1 //===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the SplitAnalysis class as well as mutator functions for 11 // live range splitting. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "splitter" 16 #include "SplitKit.h" 17 #include "VirtRegMap.h" 18 #include "llvm/CodeGen/CalcSpillWeights.h" 19 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 20 #include "llvm/CodeGen/MachineInstrBuilder.h" 21 #include "llvm/CodeGen/MachineLoopInfo.h" 22 #include "llvm/CodeGen/MachineRegisterInfo.h" 23 #include "llvm/Support/CommandLine.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/raw_ostream.h" 26 #include "llvm/Target/TargetInstrInfo.h" 27 #include "llvm/Target/TargetMachine.h" 28 29 using namespace llvm; 30 31 static cl::opt<bool> 32 AllowSplit("spiller-splits-edges", 33 cl::desc("Allow critical edge splitting during spilling")); 34 35 //===----------------------------------------------------------------------===// 36 // Split Analysis 37 //===----------------------------------------------------------------------===// 38 39 SplitAnalysis::SplitAnalysis(const MachineFunction &mf, 40 const LiveIntervals &lis, 41 const MachineLoopInfo &mli) 42 : mf_(mf), 43 lis_(lis), 44 loops_(mli), 45 tii_(*mf.getTarget().getInstrInfo()), 46 curli_(0) {} 47 48 void SplitAnalysis::clear() { 49 usingInstrs_.clear(); 50 usingBlocks_.clear(); 51 usingLoops_.clear(); 52 curli_ = 0; 53 } 54 55 bool SplitAnalysis::canAnalyzeBranch(const MachineBasicBlock *MBB) { 56 MachineBasicBlock *T, *F; 57 SmallVector<MachineOperand, 4> Cond; 58 return !tii_.AnalyzeBranch(const_cast<MachineBasicBlock&>(*MBB), T, F, Cond); 59 } 60 61 /// analyzeUses - Count instructions, basic blocks, and loops using curli. 62 void SplitAnalysis::analyzeUses() { 63 const MachineRegisterInfo &MRI = mf_.getRegInfo(); 64 for (MachineRegisterInfo::reg_iterator I = MRI.reg_begin(curli_->reg); 65 MachineInstr *MI = I.skipInstruction();) { 66 if (MI->isDebugValue() || !usingInstrs_.insert(MI)) 67 continue; 68 MachineBasicBlock *MBB = MI->getParent(); 69 if (usingBlocks_[MBB]++) 70 continue; 71 if (MachineLoop *Loop = loops_.getLoopFor(MBB)) 72 usingLoops_[Loop]++; 73 } 74 DEBUG(dbgs() << " counted " 75 << usingInstrs_.size() << " instrs, " 76 << usingBlocks_.size() << " blocks, " 77 << usingLoops_.size() << " loops.\n"); 78 } 79 80 // Get three sets of basic blocks surrounding a loop: Blocks inside the loop, 81 // predecessor blocks, and exit blocks. 82 void SplitAnalysis::getLoopBlocks(const MachineLoop *Loop, LoopBlocks &Blocks) { 83 Blocks.clear(); 84 85 // Blocks in the loop. 86 Blocks.Loop.insert(Loop->block_begin(), Loop->block_end()); 87 88 // Predecessor blocks. 89 const MachineBasicBlock *Header = Loop->getHeader(); 90 for (MachineBasicBlock::const_pred_iterator I = Header->pred_begin(), 91 E = Header->pred_end(); I != E; ++I) 92 if (!Blocks.Loop.count(*I)) 93 Blocks.Preds.insert(*I); 94 95 // Exit blocks. 96 for (MachineLoop::block_iterator I = Loop->block_begin(), 97 E = Loop->block_end(); I != E; ++I) { 98 const MachineBasicBlock *MBB = *I; 99 for (MachineBasicBlock::const_succ_iterator SI = MBB->succ_begin(), 100 SE = MBB->succ_end(); SI != SE; ++SI) 101 if (!Blocks.Loop.count(*SI)) 102 Blocks.Exits.insert(*SI); 103 } 104 } 105 106 /// analyzeLoopPeripheralUse - Return an enum describing how curli_ is used in 107 /// and around the Loop. 108 SplitAnalysis::LoopPeripheralUse SplitAnalysis:: 109 analyzeLoopPeripheralUse(const SplitAnalysis::LoopBlocks &Blocks) { 110 LoopPeripheralUse use = ContainedInLoop; 111 for (BlockCountMap::iterator I = usingBlocks_.begin(), E = usingBlocks_.end(); 112 I != E; ++I) { 113 const MachineBasicBlock *MBB = I->first; 114 // Is this a peripheral block? 115 if (use < MultiPeripheral && 116 (Blocks.Preds.count(MBB) || Blocks.Exits.count(MBB))) { 117 if (I->second > 1) use = MultiPeripheral; 118 else use = SinglePeripheral; 119 continue; 120 } 121 // Is it a loop block? 122 if (Blocks.Loop.count(MBB)) 123 continue; 124 // It must be an unrelated block. 125 return OutsideLoop; 126 } 127 return use; 128 } 129 130 /// getCriticalExits - It may be necessary to partially break critical edges 131 /// leaving the loop if an exit block has phi uses of curli. Collect the exit 132 /// blocks that need special treatment into CriticalExits. 133 void SplitAnalysis::getCriticalExits(const SplitAnalysis::LoopBlocks &Blocks, 134 BlockPtrSet &CriticalExits) { 135 CriticalExits.clear(); 136 137 // A critical exit block contains a phi def of curli, and has a predecessor 138 // that is not in the loop nor a loop predecessor. 