockStart = BlockEnd; 1189 } 1190 1191 // Handle the live-in blocks covered by [Start;End). 1192 assert(Start <= BlockStart && "Expected live-in block"); 1193 while (BlockStart < End) { 1194 LLVM_DEBUG(dbgs() << ">" << printMBBReference(*MBB)); 1195 BlockEnd = LIS.getMBBEndIdx(&*MBB); 1196 if (BlockStart == ParentVNI->def) { 1197 // This block has the def of a parent PHI, so it isn't live-in. 1198 assert(ParentVNI->isPHIDef() && "Non-phi defined at block start?"); 1199 VNInfo *VNI = LI.extendInBlock(BlockStart, std::min(BlockEnd, End)); 1200 assert(VNI && "Missing def for complex mapped parent PHI"); 1201 if (End >= BlockEnd) 1202 LRC.setLiveOutValue(&*MBB, VNI); // Live-out as well. 1203 } else { 1204 // This block needs a live-in value. The last block covered may not 1205 // be live-out. 1206 if (End < BlockEnd) 1207 LRC.addLiveInBlock(LI, MDT[&*MBB], End); 1208 else { 1209 // Live-through, and we don't know the value. 1210 LRC.addLiveInBlock(LI, MDT[&*MBB]); 1211 LRC.setLiveOutValue(&*MBB, nullptr); 1212 } 1213 } 1214 BlockStart = BlockEnd; 1215 ++MBB; 1216 } 1217 Start = End; 1218 } while (Start != S.end); 1219 LLVM_DEBUG(dbgs() << '\n'); 1220 } 1221 1222 LRCalc[0].calculateValues(); 1223 if (SpillMode) 1224 LRCalc[1].calculateValues(); 1225 1226 return Skipped; 1227 } 1228 1229 static bool removeDeadSegment(SlotIndex Def, LiveRange &LR) { 1230 const LiveRange::Segment *Seg = LR.getSegmentContaining(Def); 1231 if (Seg == nullptr) 1232 return true; 1233 if (Seg->end != Def.getDeadSlot()) 1234 return false; 1235 // This is a dead PHI. Remove it. 1236 LR.removeSegment(*Seg, true); 1237 return true; 1238 } 1239 1240 void SplitEditor::extendPHIRange(MachineBasicBlock &B, LiveRangeCalc &LRC, 1241 LiveRange &LR, LaneBitmask LM, 1242 ArrayRef<SlotIndex> Undefs) { 1243 for (MachineBasicBlock *P : B.predecessors()) { 1244 SlotIndex End = LIS.getMBBEndIdx(P); 1245 SlotIndex LastUse = End.getPrevSlot(); 1246 // The predecessor may not have a live-out value. That is OK, like an 1247 // undef PHI operand. 1248 LiveInterval &PLI = Edit->getParent(); 1249 // Need the cast because the inputs to ?: would otherwise be deemed 1250 // "incompatible": SubRange vs LiveInterval. 1251 LiveRange &PSR = !LM.all() ? getSubRangeForMask(LM, PLI) 1252 : static_cast<LiveRange&>(PLI); 1253 if (PSR.liveAt(LastUse)) 1254 LRC.extend(LR, End, /*PhysReg=*/0, Undefs); 1255 } 1256 } 1257 1258 void SplitEditor::extendPHIKillRanges() { 1259 // Extend live ranges to be live-out for successor PHI values. 1260 1261 // Visit each PHI def slot in the parent live interval. If the def is dead, 1262 // remove it. Otherwise, extend the live interval to reach the end indexes 1263 // of all predecessor blocks. 1264 1265 LiveInterval &ParentLI = Edit->getParent(); 1266 for (const VNInfo *V : ParentLI.valnos) { 1267 if (V->isUnused() || !V->isPHIDef()) 1268 continue; 1269 1270 unsigned RegIdx = RegAssign.lookup(V->def); 1271 LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx)); 1272 LiveRangeCalc &LRC = getLRCalc(RegIdx); 1273 MachineBasicBlock &B = *LIS.getMBBFromIndex(V->def); 1274 if (!removeDeadSegment(V->def, LI)) 1275 extendPHIRange(B, LRC, LI, LaneBitmask::getAll(), /*Undefs=*/{}); 1276 } 1277 1278 SmallVector<SlotIndex, 4> Undefs; 1279 LiveRangeCalc SubLRC; 1280 1281 for (LiveInterval::SubRange &PS : ParentLI.subranges()) { 1282 for (const VNInfo *V : PS.valnos) { 1283 if (V->isUnused() || !V->isPHIDef()) 