139 // For such an exit block, the edges carrying the new variable must be moved 140 // to a new pre-exit block. 141 for (BlockPtrSet::iterator I = Blocks.Exits.begin(), E = Blocks.Exits.end(); 142 I != E; ++I) { 143 const MachineBasicBlock *Succ = *I; 144 SlotIndex SuccIdx = lis_.getMBBStartIdx(Succ); 145 VNInfo *SuccVNI = curli_->getVNInfoAt(SuccIdx); 146 // This exit may not have curli live in at all. No need to split. 147 if (!SuccVNI) 148 continue; 149 // If this is not a PHI def, it is either using a value from before the 150 // loop, or a value defined inside the loop. Both are safe. 151 if (!SuccVNI->isPHIDef() || SuccVNI->def.getBaseIndex() != SuccIdx) 152 continue; 153 // This exit block does have a PHI. Does it also have a predecessor that is 154 // not a loop block or loop predecessor? 155 for (MachineBasicBlock::const_pred_iterator PI = Succ->pred_begin(), 156 PE = Succ->pred_end(); PI != PE; ++PI) { 157 const MachineBasicBlock *Pred = *PI; 158 if (Blocks.Loop.count(Pred) || Blocks.Preds.count(Pred)) 159 continue; 160 // This is a critical exit block, and we need to split the exit edge. 161 CriticalExits.insert(Succ); 162 break; 163 } 164 } 165 } 166 167 /// canSplitCriticalExits - Return true if it is possible to insert new exit 168 /// blocks before the blocks in CriticalExits. 169 bool 170 SplitAnalysis::canSplitCriticalExits(const SplitAnalysis::LoopBlocks &Blocks, 171 BlockPtrSet &CriticalExits) { 172 // If we don't allow critical edge splitting, require no critical exits. 173 if (!AllowSplit) 174 return CriticalExits.empty(); 175 176 for (BlockPtrSet::iterator I = CriticalExits.begin(), E = CriticalExits.end(); 177 I != E; ++I) { 178 const MachineBasicBlock *Succ = *I; 179 // We want to insert a new pre-exit MBB before Succ, and change all the 180 // in-loop blocks to branch to the pre-exit instead of Succ. 181 // Check that all the in-loop predecessors can be changed. 182 for (MachineBasicBlock::const_pred_iterator PI = Succ->pred_begin(), 183 PE = Succ->pred_end(); PI != PE; ++PI) { 184 const MachineBasicBlock *Pred = *PI; 185 // The external predecessors won't be altered. 186 if (!Blocks.Loop.count(Pred) && !Blocks.Preds.count(Pred)) 187 continue; 188 if (!canAnalyzeBranch(Pred)) 189 return false; 190 } 191 192 // If Succ's layout predecessor falls through, that too must be analyzable. 193 // We need to insert the pre-exit block in the gap. 194 MachineFunction::const_iterator MFI = Succ; 195 if (MFI == mf_.begin()) 196 continue; 197 if (!canAnalyzeBranch(--MFI)) 198 return false; 199 } 200 // No problems found. 201 return true; 202 } 203 204 void SplitAnalysis::analyze(const LiveInterval *li) { 205 clear(); 206 curli_ = li; 207 analyzeUses(); 208 } 209 210 const MachineLoop *SplitAnalysis::getBestSplitLoop() { 211 assert(curli_ && "Call analyze() before getBestSplitLoop"); 212 if (usingLoops_.empty()) 213 return 0; 214 215 LoopPtrSet Loops, SecondLoops; 216 LoopBlocks Blocks; 217 BlockPtrSet CriticalExits; 218 219 // Find first-class and second class candidate loops. 220 // We prefer to split around loops where curli is used outside the periphery. 221 for (LoopCountMap::const_iterator I = usingLoops_.begin(), 222 E = usingLoops_.end(); I != E; ++I) { 223 const MachineLoop *Loop = I->first; 224 getLoopBlocks(Loop, Blocks); 225 226 LoopPtrSet *LPS = 0; 227 switch(analyzeLoopPeripheralUse(Blocks)) { 228 case OutsideLoop: 229 LPS = &Loops; 230 break; 231 case MultiPeripheral: 232 LPS = &SecondLoops; 233 break; 234 case ContainedInLoop: 235 DEBUG(dbgs() << " contained in " << *Loop); 236 continue; 237 case SinglePeripheral: 238 DEBUG(dbgs() << " single peripheral use in " << *Loop); 239 continue; 240 } 241 // Will it be possible to split around this loop? 242 getCriticalExits(Blocks, CriticalExits); 243 DEBUG(dbgs() << " " << CriticalExits.size() << " critical exits from " 244 << *Loop); 245 if (!canSplitCriticalExits(Blocks, CriticalExits)) 246 continue; 247 // This is a possible split. 248 assert(LPS); 249 LPS->insert(Loop); 250 } 251 252 DEBUG(dbgs() << " getBestSplitLoop found " << Loops.size() << " + " 253 << SecondLoops.size() << " candidate loops.\n"); 254 255 // If there are no first class loops available, look at second class loops. 256 if (Loops.empty()) 257 Loops = SecondLoops; 258 259 if (Loops.empty()) 260 return 0; 261 262 // Pick the earliest loop. 263 // FIXME: Are there other heuristics to consider? 264 const MachineLoop *Best = 0; 265 SlotIndex BestIdx; 266 for (LoopPtrSet::const_iterator I = Loops.begin(), E = Loops.end(); I != E; 267 ++I) { 268 SlotIndex Idx = lis_.getMBBStartIdx((*I)->getHeader()); 269 if (!Best || Idx < BestIdx) 270 Best = *I, BestIdx = Idx; 271 } 272 DEBUG(dbgs() << " getBestSplitLoop found " << *Best); 273 return Best; 274 } 275 276 /// getMultiUseBlocks - if curli has more than one use in a basic block, it 277 /// may be an advantage to split curli for the duration of the block. 278 bool SplitAnalysis::getMultiUseBlocks(BlockPtrSet &Blocks) { 279 // If curli is local to one block, there is no point to splitting it. 280 if (usingBlocks_.size() <= 1) 281 return false; 282 // Add blocks with multiple uses. 283 for (BlockCountMap::iterator I = usingBlocks_.begin(), E = usingBlocks_.end(); 284 I != E; ++I) 285 switch (I->second) { 286 case 0: 287 case 1: 288 continue; 289 case 2: { 290 // It doesn't pay to split a 2-instr block if it redefines curli. 291 VNInfo *VN1 = curli_->getVNInfoAt(lis_.getMBBStartIdx(I->first)); 292 VNInfo *VN2 = 293 curli_->getVNInfoAt(lis_.getMBBEndIdx(I->first).getPrevIndex()); 294 // live-in and live-out with a different value. 295 if (VN1 && VN2 && VN1 != VN2) 296 continue; 297 } // Fall through. 298 default: 299 Blocks.insert(I->first); 300 } 301 return !Blocks.empty(); 302 } 303 304 //===----------------------------------------------------------------------===// 305 // LiveIntervalMap 306 //===----------------------------------------------------------------------===// 307 308 // Work around the fact that the std::pair constructors are broken for pointer 309 // pairs in some implementations. makeVV(x, 0) works. 310 static inline std::pair<const VNInfo*, VNInfo*> 311 makeVV(const VNInfo *a, VNInfo *b) { 312 return std::make_pair(a, b); 313 } 314 315 void LiveIntervalMap::reset(LiveInterval *li) { 316 li_ = li; 317 valueMap_.clear(); 318 } 319 320 bool LiveIntervalMap::isComplexMapped(const VNInfo *ParentVNI) const { 321 ValueMap::const_iterator i = valueMap_.find(ParentVNI); 322 return i != valueMap_.end() && i->second == 0; 323 } 324 325 // defValue - Introduce a li_ def for ParentVNI that could be later than 326 // ParentVNI->def. 327 VNInfo *LiveIntervalMap::defValue(const VNInfo *ParentVNI, SlotIndex Idx) { 328 assert(li_ && "call reset first"); 329 assert(ParentVNI && "Mapping NULL value"); 330 assert(Idx.isValid() && "Invalid SlotIndex"); 331 assert(parentli_.getVNInfoAt(Idx) == ParentVNI && "Bad ParentVNI"); 332 333 // Create a new value. 334 VNInfo *VNI = li_->getNextValue(Idx, 0, lis_.getVNInfoAllocator()); 335 336 // Use insert for lookup, so we can add missing values with a second lookup. 337 std::pair<ValueMap::iterator,bool> InsP = 338 valueMap_.insert(makeVV(ParentVNI, Idx == ParentVNI->def ? VNI : 0)); 339 340 // This is now a complex def. Mark with a NULL in valueMap. 341 if (!InsP.second) 342 InsP.first->second = 0; 343 344 return VNI; 345 } 346 347 348 // mapValue - Find the mapped value for ParentVNI at Idx. 349 // Potentially create phi-def values. 350 VNInfo *LiveIntervalMap::mapValue(const VNInfo *ParentVNI, SlotIndex Idx, 351 bool *simple) { 352 assert(li_ && "call reset first"); 353 assert(ParentVNI && "Mapping NULL value"); 354 assert(Idx.isValid() && "Invalid SlotIndex"); 355 assert(parentli_.getVNInfoAt(Idx) == ParentVNI && "Bad ParentVNI"); 356 357 // Use insert for lookup, so we can add missing values with a second lookup. 358 std::pair<ValueMap::iterator,bool> InsP = 359 valueMap_.insert(makeVV(ParentVNI, 0)); 360 361 // This was an unknown value. Create a simple mapping. 362 if (InsP.second) { 363 if (simple) *simple = true; 364 return InsP.first->second = li_->createValueCopy(ParentVNI, 365 lis_.getVNInfoAllocator()); 366 } 367 368 // This was a simple mapped value. 369 if (InsP.first->second) { 370 if (simple) *simple = true; 371 return InsP.first->second; 372 } 373 374 // This is a complex mapped value. There may be multiple defs, and we may need 375 // to create phi-defs. 376 if (simple) *simple = false; 377 MachineBasicBlock *IdxMBB = lis_.getMBBFromIndex(Idx); 378 assert(IdxMBB && "No MBB at Idx"); 379 380 // Is there a def in the same MBB we can extend? 381 if (VNInfo *VNI = extendTo(IdxMBB, Idx)) 382 return VNI; 383 384 // Now for the fun part. We know that ParentVNI potentially has multiple defs, 385 // and we may need to create even more phi-defs to preserve VNInfo SSA form. 386 // Perform a depth-first search for predecessor blocks where we know the 387 // dominating VNInfo. Insert phi-def VNInfos along the path back to IdxMBB. 388 389 // Track MBBs where we have created or learned the dominating value. 390 // This may change during the DFS as we create new phi-defs. 391 typedef DenseMap<MachineBasicBlock*, VNInfo*> MBBValueMap; 392 MBBValueMap DomValue; 393 typedef SplitAnalysis::BlockPtrSet BlockPtrSet; 394 BlockPtrSet Visited; 395 396 // Iterate over IdxMBB predecessors in a depth-first order. 