1284 continue; 1285 unsigned RegIdx = RegAssign.lookup(V->def); 1286 LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx)); 1287 LiveInterval::SubRange &S = getSubRangeForMask(PS.LaneMask, LI); 1288 if (removeDeadSegment(V->def, S)) 1289 continue; 1290 1291 MachineBasicBlock &B = *LIS.getMBBFromIndex(V->def); 1292 SubLRC.reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT, 1293 &LIS.getVNInfoAllocator()); 1294 Undefs.clear(); 1295 LI.computeSubRangeUndefs(Undefs, PS.LaneMask, MRI, *LIS.getSlotIndexes()); 1296 extendPHIRange(B, SubLRC, S, PS.LaneMask, Undefs); 1297 } 1298 } 1299 } 1300 1301 /// rewriteAssigned - Rewrite all uses of Edit->getReg(). 1302 void SplitEditor::rewriteAssigned(bool ExtendRanges) { 1303 struct ExtPoint { 1304 ExtPoint(const MachineOperand &O, unsigned R, SlotIndex N) 1305 : MO(O), RegIdx(R), Next(N) {} 1306 1307 MachineOperand MO; 1308 unsigned RegIdx; 1309 SlotIndex Next; 1310 }; 1311 1312 SmallVector<ExtPoint,4> ExtPoints; 1313 1314 for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Edit->getReg()), 1315 RE = MRI.reg_end(); RI != RE;) { 1316 MachineOperand &MO = *RI; 1317 MachineInstr *MI = MO.getParent(); 1318 ++RI; 1319 // LiveDebugVariables should have handled all DBG_VALUE instructions. 1320 if (MI->isDebugValue()) { 1321 LLVM_DEBUG(dbgs() << "Zapping " << *MI); 1322 MO.setReg(0); 1323 continue; 1324 } 1325 1326 // <undef> operands don't really read the register, so it doesn't matter 1327 // which register we choose. When the use operand is tied to a def, we must 1328 // use the same register as the def, so just do that always. 1329 SlotIndex Idx = LIS.getInstructionIndex(*MI); 1330 if (MO.isDef() || MO.isUndef()) 1331 Idx = Idx.getRegSlot(MO.isEarlyClobber()); 1332 1333 // Rewrite to the mapped register at Idx. 1334 unsigned RegIdx = RegAssign.lookup(Idx); 1335 LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx)); 1336 MO.setReg(LI.reg); 1337 LLVM_DEBUG(dbgs() << " rewr " << printMBBReference(*MI->getParent()) 1338 << '\t' << Idx << ':' << RegIdx << '\t' << *MI); 1339 1340 // Extend liveness to Idx if the instruction reads reg. 1341 if (!ExtendRanges || MO.isUndef()) 1342 continue; 1343 1344 // Skip instructions that don't read Reg. 1345 if (MO.isDef()) { 1346 if (!MO.getSubReg() && !MO.isEarlyClobber()) 1347 continue; 1348 // We may want to extend a live range for a partial redef, or for a use 1349 // tied to an early clobber. 1350 Idx = Idx.getPrevSlot(); 1351 if (!Edit->getParent().liveAt(Idx)) 1352 continue; 1353 } else 1354 Idx = Idx.getRegSlot(true); 1355 1356 SlotIndex Next = Idx.getNextSlot(); 1357 if (LI.hasSubRanges()) { 1358 // We have to delay extending subranges until we have seen all operands 1359 // defining the register. This is because a <def,read-undef> operand 1360 // will create an "undef" point, and we cannot extend any subranges 1361 // until all of them have been accounted for. 1362 if (MO.isUse()) 1363 ExtPoints.push_back(ExtPoint(MO, RegIdx, Next)); 1364 } else { 1365 LiveRangeCalc &LRC = getLRCalc(RegIdx); 1366 LRC.extend(LI, Next, 0, ArrayRef<SlotIndex>()); 1367 } 1368 } 1369 1370 for (ExtPoint &EP : ExtPoints) { 1371 LiveInterval &LI = LIS.getInterval(Edit->get(EP.RegIdx)); 1372 assert(LI.hasSubRanges()); 1373 1374 LiveRangeCalc SubLRC; 1375 unsigned Reg = EP.MO.getReg(), Sub = EP.MO.getSubReg(); 1376 LaneBitmask LM = Sub != 0 ? TRI.getSubRegIndexLaneMask(Sub) 1377 : MRI.getMaxLaneMaskForVReg(Reg); 1378 for (LiveInterval::SubRange &S : LI.subranges()) { 1379 if ((S.LaneMask & LM).none()) 1380 continue; 1381 // The problem here can be that the new register may have been created 1382 // for a partially defined original register. For example: 1383 // %0:subreg_hireg<def,read-undef> = ... 1384 // ... 1385 // %1 = COPY %0 1386 if (S.empty()) 1387 continue; 1388 SubLRC.reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT, 1389 &LIS.getVNInfoAllocator()); 1390 SmallVector<SlotIndex, 4> Undefs; 1391 LI.computeSubRangeUndefs(Undefs, S.LaneMask, MRI, *LIS.getSlotIndexes()); 1392 SubLRC.extend(S, EP.Next, 0, Undefs); 1393 } 1394 } 1395 1396 for (unsigned R : *Edit) { 1397 LiveInterval &LI = LIS.getInterval(R); 1398 if (!LI.hasSubRanges()) 1399 continue; 1400 LI.clear(); 1401 LI.removeEmptySubRanges(); 1402 LIS.constructMainRangeFromSubranges(LI); 1403 } 1404 } 1405 1406 void SplitEditor::deleteRematVictims() { 1407 SmallVector<MachineInstr*, 8> Dead; 1408 for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I){ 1409 LiveInterval *LI = &LIS.getInterval(*I); 1410 for (const LiveRange::Segment &S : LI->segments) { 1411 // Dead defs end at the dead slot. 1412 if (S.end != S.valno->def.getDeadSlot()) 1413 continue; 1414 if (S.valno->isPHIDef()) 1415 continue; 1416 MachineInstr *MI = LIS.getInstructionFromIndex(S.valno->def); 1417 assert(MI && "Missing instruction for dead def"); 1418 MI->addRegisterDead(LI->reg, &TRI); 1419 1420 if (!MI->allDefsAreDead()) 1421 continue; 1422 1423 LLVM_DEBUG(dbgs() << "All defs dead: " << *MI); 1424 Dead.push_back(MI); 1425 } 1426 } 1427 1428 if (Dead.empty()) 1429 return; 1430 1431 Edit->eliminateDeadDefs(Dead, None, &AA); 1432 } 1433 1434 void SplitEditor::forceRecomputeVNI(const VNInfo &ParentVNI) { 1435 // Fast-path for common case. 1436 if (!ParentVNI.isPHIDef()) { 1437 for (unsigned I = 0, E = Edit->size(); I != E; ++I) 1438 forceRecompute(I, ParentVNI); 1439 return; 1440 } 1441 1442 // Trace value through phis. 1443 SmallPtrSet<const VNInfo *, 8> Visited; ///< whether VNI was/is in worklist. 1444 SmallVector<const VNInfo *, 4> WorkList; 1445 Visited.insert(&ParentVNI); 1446 WorkList.push_back(&ParentVNI); 1447 1448 const LiveInterval &ParentLI = Edit->getParent(); 1449 const SlotIndexes &Indexes = *LIS.getSlotIndexes(); 1450 do { 1451 const VNInfo &VNI = *WorkList.back(); 1452 WorkList.pop_back(); 1453 for (unsigned I = 0, E = Edit->size(); I != E; ++I) 1454 forceRecompute(I, VNI); 1455 if (!VNI.isPHIDef()) 1456 continue; 1457 1458 MachineBasicBlock &MBB = *Indexes.getMBBFromIndex(VNI.def); 1459 for (const MachineBasicBlock *Pred : MBB.predecessors()) { 1460 SlotIndex PredEnd = Indexes.getMBBEndIdx(Pred); 1461 VNInfo *PredVNI = ParentLI.getVNInfoBefore(PredEnd); 1462 assert(PredVNI && "Value available in PhiVNI predecessor"); 1463 if (Visited.insert(PredVNI).second) 1464 WorkList.push_back(PredVNI); 1465 } 1466 } while(!WorkList.empty()); 1467 } 1468 1469 void SplitEditor::finish(SmallVectorImpl<unsigned> *LRMap) { 1470 ++NumFinished; 1471 1472 // At this point, the live intervals in Edit contain VNInfos corresponding to 1473 // the inserted copies. 1474 1475 // Add the original defs from the parent interval. 1476 for (const VNInfo *ParentVNI : Edit->getParent().valnos) { 1477 if (ParentVNI->isUnused()) 1478 continue; 1479 unsigned RegIdx = RegAssign.lookup(ParentVNI->def); 1480 defValue(RegIdx, ParentVNI, ParentVNI->def, true); 1481 1482 // Force rematted values to be recomputed everywhere. 