397 // Skip begin() since that is always IdxMBB. 398 for (idf_ext_iterator<MachineBasicBlock*, BlockPtrSet> 399 IDFI = llvm::next(idf_ext_begin(IdxMBB, Visited)), 400 IDFE = idf_ext_end(IdxMBB, Visited); IDFI != IDFE;) { 401 MachineBasicBlock *MBB = *IDFI; 402 SlotIndex End = lis_.getMBBEndIdx(MBB).getPrevSlot(); 403 404 // We are operating on the restricted CFG where ParentVNI is live. 405 if (parentli_.getVNInfoAt(End) != ParentVNI) { 406 IDFI.skipChildren(); 407 continue; 408 } 409 410 // Do we have a dominating value in this block? 411 VNInfo *VNI = extendTo(MBB, End); 412 if (!VNI) { 413 ++IDFI; 414 continue; 415 } 416 417 // Yes, VNI dominates MBB. Make sure we visit MBB again from other paths. 418 Visited.erase(MBB); 419 420 // Track the path back to IdxMBB, creating phi-defs 421 // as needed along the way. 422 for (unsigned PI = IDFI.getPathLength()-1; PI != 0; --PI) { 423 // Start from MBB's immediate successor. End at IdxMBB. 424 MachineBasicBlock *Succ = IDFI.getPath(PI-1); 425 std::pair<MBBValueMap::iterator, bool> InsP = 426 DomValue.insert(MBBValueMap::value_type(Succ, VNI)); 427 428 // This is the first time we backtrack to Succ. 429 if (InsP.second) 430 continue; 431 432 // We reached Succ again with the same VNI. Nothing is going to change. 433 VNInfo *OVNI = InsP.first->second; 434 if (OVNI == VNI) 435 break; 436 437 // Succ already has a phi-def. No need to continue. 438 SlotIndex Start = lis_.getMBBStartIdx(Succ); 439 if (OVNI->def == Start) 440 break; 441 442 // We have a collision between the old and new VNI at Succ. That means 443 // neither dominates and we need a new phi-def. 444 VNI = li_->getNextValue(Start, 0, lis_.getVNInfoAllocator()); 445 VNI->setIsPHIDef(true); 446 InsP.first->second = VNI; 447 448 // Replace OVNI with VNI in the remaining path. 449 for (; PI > 1 ; --PI) { 450 MBBValueMap::iterator I = DomValue.find(IDFI.getPath(PI-2)); 451 if (I == DomValue.end() || I->second != OVNI) 452 break; 453 I->second = VNI; 454 } 455 } 456 457 // No need to search the children, we found a dominating value. 458 IDFI.skipChildren(); 459 } 460 461 // The search should at least find a dominating value for IdxMBB. 462 assert(!DomValue.empty() && "Couldn't find a reaching definition"); 463 464 // Since we went through the trouble of a full DFS visiting all reaching defs, 465 // the values in DomValue are now accurate. No more phi-defs are needed for 466 // these blocks, so we can color the live ranges. 467 // This makes the next mapValue call much faster. 468 VNInfo *IdxVNI = 0; 469 for (MBBValueMap::iterator I = DomValue.begin(), E = DomValue.end(); I != E; 470 ++I) { 471 MachineBasicBlock *MBB = I->first; 472 VNInfo *VNI = I->second; 473 SlotIndex Start = lis_.getMBBStartIdx(MBB); 474 if (MBB == IdxMBB) { 475 // Don't add full liveness to IdxMBB, stop at Idx. 476 if (Start != Idx) 477 li_->addRange(LiveRange(Start, Idx.getNextSlot(), VNI)); 478 // The caller had better add some liveness to IdxVNI, or it leaks. 479 IdxVNI = VNI; 480 } else 481 li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), VNI)); 482 } 483 484 assert(IdxVNI && "Didn't find value for Idx"); 485 return IdxVNI; 486 } 487 488 // extendTo - Find the last li_ value defined in MBB at or before Idx. The 489 // parentli_ is assumed to be live at Idx. Extend the live range to Idx. 490 // Return the found VNInfo, or NULL. 491 VNInfo *LiveIntervalMap::extendTo(MachineBasicBlock *MBB, SlotIndex Idx) { 492 assert(li_ && "call reset first"); 493 LiveInterval::iterator I = std::upper_bound(li_->begin(), li_->end(), Idx); 494 if (I == li_->begin()) 495 return 0; 496 --I; 497 if (I->end <= lis_.getMBBStartIdx(MBB)) 498 return 0; 499 if (I->end <= Idx) 500 I->end = Idx.getNextSlot(); 501 return I->valno; 502 } 503 504 // addSimpleRange - Add a simple range from parentli_ to li_. 505 // ParentVNI must be live in the [Start;End) interval. 506 void LiveIntervalMap::addSimpleRange(SlotIndex Start, SlotIndex End, 507 const VNInfo *ParentVNI) { 508 assert(li_ && "call reset first"); 509 bool simple; 510 VNInfo *VNI = mapValue(ParentVNI, Start, &simple); 511 // A simple mapping is easy. 512 if (simple) { 513 li_->addRange(LiveRange(Start, End, VNI)); 514 return; 515 } 516 517 // ParentVNI is a complex value. We must map per MBB. 518 MachineFunction::iterator MBB = lis_.getMBBFromIndex(Start); 519 MachineFunction::iterator MBBE = lis_.getMBBFromIndex(End.getPrevSlot()); 520 521 if (MBB == MBBE) { 522 li_->addRange(LiveRange(Start, End, VNI)); 523 return; 524 } 525 526 // First block. 