1483 // The new live ranges may be truncated. 1484 if (Edit->didRematerialize(ParentVNI)) 1485 forceRecomputeVNI(*ParentVNI); 1486 } 1487 1488 // Hoist back-copies to the complement interval when in spill mode. 1489 switch (SpillMode) { 1490 case SM_Partition: 1491 // Leave all back-copies as is. 1492 break; 1493 case SM_Size: 1494 case SM_Speed: 1495 // hoistCopies will behave differently between size and speed. 1496 hoistCopies(); 1497 } 1498 1499 // Transfer the simply mapped values, check if any are skipped. 1500 bool Skipped = transferValues(); 1501 1502 // Rewrite virtual registers, possibly extending ranges. 1503 rewriteAssigned(Skipped); 1504 1505 if (Skipped) 1506 extendPHIKillRanges(); 1507 else 1508 ++NumSimple; 1509 1510 // Delete defs that were rematted everywhere. 1511 if (Skipped) 1512 deleteRematVictims(); 1513 1514 // Get rid of unused values and set phi-kill flags. 1515 for (unsigned Reg : *Edit) { 1516 LiveInterval &LI = LIS.getInterval(Reg); 1517 LI.removeEmptySubRanges(); 1518 LI.RenumberValues(); 1519 } 1520 1521 // Provide a reverse mapping from original indices to Edit ranges. 1522 if (LRMap) { 1523 LRMap->clear(); 1524 for (unsigned i = 0, e = Edit->size(); i != e; ++i) 1525 LRMap->push_back(i); 1526 } 1527 1528 // Now check if any registers were separated into multiple components. 1529 ConnectedVNInfoEqClasses ConEQ(LIS); 1530 for (unsigned i = 0, e = Edit->size(); i != e; ++i) { 1531 // Don't use iterators, they are invalidated by create() below. 1532 unsigned VReg = Edit->get(i); 1533 LiveInterval &LI = LIS.getInterval(VReg); 1534 SmallVector<LiveInterval*, 8> SplitLIs; 1535 LIS.splitSeparateComponents(LI, SplitLIs); 1536 unsigned Original = VRM.getOriginal(VReg); 1537 for (LiveInterval *SplitLI : SplitLIs) 1538 VRM.setIsSplitFromReg(SplitLI->reg, Original); 1539 1540 // The new intervals all map back to i. 1541 if (LRMap) 1542 LRMap->resize(Edit->size(), i); 1543 } 1544 1545 // Calculate spill weight and allocation hints for new intervals. 1546 Edit->calculateRegClassAndHint(VRM.getMachineFunction(), SA.Loops, MBFI); 1547 1548 assert(!LRMap || LRMap->size() == Edit->size()); 1549 } 1550 1551 //===----------------------------------------------------------------------===// 1552 // Single Block Splitting 1553 //===----------------------------------------------------------------------===// 1554 1555 bool SplitAnalysis::shouldSplitSingleBlock(const BlockInfo &BI, 1556 bool SingleInstrs) const { 1557 // Always split for multiple instructions. 1558 if (!BI.isOneInstr()) 1559 return true; 1560 // Don't split for single instructions unless explicitly requested. 1561 if (!SingleInstrs) 1562 return false; 1563 // Splitting a live-through range always makes progress. 1564 if (BI.LiveIn && BI.LiveOut) 1565 return true; 1566 // No point in isolating a copy. It has no register class constraints. 1567 if (LIS.getInstructionFromIndex(BI.FirstInstr)->isCopyLike()) 1568 return false; 1569 // Finally, don't isolate an end point that was created by earlier splits. 1570 return isOriginalEndpoint(BI.FirstInstr); 1571 } 1572 1573 void SplitEditor::splitSingleBlock(const SplitAnalysis::BlockInfo &BI) { 1574 openIntv(); 1575 SlotIndex LastSplitPoint = SA.getLastSplitPoint(BI.MBB->getNumber()); 1576 SlotIndex SegStart = enterIntvBefore(std::min(BI.FirstInstr, 1577 LastSplitPoint)); 1578 if (!BI.LiveOut || BI.LastInstr < LastSplitPoint) { 1579 useIntv(SegStart, leaveIntvAfter(BI.LastInstr)); 1580 } else { 1581 // The last use is after the last valid split point. 