527 li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), VNI)); 528 529 // Run sequence of full blocks. 530 for (++MBB; MBB != MBBE; ++MBB) { 531 Start = lis_.getMBBStartIdx(MBB); 532 li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), 533 mapValue(ParentVNI, Start))); 534 } 535 536 // Final block. 537 Start = lis_.getMBBStartIdx(MBB); 538 if (Start != End) 539 li_->addRange(LiveRange(Start, End, mapValue(ParentVNI, Start))); 540 } 541 542 /// addRange - Add live ranges to li_ where [Start;End) intersects parentli_. 543 /// All needed values whose def is not inside [Start;End) must be defined 544 /// beforehand so mapValue will work. 545 void LiveIntervalMap::addRange(SlotIndex Start, SlotIndex End) { 546 assert(li_ && "call reset first"); 547 LiveInterval::const_iterator B = parentli_.begin(), E = parentli_.end(); 548 LiveInterval::const_iterator I = std::lower_bound(B, E, Start); 549 550 // Check if --I begins before Start and overlaps. 551 if (I != B) { 552 --I; 553 if (I->end > Start) 554 addSimpleRange(Start, std::min(End, I->end), I->valno); 555 ++I; 556 } 557 558 // The remaining ranges begin after Start. 559 for (;I != E && I->start < End; ++I) 560 addSimpleRange(I->start, std::min(End, I->end), I->valno); 561 } 562 563 VNInfo *LiveIntervalMap::defByCopyFrom(unsigned Reg, 564 const VNInfo *ParentVNI, 565 MachineBasicBlock &MBB, 566 MachineBasicBlock::iterator I) { 567 const TargetInstrDesc &TID = MBB.getParent()->getTarget().getInstrInfo()-> 568 get(TargetOpcode::COPY); 569 MachineInstr *MI = BuildMI(MBB, I, DebugLoc(), TID, li_->reg).addReg(Reg); 570 SlotIndex DefIdx = lis_.InsertMachineInstrInMaps(MI).getDefIndex(); 571 VNInfo *VNI = defValue(ParentVNI, DefIdx); 572 VNI->setCopy(MI); 573 li_->addRange(LiveRange(DefIdx, DefIdx.getNextSlot(), VNI)); 574 return VNI; 575 } 576 577 //===----------------------------------------------------------------------===// 578 // Split Editor 579 //===----------------------------------------------------------------------===// 580 581 /// Create a new SplitEditor for editing the LiveInterval analyzed by SA. 582 SplitEditor::SplitEditor(SplitAnalysis &sa, LiveIntervals &lis, VirtRegMap &vrm, 583 SmallVectorImpl<LiveInterval*> &intervals) 584 : sa_(sa), lis_(lis), vrm_(vrm), 585 mri_(vrm.getMachineFunction().getRegInfo()), 586 tii_(*vrm.getMachineFunction().getTarget().getInstrInfo()), 587 curli_(sa_.getCurLI()), 588 dupli_(lis_, *curli_), 589 openli_(lis_, *curli_), 590 intervals_(intervals), 591 firstInterval(intervals_.size()) 592 { 593 assert(curli_ && "SplitEditor created from empty SplitAnalysis"); 594 595 // Make sure curli_ is assigned a stack slot, so all our intervals get the 596 // same slot as curli_. 597 if (vrm_.getStackSlot(curli_->reg) == VirtRegMap::NO_STACK_SLOT) 598 vrm_.assignVirt2StackSlot(curli_->reg); 599 600 } 601 602 LiveInterval *SplitEditor::createInterval() { 603 unsigned Reg = mri_.createVirtualRegister(mri_.getRegClass(curli_->reg)); 604 LiveInterval &Intv = lis_.getOrCreateInterval(Reg); 605 vrm_.grow(); 606 vrm_.assignVirt2StackSlot(Reg, vrm_.getStackSlot(curli_->reg)); 607 return &Intv; 608 } 609 610 bool SplitEditor::intervalsLiveAt(SlotIndex Idx) const { 611 for (int i = firstInterval, e = intervals_.size(); i != e; ++i) 612 if (intervals_[i]->liveAt(Idx)) 613 return true; 614 return false; 615 } 616 617 /// Create a new virtual register and live interval. 618 void SplitEditor::openIntv() { 619 assert(!openli_.getLI() && "Previous LI not closed before openIntv"); 620 621 if (!dupli_.getLI()) 622 dupli_.reset(createInterval()); 623 624 openli_.reset(createInterval()); 625 intervals_.push_back(openli_.getLI()); 626 } 627 628 /// enterIntvBefore - Enter openli before the instruction at Idx. If curli is 629 /// not live before Idx, a COPY is not inserted. 630 void SplitEditor::enterIntvBefore(SlotIndex Idx) { 631 assert(openli_.getLI() && "openIntv not called before enterIntvBefore"); 632 VNInfo *ParentVNI = curli_->getVNInfoAt(Idx.getUseIndex()); 633 if (!ParentVNI) { 634 DEBUG(dbgs() << " enterIntvBefore " << Idx << ": not live\n"); 635 return; 636 } 637 truncatedValues.insert(ParentVNI); 638 MachineInstr *MI = lis_.getInstructionFromIndex(Idx); 639 assert(MI && "enterIntvBefore called with invalid index"); 640 openli_.defByCopyFrom(curli_->reg, ParentVNI, *MI->getParent(), MI); 641 DEBUG(dbgs() << " enterIntvBefore " << Idx << ": " << *openli_.getLI() 642 << '\n'); 643 } 644 645 /// enterIntvAtEnd - Enter openli at the end of MBB. 646 void SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) { 647 assert(openli_.getLI() && "openIntv not called before enterIntvAtEnd"); 648 SlotIndex End = lis_.getMBBEndIdx(&MBB); 649 VNInfo *ParentVNI = curli_->getVNInfoAt(End.getPrevSlot()); 650 if (!ParentVNI) { 651 DEBUG(dbgs() << " enterIntvAtEnd " << End << ": not live\n"); 652 return; 653 } 654 truncatedValues.insert(ParentVNI); 655 VNInfo *VNI = openli_.defByCopyFrom(curli_->reg, ParentVNI, 656 MBB, MBB.getFirstTerminator()); 657 // Make sure openli is live out of MBB. 658 openli_.getLI()->addRange(LiveRange(VNI->def, End, VNI)); 659 DEBUG(dbgs() << " enterIntvAtEnd: " << *openli_.getLI() << '\n'); 660 } 661 662 /// useIntv - indicate that all instructions in MBB should use openli. 