1582 SlotIndex SegStop = leaveIntvBefore(LastSplitPoint); 1583 useIntv(SegStart, SegStop); 1584 overlapIntv(SegStop, BI.LastInstr); 1585 } 1586 } 1587 1588 //===----------------------------------------------------------------------===// 1589 // Global Live Range Splitting Support 1590 //===----------------------------------------------------------------------===// 1591 1592 // These methods support a method of global live range splitting that uses a 1593 // global algorithm to decide intervals for CFG edges. They will insert split 1594 // points and color intervals in basic blocks while avoiding interference. 1595 // 1596 // Note that splitSingleBlock is also useful for blocks where both CFG edges 1597 // are on the stack. 1598 1599 void SplitEditor::splitLiveThroughBlock(unsigned MBBNum, 1600 unsigned IntvIn, SlotIndex LeaveBefore, 1601 unsigned IntvOut, SlotIndex EnterAfter){ 1602 SlotIndex Start, Stop; 1603 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(MBBNum); 1604 1605 LLVM_DEBUG(dbgs() << "%bb." << MBBNum << " [" << Start << ';' << Stop 1606 << ") intf " << LeaveBefore << '-' << EnterAfter 1607 << ", live-through " << IntvIn << " -> " << IntvOut); 1608 1609 assert((IntvIn || IntvOut) && "Use splitSingleBlock for isolated blocks"); 1610 1611 assert((!LeaveBefore || LeaveBefore < Stop) && "Interference after block"); 1612 assert((!IntvIn || !LeaveBefore || LeaveBefore > Start) && "Impossible intf"); 1613 assert((!EnterAfter || EnterAfter >= Start) && "Interference before block"); 1614 1615 MachineBasicBlock *MBB = VRM.getMachineFunction().getBlockNumbered(MBBNum); 1616 1617 if (!IntvOut) { 1618 LLVM_DEBUG(dbgs() << ", spill on entry.\n"); 1619 // 1620 // <<<<<<<<< Possible LeaveBefore interference. 1621 // |-----------| Live through. 1622 // -____________ Spill on entry. 1623 // 1624 selectIntv(IntvIn); 1625 SlotIndex Idx = leaveIntvAtTop(*MBB); 1626 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1627 (void)Idx; 1628 return; 1629 } 1630 1631 if (!IntvIn) { 1632 LLVM_DEBUG(dbgs() << ", reload on exit.\n"); 1633 // 1634 // >>>>>>> Possible EnterAfter interference. 1635 // |-----------| Live through. 1636 // ___________-- Reload on exit. 1637 // 1638 selectIntv(IntvOut); 1639 SlotIndex Idx = enterIntvAtEnd(*MBB); 1640 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1641 (void)Idx; 1642 return; 1643 } 1644 1645 if (IntvIn == IntvOut && !LeaveBefore && !EnterAfter) { 1646 LLVM_DEBUG(dbgs() << ", straight through.\n"); 1647 // 1648 // |-----------| Live through. 1649 // ------------- Straight through, same intv, no interference. 1650 // 1651 selectIntv(IntvOut); 1652 useIntv(Start, Stop); 1653 return; 1654 } 1655 1656 // We cannot legally insert splits after LSP. 1657 SlotIndex LSP = SA.getLastSplitPoint(MBBNum); 1658 assert((!IntvOut || !EnterAfter || EnterAfter < LSP) && "Impossible intf"); 1659 1660 if (IntvIn != IntvOut && (!LeaveBefore || !EnterAfter || 1661 LeaveBefore.getBaseIndex() > EnterAfter.getBoundaryIndex())) { 1662 LLVM_DEBUG(dbgs() << ", switch avoiding interference.\n"); 1663 // 1664 // >>>> <<<< Non-overlapping EnterAfter/LeaveBefore interference. 1665 // |-----------| Live through. 