663 void SplitEditor::useIntv(const MachineBasicBlock &MBB) { 664 useIntv(lis_.getMBBStartIdx(&MBB), lis_.getMBBEndIdx(&MBB)); 665 } 666 667 void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) { 668 assert(openli_.getLI() && "openIntv not called before useIntv"); 669 openli_.addRange(Start, End); 670 DEBUG(dbgs() << " use [" << Start << ';' << End << "): " 671 << *openli_.getLI() << '\n'); 672 } 673 674 /// leaveIntvAfter - Leave openli after the instruction at Idx. 675 void SplitEditor::leaveIntvAfter(SlotIndex Idx) { 676 assert(openli_.getLI() && "openIntv not called before leaveIntvAfter"); 677 678 // The interval must be live beyond the instruction at Idx. 679 VNInfo *ParentVNI = curli_->getVNInfoAt(Idx.getBoundaryIndex()); 680 if (!ParentVNI) { 681 DEBUG(dbgs() << " leaveIntvAfter " << Idx << ": not live\n"); 682 return; 683 } 684 685 MachineBasicBlock::iterator MII = lis_.getInstructionFromIndex(Idx); 686 MachineBasicBlock *MBB = MII->getParent(); 687 VNInfo *VNI = dupli_.defByCopyFrom(openli_.getLI()->reg, ParentVNI, *MBB, 688 llvm::next(MII)); 689 690 // Finally we must make sure that openli is properly extended from Idx to the 691 // new copy. 692 openli_.addSimpleRange(Idx.getBoundaryIndex(), VNI->def, ParentVNI); 693 DEBUG(dbgs() << " leaveIntvAfter " << Idx << ": " << *openli_.getLI() 694 << '\n'); 695 } 696 697 /// leaveIntvAtTop - Leave the interval at the top of MBB. 698 /// Currently, only one value can leave the interval. 699 void SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) { 700 assert(openli_.getLI() && "openIntv not called before leaveIntvAtTop"); 701 702 SlotIndex Start = lis_.getMBBStartIdx(&MBB); 703 VNInfo *ParentVNI = curli_->getVNInfoAt(Start); 704 705 // Is curli even live-in to MBB? 706 if (!ParentVNI) { 707 DEBUG(dbgs() << " leaveIntvAtTop at " << Start << ": not live\n"); 708 return; 709 } 710 711 // We are going to insert a back copy, so we must have a dupli_. 712 VNInfo *VNI = dupli_.defByCopyFrom(openli_.getLI()->reg, ParentVNI, 713 MBB, MBB.begin()); 714 715 // Finally we must make sure that openli is properly extended from Start to 716 // the new copy. 717 openli_.addSimpleRange(Start, VNI->def, ParentVNI); 718 DEBUG(dbgs() << " leaveIntvAtTop at " << Start << ": " << *openli_.getLI() 719 << '\n'); 720 } 721 722 /// closeIntv - Indicate that we are done editing the currently open 723 /// LiveInterval, and ranges can be trimmed. 724 void SplitEditor::closeIntv() { 725 assert(openli_.getLI() && "openIntv not called before closeIntv"); 726 727 DEBUG(dbgs() << " closeIntv cleaning up\n"); 728 DEBUG(dbgs() << " open " << *openli_.getLI() << '\n'); 729 openli_.reset(0); 730 } 731 732 void 733 SplitEditor::addTruncSimpleRange(SlotIndex Start, SlotIndex End, VNInfo *VNI) { 734 SlotIndex sidx = Start; 735 736 // Break [Start;End) into segments that don't overlap any intervals. 737 for (;;) { 738 SlotIndex next = sidx, eidx = End; 739 // Find overlapping intervals. 740 for (int i = firstInterval, e = intervals_.size(); i != e && sidx < eidx; 741 ++i) { 742 LiveInterval::const_iterator I = intervals_[i]->find(sidx); 743 LiveInterval::const_iterator E = intervals_[i]->end(); 744 if (I == E) 745 continue; 746 // Interval I is overlapping [sidx;eidx). Trim sidx. 747 if (I->start <= sidx) { 748 sidx = I->end; 749 if (++I == E) 750 continue; 751 } 752 // Trim eidx too if needed. 753 if (I->start >= eidx) 754 continue; 755 eidx = I->start; 756 if (I->end > next) 757 next = I->end; 758 } 759 // Now, [sidx;eidx) doesn't overlap anything in intervals_. 760 if (sidx < eidx) 761 dupli_.addSimpleRange(sidx, eidx, VNI); 762 // If the interval end was truncated, we can try again from next. 763 if (next <= sidx) 764 break; 765 sidx = next; 766 } 767 } 768 769 /// rewrite - after all the new live ranges have been created, rewrite 770 /// instructions using curli to use the new intervals. 771 void SplitEditor::rewrite() { 772 assert(!openli_.getLI() && "Previous LI not closed before rewrite"); 773 assert(dupli_.getLI() && "No dupli for rewrite. Noop spilt?"); 774 775 // First we need to fill in the live ranges in dupli. 776 // If values were redefined, we need a full recoloring with SSA update. 777 // If values were truncated, we only need to truncate the ranges. 778 // If values were partially rematted, we should shrink to uses. 779 // If values were fully rematted, they should be omitted. 780 // FIXME: If a single value is redefined, just move the def and truncate. 781 782 // Values that are fully contained in the split intervals. 783 SmallPtrSet<const VNInfo*, 8> deadValues; 784 785 // Map all curli values that should have live defs in dupli. 786 for (LiveInterval::const_vni_iterator I = curli_->vni_begin(), 787 E = curli_->vni_end(); I != E; ++I) { 788 const VNInfo *VNI = *I; 789 // Original def is contained in the split intervals. 790 if (intervalsLiveAt(VNI->def)) { 791 // Did this value escape? 792 if (dupli_.isMapped(VNI)) 793 truncatedValues.insert(VNI); 794 else 795 deadValues.insert(VNI); 796 continue; 797 } 798 // Add minimal live range at the definition. 799 VNInfo *DVNI = dupli_.defValue(VNI, VNI->def); 800 dupli_.getLI()->addRange(LiveRange(VNI->def, VNI->def.getNextSlot(), DVNI)); 801 } 802 803 // Add all ranges to dupli. 804 for (LiveInterval::const_iterator I = curli_->begin(), E = curli_->end(); 805 I != E; ++I) { 806 const LiveRange &LR = *I; 807 if (truncatedValues.count(LR.valno)) { 808 // recolor after removing intervals_. 809 addTruncSimpleRange(LR.start, LR.end, LR.valno); 810 } else if (!deadValues.count(LR.valno)) { 811 // recolor without truncation. 812 dupli_.addSimpleRange(LR.start, LR.end, LR.valno); 813 } 814 } 815 816 817 const LiveInterval *curli = sa_.getCurLI(); 818 for (MachineRegisterInfo::reg_iterator RI = mri_.reg_begin(curli->reg), 819 RE = mri_.reg_end(); RI != RE;) { 820 MachineOperand &MO = RI.getOperand(); 821 MachineInstr *MI = MO.getParent(); 822 ++RI; 823 if (MI->isDebugValue()) { 824 DEBUG(dbgs() << "Zapping " << *MI); 825 // FIXME: We can do much better with debug values. 826 MO.setReg(0); 827 continue; 828 } 829 SlotIndex Idx = lis_.getInstructionIndex(MI); 830 Idx = MO.isUse() ? Idx.getUseIndex() : Idx.getDefIndex(); 831 LiveInterval *LI = dupli_.getLI(); 832 for (unsigned i = firstInterval, e = intervals_.size(); i != e; ++i) { 833 LiveInterval *testli = intervals_[i]; 834 if (testli->liveAt(Idx)) { 835 LI = testli; 836 break; 837 } 838 } 839 MO.setReg(LI->reg); 840 DEBUG(dbgs() << " rewrite " << Idx << '\t' << *MI); 841 } 842 843 // dupli_ goes in last, after rewriting. 844 if (dupli_.getLI()->empty()) { 845 DEBUG(dbgs() << " dupli became empty?\n"); 846 lis_.removeInterval(dupli_.getLI()->reg); 847 dupli_.reset(0); 848 } else { 849 dupli_.getLI()->RenumberValues(lis_); 850 intervals_.push_back(dupli_.getLI()); 851 } 852 853 // Calculate spill weight and allocation hints for new intervals. 854 VirtRegAuxInfo vrai(vrm_.getMachineFunction(), lis_, sa_.loops_); 855 for (unsigned i = firstInterval, e = intervals_.size(); i != e; ++i) { 856 LiveInterval &li = *intervals_[i]; 857 vrai.CalculateRegClass(li.reg); 858 vrai.CalculateWeightAndHint(li); 859 DEBUG(dbgs() << " new interval " << mri_.getRegClass(li.reg)->getName() 860 << ":" << li << '\n'); 861 } 862 } 863 864 865 //===----------------------------------------------------------------------===// 866 // Loop Splitting 867 //===----------------------------------------------------------------------===// 868 869 void SplitEditor::splitAroundLoop(const MachineLoop *Loop) { 870 SplitAnalysis::LoopBlocks Blocks; 871 sa_.getLoopBlocks(Loop, Blocks); 872 873 // Break critical edges as needed. 874 SplitAnalysis::BlockPtrSet CriticalExits; 875 sa_.getCriticalExits(Blocks, CriticalExits); 876 assert(CriticalExits.empty() && "Cannot break critical exits yet"); 877 878 // Create new live interval for the loop. 879 openIntv(); 880 881 // Insert copies in the predecessors. 882 for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Preds.begin(), 883 E = Blocks.Preds.end(); I != E; ++I) { 884 MachineBasicBlock &MBB = const_cast<MachineBasicBlock&>(**I); 885 enterIntvAtEnd(MBB); 886 } 887 888 // Switch all loop blocks. 889 for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Loop.begin(), 890 E = Blocks.Loop.end(); I != E; ++I) 891 useIntv(**I); 892 893 // Insert back copies in the exit blocks. 894 for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Exits.begin(), 895 E = Blocks.Exits.end(); I != E; ++I) { 896 MachineBasicBlock &MBB = const_cast<MachineBasicBlock&>(**I); 897 leaveIntvAtTop(MBB); 898 } 899 900 // Done. 901 closeIntv(); 902 rewrite(); 903 } 904 905 906 //===----------------------------------------------------------------------===// 907 // Single Block Splitting 908 //===----------------------------------------------------------------------===// 909 910 /// splitSingleBlocks - Split curli into a separate live interval inside each 911 /// basic block in Blocks. 