1666 // ------======= Switch intervals between interference. 1667 // 1668 selectIntv(IntvOut); 1669 SlotIndex Idx; 1670 if (LeaveBefore && LeaveBefore < LSP) { 1671 Idx = enterIntvBefore(LeaveBefore); 1672 useIntv(Idx, Stop); 1673 } else { 1674 Idx = enterIntvAtEnd(*MBB); 1675 } 1676 selectIntv(IntvIn); 1677 useIntv(Start, Idx); 1678 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1679 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1680 return; 1681 } 1682 1683 LLVM_DEBUG(dbgs() << ", create local intv for interference.\n"); 1684 // 1685 // >>><><><><<<< Overlapping EnterAfter/LeaveBefore interference. 1686 // |-----------| Live through. 1687 // ==---------== Switch intervals before/after interference. 1688 // 1689 assert(LeaveBefore <= EnterAfter && "Missed case"); 1690 1691 selectIntv(IntvOut); 1692 SlotIndex Idx = enterIntvAfter(EnterAfter); 1693 useIntv(Idx, Stop); 1694 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1695 1696 selectIntv(IntvIn); 1697 Idx = leaveIntvBefore(LeaveBefore); 1698 useIntv(Start, Idx); 1699 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1700 } 1701 1702 void SplitEditor::splitRegInBlock(const SplitAnalysis::BlockInfo &BI, 1703 unsigned IntvIn, SlotIndex LeaveBefore) { 1704 SlotIndex Start, Stop; 1705 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); 1706 1707 LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " [" << Start << ';' 1708 << Stop << "), uses " << BI.FirstInstr << '-' 1709 << BI.LastInstr << ", reg-in " << IntvIn 1710 << ", leave before " << LeaveBefore 1711 << (BI.LiveOut ? ", stack-out" : ", killed in block")); 1712 1713 assert(IntvIn && "Must have register in"); 1714 assert(BI.LiveIn && "Must be live-in"); 1715 assert((!LeaveBefore || LeaveBefore > Start) && "Bad interference"); 1716 1717 if (!BI.LiveOut && (!LeaveBefore || LeaveBefore >= BI.LastInstr)) { 1718 LLVM_DEBUG(dbgs() << " before interference.\n"); 1719 // 1720 // <<< Interference after kill. 1721 // |---o---x | Killed in block. 1722 // ========= Use IntvIn everywhere. 1723 // 1724 selectIntv(IntvIn); 1725 useIntv(Start, BI.LastInstr); 1726 return; 1727 } 1728 1729 SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber()); 1730 1731 if (!LeaveBefore || LeaveBefore > BI.LastInstr.getBoundaryIndex()) { 1732 // 1733 // <<< Possible interference after last use. 1734 // |---o---o---| Live-out on stack. 1735 // =========____ Leave IntvIn after last use. 1736 // 1737 // < Interference after last use. 1738 // |---o---o--o| Live-out on stack, late last use. 1739 // ============ Copy to stack after LSP, overlap IntvIn. 1740 // \_____ Stack interval is live-out. 1741 // 1742 if (BI.LastInstr < LSP) { 1743 LLVM_DEBUG(dbgs() << ", spill after last use before interference.\n"); 1744 selectIntv(IntvIn); 1745 SlotIndex Idx = leaveIntvAfter(BI.LastInstr); 1746 useIntv(Start, Idx); 1747 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1748 } else { 1749 LLVM_DEBUG(dbgs() << ", spill before last split point.\n"); 1750 selectIntv(IntvIn); 1751 SlotIndex Idx = leaveIntvBefore(LSP); 1752 overlapIntv(Idx, BI.LastInstr); 1753 useIntv(Start, Idx); 1754 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1755 } 1756 return; 1757 } 1758 1759 // The interference is overlapping somewhere we wanted to use IntvIn. That 1760 // means we need to create a local interval that can be allocated a 1761 // different register. 