912 void SplitEditor::splitSingleBlocks(const SplitAnalysis::BlockPtrSet &Blocks) { 913 DEBUG(dbgs() << " splitSingleBlocks for " << Blocks.size() << " blocks.\n"); 914 // Determine the first and last instruction using curli in each block. 915 typedef std::pair<SlotIndex,SlotIndex> IndexPair; 916 typedef DenseMap<const MachineBasicBlock*,IndexPair> IndexPairMap; 917 IndexPairMap MBBRange; 918 for (SplitAnalysis::InstrPtrSet::const_iterator I = sa_.usingInstrs_.begin(), 919 E = sa_.usingInstrs_.end(); I != E; ++I) { 920 const MachineBasicBlock *MBB = (*I)->getParent(); 921 if (!Blocks.count(MBB)) 922 continue; 923 SlotIndex Idx = lis_.getInstructionIndex(*I); 924 DEBUG(dbgs() << " BB#" << MBB->getNumber() << '\t' << Idx << '\t' << **I); 925 IndexPair &IP = MBBRange[MBB]; 926 if (!IP.first.isValid() || Idx < IP.first) 927 IP.first = Idx; 928 if (!IP.second.isValid() || Idx > IP.second) 929 IP.second = Idx; 930 } 931 932 // Create a new interval for each block. 933 for (SplitAnalysis::BlockPtrSet::const_iterator I = Blocks.begin(), 934 E = Blocks.end(); I != E; ++I) { 935 IndexPair &IP = MBBRange[*I]; 936 DEBUG(dbgs() << " splitting for BB#" << (*I)->getNumber() << ": [" 937 << IP.first << ';' << IP.second << ")\n"); 938 assert(IP.first.isValid() && IP.second.isValid()); 939 940 openIntv(); 941 enterIntvBefore(IP.first); 942 useIntv(IP.first.getBaseIndex(), IP.second.getBoundaryIndex()); 943 leaveIntvAfter(IP.second); 944 closeIntv(); 945 } 946 rewrite(); 947 } 948 949 950 //===----------------------------------------------------------------------===// 951 // Sub Block Splitting 952 //===----------------------------------------------------------------------===// 953 954 /// getBlockForInsideSplit - If curli is contained inside a single basic block, 955 /// and it wou pay to subdivide the interval inside that block, return it. 956 /// Otherwise return NULL. The returned block can be passed to 957 /// SplitEditor::splitInsideBlock. 958 const MachineBasicBlock *SplitAnalysis::getBlockForInsideSplit() { 959 // The interval must be exclusive to one block. 960 if (usingBlocks_.size() != 1) 961 return 0; 962 // Don't to this for less than 4 instructions. We want to be sure that 963 // splitting actually reduces the instruction count per interval. 964 if (usingInstrs_.size() < 4) 965 return 0; 966 return usingBlocks_.begin()->first; 967 } 968 969 /// splitInsideBlock - Split curli into multiple intervals inside MBB. 970 void SplitEditor::splitInsideBlock(const MachineBasicBlock *MBB) { 971 SmallVector<SlotIndex, 32> Uses; 972 Uses.reserve(sa_.usingInstrs_.size()); 973 for (SplitAnalysis::InstrPtrSet::const_iterator I = sa_.usingInstrs_.begin(), 974 E = sa_.usingInstrs_.end(); I != E; ++I) 975 if ((*I)->getParent() == MBB) 976 Uses.push_back(lis_.getInstructionIndex(*I)); 977 DEBUG(dbgs() << " splitInsideBlock BB#" << MBB->getNumber() << " for " 978 << Uses.size() << " instructions.\n"); 979 assert(Uses.size() >= 3 && "Need at least 3 instructions"); 980 array_pod_sort(Uses.begin(), Uses.end()); 981 982 // Simple algorithm: Find the largest gap between uses as determined by slot 983 // indices. Create new intervals for instructions before the gap and after the 984 // gap. 985 unsigned bestPos = 0; 986 int bestGap = 0; 987 DEBUG(dbgs() << " dist (" << Uses[0]); 988 for (unsigned i = 1, e = Uses.size(); i != e; ++i) { 989 int g = Uses[i-1].distance(Uses[i]); 990 DEBUG(dbgs() << ") -" << g << "- (" << Uses[i]); 991 if (g > bestGap) 992 bestPos = i, bestGap = g; 993 } 994 DEBUG(dbgs() << "), best: -" << bestGap << "-\n"); 995 996 // bestPos points to the first use after the best gap. 997 assert(bestPos > 0 && "Invalid gap"); 998 999 // FIXME: Don't create intervals for low densities. 1000 1001 // First interval before the gap. Don't create single-instr intervals. 1002 if (bestPos > 1) { 1003 openIntv(); 1004 enterIntvBefore(Uses.front()); 1005 useIntv(Uses.front().getBaseIndex(), Uses[bestPos-1].getBoundaryIndex()); 1006 leaveIntvAfter(Uses[bestPos-1]); 1007 closeIntv(); 1008 } 1009 1010 // Second interval after the gap. 1011 if (bestPos < Uses.size()-1) { 1012 openIntv(); 1013 enterIntvBefore(Uses[bestPos]); 1014 useIntv(Uses[bestPos].getBaseIndex(), Uses.back().getBoundaryIndex()); 1015 leaveIntvAfter(Uses.back()); 1016 closeIntv(); 1017 } 1018 1019 rewrite(); 1020 } 1021