1762 unsigned LocalIntv = openIntv(); 1763 (void)LocalIntv; 1764 LLVM_DEBUG(dbgs() << ", creating local interval " << LocalIntv << ".\n"); 1765 1766 if (!BI.LiveOut || BI.LastInstr < LSP) { 1767 // 1768 // <<<<<<< Interference overlapping uses. 1769 // |---o---o---| Live-out on stack. 1770 // =====----____ Leave IntvIn before interference, then spill. 1771 // 1772 SlotIndex To = leaveIntvAfter(BI.LastInstr); 1773 SlotIndex From = enterIntvBefore(LeaveBefore); 1774 useIntv(From, To); 1775 selectIntv(IntvIn); 1776 useIntv(Start, From); 1777 assert((!LeaveBefore || From <= LeaveBefore) && "Interference"); 1778 return; 1779 } 1780 1781 // <<<<<<< Interference overlapping uses. 1782 // |---o---o--o| Live-out on stack, late last use. 1783 // =====------- Copy to stack before LSP, overlap LocalIntv. 1784 // \_____ Stack interval is live-out. 1785 // 1786 SlotIndex To = leaveIntvBefore(LSP); 1787 overlapIntv(To, BI.LastInstr); 1788 SlotIndex From = enterIntvBefore(std::min(To, LeaveBefore)); 1789 useIntv(From, To); 1790 selectIntv(IntvIn); 1791 useIntv(Start, From); 1792 assert((!LeaveBefore || From <= LeaveBefore) && "Interference"); 1793 } 1794 1795 void SplitEditor::splitRegOutBlock(const SplitAnalysis::BlockInfo &BI, 1796 unsigned IntvOut, SlotIndex EnterAfter) { 1797 SlotIndex Start, Stop; 1798 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); 1799 1800 LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " [" << Start << ';' 1801 << Stop << "), uses " << BI.FirstInstr << '-' 1802 << BI.LastInstr << ", reg-out " << IntvOut 1803 << ", enter after " << EnterAfter 1804 << (BI.LiveIn ? ", stack-in" : ", defined in block")); 1805 1806 SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber()); 1807 1808 assert(IntvOut && "Must have register out"); 1809 assert(BI.LiveOut && "Must be live-out"); 1810 assert((!EnterAfter || EnterAfter < LSP) && "Bad interference"); 1811 1812 if (!BI.LiveIn && (!EnterAfter || EnterAfter <= BI.FirstInstr)) { 1813 LLVM_DEBUG(dbgs() << " after interference.\n"); 1814 // 1815 // >>>> Interference before def. 1816 // | o---o---| Defined in block. 1817 // ========= Use IntvOut everywhere. 1818 // 1819 selectIntv(IntvOut); 1820 useIntv(BI.FirstInstr, Stop); 1821 return; 1822 } 1823 1824 if (!EnterAfter || EnterAfter < BI.FirstInstr.getBaseIndex()) { 1825 LLVM_DEBUG(dbgs() << ", reload after interference.\n"); 1826 // 1827 // >>>> Interference before def. 1828 // |---o---o---| Live-through, stack-in. 1829 // ____========= Enter IntvOut before first use. 1830 // 1831 selectIntv(IntvOut); 1832 SlotIndex Idx = enterIntvBefore(std::min(LSP, BI.FirstInstr)); 1833 useIntv(Idx, Stop); 1834 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1835 return; 1836 } 1837 1838 // The interference is overlapping somewhere we wanted to use IntvOut. That 1839 // means we need to create a local interval that can be allocated a 1840 // different register. 1841 LLVM_DEBUG(dbgs() << ", interference overlaps uses.\n"); 1842 // 1843 // >>>>>>> Interference overlapping uses. 1844 // |---o---o---| Live-through, stack-in. 1845 // ____---====== Create local interval for interference range. 1846 // 1847 selectIntv(IntvOut); 1848 SlotIndex Idx = enterIntvAfter(EnterAfter); 1849 useIntv(Idx, Stop); 1850 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1851 1852 openIntv(); 1853 SlotIndex From = enterIntvBefore(std::min(Idx, BI.FirstInstr)); 1854 useIntv(From, Idx); 1855 } 1856